
Lecture 19 Quarkonia in QGP (part II)

In this lecture, we will see other mecanisms for suppression and production, as well as data on quarknonia

Quarkonia in expanding QGP

If $T \searrow$ in a static hot environment, quarkonia are suppressed sequentially

At very high T, all melted and at low T, only large ones melted

How is this modified by expansion?

Quarkonia formation is a two-step process:

1) pQCD based models describe $Q\bar{Q}$ pair production: fast almost ponctual process $\Delta x \sim \Delta t \sim 1/(2m_Q)$ (ex. ~ 0.1 fm for $c\bar{c}$) 2) Q and \bar{Q} form a bound state via non perturbative interactions. Crude estimate for time scale: Q and \bar{Q} separate in a time $\tau_{form} = r_{bound}/v_{relat} = r_{bound} E_{Q\bar{Q}}/p_{Q\bar{Q}}$ in pair rest frame $t_{form} = \tau_{form}\gamma = \tau_{form}\sqrt{1 + p_{\perp}^2/M^2}$ in the lab. Limit for p_{\perp} due to QGP cooling time t_{form} is large for large p_{\perp} and the QGP may have cooled down below the dissociation temperature T_d before t_{form} .

 \Rightarrow upper limit for p_{\perp} in order to have dissociation

This limit is: $t_{form} = t_d \Rightarrow p_{\perp}^{max1} = M \sqrt{(t_d/\tau_{form})^2 - 1}$

To get an order of magnitude, using the Borken model (at mid-rapidity): $t_d = t_0 (T_0/T_d)^3$, so t_d can be computed from the initial conditions.

 τ_{form} can be obtained by solving a Shrödinger equation. The table below shows an exemple of such results ($\tau_F \equiv \tau_{form}$).

	J/ψ	ψ'	$\chi_c(1P)$	$\Upsilon(1S)$	$\Upsilon(2S)$	$\chi_b(1P)$
M (GeV)	3.07	3.698	3.5	9.445	10.004	9.897
$r \; (\mathrm{fm})$	0.453	0.875	0.696	0.226	0.509	0.408
τ_F (fm)	0.89	1.5	2.0	0.76	1.9	2.6

From R.Vogt

Exercise:

Compute t_d and p_{\perp}^{max1} for J/Ψ at SPS assuming $\tau_0 = 1$ fm and $T_0 = 300$ MeV for the Bjorken model.

Using values in lectures 1 and 18: $t_d = 1 \times (300/(154 \times 1.17))^3 = 4.6$ fm

 $p_{\perp}^{max1} = 3.1 \sqrt{(4.6/0.89)^2 - 1} \sim 16$ GeV.

Limit for p_{\perp} due to QGP finite size

A pair spends a finite time inside a transverse slice of matter: $t_{inside} \sim < r > (m_{\perp}/p_{\perp})$

If t_{form} is larger than t_{inside} , the pair forms outside and is not screened. \Rightarrow another upper limit for p_{\perp} in order to have dissociation This limit is:

 $t_{\it form} = t_{\it inside} \Rightarrow {\it p}_{\perp}^{max2} = {\it M}(<{\it r}>/{ au_{\it form}})$

We expect the average distance to be traveled to be $< r > \sim R$

It depends on the radial profile of the matter, the location and direction of travel of the pair.

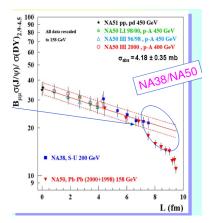
Exercise:

Compute an order of magnitude for p_{\perp}^{max1} for a J/Ψ in a gold nucleus.

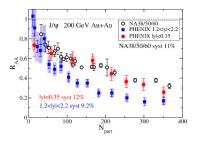

 $\textit{p}_{\perp}^{\textit{max2}} \sim 3.07 \times 7/0.89 \text{=} 24 \text{ GeV}$

Other mechanisms that suppress quarkonia

- ► Quarkonia can interact with hadrons in the medium: nuclear absorption Approximatively: $\sigma_{hA\to C}/\sigma_{hN\to C} \sim exp(-\eta A^{1/3})$ (absorption depends on path length)
- Quarkonia can interact with hadrons produced along with it (comovers)
 Approximatively: σ_{hA→C}/σ_{hN→C} ~ exp(-βA^{1/3}) (after approximations)
- Some *p*_t broadening in hA collisions (Cronin effect)


These mechanisms were enough to explain the J/Ψ suppression observed initially at SPS (O+U 1986 and S+U 1987).

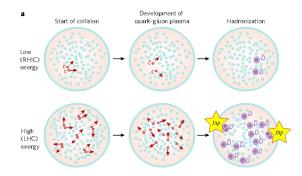
For historical perspectives at SPS see H.Satz arXiv:hep-ph/9806319 and L.Kluberg Eur. Phys. J. C (2005) 20245-6


J/Ψ suppression in Pb+Pb at the SPS (at last)

In central Pb+Pb, an anomalous suppression not explained by hadronic effects appeared (NA50 1996) and hinted at color deconfinement

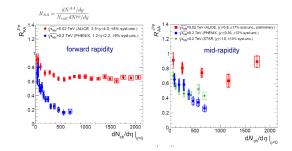
Then what to expect at RHIC? Higher energy densities so more suppression?

J/Ψ suppression at RHIC

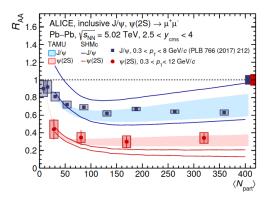


- Suppression is observed: OK
- Similar to SPS at mid-rapidity: strange
- Larger at forward rapdity where energy density is smaller: stranger

 R_{AA} is a comparison to p+p accounting for higher number of nucleon-nucleon collisions Nuclear absorption effect (again)? Mechanism increasing J/Psi production (see next slide)?


A prediction: mechanisms that produce quarkonia

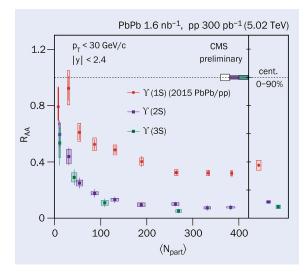
- At SPS, about \sim 1 $c\bar{c}$ produced per 10 Pb+Pb collisions (and \sim 1 J/Ψ per 500 collisions).
- At RHIC, about \sim 10 $c\bar{c}$ pairs produced per Au+Au collisions.
- At LHC, ~ 100 $c\bar{c}$ pairs per central collisions. So in addition to directly produced J/Ψ , some additional production could occur later.


Regeneration: Create charmonium states by recombining at hadronization (P.Braun-Munzinger and J.Stachel, PLB 490 (2000) 196) or during QGP evolution (Thews et al., PRC 63 (2001) 054905)

J/Ψ at LHC

From RHIC to LHC, no additional melting, rather enhancement (regeneration) of J/Ψ

 Ψ' at LHC



 Ψ' is more suppressed that J/Ψ as expected (which does not preclude recombination). Results seem in somewhat better agreement with transport model TAMU rather than Statiscal Hadronization Model

Recent results from ALICE arXiv:2210.08893

How about the Υ ?

 Υ is $b\bar{b}$. Due to its heavy mass, it is not very sensitive to regeneration. One expects a more clear sequential suppression. This seems to be the case (very recent result).

Homework Redo the two exercises for Ψ'

Other references on this topic

- J.-P.Blaizot & J.-Y.Ollitrault in "Quark Plasma 1"
- R. Vogt's book item R.Vogt "Cold Nuclear Matter Effects on Open and Hidden Heavy Flavor Production at the LHC" arXiv:1508.01286