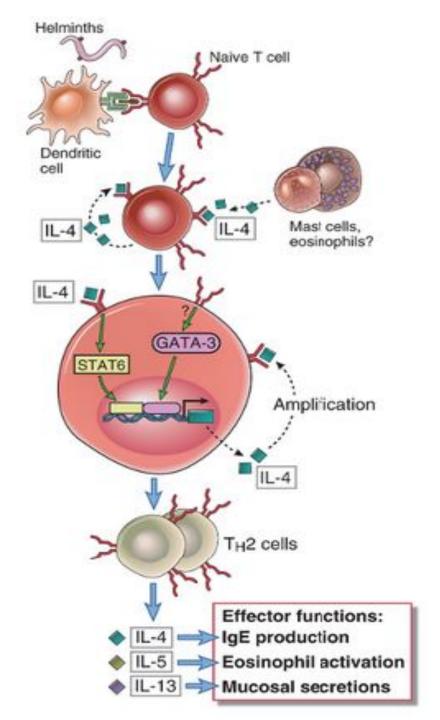
Auto-imunidade

Prof. Dr. Jean Pierre Schatzmann Peron Laboratório de Interações Neuroimunes ICB IV - USP

Mas qual o conceito de auto-imunidade mesmo ?

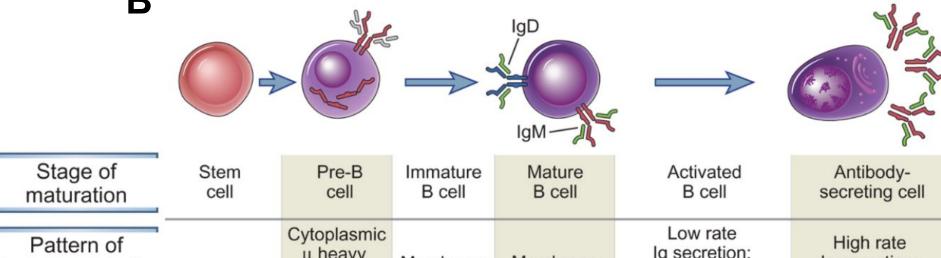
...sistema imune reconhece antígenos próprios e monta respostas inflamatórias contra estes, got it ?


Doença Autoimunes

- Humoral (Th2)
- Linfócitos B auto-reativos.
 - Ativação complemento
 - Fagócitos receptores Fc:
 - Neutrófilos
 - Macrófagos

- Celular (Th1-Th17)
- Linfócitos T auto-reativos.
 - T CD4
 - T CD8

Morte Celular e Destruição Tecidual


Resposta Th2

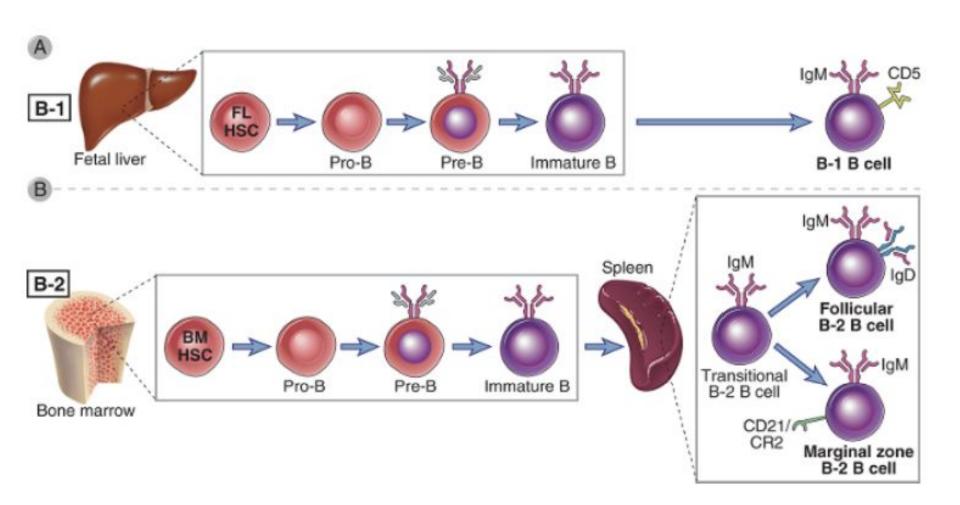
- Agentes Extra-celulares ou Vermes
- Anticorpos OPSONISANTES
- Ativação de vias do Complemento
- Desgranulação Granulócitos
- Ativação Monócitos
- Citocinas principais
- •IL-4, IL-5, IL-13
- •Fator de Transcrição
- •STAT-6, GATA-3

Ontogeni a Linfócito

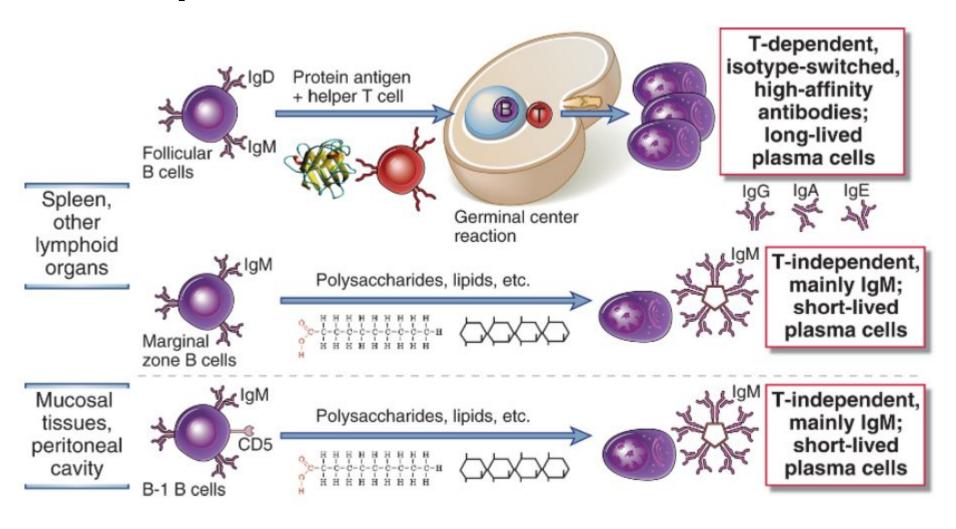
S

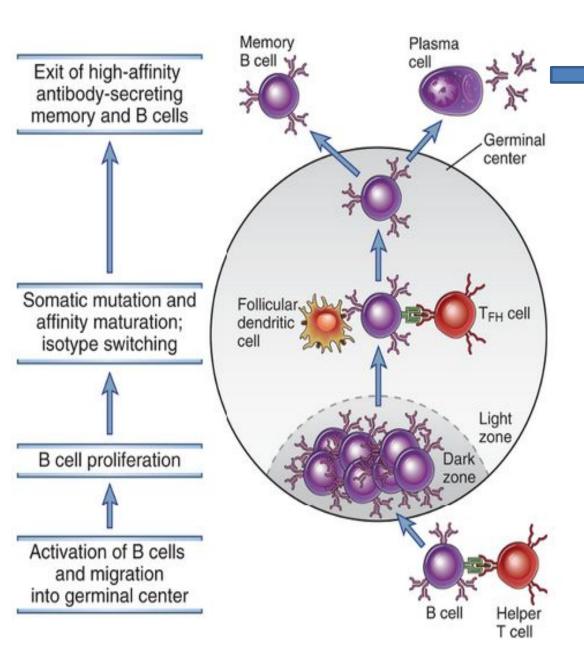
B

Pattern of immunoglobulin production


None

μ heavy chain and pre-B receptor


Membrane IgM


Membrane IgM, IgD lg secretion; heavy chain isotype switching; affinity maturation High rate Ig secretion; reduced membrane Ig

Subtipos de Linfócitos B

Antigenos T Dependentes e Independentes

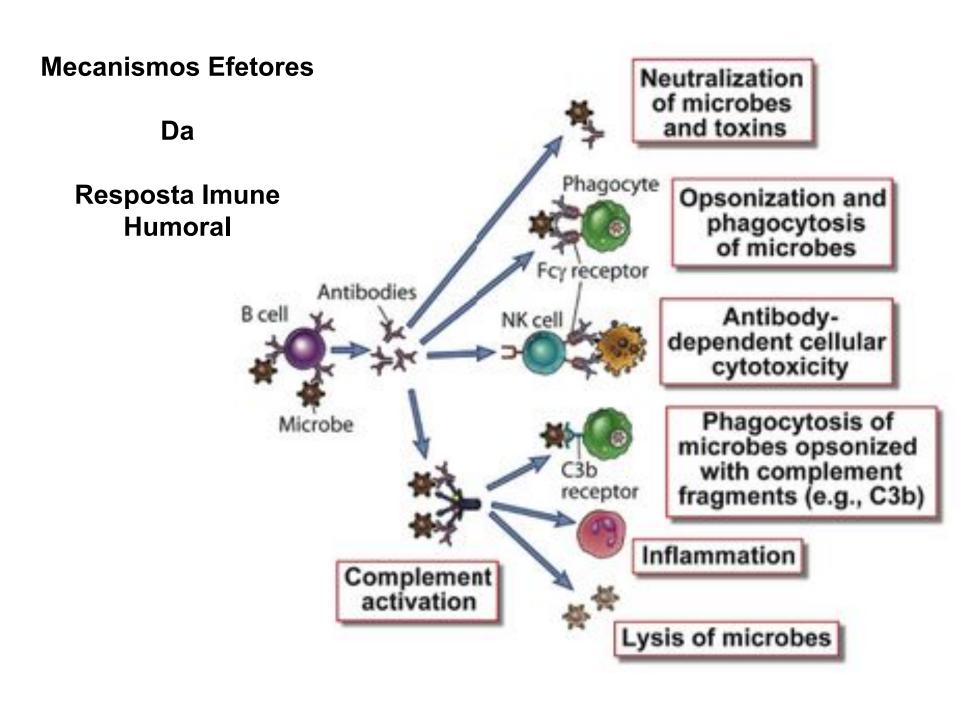
Auto-anticorpos

Membrana celular

Solúveis (imunocomplexos)

