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Penalising Model Component Complexity:

A Principled, Practical Approach to
Constructing Priors'

Daniel Simpson, Havard Rue, Andrea Riebler, Thiago G. Martins and Sigrunn H. Sgrbye

Abstract. In this paper, we introduce a new concept for constructing prior
distributions. We exploit the natural nested structure inherent to many model
components, which defines the model component to be a flexible extension
of a base model. Proper priors are defined to penalise the complexity induced
by deviating from the simpler base model and are formulated after the in-
put of a user-defined scaling parameter for that model component, both in
the univariate and the multivariate case. These priors are invariant to repa-
rameterisations, have a natural connection to Jeffreys’ priors, are designed to
support Occam’s razor and seem to have excellent robustness properties, all
which are highly desirable and allow us to use this approach to define default
prior distributions. Through examples and theoretical results, we demonstrate
the appropriateness of this approach and how it can be applied in various sit-
uations.

Key words and phrases: Bayesian theory, interpretable prior distributions,
hierarchical models, disease mapping, information geometry, prior on corre-

lation matrices.

1. INTRODUCTION

The field of Bayesian statistics began life as a sub-
branch of probability theory. From the 1950s onward,
a number of pioneers built upon the Bayesian frame-
work and applied it with great success to real world
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problems. The true Bayesian “moment” began with
the advent of Markov chain Monte Carlo (MCMC)
methods. Coupled with user-friendly implementations
of MCMC, such as OpenBUGS, JAGS, R-INLA, and
Stan, the uptake of Bayesian models has exploded
across fields of research from astronomy to anthro-
pology, linguistics to zoology. Limited only by their
data, their patience and their imaginations, applied re-
searchers have constructed and applied increasingly
complex Bayesian models. The spectacular flexibility
of the Bayesian paradigm as an applied modelling tool-
box has had a number of important consequences for
modern science [see, e.g., the special issue of Statisti-
cal Science (Volume 29, Number 1, 2014) devoted to
Bayesian success stories].

The challenge underlying the proliferation of
Bayesian methods is that it is significantly easier to
build, implement and use a complex model than it is
to understand what it is doing. This is particularly true
when the model is built to be potentially more compli-
cated than the data in the sense that there are potentially
many more parameters than there are observations. For
these models, a balance between predictive power and
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parsimony is controlled by prior specification. Unfor-
tunately, there has been very little work done on setting
priors for these models outside of high-dimensional
regression problems, for which the mathematics is
tractable. In this paper, we propose a new technique for
specifying priors that can be applied to a large number
of applied Bayesian models.

The problem of constructing sensible priors on
model parameters becomes especially pressing when
developing general software for Bayesian computa-
tion. As developers of the R-INLA (see http://www.r-
inla.org/) package, which performs approximate
Bayesian inference for latent Gaussian models (Rue,
Martino and Chopin, 2009, Lindgren, Rue and Lind-
strom, 2011, Martins et al., 2013), we are left with two
unpalatable choices. We could force the user of R-
INLA to explicitly define a joint prior distribution for
all parameters in the model. Arguably, this is the cor-
rect thing to do, however, the sea of confusion around
how to properly prescribe priors makes this undesirable
in practice. The second option is to provide default pri-
ors. These, as currently implemented, are chosen by
the second author to be something he views as sensi-
ble. Default prior specification is also present implic-
itly in the OpenBUGS and Stan manuals, which con-
tain a large number of fully-worked Bayesian analyses
of real problems complete with prior specifications. In
this case, we do not know precisely the thinking that
underscores the choice of prior, but we do know that
they have been hugely influential. This is not a satis-
factory state of affairs.

This paper is our attempt to provide a broad, use-
ful framework for building priors for a large class of
hierarchical models. The priors we develop, which we
call Penalised Complexity or PC priors, are informative
priors. The information in these priors is specified in
terms of four underlying principles. This has a twofold
purpose. The first purpose is to communicate the ex-
act information that is encoded in the prior in order
to make the prior interpretable and easier to elicit. PC
priors have a single parameter that the user must set,
which controls the amount of flexibility allowed in the
model. This parameter can be set using “weak’ infor-
mation that is frequently available (Gelman, 2006), or
by appealing to some other subjective criterion such as
“calibration” under some assumptions about future ex-
periments (Draper, 2006).

Following in the footsteps of Lucien Le Cam (“Basic
Principle 0. Do not trust any principle.” Le Cam, 1990)
and (allegedly) Groucho Marx (“Those are my princi-
ples, and if you don’t like them. . . well, I have others.”),

the second purpose of building PC priors from a set
of principles is to allow us to change these principles
when needed. For example, in Sections 4.5 and 7 we
modify single principles for, respectively, modelling
and computational reasons. This gives the PC prior
framework the advantage of flexibility without sacri-
ficing its simple structure. We stress that the princi-
ples provided in this paper do not absolve modellers
of the responsibility to check their suitability (see, e.g.,
Palacios and Steel, 2006, who argued that the princi-
ples underlying the reference prior approach are inap-
propriate for spatial data). This is in line with David
Draper’s call for “transparent subjectivity” in Bayesian
modelling (Draper, 2006).

We believe that PC priors are general enough to be
used in realistically complex statistical models and are
straightforward enough to be used by general practi-
tioners. Using only weak information, PC priors rep-
resent a unified prior specification with a clear mean-
ing and interpretation. The underlying principles are
designed so that desirable properties follow automat-
ically: invariance regarding reparameterisations, con-
nection to Jeffreys’ prior, support of Occam’s razor
principle and empirical robustness to the choice of the
flexibility parameter. We do not claim that the priors
we propose are optimal or unique, nor do we claim that
the principles are universal. Instead, we make the more
modest claim that these priors are useful, understand-
able, conservative and better than doing nothing at all.

1.1 The Models Considered in This Paper

While the goals of this paper are rather ambitious,
we will necessarily restrict ourselves to a specific class
of hierarchical model, namely additive models. The
models we consider have a nontrivial unobserved latent
structure. This latent structure is made up of a number
of model components, the structure of which is con-
trolled by a small number of flexibility parameters. We
are interested in latent structures in which each model
component is added for modelling purposes. We do
not focus on the case where the hierarchical structure
is added to increase the robustness of the model (See
Chapter 10 of Robert, 2007, for a discussion of types of
hierarchical structure). This additive model viewpoint
is the key to understanding many of the choices we
make, in particular the concept of the “base model,”
which is covered in detail in Section 2.4.

An example of the type of model we are considering
is the spatial survival model proposed by Henderson,
Shimakura and Gorst (2002), where the log-hazard rate
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is modelled according to a Cox proportional hazard
model as

( hazard;
log | ———
baseline

p
> =Bo+ Y _ Bixij +ur; +vj,
i=1

where x;; is the ith covariate for case j, Ur; is the value
of the spatial structured random effect for the region r;
in which case j occurred, and v; is the subject spe-
cific log-frailty. Let us focus on a model component
u~ N, 771Q~1), where Q is the structure matrix of
the first-order intrinsic CAR model on the regions and
7 is an inverse scaling parameter (Rue and Held, 2005,
Chapter 3). The model component u has one flexibility
parameter t, which controls the scaling of the struc-
tured random effect. The other model components are
v and 8, which have one and zero (assuming a uniform
prior on B) flexibility parameters, respectively. We will
consider this case in detail in Section 5.

We emphasise that we are not interested in the case
where the number of flexibility parameters grows as
we enter an asymptotic regime (here as the number
of cases increases). The only time we consider models
where the number of parameters grows in an “asymp-
totic” way is Section 4.5, where we consider sparse
linear models. In that section, we discuss a (possibly
necessary) modification to the prior specification given
below (specifically Principle 3 in Section 3). We also
do not consider models with discrete components.

1.2 Outline of the Paper

The plan of the paper is as follows. Section 2 con-
tains an overview of common techniques for setting
priors for hierarchical models. In Section 3, we will
define our principled approach to design priors and dis-
cuss its connection to the Jeffreys’ prior. In Section 4,
we will study properties of PC priors near the base
model and its behaviour in a Bayesian hypothesis test-
ing setting. Further, we provide explicit risk results in
a simple hierarchical model and discuss the connection
to sparsity priors. In Section 5, we discuss the BYM-
model for disease mapping with a possible smooth ef-
fect of an ecological covariate, and we suggest a new
parameterisation of the model in order to facilitate im-
proved control and interpretation. Section 6 extends the
method to multivariate parameters and we derive prin-
cipled priors for correlation matrices in the context of
the multivariate probit model. Section 7 contains a dis-
cussion of how to extend the framework of PC priors
to hierarchical models by defining joint PC priors over
model components that take the model structure into

account. This technique is demonstrated on an addi-
tive logistic regression model. We end with a discus-
sion in Section 8. The Appendix host technical details
and additional results.

2. A GUIDED TOUR OF NONSUBJECTIVE PRIORS
FOR BAYESIAN HIERARCHICAL MODELS

The aim of this section is to review the existing meth-
ods for setting nonsubjective priors for parameters in
Bayesian hierarchical models. We begin by discussing
objective priors, which are frequently put forward as
a “gold standard” of prior specification. The second
class of priors that we survey are what we call “risk
averse priors,” that is priors that come from the cul-
ture of a field rather than from specific principles. Fi-
nally, we survey the more recent concept of “weakly-
informative” priors. We then consider a special class
of priors that are important for hierarchical models,
namely priors that encode some notion of a base model.
Finally, we investigate the main concepts that we feel
are most important for setting priors for parameters in
hierarchical models, and we look at related ideas in the
literature.

In order to control the size of this section, we have
made two major decisions. The first is that we are fo-
cussing exclusively on methods of prior specification
that could conceivably be used in all of the examples
in this paper. The second is that we focus entirely on
priors for prediction. It is commonly (although not ex-
clusively Bernardo, 2011, Rousseau and Robert, 2011,
Kamary et al., 2014) held that we need to use differ-
ent priors for testing than those used for prediction. We
return to this point in Section 4.3. A discussion of al-
ternative priors for the specific examples in this paper
is provided in the relevant section. We also do not con-
sider data-dependent priors or empirical Bayes proce-
dures.

2.1 Objective Priors

The concept of prior specification furthest from
expert elicitation priors is that of “objective” priors
(Bernardo, 1979, Berger, 2006, Berger, Bernardo and
Sun, 2009, Ghosh, 2011, Kass and Wasserman, 1996).
These aim to inject as little information as possible
into the inference procedure. Objective priors are often
strongly design-dependent and are not uniformly ac-
cepted amongst Bayesians on philosophical grounds;
see, for example, discussion contributions to Berger
(2006) and Goldstein (2006), but they are useful (and
used) in practice. The most common constructs in this
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family are Jeffreys’ noninformative priors and their ex-
tension “reference priors” (Berger, Bernardo and Sun,
2009). If chosen carefully, the use of noninformative
priors will lead to appropriate parameter estimates as
demonstrated in several applications by Kamary and
Robert (2014). It can be also shown theoretically that,
for sufficiently nice models, the posterior resulting
from a reference prior analysis matches the results of
classical maximum likelihood estimation to second or-
der (Reid, Mukerjee and Fraser, 2003).

While reference priors have been successfully used
for classical models, they have a less triumphant his-
tory for hierarchical models. The practical reason for
this is that reference priors are notoriously difficult to
derive for complicated models. A second barrier to the
routine use of reference priors for hierarchical models
is that they depend on the ordering of the parameters.
In some applications, there may be a natural ordering,
however, in many situations, such as the ones encoun-
tered in this paper, any imposed ordering will be unnat-
ural. Berger, Bernardo and Sun (2015) proposed some
ad hoc solutions to this problem, however it is not clear
how to apply these to even moderately complex hierar-
chical models (see the comment of Rousseau, 2015). In
spite of these shortcomings, the reference prior frame-
work is the only complete framework for specifying
prior distributions.

