Escalas

Escala

Se o modelo populacional for dado por:

$$
y=\beta_{0}+\beta_{1} x+u
$$

Em que y é o peso do indivíduo em gramas e quisermos transformar a unidade de medida para kg: y/IO00

Escala

Se dividirmos os dois lados da equação pela mesma constante, tem-se o mesmo modelo:
$\frac{y}{1000}=\frac{\beta_{0}}{1000}+\frac{\beta_{1}}{1000} x+\frac{u}{1000}$

Quando fazemos uma regressão de $y / 1000$
contra x , obtemos uma estimativa de $\frac{\beta_{1}}{1000}$

Escala

Suponha agora que queremos alterar a escala da variável explicativa x , altura, que está em cm , para metros: $x / 100$

Veja que podemos reescrever o modelo como:

$$
y=\beta_{0}+100 \beta_{1} \frac{x}{100}+u
$$

Quando fazemos uma regressão de y contra x/ 100, obtemos uma estimativa de $100 \beta_{1}$

Formas Funcionais

Linearidade

Até agora, consideramos o modelo linear:

$$
y=\beta_{0}+\beta_{1} x+u
$$

- Esse modelo preve um impacto constante β_{1}, também chamado de efeito marginal de x em y , que independe do valor inicial de $\mathrm{x}: \quad \Delta y=\beta_{1} \Delta x$
- Em: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$.

$$
\Delta y=\beta_{1} \Delta x_{1} \text { if } \Delta x_{2}=0
$$

- β_{1} é chamado de efeito parcial de x_{1} em y

Linearidade

Linearidade

- É comum fazer-se a regressão de $\log (y)$ contra x. A interpretação do modelo faz mais sentido para muitos problemas em ciências sociais. Em nosso exemplo anterior, teríamos: \log (wage $)=\beta_{0}+\beta_{1} e d u c+u$.

FIGURE A. 5 Graph of $y=\exp (x)$.

Linearidade

- Utilizando cálculo, é possível demonstrar que:

$$
\log \left(x_{1}\right)-\log \left(x_{0}\right) \approx\left(x_{1}-x_{0}\right) / x_{0}=\Delta x / x_{0}
$$

- Em $\log ($ wage $)=\beta_{0}+\beta_{1}$ educ $+u$.
, multiplicando-se por 100 tem-se:

$$
\% \Delta \text { wage } \approx\left(100 \cdot \beta_{1}\right) \Delta e d u c .
$$

Linearidade

- Nesse caso, tem-se:
$\% \Delta$ wage $\approx\left(100 \cdot \beta_{1}\right) \Delta e d u c$.

Linearidade

Função quadrática:

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

FIGURE A. 3 Graph of $y=6+8 x-2 x^{2}$.

Linearidade

Função quadrática:

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

FIGURE A. 3 Graph of $y=6+8 x-2 x^{2}$.

Linearidade

- Elasticidade é definida pela variação percentual de y dividida pela variação percentual de x :

$$
\frac{\Delta y}{\Delta x} \cdot \frac{x}{y}=\frac{\% \Delta y}{\% \Delta x}
$$

(Cálculo) A elasticidade pode ser aproximada por:

$$
\Delta \log (y) / \Delta \log (x)
$$

Linearidade

- Portanto, em

$$
\log (y)=\beta_{0}+\beta_{1} \log (x)
$$

$$
\beta_{1}=\log (y) / \log (x) \text {, sendo aproximadamente a }
$$

elasticidade de y com relação x

Linearidade

- Elasticidade de y com relação a x é definida pela variação percentual de y dividida pela variação percentual de x :

$$
\frac{\Delta y}{\Delta x} \cdot \frac{x}{y}=\frac{\% \Delta y}{\% \Delta x}
$$

(Cálculo) A elasticidade pode ser aproximada por:

$$
\Delta \log (y) / \Delta \log (x)
$$

Linearidade

- Nesse caso, tem-se:

Model	Dependent Variable	Independent Variable	Interpretation of $\boldsymbol{\beta}_{1}$
Level-level	y	x	$\Delta y=\beta_{1} \Delta x$
Level-log	y	$\log (x)$	$\Delta y=\left(\beta_{1} / 100\right) \% \Delta x$
Log-level	$\log (y)$	x	$\% \Delta y=\left(100 \beta_{1}\right) \Delta x$
Log-log	$\log (y)$	$\log (x)$	$\% \Delta y=\beta_{1} \% \Delta x$

Obrigada!