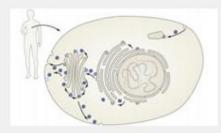
Ativação dos Mecanismos Efetores da Resposta Imune Humoral

Ativação do
Complemento
Ativação de Fagócitos
Por Receptores Fc


TABLE 5-2	Human Antiboo	dy Isotypes				
Isotope of Antibody	Subtypes (H Chain)	Serum Concentration (mg/mL)	Serum Half-life (days)	Secreted Form		Functions
IgA	IgA1,2 (α1 or α2)	3.5	6	IgA (dimer) Monomer, dimer, trimer	Ca2 Ca3 J chain	Mucosal immunity
IgD	None (δ)	Trace	3	None		Naive B cell antigen receptor
IgE	None (ε)	0.05	2	IgE Monomer	CE1 CO CE1 CO CE2 CE3 CE4	Defense against helminthic parasites, immediate hypersensitivity
IgG	IgG1-4 (γ1, γ2, γ3, or γ4)	13.5	23	IgG1 Monomer	A CALCAS	Opsonization, complement activation, antibody-dependent cell-mediated cytotoxicity, neonatal immunity, feedback inhibition of B cells
IgM	None (μ)	1.5	5	IgM Pentamer	Сµ1 Сµ3 Сµ4 Сµ4 Сµ4 Сµ4 Сµ4 Сµ4 Сµ4 Сµ4 Сµ4 Сµ4	Naive B cell antigen receptor, complement activation

Tudo bem, já entendi essa história de Ag na membrana + Auto-anticorpo...

E os mecanismos, são os mesmos da resposta imune humoral?


Exatamente!
Ativação do
Complemento e
Fagócitos!!!

Como se dá então, a destruição tecidual em cada tipo De doença auto-imune ?

2013 Medicine Prize

Transport of Molecular Cargo

The Nobel Prize in Physiology or Medicine 2013 was awarded jointly to James E. Rothman, Randy W. Schekman and Thomas C. Südhof.

"We Like People that Fail"

For James Rothman, science is a very emotional and social thing.

→ Listen to James E. Rothman

Randy W. Schekman in Interview

→ Watch Randy W. Schekman explain his Nobel Prize awarded work to young students

"Billions of Nerve Cells that Constantly Talk to Each Other"

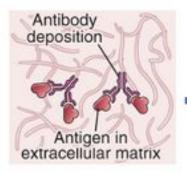
→ Thomas C. Südhof explains his work in this video

Mechanism of antibody deposition

Effector mechanisms of tissue injury

Neutrophils and

Auto-anticorpos

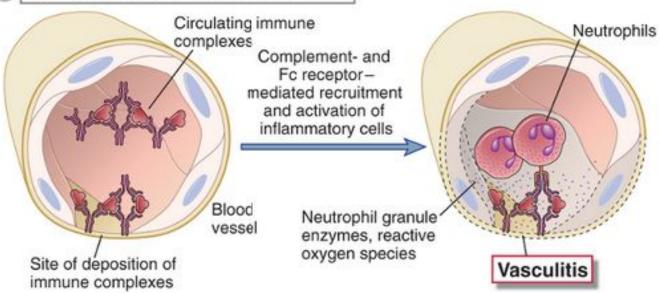

Contra Antígenos

Presentes
Na Membrana
Celular

Ou

Solúveis

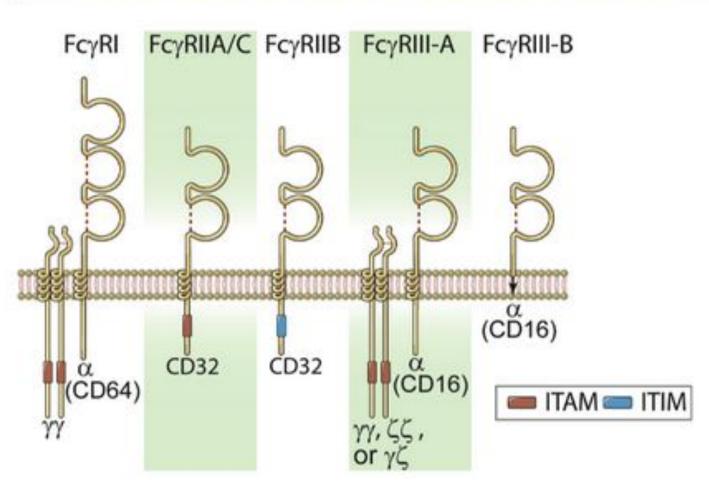
A Injury caused by antitissue antibody

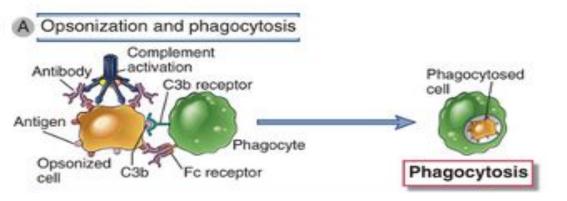


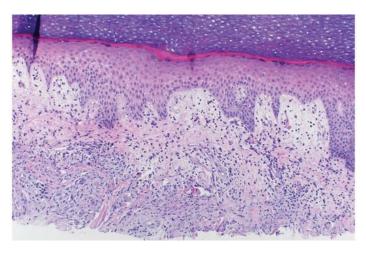
Complement- and Fc receptor – mediated recruitment and activation of inflammatory cells

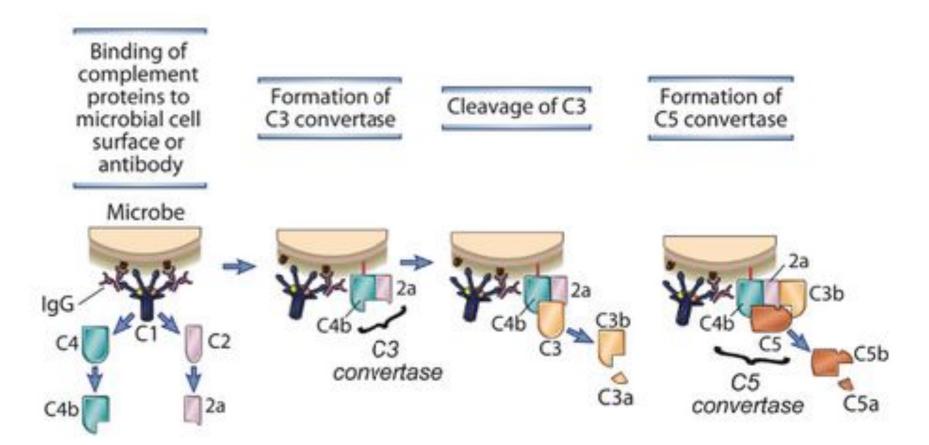
> Enzymes, reactive oxygen species

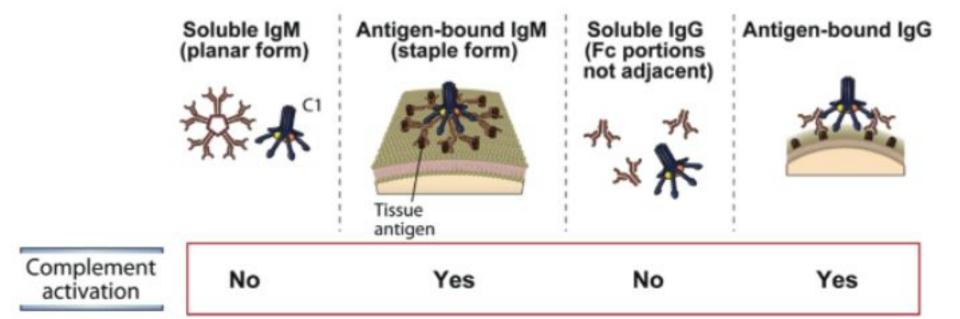
Tissue injury

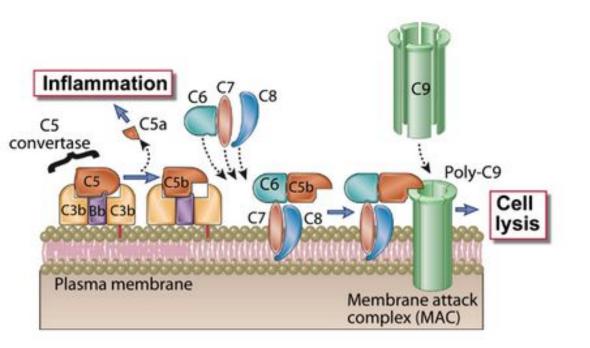

B Immune complex-mediated tissue injury




Gravidade da doença se relaciona: Abundância Ag Disponibilidade Ag Tecido Acometido


Subunit Composition of Fcy receptors





Classical Pathway

Inflamação Local

Inicia-se

Lise Celular
Extravazamen
to
De Conteúdo

Examples of Diseases Caused by Cell- or Tissue-Specific Antibodies **TABLE 18–2** Clinicopathologic Manifestations Target Antigen Mechanisms of Disease Disease

Opsonization and phagocytosis of

Opsonization and phagocytosis of

Antibody-mediated activation of

Neutrophil degranulation and

Complement- and Fc receptor-

proteases, disruption of intercellular adhesions

mediated inflammation

Inflammation, macrophage

Antibody inhibits acetylcholine

binding, downmodulates receptors

Antibody-mediated stimulation of

Antibody inhibits binding of insulin

Neutralization of intrinsic factor;

decreased absorption of vitamin

erythrocytes, complement-

mediated lysis

platelets

inflammation

activation

TSH receptors

B₁₂

Hemolysis, anemia

Skin vesicles (bullae)

Nephritis, lung hemorrhage

Muscle weakness, paralysis

Hyperglycemia, ketoacidosis

Abnormal erythropoiesis, anemia

Myocarditis, arthritis

Hyperthyroidism

Bleeding

Vasculitis

Erythrocyte membrane proteins (Rh.