2.2 Ad Hoc, Risk Averse and Computationally
Convenient Prior Specification

The most common nonsubjective approach to prior
specification for hierarchical models is to use a prior
that has been previously used in the literature for a
similar problem. This ad hoc approach is viewed as
“good practice” in many applied communities. It may
be viewed as a risk averse strategy, in which the choice
of prior has been delegated to another researcher. The
assumption is that the community of people using this
prior are doing it for a good reason and continuing
this practice is less risky than positing a different prior
specification. In the best cases, the chosen prior was
originally selected in a careful, problem independent
manner for a similar problem to the one the statisti-
cian is solving (e.g., the priors in Gelman et al., 2013).
More commonly, these priors have been carefully cho-
sen for the problem they were designed to solve (such
as the priors in Muff et al., 2015) and are inappropriate
for the new application. The lack of a dedicated “ex-
pert” guiding these prior choices can lead to troubling
inference. Worse still is the idea that, as the prior was

selected from the literature or is in common use, there
is some sort of justification for it.

Other priors in the literature have been selected for
purely computational reasons. The main example of
these priors are conjugate priors for exponential fam-
ilies (Robert, 2007, Section 3.3), which facilitate easy
implementation of a Gibbs sampler. While Gibbs sam-
plers are an important part of the historical develop-
ment of Bayesian statistics, we tend to favour modern
sampling methods based on the joint distribution, such
as those implemented in Stan, as they tend to perform
better.

Some priors from the literature are not sensible. An
extreme example of this is the enduring popularity of
the I'(e, &) prior, with a small &, for inverse variance
(precision) parameters, which has been the “default?
choice in the WinBUGS (Spiegelhalter et al., 1995) ex-
ample manuals. However, this prior is well known to
be a choice with severe problems; see the discussion in
Fong, Rue and Wakefield (2010) and Hodges (2014).
Another example of a bad “vague-but-proper” prior is
a uniform prior on a fixed interval for the degrees of
freedom parameter in a Student ¢-distribution. The re-
sults in the Supplementary Material (Simpson et al.,
2016) show that these priors, which are also used in
the WinBUGS manual, get increasingly informative as
the upper bound increases.

One of the unintentional consequences of using risk
averse priors is that they will usually lead to indepen-
dent priors on each of the hyperparameters. For com-
plicated models that are overparameterised or partially
identifiable, we do not think this is necessarily a good
idea, as we need some sort of shrinkage or sparsity
to limit the flexibility of the model and avoid over-
fitting. The tendency towards over-fitting is a property
of the full model and independent priors on the com-
ponents may not be enough to mitigate it (Pati, Pil-
lai and Dunson, 2014, He, Hodges and Carlin, 2007,
He and Hodges, 2008).

While the tone of this section has been quite neg-
ative, we do not wish to give the impression that all
inference obtained using risk averse or computation-
ally convenient priors will not be meaningful. We only
want to point out that a lot of work needs to be put
into checking the suitability of the prior for the par-
ticular application before it is used. Furthermore, the
suitability (or not) of a specific joint prior specifica-
tion will depend in subtle and complicated ways on the

2We note that this recommendation has been revised, however
these priors are still widely used in the literature.



PC PRIORS 5

global model specification. An interesting, but compu-
tationally intensive, method for reasserting the role of
an “expert” into a class of ad hoc priors is the method
of calibrated Bayes (Rubin, 1984, Browne and Draper,
2006), where the hyper-parameters in the prior are cho-
sen to ensure that, under correct model specification,
the credible sets are also confidence regions.

2.3 Weakly Informative Priors

Between objective and expert priors lies the realm of
“weakly informative” priors (Gelman, 2006, Gelman
et al., 2008, Evans and Jang, 2011, Polson and Scott,
2012). These priors are constructed by recognising that
while you usually do not have strong prior informa-
tion about the value of a parameter, it is rare to be
completely ignorant. For example, when estimating the
height and weight of an adult, it is sensible to select a
prior that gives mass neither to people who are five me-
tres tall, nor to those who only weigh two kilograms.
This use of weak prior knowledge is often sufficient to
regularise the extreme inferences that can be obtained
using maximum likelihood (Le Cam, 1990) or nonin-
formative priors. To date, there has been no attempt to
construct a general method for specifying weakly in-
formative priors.

Some known weakly informative priors, like the
half-Cauchy distribution on the standard deviation of
a normal distribution, can lead to better predictive in-
ference than reference priors (Polson and Scott, 2012).
There are no general theoretical results that show how
to build priors with good risk properties for the broader
class of models we are interested in, but the intuition
is that weakly informative priors can strike a balance
between fidelity to a strong signal, and shrinkage of a
weak signal. We interpret this as the prior on the flexi-
bility parameter (the standard deviation) allowing extra
model complexity, but not forcing it.

2.4 Priors Specified Using a Base Model

One of the key challenges when building a prior for
a hierarchical model is finding a way to control against
over-fitting. In this section, we consider a number of
priors that have been proposed in the literature that are
linked through the abstract concept of a “base model.”
This can be seen as a specific type of “weak informa-
tion” that is especially important for nested models.

DEFINITION 1. For a model component with den-
sity 7 (x|&) controlled by a flexibility parameter &, the
base model is the “simplest” model in the class. For
notational clarity, we will take this to be the model cor-
responding to & = 0. It will be common for & to be

nonnegative. The flexibility parameter is often a scalar,
or a number of independent scalars, but it can also be a
vector-valued parameter.

This allows us to interpret 7 (x|&) as a flexible ex-
tension of the base model, where increasing values of
& imply increasing allowance of deviations from the
base model. The idea of a base model is reminiscent
of a “null hypothesis” and thinking of what a sensible
hypothesis to test for € is a good way to specify a base
model. We emphasise, however, that we are not using
this model to do testing, but rather to control flexibil-
ity and reduce over-fitting thereby improving predic-
tive performance.

A few simple examples will fix the idea.

Gaussian random effects. Let x| be a multivariate
Gaussian with zero mean and precision matrix 7l
where © = £~!. Here, the base model puts all the mass
at & = 0, which is appropriate for random effects where
the natural reference is absence of these effects. In the
multivariate case and conditional on 7, we can allow
for correlation among the model components where the
uncorrelated case is the base model.

Spline model. Let x|& represent a spline model with
smoothing parameter T = 1/£. The base model is the
infinite smoothed spline which can be a constant or a
straight line, depending on the order of the spline or
in general the null space of its penalty matrix. This in-
terpretation is natural when the spline model is used
as a flexible extension to a constant or in generalised
additive models, which can be viewed as a flexible ex-
tension of a generalised linear model.

Time dependence. Let x| denote an auto-regressive
model of order 1, unit variance and lag-one correla-
tion p. Depending on the application, then either £ = p
and the base model is “no dependence in time” or
& =1 — p and the base model is no change in time.

The base model primarily finds a home in the idea of
“spike-and-slab” priors (George and McCulloch, 1993,
Ishwaran and Rao, 2005). These models specify a prior
on £ as a mixture of a point mass at the base model and
a diffuse absolutely continuous prior over the remain-
der of the parameter space. These priors successfully
control over-fitting and simultaneously perform predic-
tion and model selection. The downside is that they are
computationally unpleasant and specialised tools need
to be built to do inference for these models. Further-
more, as the number of flexibility parameters increases,
exploring the entire posterior quickly becomes infeasi-
ble.
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In order to further consider what a nonatomic prior
must look like to take advantage of the base model, we
consider the following Informal Definition 1.

INFORMAL DEFINITION 1. A prior (&) forces
overfitting (or overfits) if the prior places insufficient
mass at the base model.

A prior that overfits will drag the posterior towards
the more flexible model and the base model will have
almost no support in the posterior, even in the case
where the base model is the true model. Hence, when
using an overfitting prior, we are unable to distinguish
between flexible models that are supported by the data
and flexible models that are a consequence of the prior
choice.

Informal Definition 1 is both uncontroversially true
and completely useless because it relies on the vague
notion of “insufficient mass.” This condition can be
made very precise, at the cost of being impossible to
verify for complex models (Ghosal, Ghosh and van der
Vaart, 2000, Theorem 2.4).

The aim of this paper is to provide practical ad-
vice for setting priors, and so we commit the cardi-
nal sin of mathematical sloppiness in an attempt to
find a “rule of thumb” for ensuring there is sufficient
prior mass around the base model. Hence, we say that
a prior overfits if its density in a sensible parameter-
isation is zero at the base model. In Section 3, we ar-
gue that a “sensible parameterisation” is in terms of the
square-root of a Kullback—Leibler divergence between
the base model and a more flexible model. These terms
are similar to the balls found in the asymptotic theory
of Ghosal, Ghosh and van der Vaart (2000) with one
important difference: because we set priors one com-
ponent at a time (rather than all at once), this condition
can be easily checked numerically and the remainder
of the paper is devoted to using this condition to build
a system for specifying priors. This practical version
of Informal Definition 1 will rule out a number of suit-
able priors, but we believe it is a useful triage method
for choosing priors that ensure we do not accidentally
force our model to be more complex than necessary.

2.5 Desiderata for Setting Joint Priors on
Flexibility Parameters in Hierarchical Models

We conclude this tour of prior specifications by de-
tailing what we look for in a joint prior for param-
eters in a hierarchical model and pointing out priors
that have been successful in fulfilling at least some of
these. This list is quite personal, but we believe that
it is broadly sensible. We wish to emphasise that the

desiderata listed below only make sense in the con-
text of hierarchical models with multiple model com-
ponents and it does not make sense to apply them to
less complex models. The remainder of the paper can
be seen as our attempt to construct a system for spec-
ifying priors that at least partially consistent with this
list.

D1: The prior should not be noninformative. Even
if it was possible to compute a noninformative prior
for a specific hierarchical model, we are not convinced
it would be a good idea. Our primary concern is the
stability of inference. In particular, if a model is over-
parameterised, that is, too flexible, these priors are
likely to lead to badly over-fitted posteriors. Outside
the realm of formally noninformative priors, empha-
sising “flatness” can lead to extremely prior-sensitive
inferences (Gelman, 2006). This should not be inter-
preted as us calling for massively informative priors,
but rather a recognition that for complex models, a cer-
tain amount of extra information needs to be injected
to make useful inferences.

D2: The prior should be aware of the model struc-
ture. Roughly speaking, we want to ensure that if a
subset of the parameters control a single aspect of the
model, the prior on these parameters is set jointly. This
also suggests using a parameterisation of the model
that, as much as possible, has parameters that only con-
trol one aspect of the model. Specific examples of this
can be found in Sections 5 and 7, as well as He, Hodges
and Carlin (2007) and He and Hodges (2008).

D3: When reusing the prior for a different analy-
sis, changes in the problem should be reflected in the
prior. A prior specification should be explicit about
what needs to be changed when applying it to a sim-
ilar but different problem. An easy example is that the
prior on the scaling parameter of a spline model needs
to depend on the number of knots (Sgrbye and Rue,
2014). Cui et al. (2010) suggested an approach for par-
titioning degrees of freedom to individual effects in a
hierarchical model. By putting a prior on these, they in-
duced a prior for the respective smoothing parameter.
This approach has several attractive features, and one
is that the range of the degrees of freedom for a spline
model depends on the number of knots. Furthermore,
it is invariant to a range of reparameterisations, how-
ever, its applicability is limited, but can be slightly im-
proved using approximations proposed by Lu, Hodges
and Carlin (2007) and Reich and Hodges (2008).

D4: The prior should limit the flexibility of an over-
parameterised model. This desideratum is related to
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the discussion in Section 2.4. It is unlikely that priors
that do not have good shrinkage properties will lead to
good inference for hierarchical models.

D5: Restrictions of the prior to identifiable subman-
ifolds of the parameter space should be sensible. As
more data appears, the posterior will contract to a sub-
manifold of the parameter space. For an identifiable
model, this submanifold will be a point. Unfortunately,
a number of the more complex models that are formu-
lated in real applications have parameters that cannot
be identified. In these partially identifiable (Gustafson,
2005) or singular (Watanabe, 2009) models, the prior
is still present in the limiting posterior. In these cases,
it is vital to specify it carefully. A case where it is not
desirable to have a noninformative prior on this sub-
manifold is given in Fuglstad et al. (2015).

