FUNÇÕES DE PARTIÇÃO | TABLE 4.1 PARTITION FUNCTIONS FOR DIFFERENT TY | YPE | OR DIFFERENT TYPES | OF MOTION | |--|-----|--------------------|-----------| |--|-----|--------------------|-----------| | Motion | Degrees of
freedom | Partition function | Order of
magnitude | |----------------------------------|-----------------------|--|--| | Translation | 3 | $\frac{(2\pi m kT)^{3/2}}{h^3}$ (per unit volume) | 10 ³¹ -10 ³² m ⁻³ | | Rotation
(linear molecule) | 2 | $\frac{8\pi^2 I k T}{\sigma h^2}$ | 10-10 ² | | Rotation
(nonlinear molecule) | 3 | $\frac{8\pi^2(8\pi^3I_AI_BI_C)^{1/2}(kT)^{3/2}}{\sigma h^3}$ | $10^2 - 10^3$ | | Vibration
(per normal mode) | 1 | $\frac{1}{1 - e^{-hr/kT}}$ | 1-10 | | Free internal rotation | 1 | $\frac{(8\pi^2 I' kT)^{1/2}}{h}$ | 1-10 | where m =mass of molecule I = moment of inertia for linear molecule I_A , I_B , and I_C = moments of inertia for a nonlinear molecule about three axes at right angles to one another I' = moment of inertia for internal rotation ν = normal-mode vibrational frequency k = Boltzmann constant h = Planck constant T = absolute temperature $\sigma = \text{symmetry number}^a$ It is useful to remember that the power to which h appears is equal to the number of degrees of freedom. [&]quot;As discussed in the text (Section 4.5.4), symmetry numbers are used in the calculation of equilibrium constants, but for rates an alternative procedure is recommended.