Platelet membrane proteins (gpllb-Illa

Proteins in intercellular junctions of

Neutrophil granule proteins, presumably

released from activated neutrophils

basement membrane in glomeruli and

Streptococcal cell wall antigen; antibody

cross-reacts with myocardial antigen

Intrinsic factor of gastric parietal cells

Acetylcholine receptor

TSH receptor

Insulin receptor

ANCA, antineutrophil cytoplasmic antibodies; TSH, thyroid-stimulating hormone.

Non-collagenous NC1 protein of

epidermal cells (desmoglein)

blood group antigens, I antigen)

integrin)

lung

Autoimmune hemolytic anemia

thrombocytopenic purpura

Vasculitis caused by ANCA

Goodpasture's syndrome

Acute rheumatic fever

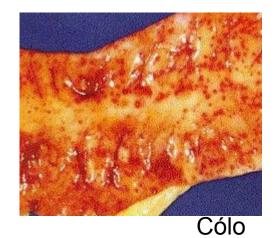
Myasthenia gravis

Graves' disease

(hyperthyroidism)

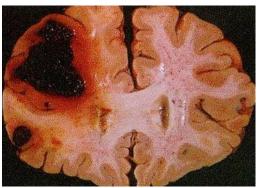
Pernicious anemia

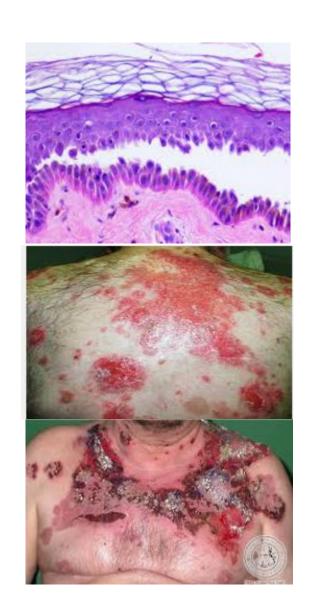
Insulin-resistant diabetes


Pemphigus vulgaris

Autoimmune

Anemia Hemolítica - Trombocitopenia





Anemia Hemolítica Trombocitopenia

Esplenomegal ia

n

Pemphigus vulgaris

Doença Auto-imune contra antígenos Da pele

Desmogleína é uma proteína importante Na adesão intercelular

Anticorpos anti-desdmogleína quebram a Estabilidade do tecido, resultando no descolamento E formação de bolhas

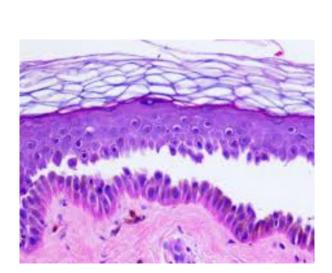
Pode ser desencadeada por medicamentos

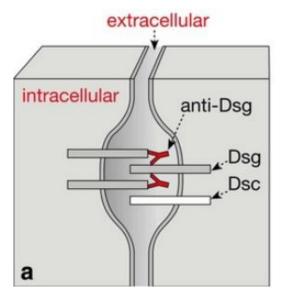
-Penicilamina Inibidores da ECA

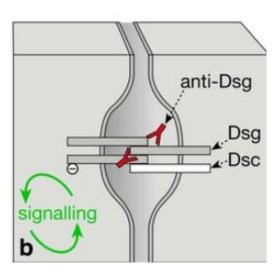
- Captopril, Enalapril...

J Invest Dermatol. 1996 Feb;106(2):351-5.

Pemphigus vulgaris antigen (desmoglein 3) is localized in the lower epidermis, the site of blister formation in patients.


Amagai M1, Koch PJ, Nishikawa T, Stanley JR.


Author information


Abstract

In Patients with pemphigus vulgaris, autoantibodies against the desmosomal glycoprotein desmoglein 3 (Dsg3) cause blisters due to loss of keratinocyte cell-cell adhesion in the basal and immediate suprabasal layer of the deeper epidermis, leaving the superficial epidermis intact. Autoantibodies from these patients, however, usually bind to the cell surface of keratinocytes throughout the entire epidermis, as determined by indirect immunofluorescence. To explain this apparent paradox, we immunoadsorbed pemphigus vulgaris sera with the extracellular domains of Dsg3 and desmoglein 1 (Dsg1) produced by insect cells infected with recombinant baculovirus. When adsorbed with extracellular domains of both Dsg3 and Dsg1, these sera no longer stained epidermis, demonstrating that most, if not all, of their cell surface reactivity can be attributed to antibodies against the extracellular domains of these desmogleins. Adsorption with only the Dsg1 extracellular domain left antibodies that stained only the basal and immediate suprabasal layers of the epidermis and immunoprecipitated only Dsg3, not Dsg1, from extracts of cultured cells synthesizing these molecules. In contrast, adsorption with only the Dsg3 extracellular domain left antibodies that stained only the more superficial epidermis and immunoprecipitated only Dsg1. These data localize Dsg3 exactly to the area in the epidermis where blisters occur in pemphigus vulgaris.

PMID: 8601740 [PubMed - indexed for MEDLINE]

ANCA-Positive Vasculitis

Lavanya Kamesh†, Lorraine Harper*† and Caroline O. S. Savage*†

+ Author Affiliations

Correspondence to Professor Caroline O. S. Savage, Renal Immunobiology, Division of Medical Sciences, The Medical School, University of Birmingham, Birmingham, UK, B15 277. Phone: 0-121-414-6841; Fax: 0-121-414-6840; E-mail: C.O.S.Savage@bham.ac.uk

Inflammation and necrosis of blood vessel wall occurs in a dozen or so primary vasculitic disorders. An attempt to classify these diverse forms of vasculitis resulted in the Chapel Hill international consensus definitions, which used the vessel size as the determinant of classification (1). Wegener granulomatosis, microscopic polyangiitis, and Churg Strauss syndrome are described as small-vessel vasculitides and are acknowledged to be commonly associated with antineutrophil cytoplasm antibodies (ANCA). These diseases share a common pathology with focal necrotizing lesions, which affect many different vessels and organs; in the lungs, a capillaritis may cause alveolar hemorrhage; within the glomerulus of the kidney, crescentic glomerulonephritis may cause acute renal failure; in the dermis, a purpuric rash or vasculitic ulceration may occur. Wegener granulomatosis and Churg Strauss syndrome have additional granulomatous lesions (for further review, see reference 2). The incidence of these diseases is increasing, with more than 20 per million affected and occurring more often in an elderly population (peak age, 55 to 70 yr) (3).

« Previous | Next Article » Table of Contents

This Article

doi: 10.1097/01.ASN.000001 6442.33680.3E JASN July 1, 2002 vol. 13 no. 7 1953-1960

» Full Text Full Text (PDF)

- Article Usage Stats

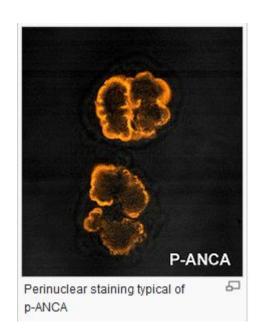
Article Usage Statistics

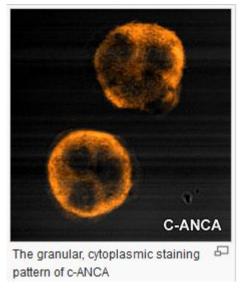
Services

Email this article to a colleague Alert me when this article is cited

Alert me if a correction is posted

Similar articles in this journal Similar articles in PubMed Download to citation manager


© Get Permissions


- + Citing Articles
- + Google Scholar
- + PubMed

Navigate This Article

Top

Anti-Neutrophil Cytoplasm Antibody

Mimetismo Molecular

98% dos pacientes são Portadores crônicos de *Staphylococcus aureus*

Depuração de Células em Apoptose De forma defeituosa

Geração de auto-anticorpos

Antígenos – Proteinase -3 Mieloperoxidase

Rheumatic heart disease: molecules involved in valve tissue inflammation leading to the autoimmune process and anti-*S. pyogenes* vaccine

Luiza Guilherme 1,2 * and Jorge Kalil 1,2,3

- ¹ Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- ² Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
- ³ Clinical Immunology and Allergy Division, School of Medicine, University of São Paulo, São Paulo, Brazil

Table 1 | Genes of genetic susceptibility of RF and RHD.