D6: The prior should control what a parameter
does, rather than its numerical value. A sensible
method for setting priors should be (at least locally)
indifferent to the parameterisation used. It does not
make sense, for example, for the posterior to depend
on whether the modeller prefers working with the stan-
dard deviation, the variance, or the precision of a Gaus-
sian random effect.

The idea of using the distance between two mod-
els as a reasonable scale to think about priors dates
back to Jeffreys (1946) pioneering work to obtain pri-
ors that are invariant to reparameterisation. Bayarri
and Garcia-Donato (2008) build on the early ideas of
Jeffreys (1961) to derive objective priors for comput-
ing Bayes factors for Bayesian hypothesis tests; see
also Robert, Chopin and Rousseau (2009), Section 6.4.
They use divergence measures between the compet-
ing models to derive the required proper priors, and
call those derived priors divergence-based (DB) pri-
ors. Given the prior distribution on the parameter space
of a full encompassing model, Consonni and Veronese
(2008) used Kullback-Leibler projection, in the con-
text of Bayesian model comparison, to derive suitable
prior distributions for candidate submodels.

D7: The prior should be computationally feasible.
If our aim is to perform applied inference, we need
to ensure that inference can be performed within our
computational budget. This will always lead to a very
delicate trade-off between modelling and computation
that needs to be evaluated for each problem.

D8: The prior should perform well. This is the most
difficult desideratum to fulfill. Ideally, we would like to
ensure that, for some appropriate quantities of interest,
the estimators produced using these priors have appro-
priate theoretical guarantees. It could be that we de-
sire good posterior contraction, asymptotic normality,

good predictive performance under mis-specification,
robustness against outliers, admissibility in the Stein
sense or any other “objective” property. At the present
time, there is essentially no knowledge of any of these
desirable features for the types of models that we are
considering in this paper. As this gap in the literature
closes, it may be necessary to update recommendations
on how to set a prior for a hierarchical model to make
them consistent with this new knowledge.

3. PENALISED COMPLEXITY PRIORS

In this section, we will outline our approach to con-
structing penalised complexity priors (PC priors) for a
univariate parameter, postponing the extensions to the
multivariate case to Section 6.1. These priors, which
are fleshed out in further sections, satisfy most of the
desiderata listed in Section 2.5. We demonstrate these
principles by deriving the PC prior for the precision of
a Gaussian random effect.

3.1 A Principled Definition of the PC Prior

We will now state and discuss our principles for con-
structing a prior distribution for £.

Principle 1: Occam’s razor. We invoke the princi-
ple of parsimony, for which simpler model formula-
tions should be preferred until there is enough support
for a more complex model. Our simpler model is the
base model, hence we want the prior to penalise devi-
ations from it. From the prior alone, we should prefer
the simpler model and the prior should be decaying as
a function of a measure of the increased complexity
between the more flexible model and the base model.

Principle 2: Measure of complexity. We base our
measure of complexity on the Kullback-Leibler diver-
gence (KLD) (Kullback and Leibler, 1951)

KLD (7 (x|§)||7 (x|€ = 0))

= /Jr(x|$) log(ing(gli)o)) dax.

The KLD is ubiquitous in the theory of Bayesian statis-
tics and is once again appropriate for the task at hand as
it measures the information lost when approximating a
flexible model by the base model. Combining Princi-
ple 1 with a measure of complexity based on the KLD
says that we want the prior to have high mass in areas
where replacing the flexible model by the base model
will not lead to much information loss. We note that
the asymmetry of the KLD is not troubling in this con-
text as we are interested in measuring how much more
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complex a model is than the base model, which does
not need to be reversible. A good analogy would be
that, when walking between home and a destination,
the appropriate measure ‘“distance” is time, which is
not necessarily symmetric in a hilly city, rather than
physical distance, which is symmetric. In order to use
the KLD with Principle 1, we need it to be interpretable
as a “distance.” Using either asymptotic considerations
(to relate to the Fisher-information metric) or Pinsker’s
inequality (to relate it to the total-variation distance), it
becomes clear that the natural way to use the KLD in to
define the (unidirectional) distance between two mod-
els with densities f and gisd(flg) = +2KLD(f|g).
Hence, we consider d to be a measure of complexity of
the model f when compared to model g.

Principle 3: Constant rate penalisation. Penalising
the deviation from the base model parameterised with
the distance d, we use a constant decay-rate r, so that
the prior satisfies the memoryless property

Tad+8) _
7q(d) ’

for some constant 0 < r < 1. This will ensure that
the relative prior change by an extra § does not de-
pend on d, which is a reasonable choice without ex-
tra knowledge (see the discussion on tail behaviour in
Section 2.4). Deviating from the constant rate penali-
sation implies the assignment of different decay rates
to different areas of the parameter space. However, this
will require a concrete understanding of the distance
scale for a particular problem; see Section 4.5. Fur-
ther, the mode of the prior is at d = 0, that is, the base
model. The constant rate penalisation assumption im-
plies an exponential prior on the distance scale, 7 (d) =
rexp(—Ad), for r = exp(—A). This corresponds to the
following prior on the original space:

dd(§)

& |
In some cases, d is upper bounded and we use a trun-
cated exponential as the prior for d.

Principle 4: User-defined scaling. The final princi-
ple needed to completely define a PC prior is that the
user has an idea of a sensible size for the parameter of
interest or a property of the corresponding model com-
ponent. This is similar to the principle behind weakly
informative priors. In this context, we can select A by
controlling the prior mass in the tail. This condition is
of the form

(3.2) Prob(Q(§) > U) =,

d,s§ >0

(3.1) (€)= Aekd@)‘

where Q(&) is an interpretable transformation of the
flexibility parameter, U is a “sensible,” user-defined
upper bound that specifies what we think of as a “tail
event” and « is the weight we put on this event. This
condition allows the user to prescribe how informative
the resulting PC prior is.

The PC prior procedure is invariant to reparameterisa-
tion, since the prior is defined on the distance d, which
is then transformed to the corresponding prior for &.
This is a major advantage of PC priors, since we can
construct the prior without taking the specific parame-
terisation into account.

The PC prior construction is consistent with the
desiderata listed in Section 2.5. Limited flexibility
(D4), controlling the effect rather than the value (D6),
and informativeness (D1) follow from Principles 1, 2
and 4, respectively. Lacking more detailed theory for
hierarchical models, Principle 3 is consistent with ex-
isting theory (D8). We argue that computational feasi-
bility (D7) follows from restricting our search to abso-
lutely continuous priors. Building “structurally aware”
priors (D2) is discussed in Sections 5 and 7. The
idea that a prior should change in an appropriate way
when the model changes is discussed in Section 5. The
desideratum that the prior is meaningful on identifiable
submanifolds (D5) is discussed in the context of spatial
statistics in Fuglstad et al. (2015).

3.2 Are the Tails of PC Priors Too Light?

While the careful specification of the prior near the
base model is necessary to control against overfitting,
it is also necessary to consider the tail behaviour in or-
der to ensure that complexity is not being penalised too
harshly. Adhering to Principle 3 leaves PC priors with
exponential tails on a distance scale. Contrary to this,
Gelman (2006), Gelman et al. (2008) argue that, when
setting priors on the standard deviation of a normal
distribution, heavy tails are necessary for robustness
(O’Hagan and Pericchi, 2012). Unfortunately, this the-
ory is only developed for inferring location-scale fam-
ilies or natural parameters in exponential families and
it is unclear how to generalize these results to the types
of models we are considering. Piironen and Vehtari
(2015) suggest that the heavy tails induced by a half-
Cauchy prior leads to poor numerical behaviour even
in advanced MCMC implementations like Stan and
recommend using a Student ¢-distribution with more
than 2 degrees of freedom. Ghosh, Li and Mitra (2015)
show that using priors with Cauchy-like tails on regres-
sion coefficients in logistic regression can lead to un-
usually large inferred coefficients. In our experiments,
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we have found little difference between half-Cauchy
and exponential tails, whereas we found huge differ-
ences between exponential and Gaussian tails, which
performed badly when the data was generated from
a moderately flexible model. Hence, we did not find
compelling evidence that we needed to replace the ex-
ponential prior in Principle 3 with heavier tailed prior.

3.3 The PC Prior for the Precision of a Gaussian
Random Effect

The classical notion of a random effect has proven to
be a convenient way to introduce association and unob-
served heterogeneity. We will now derive the PC prior
for the precision parameter t for a Gaussian random ef-
fect x, where x ~ N (0, r_lR_l), with R > 0 known.
In allowing R to be indefinite, this derivation also in-
cludes popular intrinsic models such as CAR and thin-
plate spline models (Rue and Held, 2005). The natu-
ral base model is the absence of random effects, which
corresponds to T = oo. In the rank deficient case, the
natural base model is that the effect belongs to the
nullspace of R, which also corresponds to T = co. This
base model leads to a useful negative result.

THEOREM 1. Let . (t) be an absolutely continu-
ous prior for T > 0 where E(t) < 00, then 73(0) =0
and the prior overfits (in the sense of the practical ver-
sion of Informal Definition 1).

The proof is given in the Supplementary Mate-
rial. Note that all commonly used I'(a,b) priors
with expected value a/b < oo will overfit. Friihwirth-
Schnatter and Wagner (2010, 2011) demonstrate over-
fitting due to Gamma priors and suggest using a (half)
Gaussian prior for the standard deviation to overcome
this problem, as suggested by Gelman (2006); See also
Roos and Held (2011) and the discussion of Lunn et al.
(2009).

The PC prior for 7 is, except for in the specification
of A, independent of R and is derived in Appendix A.1
as a type-2 Gumbel distribution

A
(3.3) (7)) = 51:_3/2 exp(—)»t_l/z), 7>0,A>0.

The density is given in equation (3.3) and has no inte-
ger moments. This prior also corresponds to an expo-
nential distribution with rate A for the standard devia-
tion. The parameter A determines the magnitude of the
penalty for deviating from the base model and higher
values increase this penalty. As previously, we can de-
termine A by imposing a notion of scale on the ran-
dom effects. This requires the user to specify (U, «)

so that Prob(1/4/t > U) = «. This implies that A =
—In(«)/U. As arule of thumb, the marginal standard
deviation of x with R =1, after the type-2 Gumbel dis-
tribution for t is integrated out, is about 0.31U when
o = 0.01. This means that the choice (U = 0.968, o =
0.01) gives Stdev(x) ~ 0.3. The interpretation of the
marginal standard deviation of a random effect is more
direct and intuitive than choosing hyperparameters of a
given prior.

The new prior is displayed in Figure 1 for (U =
0.968, @ = 0.01), together with the popular I'(1, b)
prior, where the shape is 1 and rate is b. We selected b
so that the marginal variance for the random effects are
equal for the two priors. Panel (a) shows the two pri-
ors on the precision scale and panel (b) shows the two
priors on the distance scale. The priors for low preci-
sions are quite different, and so are the tail behaviours.
For large 7, the new prior behaves like 773/, whereas
the Gamma prior goes like exp(—bt). This is a direct
consequence of the importance the new prior gives to
the base model, that is, the absence of random effects.
Panel (b) demonstrates that the Gamma prior has den-
sity zero at distance zero, and hence, does not prevent
over-fitting.

We end with a cautionary note about scaling issues
for these models and our third desideratum. If R is
full-rank, then it is usually scaled, or can be scaled,
so that (R™1);; = 1 for all i, hence t represents the
marginal precision. This leads to a simple interpreta-
tion of U. However, this is usually not the case if R
is singular like for spline and smoothing components;
see Sgrbye and Rue (2014) for a discussion of this is-
sue. Let the columns of V represent the null-space of
R, so that RV = 0. For smoothing spline models, the
null-space is a low-dimensional polynomial and R de-
fines the penalty for deviating from the null space (Rue
and Held, 2005, Section 3). In order to unify the inter-
pretation of U, we can scale R so that the geometric
mean (or some typical value) of the marginal variances
of x|VTx = 0 is one. In this way, T represents the pre-
cision of the (marginal) deviation from the null space.

