
Lecture 16
Anisotropic flow (part II)

Last time, we saw that anisotropic flow has been important to
establish the hydrodynamic part of the “ Heavy-Ion Standard Model”.
In this lecture, we will see how it helps to extract information on initial
conditions and viscosity.
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Characterizing the initial conditions
We saw that the momentum disitribution can be written
E d3N

dp3 = d3N
dyd2p⊥

=

d2N
2πdyp⊥dp⊥

[1 +
∑∞

n=1 2vn(p⊥, y) cos(n(φp − ψn(p⊥, y)))]

so that vm(p⊥, y) =

∫
dφp cos(m(φp−ψm)) d3N

m⊥dm⊥dφpdy∫
dφp

d3N
m⊥dm⊥dφpdy

and ψm(p⊥, y) = (1/m) arctan

∫
dφp sin(mφp) d3N

m⊥dm⊥dφpdy∫
dφp cos(mφp) d3N

m⊥dm⊥dφpdy

It is usual to introduce the compact notation:

vmeimψn =

∫
dφpeimφp d3N

m⊥dm⊥dφpdy∫
dφp

d3N
m⊥dm⊥dφpdy

≡< eimφp >p

Similarly, we introduce to characterize the initial conditions
εm =

∫
dxdyrm cos(m(φ−Φm))ε(x,y,τ0)∫

dxdyrmε(x,y,τ0)

and
Φm = (1/m) arctan

∫
dxdyrm sin(mφ)ε(x,y,τ0)∫
dxdyrm cos(mφ)ε(x,y,τ0)

+ (π/m)

or more compactly:
εmeimΦm = −

∫
dxdyrmeimφε(x,y,τ0)∫

dxdyrmε(x,y,τ0)
≡ −<rmeimφ>x

<rm>x

The origin of the coordinates is chosen so that < x >x =< y >x = 0
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Exercise:

a) Show that ε2 =

√
<y2−x2>2

x +4<xy>2
x

<y2+x2>x

b) If the axes Ox and Oy correspond to the main axes of the ellipse
and the distribution of matter is symmetric with respect to the main
axis, show that ε2 = <y2−x2>x

<y2+x2>x
(which parallels the definition of third

eccentricity for an ellipse).
a)

ε2 = |ε2ei2Φ2 | = | − < r2ei2φ >x

< r2 >x
|

=

√
< r2 cos(2φ) >2 + < r2 sin(2φ) >2

< r2 >

=

√
< r2 cos2 φ− r2 sin2 φ >2 + < r22 cosφ sinφ) >2

< r2 cos2 φ+ r2 sin2 φ >

=

√
< y2 − x2 >2 +4 < xy >2

< x2 + y2 >

b) < xy >=
∫ b
−b dyy

∫ a
−a dxxε(x , y) = 0 since ε(x , y) = ε(−x , y) so∫ a

−a dxxε(x , y) = 0
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H. Niemi, G.Denicol, H.Holopainen, P.Huovinen Phys. Rev. C 87 (2013) 054901 arXiv:1212.1008

For the three different choices of initial conditions, in a centrality
class, there is a strong connection: v2 ∝ ε2 (also ψ2 ∝ Φ2) and v3 ∝ ε3
(also ψ3 ∝ Φ3), it is more complicated for n ≥ 4.
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For each centrality class, an average < v2 >c / < ε2 >c (v2/ε in the
plots below) can be computed and compared to data (devided by a
theoretical average ε2).
For different choices of initial conditions, the best value of η/s is
different

C.Shen et al. J.Phys.G38 (2011) 124045: v2/ε as function of centrality

For initial conditions MC-KLN, the best η/s=0.2.
For initial conditions MC-Glauber, the best η/s=0.08.
How to disentangle initial conditions and viscosity effects?
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Instead of looking at the average < v2 >c in a centrality class, one
can look at the probability to have a certain value of v2 in data. Since
v2 ∝ ε2, this can be compared to the probability to have a certain
value of ε2 (this avoid having to run hydro for each initial conditions
model).
The ATLAS collaboration has shown that indeed it is possible to
eliminate initial conditions models this way.

ATLAS JHEP 11 (2013) 183

MC-Glauber initialization is too wide and MC-KLN initialization too
narrow. Both models are eliminated!
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Sensitivity on viscosity
Like the momentum spectra, the anisotropic flow coefficients vn(p⊥)

(left) are sensitive to δf but the integrated values vn (right) are much
less sensitive

J. Noronha-Hostler, J. Noronha, FG Phys. Rev. C 90 (2014) 034907 arXiv:1406.3333

I vn’s are more useful to extract values for η/s

I vn’s are more supressed due to shear viscosity as n increases.

7 / 12



A systematic tool to get η/s (and more): Bayesian analysis
I Choose a set of parameters θ = θ1, θ2, ... of the hydro problem

related to the initial conditions (entropy deposition,
normalization, etc) and to the QGP properties (hadronization
temperature, slope of linear increase of specific shear viscosity
vs. temperature,...).

I Choose a set of observed data y = y1, y2, ... such as dNπ/dy ,
v2, in various centrality bins.

I Find the probability (posterior) that the parameters assume
some values θ given that the values y are observed:
p(θ|y) = N × L(y |θ)× p(θ) (Bayes’s theorem)
where L(y |θ) likelihood to observe y for a given θ,
p(θ) probability of θ (prior) before data comparison,
N = 1/

∫
θ
L(y |θ)p(θ) (normalization).

L(y |θ) is constructed using hydro runs (and interpolating between
them) and p(θ) is somehow a guess (e.g. uniform value in a certain
range).
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Example of result

Benhard et al. Phys. Rev. C 94 (2016) 024907 arXiv:1605.03954
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Challenge

Fluctuations in the energy density (hot spots) are expected to scale
roughly as the inverse square root of the number of participants (R.S.
Bhalerao et al. Phys.Rev.C84 (2011) 054901, arXiv:1107.5485). Use
this to explain the differences in ε2 for central collisions Xe+Xe
compared to Pb+Pb and those in ε3 for all centralities, for the figure in
the homework.
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Homework
At the LHC, runs were made for Pb+Pb and then Xe+Xe (at
comparable

√
s). Between these, theoreticians made predictions on

how anisotropic flow would be for Xe+Xe compared to Pb+Pb.
One group (G.Giacalone et al. Phys. Rev. C 97 (2018) 034904
arXiv:1711.08499) found that the excentricities would be as in the
figure below. Make predictions on how v2 and v3 would be as function
of centrality for Xe+Xe compared to Pb+Pb. Look for the data and
check your predictions.
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Other references on this topic
I T.Hirano,N. van der Kolk, A. Bilandzic arXiv:0808.2684
I P.F.Kolb and U. Heinz nucl-th/0305084.pdf
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