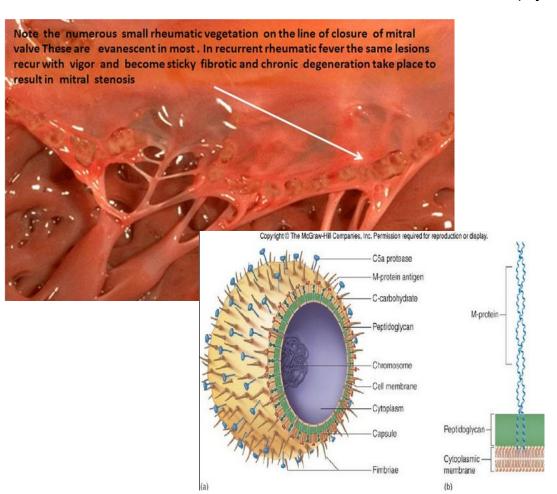
Genetic markers	Role		
MBL; TLR2; FCN2;	Innate immunity		
FCγRIIa	Inadequate immune response against S. pyogenes		
HLA class II genes	Adaptive immune response		
(DR and DQ, several alleles)	T cell antigen presentation and immune response		
TNF-α, ILRA, TGF-β,	Both innate immunity/adaptive immune response		
IL-10	Mediators of inflammatory reactions		

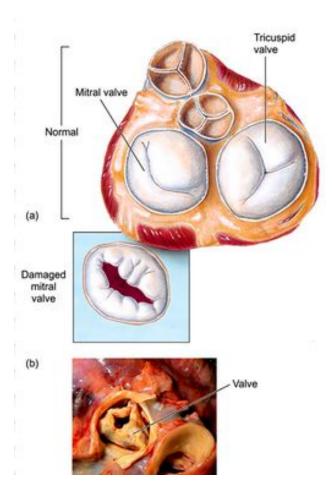
INTRODUCTION

Rheumatic fever (RF) and its major sequelae rheumatic heart disease (RHD) are autoimmune diseases that arise following infection of the throat by *S. pyogenes* in children and young individuals (3–19 years old) who present genetic components that confer susceptibility to the disease.

The disease still remains a major cause of cardiovascular disability in school children and young individuals, and it represents a high burden for public health in the developing world. The incidence of this disease in the so-called "hotspots" ranges from 20 to 51 per 100,000 habitants, causing \sim 500,000 deaths each year (1). In Brazil, the number of beta hemolytic streptococcus throat infections is \sim 10 million cases/year, leading to 30,000 new cases of RF, of which \sim 15,000 cases develop RHD (2).

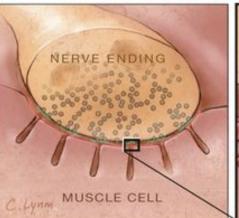
The aim of this review is to explore the role of several genes in the control of *S. pyogenes* infection and the associated autoimmune reactions, as well as to depict the molecular mechanisms leading to these autoimmune reactions.

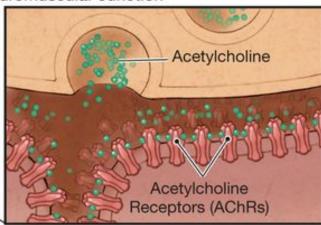

Febre Reumática – pós Streptococcus pyogenes A

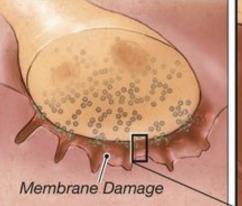

Afeta frequentemento Crianças de 5 -15 anos Ocorre aproximadamente 14-28 dias depois da infecção.

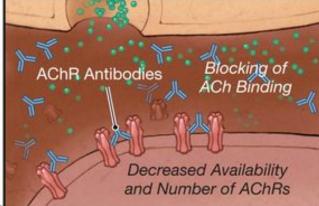
Mimetismo Molecular

Anticorpos Anti-proteína M
Pericardite – Miocardite – Valvulite
Miosina Cardíaca (miocpardio pericárdio)
Vimentina (vávulas)


Lysoganglioside GM1 - *N-acetyl-b-d-glucosamine* (Sydenham Chorea (SC) - acomete SNC

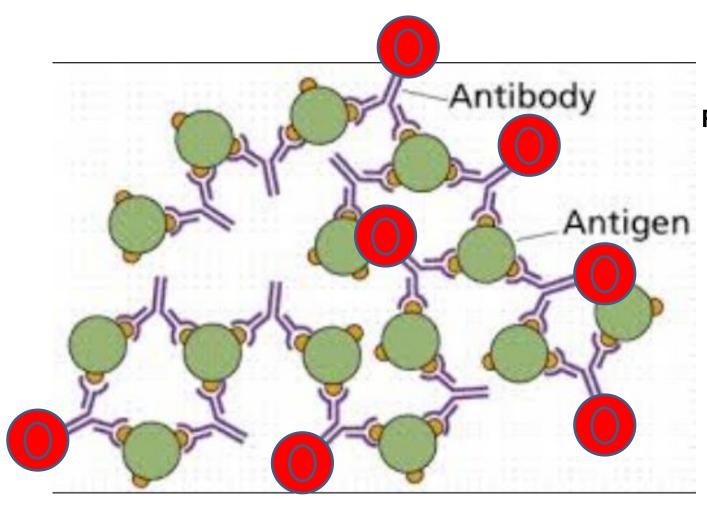



Myasthenia gravis


Normal Neuromuscular Junction

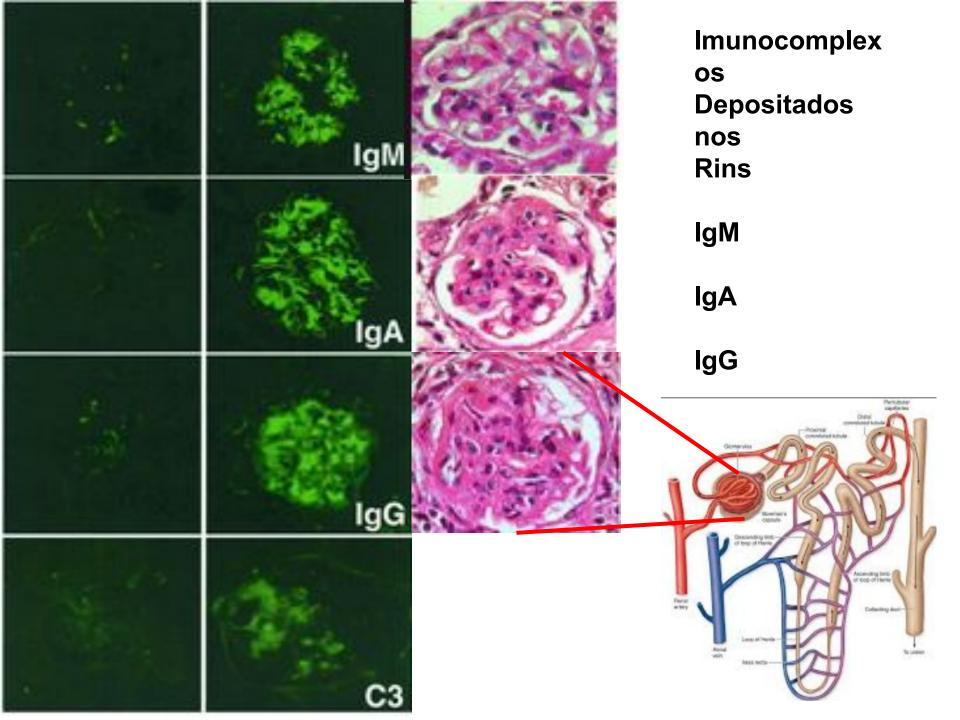
Myasthenia Gravis

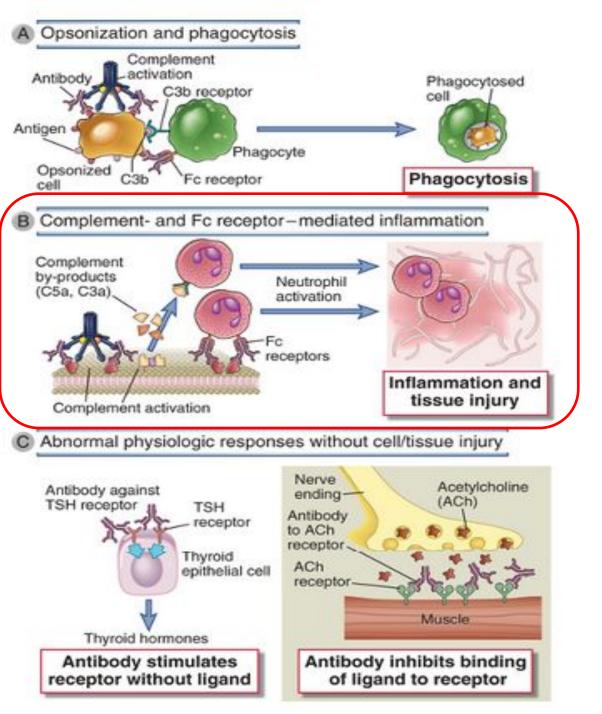
Antibody Dependent


Bloqueio dos Receptores Colinérgicos

Flacidez – Espasmos

Paralisia


TABLE 18–1 Classification of Immunologic Diseases						
Type of Hypersensitivity	Pathologic Immune Mechanisms	Mechanisms of Tissue Injury and Disease				
Immediate hypersensitivity: type I	IgE antibody	Mast cells and their mediators (vasoactive amines, lipid mediators, cytokines)				
Antibody mediated: type II	IgM, IgG antibodies against cell surface or extracellular matrix antigens	Opsonization and phagocytosis of cells Complement- and Fc receptor-mediated recruitment and activation of leukocytes (neutrophils, macrophages) Abnormalities in cellular functions, e.g., hormone receptor signaling				
Immune complex mediated: type III	Immune complexes of circulating antigens and IgM or IgG antibodies	Complement- and Fc receptor-mediated recruitment and activation of leukocytes				
T cell mediated: type IV	CD4 ⁺ T cells (cytokine-mediated inflammation) CD8 ⁺ CTLs (T cell-mediated cytolysis)	Recruitment and activation of leukocytes Direct target cell killing, cytokine-mediated inflammation				