3.4 The Effect of A

Our fourth principle asserts that the scale of the prior
should be chosen by the user. This injects a very spe-
cific avenue of subjectivity into PC priors and it is
worth investigating how important this choice is. In our
experiences working with these priors, we have found
that they are almost always insensitive to this param-
eter providing that it is not set to an extremely poor
value. An easy example of this is found in Section 4.4,
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Panel (a) displays the new prior (dashed) with parameters (U = 0.968, « = 0.01), and the I" (shape = 1, rate = b) prior (solid).

The value of a is computed so that the marginal variances for the random effects are equal for the two priors, which leads to b = 0.0076.
Panel (b) shows the same two priors on the distance scale demonstrating that the density for the Gamma prior is zero at distance zero.

where a poor specification of A leads to a very strong
prior that is in conflict with the data.

A more interesting case when the posterior is sensi-
tive to the choice of scaling was discussed by Guo, Rue
and Riebler (2015). They considered prior specification
in bivariate meta-analysis models, where they attempt
to simultaneously combine information on sensitivity
and specificity of a treatment. As meta-analyses typi-
cally only combine a small number of studies, the prior
sensitivity that they found is not particularly surprising
and that PC prior framework allows for a sensible way
of constructing informative expert priors.

We conclude this discussion with a simulation study
that shows that PC priors are fairly insensitive to the
choice of A when there is at least a moderate amount of
information. In particular, we will consider the interest-
ing problem of inferring the degrees of freedom param-
eter v in a Student ¢-distribution. This is a challenging
problem for medium-sized datasets, as tail properties
are hard to estimate without a lot of data.

To investigate the properties of the PC prior on v
and compare it with the exponential prior on v, we
performed a simulation experiment using the model
vi=¢;,i=1,...,n, where ¢ is Student ¢ distributed
with unknown d.o.f. and fixed unit precision. Sim-
ilar results are obtained for more involved models
(Martins and Rue, 2013). We simulated data sets with
n = 100, 1000, 10,000. For the d.o.f. we used v =
5,10, 20, 100, to study the effect of the priors un-
der different levels of the kurtosis. For each of the

12 scenarios, we simulated 1000 different data sets,
for each of which we computed the posterior distri-
bution of v using one-dimensional quadrature. Then
we formed the equal-weight mixture over all the 1000
realisations to approximate the expected behaviour of
the posterior distribution over different realisations of
the data. Figure 2 shows the 0.025, 0.5 and 0.975-
quantiles of this mixture of posterior distributions of
v when using the PC prior with U = 10 and o =
0.2,0.3,0.4,0.5,0.6,0.7 and 0.8, and the exponential
prior, as recommended by Geweke (2006), with mean
5, 10, 20 and 100. Each row in Figure 2 corresponds
to a different d.o.f. while each column corresponds to
a different sample size n.

The full details of the simulation study, as well as
more information about the Student ¢ case, can be
found in the Supplementary Material.

The first row in Figure 2 displays the results with
v = 100 in the simulation which is close to Gaussian
observations. Using the PC priors results in wide cred-
ible intervals in the presence of few data points, but
as more data are provided the model learns about the
high d.o.f. Using an exponential prior for v, the pos-
terior quantiles obtained depend strongly on the mean
of the prior. This difference seems to remain even with
n = 1000 and n = 10,000, indicating that the prior still
dominates the data. For all scenarios, the intervals ob-
tained with the exponential prior for v look similar,
with the exception of scenarios with low d.o.f. and
high sample size, for which the information in the data
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The 0.025-, 0.5- and 0.975-quantile estimates obtained from an equal-weight mixture of posterior distributions of v when fitting a

Student t-errors model with different priors for v over 1000 datasets, for each of the 12 scenarios with sample sizes n = 100, 1000, 10,000
and d.o.f. v =100, 20, 10, 5. The first four intervals in each scenario correspond to exponential priors with mean 100, 20, 10, 5, respectively.
The last seven intervals in each scenario correspond to the PC prior with U = 10 and « = 0.2,0.3,0.4,0.5,0.6, 0.7 and 0.8.

is strong enough to dominate this highly informative
prior.

If we study Figure 2 column-wise and top-down, we
note that the performance of the PC priors are barely
affected by the change in «. They seem to be almost
insensitive to the choice of o and perform well for all
sample sizes. For the exponential priors when n = 100,
we basically see no difference in inference for v com-
paring the near Gaussian scenario (v = 100) with the
strongly heavy tailed one (v = 5). The implication is
that the results will be much more influenced by the
choice of the mean in the exponential prior than by the
d.o.f. in the data. Similarly, the exponential priors con-
tinue to be highly informative even for large sample
sizes. This informative behaviour can be seen in par-
ticular in the first row (v = 100).

We also inspected the coverage at a 95% level for all
priors and simulation settings. The coverage probabil-
ities for all PC priors were very similar and always at
least 0.9, whereby they tended to be a bit too high com-
pared to the nominal level. For the exponential priors,

the results are ambiguous, either the coverage probabil-
ities are sensible while still being higher than the nomi-
nal level or they are far too low, in several settings even
Zero.

This example sheds light on the consistency issue
discussed by Lid Hjort et al. (2010), Chapter 1. A prior
distribution represents prior belief, learnt before data is
observed, but it also fully specifies the Bayesian learn-
ing model. As more data arrives, it is expected that the
learning model goes in the right direction. If it does not,
then the learning model (prior) has not been set well,
even though the prior might be appropriate as repre-
senting prior beliefs. In the Supplementary Material,
we show that priors on v with finite mean do not re-
spect the Occam’s razor principle will invariably lead
to bad learning models. Figure 2 illustrates this point
for the case of exponential priors.

4. SOME PROPERTIES OF PC PRIORS

In this section, we investigate some basic properties
of PC priors for simple models. In particular, we will
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investigate when the behaviour in the neighbourhood
of the base model or the tail behaviour is important to
obtain sensible results. For most moderate-dimensional
models, we find that the behaviour at the base model
is fundamentally important, while the tail behaviour is
less important. In contrast, in very high-dimensional
settings, we find that a heavier tail than that implied by
the principle of constant rate penalisation is required
for sound statistical inference.

For reasons of mathematical tractability, in this sec-
tion we restrict ourselves to a much smaller set of mod-
els than in the rest of the paper. Sections 4.1-4.3 focus
on direct observations of a single component model,
while Sections 4.4—4.5 focus on estimating the mean
of a normal distribution with known variance. None of
these models fall within the family of realistically com-
plicated models that are the focus of this paper. Unfor-
tunately, there is very little theory for the types of hier-
archical models we are considering, so we are forced to
consider these simpler models in order to gain intuition
for the more interesting cases.

4.1 Behaviour Near the Base Model

To understand the PC prior construction better, we
can study what happens near £ = 0 using the connec-
tion between KLD and the Fisher information metric.
We will assume the model is sufficiently regular at £ =
0 to make the following formal asymptotic arguments
work. Let I(§) be the Fisher information at &. Us-
ing the well-known asymptotic expansion (Watanabe,
2009, Remark 1.4),

KLD (r (x]€) | (x| = 0))

1
= 51 (0)& 24 higher order terms,
a standard expansion reveals that our new prior behaves

like
T =1)"? exp(—Am(&)) + higher order terms

for A¢ close to zero. Here, m (&) is the distance de-
fined by the metric tensor I (§), m(§) = fog JI(s)ds,
using tools from information geometry. Close to the
base model, the PC prior is a tilted Jeftreys’ prior for
w(x|&), where the amount of tilting is determined by
the distance on the Riemannian manifold to the base
model scaled by the parameter A. The user-defined pa-
rameter A thus determines the degree of informative-
ness in the prior.

4.2 Large Sample Behaviour Under the Base Model

A good check when specifying a new class of pri-
ors is to consider the asymptotic properties of the in-
duced posterior. In particular, it is useful to ensure that,
for large sample sizes, we achieve frequentist cover-
age. While the Bernstein—von Mises theorem ensures
that, for sufficiently well-behaved models where the
true parameter lies in the centre of the parameter space,
asymptotic coverage is independent of (sensible) prior
choice, the situation may be different when the true pa-
rameter lies on the boundary of the parameter space. In
most examples in this paper, the base model defines the
boundary of the parameter space and prior choice now
plays an important role (Bochkina and Green, 2014).

When the true parameter lies at the boundary of the
parameter space, there are two possible cases to be con-
sidered. In the regular case, where the derivative of
the log-likelihood at this point is asymptotically zero,
Bochkina and Green (2014) showed that the large-
sample behaviour depends entirely on the behaviour of
the prior near zero. Furthermore, if the prior density
is finite at the base model, then the large sample be-
haviour is identical to that of the maximum likelihood
estimator (Self and Liang, 1987). Hence Principle 1
ensures that PC priors induce the correct asymptotic
behaviour. Furthermore, the invariance of our con-
struction implies good asymptotic behaviour for any
reparameterisation.

4.3 PC Priors and Bayesian Hypothesis Testing

PC priors are not built to be hypothesis testing priors
and we do not recommend their direct use as such. We
will show, however, that they lead to consistent Bayes
factors and suggest an invariant, weakly informative
decision theory-based approach to the testing problem.
With an eye towards invariance, in this section we will
consider the re-parameterisation ¢ = d(§).

In order to show the effects of using PC priors as hy-
pothesis testing priors, let us consider the large-sample
behaviour of the precise test { = 0 against ¢ > 0. We
can use the results of Bochkina and Green (2014) to
show the following in the regular case.

THEOREM 2. Under the conditions of Bochkina
and Green (2014), the Bayes factor for the test Hy :
¢ =0 against Hy : { > 0, is consistent when the prior
for ¢ does not overfit. That is, By — oo under Hy and
Boi1 — O under Hy, where By denotes the Bayes factor
for candidate model My against candidate model M.

Johnson and Rossell (2010) point out for regular
models, that the rates at which these Bayes factors go
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to their respective limits under Hy and H; are not sym-
metric. This suggests that the finite sample properties
of these tests will be suboptimal. The asymmetry can
be partly alleviated using the moment and inverse mo-
ment prior construction of Johnson and Rossell (2010),
which can be extended to this parameter invariant for-
mulation in a straightforward way (see Rousseau and
Robert, 2011). The key idea of nonlocal priors is to
modify the prior density so that it is approximately zero
in the neighbourhood of Hy. This forces a separation
between the null and alternative hypotheses that helps
balance the asymptotic rates. Precise rates are given in
the Supplementary Material.

The construction of nonlocal priors highlights the
usual dichotomy between Bayesian testing and
Bayesian predictive modelling: in the large sample
limit, priors that lead to well-behaved Bayes factors
have bad predictive properties and vice versa. In a far-
reaching paper, Bernardo (2011) suggested that this di-
chotomy is the result of asking the question the wrong
way. Rather than using Bayes factors as an “objec-
tive” alternative to a proper decision analysis, Bernardo
(2011) suggests that reference priors combined with a
well-constructed invariant loss function allows for pre-
dictive priors to be used in testing problems. This also
suggests that PC priors can be used in place of ref-
erence priors to construct a consistent, coherent and
invariant hypothesis testing framework based on deci-
sion theory.

4.4 Risk Results for the Normal Means Model

A natural question to ask when presented with a new
approach for constructing priors is are the resulting es-
timators any good? In this section, we investigate this
question for the analytically tractable normal means
model:

yilxi, o ~N(xi, 1),
“4.1)

xilo ~N(0,02),

o~mg(o), i=1,...,p.

This model is the simplest one considered in this paper
and gives us an opportunity to investigate whether con-
stant rate penalisation, which was used to argue for an
exponential prior on the distance scale, makes sense in
this context. For the precision parameter of a Gaussian
random effect, the distance parameter is the standard
deviation, d = o, which allows us to leverage our un-
derstanding of this parameter and consider alternatives
to this principle.

Let xg = (x1, ..., xp) denote the unknown vector of
means. Then, for an estimator §(-), define the mean-
square risk as R(xg, ) = E(||xp — 8(y)||2), where the

expectation is taken over data 'y ~ N (Xg, I). The stan-
dard estimator dop(y) =y is the best invariant esti-
mator and obtains constant minimax risk R(Xg, §p) =
p. Classical results of James and Stein (1961), Stein
(1981) show that this estimator can be improved upon.
We will consider the risk properties of the Bayes’ esti-
mators, which in this case is the posterior mean.