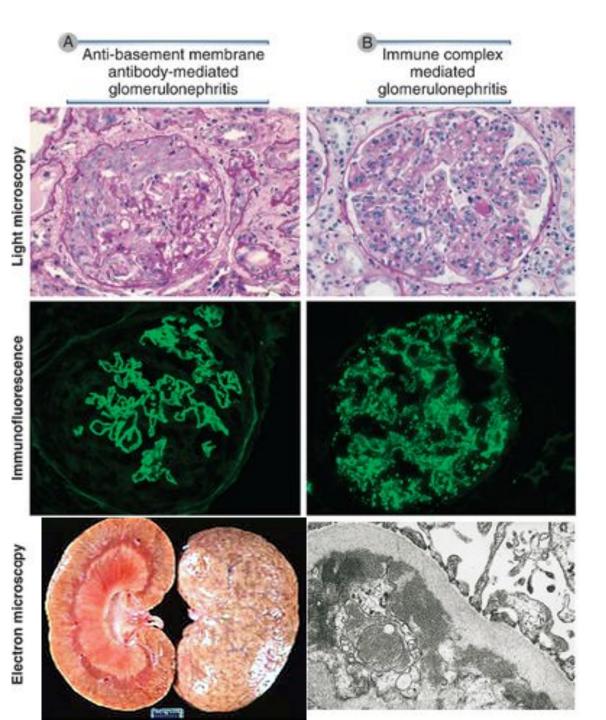

Imunocomplexo Hipersensibilidade Tipo III

Receptor es

CR1

Hipersensibilidade Tipo II

Contra Antígenos Celulares (Geralmente Menbrana)

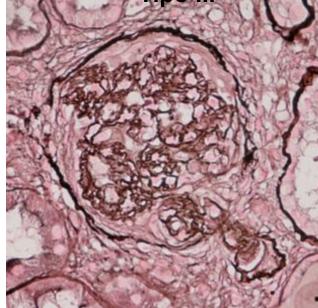

Auto-anticorpos

Mioglobina DNA Histonas Ags exógenos

Medicamentos

Gravidade da doença se relaciona:
Abundância Ag

Tecido
Acometido
Rins
Articulações



Anticorpo anti-membrana basal Tipo II

Vs.

Deposição de **Imunocomplexo**

Tipo III

TABLE 18–3	Examples of Human Immu	ne Complex–Mediated Diseases
-------------------	------------------------	------------------------------

IADEL 10 5	Examples of Human I	minune complex	Wiculated Diocases

Disease

Systemic lupus erythematosus

Poststreptococcal glomerulonephritis

Polyarteritis nodosa

Serum sickness

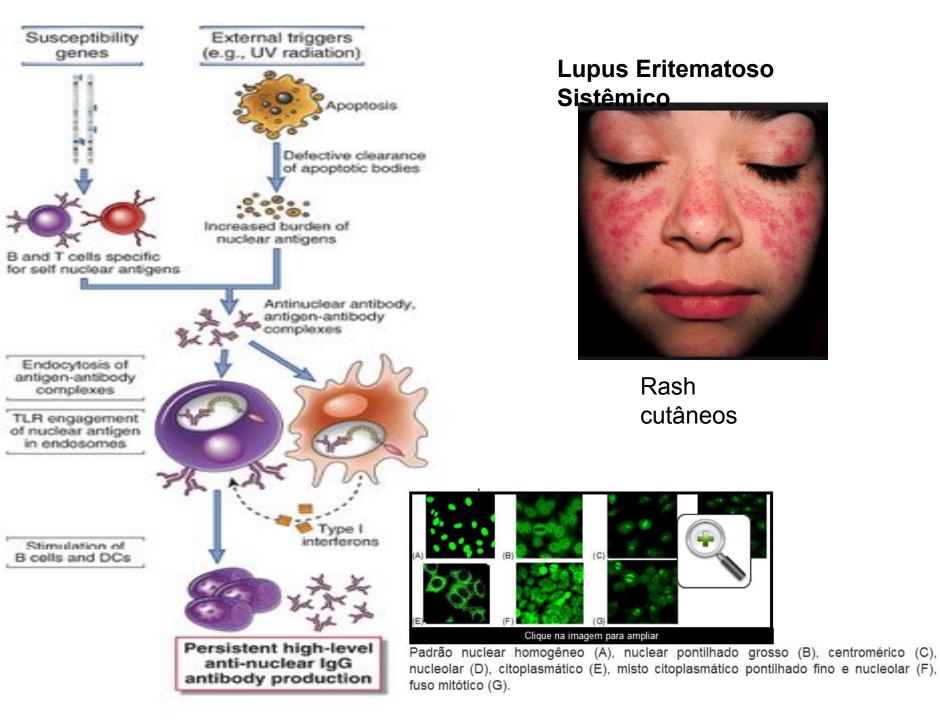
Antigen Involved

DNA, nucleoproteins, others

Hepatitis B virus surface antigen

Streptococcal cell wall antigens; may be "planted" in glomerular basement membrane

Various proteins


Arthritis, vasculitis, nephritis

Vasculitis

Nephritis

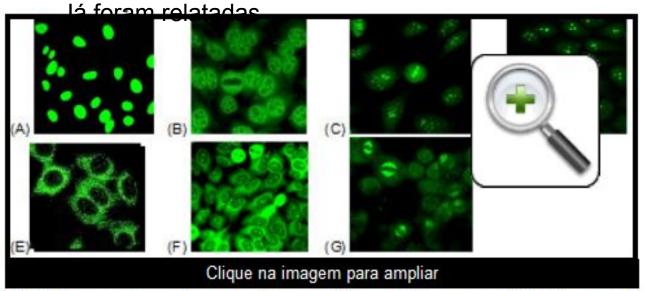
Clinicopathologic Manifestations

Nephritis, arthritis, vasculitis

Anticorpos Anti-DNA, Anti-Histona Fatores Anti-núcleo

Agentes Infecciosos

Ainfecções por HTLV


Radiação UV

Rash cutâneos Ativam a doença

Químicos

Hidralazine, Procainamid

Isoniazid

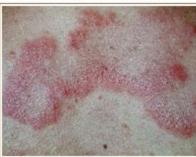
Padrão nuclear homogêneo (A), nuclear pontilhado grosso (B), centromérico (C), nucleolar (D), citoplasmático (E), misto citoplasmático pontilhado fino e nucleolar (F), fuso mitótico (G).

Discoid lupus erythematosus

In the most common form, discoid LE, unsightly red scaly patches develop which leave <u>postinflammatory pigmentation</u> and white scars. It may be localised or widespread.

- Discoid LE predominantly affects the cheeks, nose and ears, but sometimes involves the upper back, V of neck, and backs of hands.
- Hypertrophic LE results in thickened and warty skin resembling <u>viral warts</u> or <u>skin cancers</u>.
- Rarely, discoid LE occurs on the palms and/or soles (palmoplantar LE).
- If the hair follicles are involved, they are first plugged with adherent scale and then bald areas can develop. If the follicles are destroyed, the bald patches are permanent (<u>scarring alopecia</u>).
- Discoid LE may affect the lips and inside the mouth, causing ulcers and scaling. These lesions may predispose to squamous cell carcinoma.

Discoid lupus erythematosus


Lupus tumidus

Lupus erythematosus tumidus is a dermal form of lupus. The rash is characteristically photosensitive, so it affects sun-exposed sites. It presents with red, swollen, urticaria-like bumps and patches, some of which are ring-shaped (annular). It tends to clear during the winter months and does not leave any marks or scars.

Lupus tumidus is similar to <u>Jessner lymphocytic infiltrate</u>, in which diagnostic criteria for lupus are absent.

Lupus tumidus

Lupus profundus

Lupus profundus is the name given to lupus affecting the fat underlying skin and may also be called 'lupus <u>panniculitis</u>'. it may develop at any age, including children. The face is the most common area to be affected. Inflammation of the fat results in firm deep nodules for some months. The end result is unsightly dented scars (<u>lipodystrophy</u>) as the fat cells are completely destroyed by the lupus.

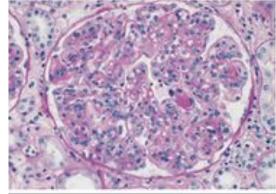
Lupus profundus

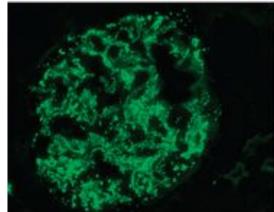
Drug-induced lupus erythematosus

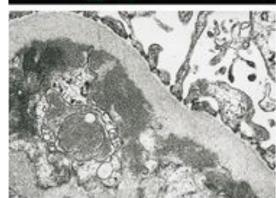
Certain medications may rarely precipitate lupus in predisposed individuals. Generally symptoms take some months to develop. <u>Druq-induced lupus</u> does not usually affect the skin. The most frequent drugs to be implicated are:

- Hydralazine
- Carbamazepine
- Lithium
- Phenytoin
- Sulphonamides
- Minocycline

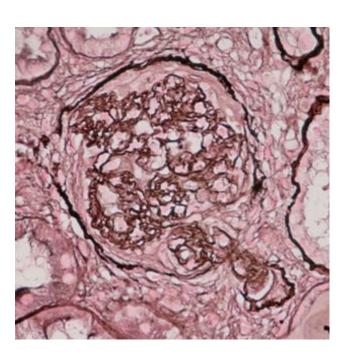
Drug-induced lupus

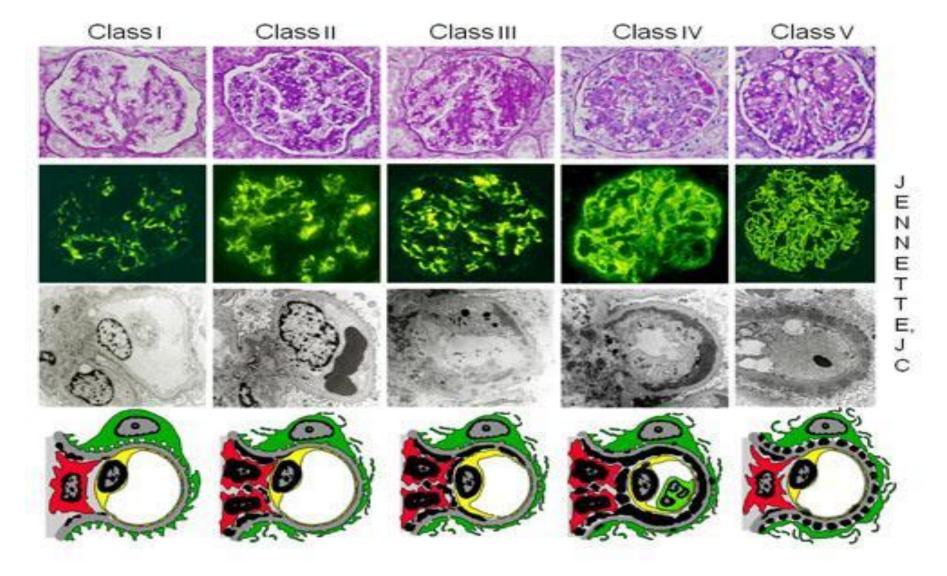



Auto-anticorpos Já detectados no LUPUS


Anti-dsDNA
Antifosfolípides
Antineuronal
Anti-Ro
Anti-eritrócitos
Anti-linfócitos
Anti-plaquetas

Participam diretamente Das lesões..


Immune complex mediated glomerulonephritis



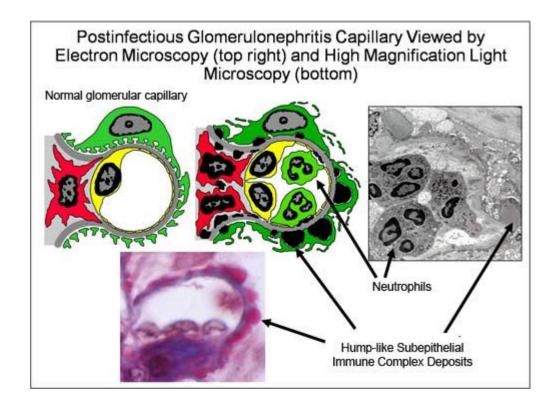
Deposição de Imunocomplexo

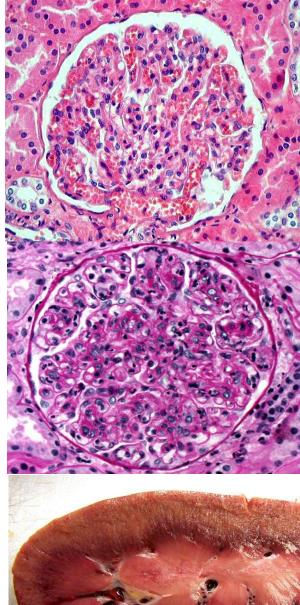
Class I: Mild disease with small amount of swelling

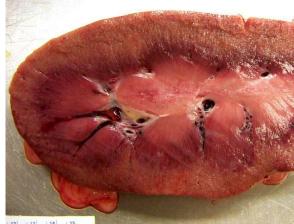
Class II: Still fairly mild disease but more swelling than Class I

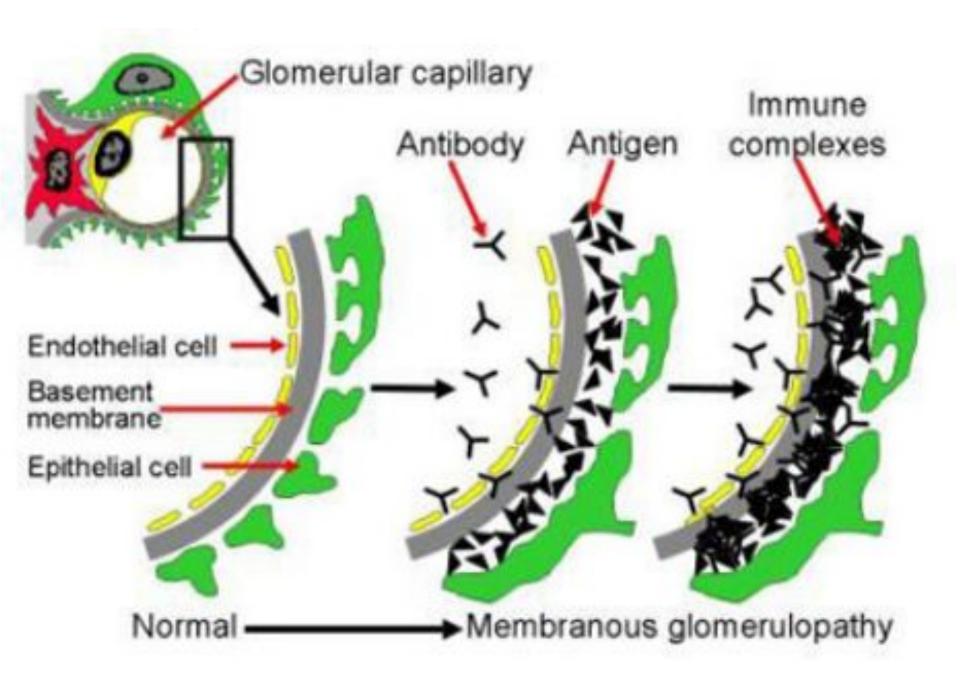
Class III : Moderate degree of swelling with less than 50% of the filtering units (glomeruli)

affected


Class IV : Severe degree of swelling with greater than 50% filtering units affected


Class IV-S: Of the affected filtering unit, less than $\frac{1}{2}$ of it is affected by swelling Class IV-G: Of the affected filtering unit, most of it is affected by inflammation


Class V: Most of the swelling is confined to the outer layer surrounding the filter unit


Class VI · Most of the filter units show scarring

Glomerulonefrite Pós-streptocóccica

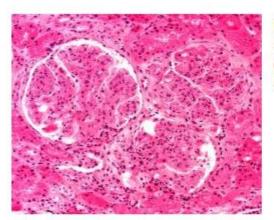


Fig. 1. Light micrograph of three glomeruli showing prominent hypersegmentation (lobulation) and hypercellularity (H&E stain, original magnification 200x).

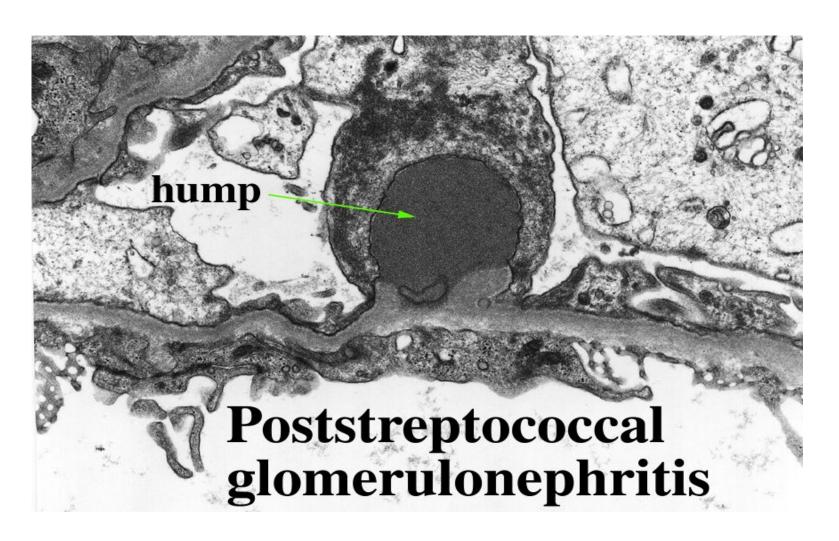
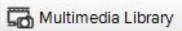
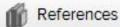



Fig. 2. Light micrograph of a glomerulus showing prominent hypersegmentation (lobulation), hypercellularity, and segmented neutrophils within capillary lumens (H&E stain, original magnification 400x).

Fig. 9. Light micrograph of a glomerulus showing crescent formation with hyperlobularity, hypercellularity, and segmented neutrophils within capillary lumens (PAS stain, original magnification 400x).

Depósitos de Imunocomplexos subendoteliais




Background

Pathophysiology

Epidemiology

Show All

Pathophysiology

Poststreptococcal glomerulonephritis follows infection with only certain strains of streptococci, designated as nephritogenic. The offending organisms are virtually always group A streptococci. Acute poststreptococcal glomerulonephritis (APSGN) follows pyodermatitis with streptococci M types 47, 49, 55, 2, 60, and 57 and throat infection with streptococci M types 1, 2, 4, 3, 25, 49, and 12.

Although many morphologic, clinical, and serologic features suggest that APSGN is an immune complex disorder, the precise nature of the antigen-antibody interaction is undefined. APSGN is believed to be an immune-mediated disease, in which an immune complex containing a streptococcal antigen is deposited in the affected glomeruli. The size of glomerular basement membrane (GBM) pores and the molecular size of the streptococcus-lg complex are also important determinants. The molecular size of the streptococcus-lg complex is about 15 nm (10 nm for streptococcus group A and 5 nm for immunoglobulin). The GBM pore sizes in children and adults are 2-3 nm and 4-4.5 nm, respectively. Therefore, the immune complex molecule can be more easily rodded into the glomerulus in children than in adults and, thus, may explain the increased frequency of APSGN in children compared to that in adults.

The 2 antigens isolated from nephritogenic streptococci are under investigation in APSGN. These include the cationic cysteine protease streptococcal pyrogenic exotoxin B and nephritis-associated streptococcal plasmin receptor, which is a plasmin-binding protein with glyceraldehyde phosphate dehydrogenase (also known as presorbing antigen or PA-Ag). These fractions have an affinity for glomeruli and have been shown to induce specific, long-lasting antibody responses in biopsy specimens from patients with APSGN. The relevance of exotoxin B and glyceraldehyde phosphate dehydrogenase was evaluated in the same renal biopsy and serum samples of patients with well-defined APSGN.