By noting that E(x;|y, o) = y;(1 — E(x|y)) for the
shrinkage parameter x = (1 + o2)~1, Polson and Scott
(2012) derived the general form of the mean-square
risk. Using a half-Cauchy distribution on the standard
deviation o, as advocated by Gelman (2006), the re-
sulting density for « has a horseshoe shape with infinite
peaks at zero and one. The estimators that come from
this horseshoe prior have good frequentist properties as
the shape of the density of « allows the component to
have any level of shrinkage. In general, the density for
k is related to 4 (o) by

() =ma (k= — 1);
23/K3 — it
Straightforward asymptotics shows how the limit be-
haviour of (o) transfers into properties of m, (k).

THEOREM 3. Ifm (o) has tails lighter than a Stu-

dent t-distribution with 2 degrees of freedom, then
1 (0)=0.Ifrg(d) <O(d) as d — 0, then 7, (1) = 0.

This result suggests that the PC prior will shrink
strongly, putting relatively little prior mass near zero
shrinkage, due to the relatively light tail of the expo-
nential. The scaling parameter A controls the decay
of the exponential, and the effect of A = —log(a)/ U,
with & = 0.01, on the implied priors on « is shown in
Figure 3(a) for various choices of U. For moderate U,
the PC prior still places a lot of prior mass near « =0,
in spite of the density being zero at that point. This
suggests that the effect of the light tail induced by the
principle of constant penalisation rate, is less than The-
orem 3 might suggest. For comparison, the horseshoe
curve induced by the half-Cauchy prior is shown as the
dotted line in Figure 3(a). This demonstrates that PC
priors with sensible scaling parameter place more mass
at intermediate shrinkage values than the half-Cauchy,
which concentrates the probability mass near x = 0
and « = 1. The overall interpretation of Figure 3(a)
is that, for large enough U, the PC prior will lead to
a slightly less efficient estimator than the half-Cauchy
prior, while for small signals we expect them to behave
similarly.
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FI1G. 3. Display (a) shows the implied prior on the shrinkage parameter k for several different priors on the distance scale. These priors
are the half-Cauchy (dotted) and PC priors with scaling parameter A = —10g(0.01)/U for U =1 (solid), U =5 (dashed), and U = 20
(dot-dashed). Display (b) shows the mean squared risk of the Bayes’ estimators for the normal means model with p =7 corresponding to
different priors on the distance parameter, against ||Xo||. The dash-dashed horizontal line is the risk of the naive minimax estimator 8y (X) = X.
The solid line corresponds to the PC prior with U = 1. The dashed and dotted lines, which are essentially overlaid, correspond respectively

to the PC prior with U =5 and the half-Cauchy distribution.

Figure 3(a) demonstrates also to which extent U con-
trols the amount of information in the prior. The im-
plied shrinkage prior for U = 1 (dot-dash line), cor-
responds to the weakly informative statement that the
effect is not larger than 30 ~ 0.93, has almost no prior
mass on k < 0.5. This is consistent with the informa-
tion used to build the prior: if ||xo|| < 1, the risk of the
trivial estimator §(y) = 0 is significantly lower than the
standard estimator.

Figure 3(b) shows the risk using PC priors with
U =1 (solid line), U = 5 (dashed line), the half-
Cauchy prior (dot-dashed line), as a function of ||xg]|.
The mean-squared risk exceeds the minimax rate for
large ||xo|| when U = 1 which is consistent with the
prior/data mis-match inherent in badly mis-specifying
U = 1. By increasing U to 5, we obtain almost identi-
cal results to the half-Cauchy prior, with a slight differ-
ence only for really large ||Xp||. Increasing U decreases
the difference.

The risk results obtained for the normal means model
suggests that the PC priors give rise to estimators with
good classical risk properties, and that the heavy tail of
the half-Cauchy is less important than the finite prior
density at the base model. It also demonstrates that

we can put strong information into a PC prior, which
we conjecture would be useful when the data consists
of Poisson or Binomial responses with link functions
like the log and logit, as we have strong structural
prior knowledge about the plausible range for the lin-
ear predictor in these cases (Polson and Scott, 2012,
Section 5).

4.5 Sparsity Priors

When solving high-dimensional problems, it is often
expedient to assume that the underlying truth is sparse,
meaning that only a small number of the model com-
ponents have a nonzero effect. Good Bayesian mod-
els that can recover sparse signals are difficult to build.
Castillo and van der Vaart (2012) consider spike-and-
slab priors, that first select a subset of the components
to be nonzero and then place a continuous prior on
these. These priors have been shown to have excellent
theoretical properties, but their practical implementa-
tion requires a difficult stochastic search component.
A more pleasant computational option builds a prior
on the scaling parameter of the individual model com-
ponents. In the common case where the component
has a normal distribution, the shrinkage properties of
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these priors have received a lot of attention. Two ex-
amples of scale-mixtures of normal distributions are
the horseshoe prior (Carvalho, Polson and Scott, 2010,
van der Pas, Kleijn and van der Vaart, 2014) and the
Dirichlet-Laplace prior (Pati, Pillai and Dunson, 2014)
which both were shown to have comparable asymptotic
behaviour to spike-and-slab priors when attempting to
infer the sparse mean of a high dimensional normal dis-
tribution. On the other hand, Castillo, Schmidt-Hieber
and van der Vaart (2014) showed that the Bayesian
generalisation of the LASSO (Park and Casella, 2008),
which can be represented as a scale mixture of normals,
gives rise to a posterior that contracts much slower
than the minimax rate. This stands in contrast to the
frequentist situation, where the LASSO obtains almost
optimal rates.
For concreteness, let us consider the problem

1 iid.

yi~7n(ylB), B~N(@©,D), D; ~n(),

where 7 (y|B) is some data-generating distribution,
is a p-dimensional vector of covariate weights, 7 (7)
is the PC prior in (3.3) for the precisions {D,; 1} of the
covariate weights. Let us assume that the observed data
was generated from the above model with true parame-
ter B that has only so nonzero entries. We will assume
that so = o(p). Finally, in order to ensure a priori ex-
changeability, we set the scaling parameter A in each
PC prior to be the same.

This then raises the question: does an exponential
prior on the standard deviation, which is the PC prior
in this section, make a good variable selection prior?
In this section, we will show that the answer is no.
The problem with the basic PC prior for this problem
is that the base model has been incorrectly specified.
The base model that a p-dimensional vector is sparse
is not the same as the base model that each of the p
components is independently zero and hence the prior
encodes the wrong information. A more correct appli-
cation of the principles in Section 3.1 would lead to a
PC prior that first selects the number of nonzero com-
ponents and then puts i.i.d. PC priors on each of the
selected components. If we measure complexity by the
number of nonzero components, the principle of con-
stant rate penalisation requires an exponential prior on
the number of components, which matches with the
theory of Castillo and van der Vaart (2012). Hence, the
failure of p independent PC priors to capture sparsity
is not unexpected.

To conclude this section, we show the reason for the
failure of independent PC priors to capture sparsity.
The problem is that the induced prior over § must have

mass on values with a few large and many small com-
ponents. Theorem 4 shows that the values of A that puts
sufficient weight on approximately sparse models does
not allow these models to have any large components.
Fortunately, the principled approach allows us to fix the
problem by simply replacing the principle of constant
rate penalisation with something more appropriate (and
consistent with D8). Specifically, in order for the prior
to put appropriate mass around models with the true
sparsity, the prior on the standard deviation needs to
have a heavier tail than an exponential.

As m(7) is an absolutely continuous distribution, the
naive PC prior will never result in exactly sparse sig-
nals. This leads us to take up the framework of Pati,
Pillai and Dunson (2014), who consider the §-support
of a vector

supps(B) = {i : |Bi| > 8},

and define a vector B to be §-sparse if | supps(B)| < p.
Following Pati, Pillai and Dunson (2014), we take § =
O( p_l). As so = o(p), this ensures that the nonzero
entries are small enough not to have a large effect on
181

For fixed 4§, it follows that the §-support of 8 has a
Binomial(p, ) distribution, where a, = Prob(|8;| >
8p). If we had access to an oracle that told us the true
sparsity sg, it would follow that a good choice of A
would ensure a), = " Lso.

THEOREM 4. Let S = |supp,-1(B)|. If the true
sparsity so = o(p), then the oracle value of A that en-

sures that the a priori expectation E(S) = sqg grows like
A~ O(=E=).
log(p)

Theorem 4 shows that A is required to increase with
p, which corresponds to a vanishing upper bound U =
(’)(p_1 log(p)). Hence, it is impossible for the above
PC prior to have mass on signals that are simultane-
ously sparse and moderately sized.

The failure of PC priors to provide useful variable
selection priors is essentially down to the tails speci-
fied by the principle of constant rate penalisation. This
principle was designed to avoid having to interpret a
change of concavity on the distance scale for a general
parameter. However, in this problem, the distance is the
standard deviation, which is a well-understood statisti-
cal quantity. Hence, it makes sense to put a prior on the
distance with a heavier tail in this case. In particular,
if we use a half-Cauchy prior in place of an exponen-
tial, we recover the horseshoe prior on 8, which has
good shrinkage properties. In this case Theorem 6 in
the Supplementary Material, which is a generalisation
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of Theorem 4, shows that the inverse scaling parame-
ter of the half-Cauchy must be at least O(p/log(p)),
which corresponds up to a log factor with the optimal
contraction results of van der Pas, Kleijn and van der
Vaart (2014). We note that this is the only situation we
have encountered in which the exponential tails of PC
priors are problematic.

5. DISEASE MAPPING USING THE BYM MODEL

The application to disease mapping using the pop-
ular BYM-model (Besag, York and Mollié, 1991) is
particularly interesting since we are required to repa-
rameterise the model to see it as a flexible extension of
two base models to which it will shrink towards unless
otherwise indicated by the data.

Mapping disease incidence is a huge field within
public health and epidemiology, and good introduc-
tions to the field exist (Lawson, 2006, 2009, Wakefield,
Best and Waller, 2000, Waller and Carlin, 2010). The
observed counts y; in area i withi =1, ..., n are com-
monly assumed to be conditionally independent Pois-
son variables with mean E;exp(n;), where {E;} are
the expected number of cases. In the BYM-model, the
log relative risk is given by n; = u + ziTﬂ +u; + v
where p is the overall intercept, B measures the effect
of possibly region specific covariates z;, v is a zero
mean Gaussian with precision matrix 7,1 and repre-
sents an unstructured random effect. In contrast, u is a
spatial component saying that nearby regions are sim-
ilar. A first-order intrinsic Gaussian Markov random
field model (Rue and Held, 2005, Chapter 3) was in-
troduced by Besag, York and Mollié (1991) as a model
for u. Let G be the conditional independence graph of
u, where di denotes the set of neighbours to node i
and let np; be the corresponding number of neighbours.
The conditional distribution of u; is

uila—i, Ty ’V/\f<L > uj, 1/(naifu)>,
Moi

where 1, is the precision parameter; see Rue and Held
(2005), Chapter 3, for details. This model is intrinsic
and penalises local deviation from its null space, which
is a constant level in the case of one connected compo-
nent (Rue and Held, 2005, Section 3). If the map has
islands, the definition of the null-space is more com-
plex, see Hodges (2014), Section 5.2.1. To prevent con-
founding with the intercept, we impose the constraint
that 17u = 0.

To complete the model, we need the prior specifica-
tion for the intercept and the fixed-effects B, as well

as the prior for the two precision parameters 7, and
Ty. There are two main issues with the BYM model
and the choice of priors. The first, related to Desider-
atum D3, is that the spatial component is not scaled
(see Section 3.3). The marginal variance after impos-
ing the 17u = 0 constraint is not standardised, mean-
ing that any recommended prior (like those suggested
by Bernardinelli, Clayton and Montomoli, 1995) can-
not be transferred from one graph to another, since the
generalised variance depends on the graph; see Sgrbye
and Rue (2014). The second issue, related to Desider-
atum D2, is that the structured component u cannot
be seen independently from the unstructured compo-
nent v. This means that the priors for 7, and 1, should
be (heavily) dependent, and not independent as it is
usually assumed.

To resolve these issues, we assume a scaled spatially
structured component u* where the generalised vari-
ance, computed as the geometric mean of the marginal
variances is equal to one; see Section 3.3 and Sgrbye
and Rue (2014), Riebler et al. (2016). We then rewrite
the log relative risk as

1

T2 T+ V),

where 0 < ¢ < 1 is a mixing parameter. The marginal
precision contribution from u* and v is 1/t, whereas
the fraction of this variance explained by the spatial
term u* and the random effects v, are ¢ and 1 — ¢,
respectively. Note that the two hyperparameters (z, ¢)
control very different parts of the prior and this natu-
rally allows for independent prior specification. First,
we notice that the type-2 Gumbel prior applies to the
precision 7, as the natural base model is no effect
from u* and v. For a fixed marginal precision, the
base model is no spatial dependency, that is, ¢ = 0.
An increased value of ¢ will blend in spatial depen-
dency keeping the marginal precision constant, hence
more of the variability will be explained by u* and
the ratio is ¢. The PC prior for ¢ is derived in Ap-
pendix A.2 and depends on the graph G. Our notion
of scale can be used to set (U, a) so that Prob(¢ <
U) = o which determines the degree of penalisation.
Similar re-parameterisations have been discussed by
Dean, Ugarte and Militino (2001), who did not con-
sider the scaling, and Wakefield (2007), who scaled
the variance by the arithmetic rather than geometric
mean. The difference between these two scalings is
subtle: the arithmetic mean of the variances is a good
way of finding a representative value of the variance,

G mi=ptz B+
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whereas the geometric mean can be interpreted as find-
ing the variance of a consensus Gaussian distribution
by logarithmically pooling the information each of the
marginal distributions (Genest, Weerahandi and Zidek,
1984). Hence, the geometric mean scaling is consis-
tent with desideratum D6 as it averages the “meaning”
of the individual variances in the context of their indi-
vidual Gaussian distributions rather than the averaging
the values. Neither Dean, Ugarte and Militino (2001)
nor Wakefield (2007) considered the differences in the
complexity of the two components when setting the
prior on ¢.

Riebler et al. (2016) compared the new parameter-
isation and its (shrinkage) performance to alternative
parameterisations in a simulation setting. Here, we re-
analyse larynx cancer mortality for men, registered in
544 districts of Germany from 1986 to 1990 (Natdrio
and Knorr-Held, 2003) to underline the learning abil-
ities. The total number of deaths due to larynx can-
cer was 7283, which gives an average of 13.4 per re-
gion. An interesting part of modelling these data is the
semi-parametric estimation of the covariate effect of
lung cancer mortality rates in the same period. This
covariate acts as an ecological covariate (Wakefield
and Lyons, 2010) to account for smoking consumption,
which is known to be the most important risk factor of
the larynx cancer. As a smooth model for the ecologi-
cal covariate z, Natario and Knorr-Held (2003) used a
second-order random walk model

7 (z|t;)

)(m—l)/2

(52) o (r.7)

220 VRN 2
5 Z(Zl —2zi-1+zi-2)7 |,
i=3
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where m is the length of z. This spline model pe-
nalises the estimated second-order differences and its
null space is spanned by 1 and (1,2,...,m). Simi-
lar to the spatial component in the BYM model, this
model component is not standardised and t ensures
that the generalised variance is one. The base model
is here a straight line which reduces to a linear ef-
fect of the ecological covariate, and the type-2 Gum-
bel distribution is the resulting PC prior for 7,. The log
relative risk results as n; = u + z; + %(./1 — ¢v; +

ﬁu;"), where z; follows the spline model in (5.2), and
whereby the ecological covariate z has been converted
into the range 1, 2, ..., m for simplicity. See Rue and
Held (2005), Chapter 3, for more details on this spline
model, and Lindgren and Rue (2008) for an extension
to irregular locations.

We use a constant prior for the intercept and param-
eters (U =0.2/0.31, « = 0.01) for the precision 7. For
the prior for ¢, we use (U = 1/2, o = 2/3) which gives
a 2/3 probability that the fraction of the marginal vari-
ance explained by the random effect v is larger than
1/2. For the precision in the spline model, we also used
(U=0.2/0.31, =0.01).

Figure 4(a) shows that the model learns from the data
resulting in a posterior concentrated around 1. This im-
plies that only the spatial component contributes to the
marginal variance. The posterior for the precision t
[panel (b)] is more concentrated than in earlier exam-
ples due to the relatively high average counts. The ef-
fect of the ecological covariate [panel (c)] seems to be
shrunk towards the base model, that is, a straight line,
and is much more linear than the various estimates by
Natério and Knorr-Held (2003). We suppose that the
reason lies in over-fitting due to their choice of priors.
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The results for the larynx data in Germany using PC priors and the reparameterised BYM model. Panel (a) shows the prior density

for the mixing parameter ¢ (dashed) and the posterior density (solid). Panel (b) shows the prior density (dashed) and the posterior density
(solid) for the precision t. Panel (c) shows the effect of the ecological covariate where the black solid line is the mean, the dashed lines are
the upper and lower 0.025-quantiles and the gray solid line is the best linear fit to the mean.
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The appropriateness of a linear effect of the ecological
covariate, is also verified in Sgrbye and Rue (2011).

6. MULTIVARIATE PROBIT MODELS

The examples considered thus far have been essen-
tially univariate, with higher dimensional parameter
spaces dealt with by assuming that independent pri-
ors are sensible when parameters are controlling differ-
ent parts of the model. In this section, we will demon-
strate that the PC prior methodology naturally extends
to multivariate parameters and illustrate this by means
of multivariate probit models.

Multivariate probit models have applications within
sample surveys, longitudinal studies, group rando-
mised clinical trials, analysis of consumer behaviour
and panel data (Talhouk, Doucet and Murphy, 2012).
They represent a natural extension of univariate pro-
bit models, where the probability for success at the ith
subject is

(6.1) Prob(y; = 1|8) = @(x! B),

Here, ®(-) is the cumulative distribution function for
the standard Gaussian distribution, X; a set of fixed co-
variates with regression coefficients 8. The univariate
probit model can be reformulated into a latent vari-
able formulation which both improves the interpreta-
tion and eases computations. Let z; = Xl-T B+ ¢&;, and
define y; =11if z; > 0, and y; =0 if z; < 0. When {¢;}
is standard multivariate Gaussian over all the n sub-
jects, we obtain (6.1) after marginalising out ¢;. In the
multivariate extension, we have m measurements of the
ith subject, {y;; : j =1, ..., m}. The latent vector for
the ith subject is z; = Xl.TB + &; where &; ~ N, (0, R),
and define Yij = 1 ifZ,‘j >0, and Yij IOifZ,'j < 0.The
dependence within each subject, is encoded through
the matrix R, which, in order to ensure identifiability,
is restricted to be a correlation matrix.

A Bayesian analysis of a multivariate probit model
requires a prior for the correlation matrix R. For the
saturated model for R, Barnard, McCulloch and Meng
(2000) demonstrate the joint uniform prior 7 (R) o< 1
which gives highly informative marginals centred at
zero; see Talhouk, Doucet and Murphy (2012) for ap-
plications of this prior within multivariate probit mod-
els. The joint Jeffreys’ prior for R was used by Liu
(2001), which places most prior mass close to 1 in
high dimension. Chib and Greenberg (1998) suggest
using a multivariate Gaussian prior for R restricted to
the subset where R is positive definite. Neither of these
previously applied priors for R is particular convinc-
ing.

i=1,...,n.

6.1 Extending the Univariate PC Prior
Construction

The principles underlying the PC prior outlined in
Section 3.1 can be extended to the multivariate setting
& € M with base model & = 0 € M. This multivari-
ate extension has all the features of the univariate case.
As many interesting multivariate parameters spaces are
not R", we will let M be a subset of a smooth n-
dimensional manifold. For example, when modelling
covariance matrices M will be the manifold of sym-
metric positive definite matrices, while the set of corre-
lation matrices is a convex subset of that space. A nice
introduction to models on manifolds can be found in
Byrne and Girolami (2013), where the problem of con-
structing useful MCMC schemes is also considered.

Assume that d(&) has a nonvanishing Jacobian. For
eachr >0, the level sets @ € S, ={E e M :d(&) =r}
are a system of disjoint embedded submanifolds of
M, which we will assume to be compact (Lee, 2003,
Chapter 8). In the parlance of differential geometry, the
submanifolds S, are the leaves of a foliation and the
decomposition M = Ry x (L],~0Sr) gives rise to a
natural coordinate system on M. Hence, the natural
lifting of the PC prior concept onto M is the prior that
is exponentially distributed in d (&) and uniformly dis-
tributed on the leaves Sy).

In some sense, this above definition is enough to
be useful. A simple MCMC or optimisation scheme
would proceed in a “coordinate ascent” manner, mov-
ing first in the distance direction and then along the
leaf S,. More efficient schemes, however, may be de-
rived from a more explicit density. To this end, we can
locally find a mapping ¢(-) such that (d(§), ¢(§)) =
g(&). With this mapping, we get a local representation
for the multivariate PC prior as

62 7=

exp(—Ard (&))|det(J(§))

’

A
|Sace)!
where J;; = g—? is the Jacobian of g. While the def-

J
inition of multivariate PC priors is significantly more
involved than in the univariate case, it is still useful. In
general, computational geometry can be used to evalu-
ate (6.2) approximately in low dimension. In the case
where the level sets are simplexes or spheres, exact ex-

pressions for the PC prior can be found. These situa-
tions occur when d(§) can be expressed as

(6.3) d&) =hb"E), b>0EecR

or

(6.4) d(§) = h(%&THé), H>0,£eR",
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for some function A (-) satisfying h(0) = 0, typically
h(a) = +/2a. The linear case will prove useful for de-
riving the PC prior for general correlation matrices in
Section 6.2. The quadratic case will be fundamental to
derive approximate multivariate PC priors for hierar-
chical models; see Section 7.

It is trivial to simulate from the PC prior when
(6.3) or (6.4) holds. First, we sample d from the
exponential distribution with rate A. In the linear
case (6.3), sample s uniformly on an (n — 1)-simplex
[by sampling z1, ..., z, independent from Exp(1) and
set s = z/17z] and compute & = h~'(d)s/b. In the
quadratic case (6.4), sample s uniformly on an unit
sphere (by sampling independent standard Gaussians
Z1,...,2n and then set s = z/\/zT_z) and compute
& =2h"1(d) —1/2g, Using these direct simulation
algorithms, it is a simple change of variables exercise
to derive the densities for the PC priors. In the linear
case with b =1, the PC prior is

(n—1)!
r&m-!

r€)=h"'(d®),

x |W'(r(&))

m(§) = rexp(—Ad(£)) x
(6.5)

’

in the quadratic case with H =1, the PC prior is
rG+1

(5@

r(&) =,/2h"1(d(®)).

The results for the general case, b > 0 and H > 0, fol-
lows directly after a linear transformation of &.

m(§) = rexp(—2d(§))
(6.6)

9

6.2 A Prior for General Correlation Matrices

Consider the model component x ~ N (0, R) where
R is a ¢ x g correlation matrix. The distance func-
tion to the base model, which corresponds to using
the identity matrix as correlation matrix, is given by
d(R) = /—1log(det(R)). This distance function can be
greatly simplified by considering a different parame-
terisation of the set of correlation matrices. Rapisarda,
Brigo and Mercurio (2007) show that every correlation
matrix can be written as R = BB’ , where B is a lower
triangular matrix with first row given by a 1 on the di-
agonal (first position) and zeros in every other position

and, for rows i > 2, entries are given by

cos(6;;),
j—1
cos(6;j) [ sin6in), 2<j<i—1;

R k=1
Bij=1i-1

Jj=1

[ sin(6ix). J=i
k=1
0, i+1<j=<gq,

where 0;; € [0, r]. The advantage of this parameterisa-
tion is that the distance function is now given by

where y;; = —log(sin(6;;)) € [0,00) are the p =
q (g — 1)/2 parameters. Using the y-parameterisation,
we are in the linear case (6.3) and the PC prior is
given by (6.5) with § =y, h(a) = V2a and n = p.
The PC prior for @ follows directly after a change of
variables exercise, and is simplified by noting that the
two branches of the mapping 6;; = 6;;(y;;) have the
same Jacobian.