Inadequate removal of immune complexes and apoptotic bodies Complement components and receptors: Human 9 C1q, C2, C4, CR1, CR2 10 Cytokines: IL-10, IL-6, TNF-\alpha Human Perturbed lymphocyte functions and lack of regulatory T cells and mouse Cytokine receptors: TNF\u03c4-RII, IL-4R, IFN-\u03c4 11 - 13Human Perturbed lymphocyte functions RI and II Human MHC class II: DR, DQ (human), I-A, Abnormal T-lymphocyte repertoire and autoantibody production 14,15 and mouse I-E (mouse) TCR: α , β , γ gene loci Human Distorted T-cell repertoire and autoantibody production 16,17 Ig heavy and light chain gene loci Human Skewing of the B-lymphocyte repertoire 18 IgG Fc receptors: Fcylla, IIIa, IIIb Human Binding of immune complexes to macrophages and lymphocytes 19 - 21TCR associated signalling molecules: Human Defective TC-mediated signalling and function, lymphoproliferation, 22 - 24TCR\(\zeta\) chain, SHP-1 and mouse autoantibody production BCR associated signalling molecules: Mouse Enhanced B-lymphocyte proliferative responses, autoantibody 24,25 SHP-1, FcyRIIb, Yaa production Defect in clonal deletion of T and B lymphocytes, Apoptosis: Fas, FasL Mouse 26,27

lymphoproliferation, autoantibody production Excessive lymphocyte proliferative responses

Accumulation of T-lymphocytes in the G1 phase of the cell cycle,

Accumulation of DNA leading to loss of immune tolerance

Immunological effects

Reference

28 - 31

32,33

34,35

Table 1 Genes associated with predisposition to develop spontaneous lupus disease

Species

Human

Human

Human

and mouse

and mouse

Gene loci

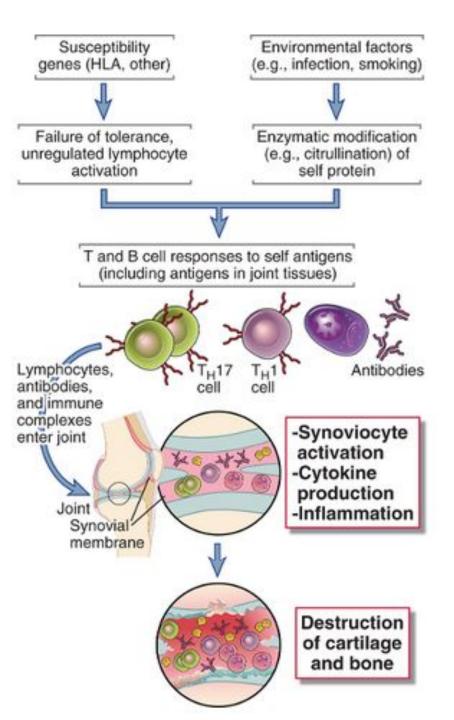
Membrane accessory molecules on

Cell cycle gene: p21

Nuclease enzymes: Dnase 1

lymphocytes: CD40L, CD22, FcyRIIIb

Genes regulating B- and T-lymphocyte Mouse Breakdown of tolerance to chromatin, B-lymphocyte hyper 36
responses and tolerance to chromatin: responsiveness, T-lymphocyte hyper responsiveness and defective apoptosis


The table includes only loci with known linkages with spontaneous lupus in human and murine models of the disease. Genes in knockout and transgenic mice which result in lupus-like phenotype in mice are not included since the relevance of these to idiopathic lupus is not known.

defective apoptosis

TABLE 18–1 Classification of Immunologic Diseases				
Type of Hypersensitivity	Pathologic Immune Mechanisms	Mechanisms of Tissue Injury and Disease		
Immediate hypersensitivity: type I	IgE antibody	Mast cells and their mediators (vasoactive amines, lipid mediators, cytokines)		
Antibody mediated: type II	IgM, IgG antibodies against cell surface or extracellular matrix antigens	Opsonization and phagocytosis of cells Complement- and Fc receptor—mediated recruitment and activation of leukocytes (neutrophils, macrophages) Abnormalities in cellular functions, e.g., hormone receptor signaling		
Immune complex mediated: type III	Immune complexes of circulating antigens and IgM or IgG antibodies	Complement- and Fc receptor-mediated recruitment and activation of leukocytes		
T cell mediated: type IV	CD4 ⁺ T cells (cytokine-mediated inflammation)	Recruitment and activation of leukocytes		

Direct target cell killing, cytokine-mediated inflammation

CD8⁺ CTLs (T cell-mediated cytolysis)

Tipo IV

Antigenos Protéicos

Apresentados

aos Linfócitos T

Th₁

Th17

TABLE 18–4 T Cell–Mediated Dis

Disease

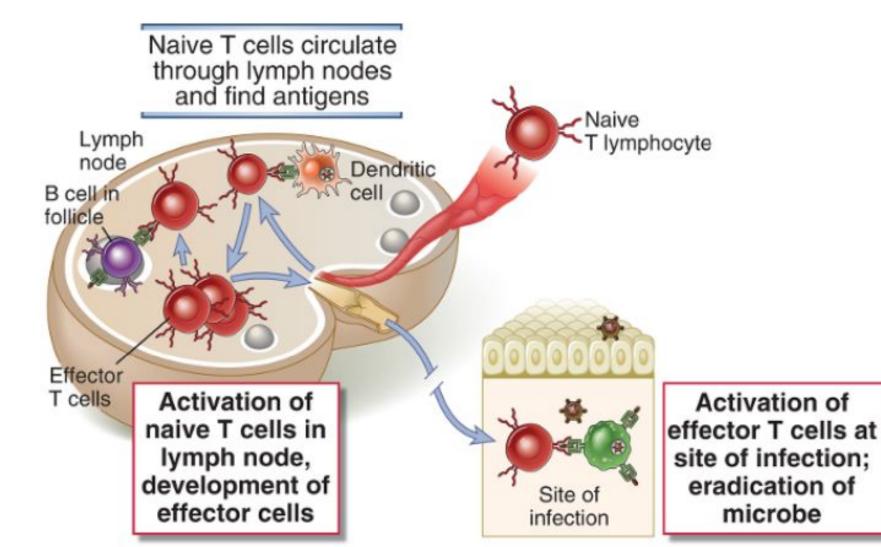
Autoimmune myocarditis

Rheumatoid arthritis	Collagen? Citrullinated self proteins?	Inflammation mediated by T _H 17 (and T _H 1?) cytokines Role of antibodies and immune complexes?
Multiple sclerosis	Protein antigens in myelin (e.g., myelin basic protein)	Inflammation mediated by T _H 1 and T _H 17 cytokines Myelin destruction by activated macrophages
Type 1 diabetes mellitus	Antigens of pancreatic islet β cells (insulin, glutamic acid decarboxylase, others)	T cell-mediated inflammation Destruction of islet cells by CTLs
Inflammatory bowel disease	Enteric bacteria Self antigens?	Inflammation mediated by T _H 17 and T _H 1 cytokines

Principal Mechanisms of Tissue Injury

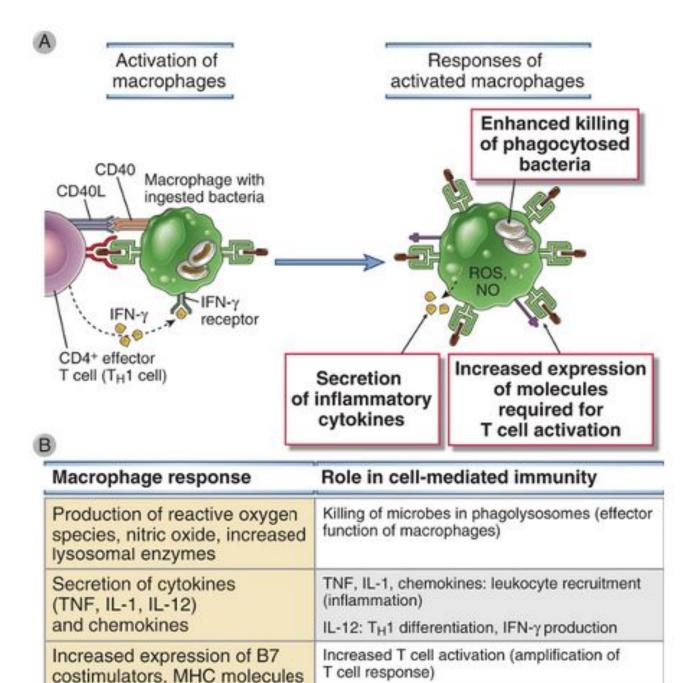
CTL-mediated killing of myocardial cells Inflammation mediated by T_H1 cytokines

Specificity of Pathogenic T Cells

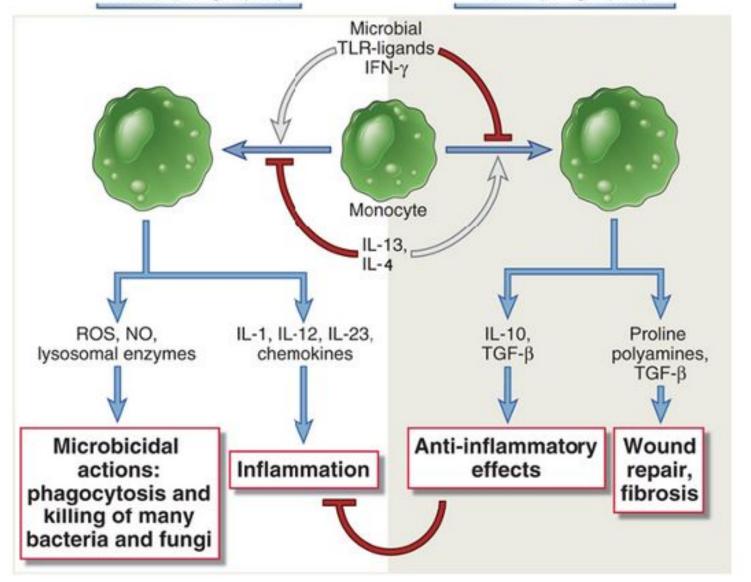

Myosin heavy chain protein

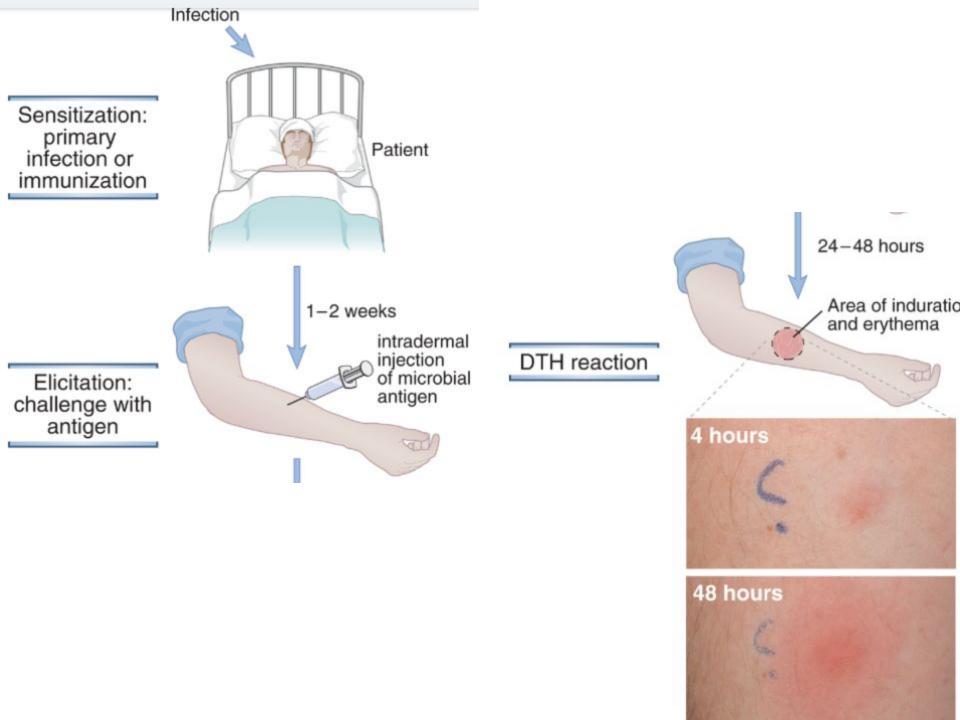
Examples of human T cell—mediated diseases are listed. In many cases, the specificity of the T cells and the mechanisms of tissue injury are inferred on the basis of the similarity with experimental animal models of the diseases.

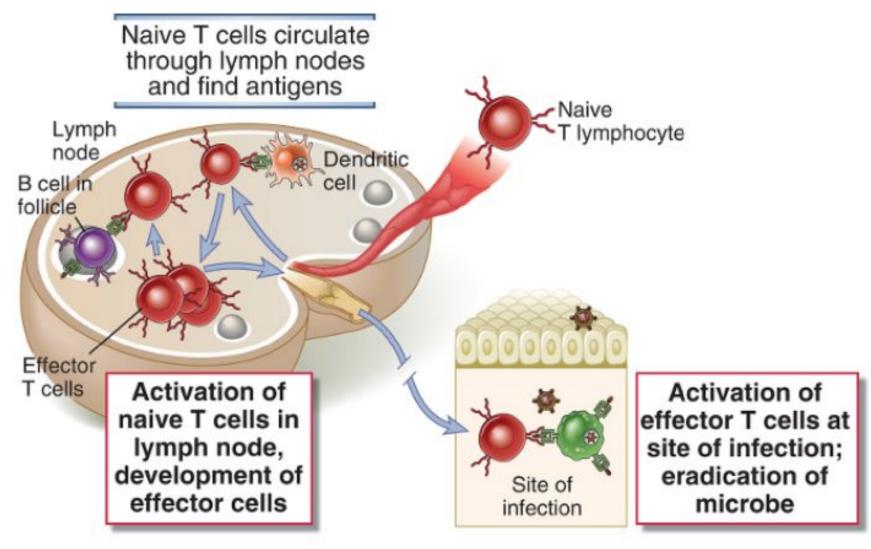
Dendritic Naive T cell Microbes IL-12 NK cell IFN-y Macrophage IFN-y IL-12 STAT STAT4 Amplification T-bet IFN-y T_H1 cells Effector functions: Macrophage activation -Production of some antibody isotypes


Resposta Th1

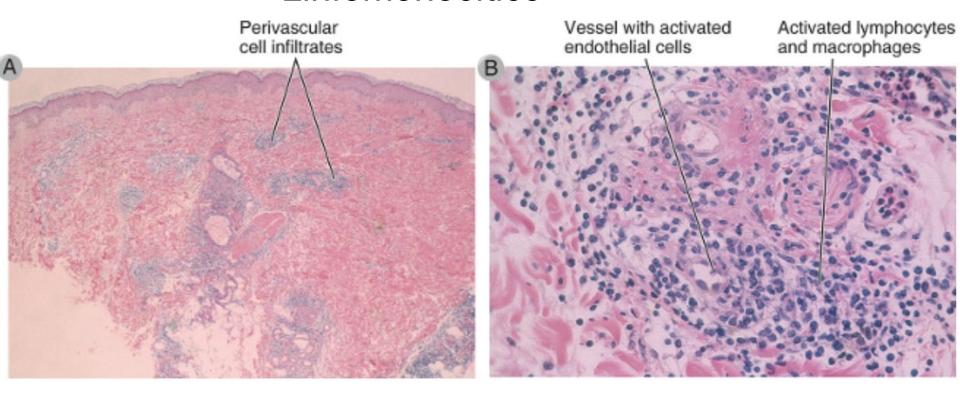
- Agentes Intra-celulares
- Ativação da Capacidade Fagocítica e de Degradação Intracelular
- MacrófagosInflamatóriosM1
- AnticorposNeutralizantes
- Células NK
- Citocinas principais
- •IL-1, IL-8, IL-18

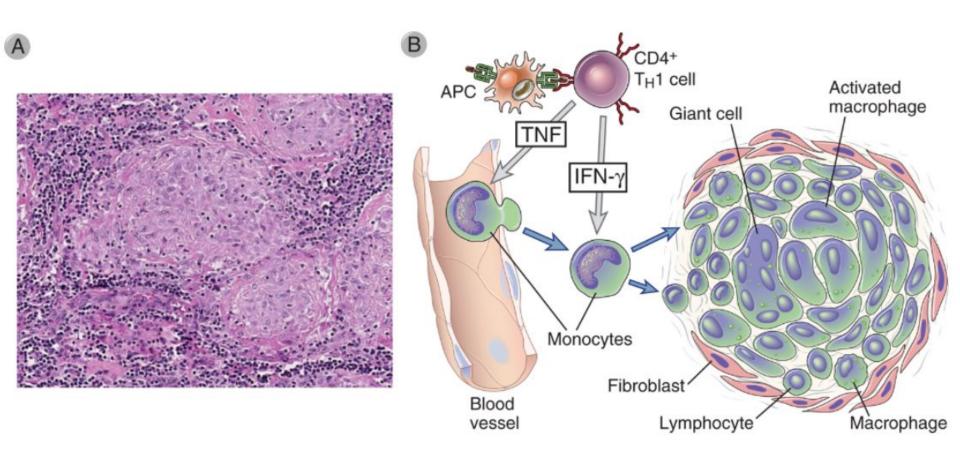



Quais eventos celulares são


observados? Lymphocyte Effector Antigen Clonal Differentiation recognition functions activation expansion Activation of macrophages, Naive CD4+ B cells, T cell Effector other cells; CD4+ inflammation T cell APC Cytokines Memory (e.g., IL-2) CD4+ T cell Naive Killing of CD8+ infected T cell "target cells"; Effector macrophage CD8+ T cell activation (CTL) LINFOPROLIFERA Memory ÇÂO CD8+ T cell Peripheral tissue Lymphoid organ

Classically activated macrophage (M1) Alternatively activated macrophage (M2)




Sítio de Desafio Ag

Infiltrado Linfomonocítico

Citocinas Quimiocinas Mediadores Lipídicos Metaloproteinases

Formação de Granuloma

Abordagens Terapêuticas

IL, interleukin; TNF, tumor necrosis factor.

TABLE 18–5 Examples of Cytokine Antagonists in Clinical Use or Trials				
Cytokine or Receptor Targeted	Predicted Biologic Effects Of Antagonist	Clinical Indications		
TNF	Inhibits leukocyte migration into sites of inflammation	Rheumatoid arthritis, psoriasis, inflammatory bowel disease		
IL-1	Inhibits leukocyte migration into sites of inflammation	Rare autoinflammatory syndromes, severe gout, rheumatoid arthritis		
IL-6 and IL-6 receptor	Inhibits synthesis of acute-phase proteins, antibody responses?	Juvenile idiopathic arthritis, rheumatoid arthritis		
IL-17	Inhibits leukocyte recruitment into sites of inflammation	Rheumatoid arthritis, psoriasis		
p40 chain of IL-12 and IL-23	Inhibits T _H 1 and T _H 17 responses	Inflammatory bowel disease, psoriasis		
IL-2 receptor (CD25)	Inhibits IL-2-mediated T cell proliferation	Acute graft rejection		
IFN-α	May be multiple effects on T _H 1 differentiation, antibody production	Systemic lupus erythematosus		
IL-4	Inhibits T _H 2 differentiation, IgE production	Asthma		
IL-5	Inhibits eosinophil activation	Asthma		