The scaling parameter A controls the degree of com-
pression of the parallelotope with vertices given by the
column vectors of R. For large values of A, most of the
mass will be concentrated near parallelotopes with unit
volume, while for small A, the volume could be sig-
nificantly less than one. This parameter may be diffi-
cult to visualise in practice, and we suggest calibrating
the prior by drawing samples from the model compo-
nent and selecting a value of A for which this compo-
nent behaves appropriately. Figure 5(a) shows the PC
prior marginal for one of these correlations for an ex-
changeable PC prior on a 3 x 3 correlation matrix, us-
ing A = 10, 5 and 2. Decreasing A makes the marginal
less tightened up around zero.

There is a complication when interpreting the PC
prior for #, namely that it is not exchangeable due
to the dependence of the Cholesky decomposition on
the ordering of the random effects. This can be recti-
fied by summing over all orderings, however, we have
observed that this makes little difference in practice.
While we do not necessarily recommend summing out
the permutations in practice, for the figures in this sec-
tion, we have computed the exchangeable PC prior.

6.3 The Six Cities Study and Exchangeable
Random Effects

We will now illustrate the use of PC priors for R
and reanalyse a subset of the data from the Six Cities
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FI1G. 5. Panel (a) shows the symmetric marginal prior density for the correlation computed from the PC prior for a 3 x 3 correlation matrix
with A = 10 (solid), 5 (dashed) and 2 (dotted). Panel (b) shows the posterior marginals for the correlations in the general model for the Six
Cities study with A = 0.1. The solid thick line is for the exchangeable model. The marginal densities in the general model are approximately

identical.

study discussed by Chib and Greenberg (1998), Sec-
tion 5.2, using the data as tabulated in their Table 3.
The Six Cities study investigates the health effects of
air pollution; refer to Chib and Greenberg (1998) for
background. The response is the wheezing status from
n = 537 children in Ohio at ages 7, 8, 9 and 10 years,
and the aim is to study the effect of the smoking habit
of the mother to the response. The model is

Prob(y;; = 1|8, R)
= ®(Bo + Bixi1 + Baxiz + B3xi3),
j=1,...,m=4,

where covariates are x| representing age (centred at 9),
x; for smoking (1 = yes, 0 = no), and their interaction
x3, respectively. Chib and Greenberg (1998) used two
models for R, the saturated or general case with m (m —
1)/2 parameters, and the exchangeable case where all
off-diagonal terms in R are the same. Our analysis is
made more comparable to Chib and Greenberg (1998)
by adapting their (0, 10~'T) prior for 8.

We chose the decay-rate A by sampling from the
PC prior for various values of L. We then estimated
Prob(|p;j| > 1/2) and found the values of A where this
probability was approximately 0.8 and 0.2. These two
choices gave A = 0.1 and 1.0. We then ran two long
MCMC chains to obtain posterior samples after dis-
regarding the burn-in phase. The estimated posterior
marginals for g, (effect of smoking) are shown in Fig-
ure 6(a) (solid and dashed lines). The choice of A seems

to have only a minor effect on the posterior marginal
for the effect of smoking S,.

Since all the estimated correlations in R are some-
what similar in the general model for R [Figure 5(b)],
it is natural to investigate a simplified model with an
exchangeable correlation matrix where all correlations
are the same, p. For positive definiteness, we require
—1/(m — 1) < p < 1. The fact that positive and neg-
ative correlations are apparently very different, makes
the selection of the prior for p challenging. Due to the
invariance property of the PC priors, this asymmetry
is automatically accounted for and the potential prob-
lem goes away. We can easily compute the PC prior for
p for any fixed base value pg. For pg = 0, which is the
same base model as the correlation matrix PC prior, the
distance function to the base model is

d(p) = \/— log((1 + (m — 1)p)(1 — pym=1)

and the prior follows directly after noting that in this
case we must also allow for & < 0. The PC prior
is shown in Figure 6(b) for A = 0.1 (solid) and 1.0
(dashed). The PC prior automatically adjusts the prior
density for p < 0 and p > 0 due to the constraint
p>—=1/(m—1).

A second potential issue is the following: as we are
changing the model for R, we should, in order to get
comparable results, use a comparable prior. By reusing
the values A = 0.1 and 1.0 from the general case, we
define the prior for p to penalise the distance from the
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FIG. 6. Panel (a) shows the estimated posterior marginal for By (the effect of smoking) for both the general model for R [A = 0.1 (solid)
and ) = 1.0 (dashed)] and the exchangeable model [\ = 0.1 (dotted) and » = 1.0 (dashed-dotted)]. Panel (b) shows the PC prior for the
exchangeable case with base-model p =0, for A = 0.1 (solid) and 1.0 (dashed).

base model the same way in both parameterisations of
R. In this sense, the prior is the same for both mod-
els. We can then conclude that the reduced variabil-
ity of about 10% for B, as shown in Figure 6(a) for
A =0.1 (dotted) and A = 1.0 (dashed-dotted), is due to
the more restrictive exchangeable model for R and not
an unwanted effect from the prior distributions for R.

The results obtained with the PC priors are in this
example in overall agreement with those reported in
Chib and Greenberg (1998).

7. DISTRIBUTING THE VARIANCE:
HIERARCHICAL MODELS, AND
ALTERNATIVE DISTANCES

For complex models, it is unlikely that practition-
ers will be able to provide information about the rela-
tive effect of each component in an hierarchical model.
Hence, we can no longer build informative indepen-
dent priors on each component but need to consider
the global model structure. Looking back to the exam-
ple in Section 5, we were not able to control jointly
the variance contribution from the spline and the com-
bined spatial/random effect term. It could be argued
that in these simple situations, this is less of a prob-
lem as priors could easily be tuned to account for this
effect and this strategy is well within current statistical
practice. In this section, we argue and demonstrate that
it is possible to control overall variance automatically
using the PC prior framework. This requires, in concor-
dance with Desideratum D2, that the priors on the indi-
vidual scaling parameters for each component change

as the global model changes. We will demonstrate this
by considering a logistic regression model with several
linear and nonlinear effects, and show how we can take
the global structure into account to control the over-
all variance of the linear predictor, and controlling how
each term contributes to it. To achieve this, we will use
a multivariate PC prior on the fractions of how much
each component contributes to the variance of the lin-
ear predictor.

The broader message of this section is that the PC
prior framework can be used to build priors that respect
the global graphical structure of the underlying model.
Additionally, it is possible to build these priors auto-
matically for new models and data-sets (which can be
integrated into software like R-INLA or Stan). The
priors depend on the graphical structure and the model
design (or covariate values), but do not, of course,
depend on the observations. Following this path into
the future, we happily give up global invariance of
reparameterisation, as we are adding another source
of information to our prior construction. Additional to
knowledge of the base model and the strength of the
penalisation, we also require expert information about
the structure of the model. As with the previous two
information sources, this is not particularly onerous to
elicit.

Our practical approach to handle multivariate PC pri-
ors in this setting is to use a Taylor expansion around
the base model, and approximate it using a first- or
second-order expansion. When the base model is an
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interior point in the parameter space, then the second-
order approximation equation (6.4) gives the PC prior
in equation (6.6), while the linear approximation equa-
tion (6.3) is appropriate if the base model is at the bor-
der of the parameter space leading to the PC prior in
equation (6.5). For the quadratic approximation, it is
well known that

1
KLD = (& — £0)" 1 (§0) (¢ — &)
(7.1)
+ higher order terms,

where &) is the base model and I (&) is the Fisher in-
formation at the base model. This approximation has
resemblance to the generalisation by Kass and Wasser-
man (1995), Section 3 of early ideas by Jeffreys (1961)
for the purpose of hypothesis testing in the multivariate
case. Equation (7.1) in not unsound as measure of com-
plexity by itself, and adopting this as our second princi-
ple for practical/computational reasons, then equation
(6.6) will be the corresponding PC prior, but will not
longer be invariant for reparameterisation. Hence, care
needs to be taken in order to choose a parameterisa-
tion for the second-order expansion to be sensible. This
parameterisation is typically motivated by a variance-
stabilising transformation.

To fix ideas, we will discuss a dataset from Hastie
and Tibshirani (1987) about a retrospective sample of
males in a heart-disease high-risk region of the West-
ern Cape, South Africa. These data are available as
heart in the R-package catdata, and we will use
the model suggested by Wood and Kohn (1998), Sec-
tion 6.4, changing the link to logit. A total of 462 sub-
jects are classified of have had (y; = 1) a heart attack
or not (y; = 0), and the measured risk factors are age at
onset (Age), systolic blood pressure (BP) and low den-
sity lipoprotein cholesterol (CR). We use standardised
covariates in this analysis. The linear predictor is

n=nl+1"2 x g(Age, BP, CR),

where g(-) is some smooth function of the covariates.
At this top-level, we can use the structural information
provided by the model to elicit the amount of variabil-
ity we expect from covariates. This information can be
incorporated in the prior for the precision parameter t.
We assume here that the effect of covariates g(-) have
zero mean and “unit variance.” We use the phrase “unit
variance” for ;X to describe a standardised covariate x
and a covariate weight 8, with unit variance. The pre-
dicted probabilities from the regression model might
mostly be in the range [0.05, 0.95] leading to an in-
terval [—2.94,2.94] on the linear predictor scale. We

take the marginal standard deviation of the effect of
the covariates to be 2.94/1.96, which gives parameters
U =4.84 and o« = 1% in the PC prior for the preci-
sion in a Gaussian random effect (3.3). This prior will
shrink the effect of the covariates towards the intercept,
which is the first base model.

At the next level in the model, we use an additive
model for the covariates and distribute the unit variance
among the covariates,

g(Age, BP,CR) = \/wig1(Age) + /w2g2(BP)
+ /w3g3(CR),

where the weights live on a 2-simplex, that is, w; +
wy + w3 =1and w; >0, and {g;(-)} are smooth func-
tions (with unit variance). The variance contribution
from covariate Age, say, is then w;. Without additional
knowledge, it is reasonable to treat them equally, mean-
ing that the base model for the weights is w; = wy =
w3z = 1/3. This reflects an a priori assumption of (con-
ditional) exchangeability between these model compo-
nents.

Further, one level down, we continue to distribute the
variance, but now for each g; (-) function and between a
linear and (purely) nonlinear effect. For covariate Age,
this becomes

g1(Age) = V1 — ¢1B1Age + V1 fi(Age), ¢1>0.

Here, both 81 and f1(-) have unit variance, and fi(-) is
a smooth (purely) nonlinear function. The natural base
model is ¢; = 0 meaning that the variance in g;(Age)
is only explained by the linear effect, as we do not want
to involve deviations from the linear effect without sup-
port from data.

Figure 7(a) displays the graphical structure of the re-
cursive decomposition of the variance of g(Age, BP,
CR). By following the path from the top node to the rel-
evant node, we can determine the fraction of the vari-
ance explained by that node. For example, the relative
contribution to the variance from the linear effect of co-
variate Age, is w1 (1 —¢1), and the relative contribution
to the variance from g3(CR) is ws.

In order to proceed with the analysis and computa-
tion of the PC prior, we need to make some specific
choices for the linear effects {8;} and the (purely) non-
linear effects { f;(-)}. For B;, we use independent zero
mean Gaussians with unit variance, and for the nonlin-
ear effect, we use the second-order random walk (5.2)
which corresponds to the integrated Wiener process
used by Wood and Kohn (1998); see Lindgren and Rue
(2008). Figure 7(b) displays the histogram of samples
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FIG. 7. Panel (a) displays the recursive structure of how the additive effect of the covariates are built up, to control the variance contributed
from each of the model terms to the linear predictor. Panel (b) shows the histogram of w1 from a typical joint PC prior for w using A = 0.3.

for the first weight component w; sampled from a typ-
ical PC prior for the weights w using A = 0.3. The his-
togram is centred at the base model w; = 1/3, but still
supports weights close to 0 meaning that the covari-
ate Age does not contribute to the linear predictor, and
close to 1 meaning that only Age contributes to the lin-
ear predictor.

The PC prior in this example is computed as follows.
The priors for ¢ follows the computations described
in Appendix A.2. The joint prior for w, depends on
the values for ¢ (but not too much in this example)
and, therefore, has to be recomputed when there is any
change in ¢. We use here (6.6) as an approximation to
the multivariate PC prior which only requires a numer-
ical estimate of the Hessian matrix at the base model.
More details are available in Appendix A.3. The results
were obtained using R-INLA. The covariate estimates
(given in the Supplementary Material) are compara-
ble to those in Wood and Kohn (1998) obtained using
MCMC based on independent diffuse and flat priors.

8. DISCUSSION

Priors are the Bayesian’s greatest tool, but they are
also the greatest point for criticism: the arbitrariness
of prior selection procedures and the lack of realistic
sensitivity analysis (which is addressed in Roos and
Held, 2011 and Roos et al., 2014) are serious argu-
ments that current Bayesian practice need to be sig-
nificantly improved. In this paper, we have provided
a principled, widely applicable method for specifying
priors on parameters that are difficult to directly elicit
from expert knowledge. These PC priors can be vague,
weakly informative, or strongly informative depending

on the way the user tunes an intuitive scaling parame-
ter. The key feature of these priors is that they explic-
itly lay out the assumptions underlying them and, as
such, these assumptions and principles can be directly
critiqued and accordingly modified.

PC priors are defined on individual components.
This distinguishes PC priors, from reference priors, in
which the priors depend on the global model structure.
This global dependence is required to ensure a proper
posterior. However, the modern applied Bayesian is
far more likely to approach their modelling using a
component-wise and often additive approach. The di-
rected acyclic graph—approach pioneered by the Win-
BUGS inference engine, is now a standard tool for
specification of general Bayesian models. The additive
approach pioneered by Hastie and Tibshirani (1990) is
now a standard approach within generalised regression
based models. Hence, the ability to specify priors in a
component-wise manner is a useful feature. It is worth
noting that none of the examples in this paper have
known reference priors. We believe that PC priors are a
valuable addition to the literature on prior choice. They
are not designed as, and should not be interpreted as, a
replacement for reference priors, but rather a method
to solve a different set of problems.

This is not the whole story of PC priors. We still
have to work them out on a case by case basis, con-
struct better guidance for choosing the scaling using
knowledge of the global model (like the link-function
and the likelihood family), and make them the default
choice in packages like R-INLA. We aware that this
is an ambitious goal. First, R-INLA is a rather gen-
eral purpose software which allows the user to spec-
ify arbitrary models given that they fit into the mod-
elling language. The example of how the definition of
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the PC prior changes under a sparsity assumption illus-
trates this challenge. Second, not all cases are straight
forward to work out. The over-dispersion parameter in
the negative binomial distribution, considered as an ex-
tension of the Poisson distribution, cannot be separated
from the mean in the commonly known parameterisa-
tion. Hence, we cannot compute the PC prior without
knowing a typical value for the mean. Re-thinking the
negative binomial model and using a different parame-
terisation, such as one using the parameters mean and
variance-to-mean-ratio, may however help here. We
also need to get more experience deriving joint priors
for two or more parameters, such as a joint prior for
the skewness and kurtosis deviation from a Gaussian
(Jones and Pewsey, 2009). We also have not considered
PC priors on discrete parameters. To do this, we need
to find a sensible, computationally tractable notion of
distance for these problems. In this paper, we have fo-
cused on generic specification, however Fuglstad et al.
(2015) show that, in the case of hyperparameters for
Gaussian random fields, if the distance knows about
the structure of the model component, the resulting pri-
ors perform very well. Hence, there is more work to be
done on tailoring distance measures to specific prob-
lem classes.

Several of the examples in this paper have used the
notion that model components can be regarded as a
flexible extension of a base model. This idea has natu-
ral links to Bayesian nonparametrics. In particular, we
consider many of the examples, such as the logistic
GAM model in Section 7, as a nonparametric model
that has been firmly rooted in a simpler parametric
model. We believe that this decomposition of the model
into favoured parametric and extra nonparametric com-
ponents improves the interpretability of these models
in many applications. This is related to the ideas of
Kennedy and O’Hagan (2001), where the nonparamet-
ric component can be used to “calibrate” the covariate
effect. An alternative interpretation of this decomposi-
tion is that the nonparametric part adds “robustness”
to the linear model and the flexibility parameter gives
an indication of how far from the simple, interpretable,
base model the data requires you to depart.

There is a great deal of scope for further theoreti-
cal work on this problem. First, it would be useful to
understand better the effect of the prior tail on the in-
ference. The results in this paper suggest that an ex-
ponential tail is sufficiently heavy in low-dimensional
problems, and the heavy tailed half-Cauchy distribu-
tion only gives different results in the high dimensional
sparse setting. However, it is not clear that this is truly

a problem with the tail, as an examination of the base
model suggests that it is not shrinking towards sparse
models. Hence, the question is “are heavy tails neces-
sary in high dimensions, or are they just more forgiving
of our poor prior specification?” Staying in the realm of
sparse models, it would be interesting to see if the mod-
els in Section 7 could be extended to high dimensional
sparse models. It may be possible to take inspiration
in this case from the Dirichlet-Laplace construction of
Bhattacharya et al. (2012). More generally, there are
open questions relating to the large sample properties
of hierarchical models with PC priors, hypothesis test-
ing for flexible models, Stein-type risk properties for
PC priors and robustness against mis-specification.

The current practice of prior specification is not in
a good shape. While there has been a strong growth
of Bayesian analysis in science, the research field of
“practical prior specification” has been left behind.
There are few widely applicable guidelines for how this
could or should be done in practice. We hope that with
this new principled approach to prior construction, we
can reduce the number of “cut and paste” prior choices
from other similar research articles, and instead use the
derived tools in this paper to specify weakly informa-
tive or informative priors with a well defined shrink-
age. As always, if the user knows of a better prior for
their case, then they should use it. However, having a
better default proposal for how to construct priors is
a significant advantage. The PC prior framework was
constructed because of our work with scientists on ap-
plied problems and came out of a desire to derive and
explain the prior information that we were putting into
hierarchical models. As such, we believe that these pri-
ors are “fit for purpose” as tool for real-world applied
statistics.

These new PC prior have made a difference to how
we do and see Bayesian analysis. We feel much more
confident that the priors we are using do not force over-
fitting, and the notion of scale, which determines the
magnitude of the effects, really simplifies the interpre-
tation of the results. The fact that the prior specifica-
tion reduces to a notion of scale, makes them very
easy to interpret and communicate. We feel that PC
priors lay out a new route forward towards more sound
Bayesian analysis. Jimmie Savage (Lindley, 1983) sug-
gested that we “build our models as big as elephants,”
while J. Bertrand (Le Cam, 1990) told us to “give [him]
four parameters and [he] shall describe an elephant;
with five, it will wave its trunk.” The modern practice
of Bayesian statistics can be seen as a battle between
these two elephants, and with PC priors we hope to
make it a fair fight.
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APPENDIX: DERIVATION OF PC PRIORS

A.1 The PC Prior for the Precision in a Multivariate
Normal Distribution

Let N (u, ¥) denote a multivariate normal distri-
bution with dimension p. The Kullback-Leibler diver-

gence from Nl(p)(ul, Y1) to Nép)(uo, Yo) is
KLD(V{ 7 ING)

1
) =2 {5 20 + Gt~ 1) 25 g — )

( |2 > }

—p—Inl—)%.

| 2o

In our setting, N\ l(p ) denotes the flexible model and

./\/'ép ) the base model.

To derive the PC prior for r where ¥ =R/7,Risa
fixed matrix and X = 0, we will study the limiting be-
haviour when Xg = R/1g for a high fixed value of 1.
In the end, we will look at the limit 79 — oo. For sim-
plicity, assume R has full rank. We then get KLD =
£21+ wIn(H) — ) — £2, when 7 < 19, and
hence d(t) = 4/ pto/T. We assign an exponential prior
with rate X to d and derive the prior for T using the or-
dinary change of variable transformation where we set
A= Xﬂ. This leads to the type-2 Gumbel distribu-
tion with parameter A see equation (3.3).

A.2 The PC Prior for the Mixing Parameter in the
BYM-Model

We will now derive the PC prior for the mixing pa-
rameter ¢ in the new parameterisation for the BYM
model. Let u be a n-dimensional standardised Gaus-
sian model with zero mean and precision matrix R > 0,
v be an independent zero mean random effects with
unit variance A (0, ), and where the mixing parame-
ter ¢ satisfies 0 < ¢ < 1. The more flexible model is
V1=V + /du, and the base model is v (i.e., the
model flexible model when ¢ = 0). Let £¢p =1 and
Z1(@) = (1 - I+ ¢R"!, then

2KLD(¢) = tr(T1(¢)) —n — In|E1($)]
:ncj)(%tr(Rl) - 1)

—In|(1 — )1+ ¢R|

and d(¢) = /2KLD(¢). The interesting case is when
R is sparse, for which tr(R™1) is quick to com-
pute (Erisman and Tinney, 1975, Rue and Martino,
2007). For the determinant term, we can massage

the expression to facilitate the speedup of computing
with sparse matrices. Using the matrix identity (I +
ATHTT=AA + D71, we get |(1 — I+ ¢R7!| =
|¢_1R|_1|%R+I|. An alternative approach, is to
compute the eigenvalues {y;} of R, which we need to
do only once. Let y; = 1/y;, and we get |(1 — ¢)I +
R =TT (1 — ¢ + 7).

In the case where R is singular, we introduce linear
constraint(s) to ensure that any realisation of u is in
its null-space. It is now easier to use the latter compu-
tational strategy, but redefine y; as 1/y; if y; > 0 and
)7,' =0if Yi = 0.

The PC prior for the mixing parameter in the hi-
erarchical models in Section 7 generalise the BYM-
model as the base model is more general. Let X1 (¢) =
(1 — ¢)S1 + ¢S», and where the base model is X¢ =
Y 1(1/2). The costly task is to compute det(X{(¢))
for a sequence of ¢’s. Using the Matrix determinant
lemma: det(A +UVT) = det+ VI A~1U) det(A) for
compatible matrices A (invertible), V and U, we can
reduce the computational cost to essential one evalua-
tion of det(X(¢)).

A.3 The PC Prior for the Variance Weights in
Additive Models

The joint PC prior of the weights w in Section 7 is
computed as follows. Let #* be the standardised lin-
ear predictor and x; the ith vector of standardised co-
variates, then the model considered in Section 7 can
be written as §* = Y; Jwi (V1 — @i Bixi + Vi Aifi),
where A; is a sparse matrix extracting the required el-
ements (or linear combinations thereof) of the Gaus-
sian vector f; representing the scaled second-order
random walk model. The covariance for the linear
predictor is then Cov(p*) = Y, w;((1 — qbl-)xixiT +
diA; Cov(f,-)Al-T). In order to improve the second-order
approximation equation (6.6), we reparameterise the
weights following the ideas in compositional data anal-
ysis (Aitchison, 2003), using new parameters w; =
log(w;/wy), fori =1,...,n — 1 for n components.
This makes Cov(y*) a function of w with base model
at w = 0. The KLD can then be computed from equa-
tion (A.1), and the PC prior follows from a numerical
approximation to the Hessian matrix of the KLD and
equation (6.6).
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Penalising Model Component
Complexity: A Principled, Practical Approach to
Constructing Priors” (DOI: 10.1214/16-
STS576SUPP; .pdf). The supplementary material con-
tains the proofs of all theorems contained in the paper.
It also contains a detailed description of the Student
t-simulation study used in Section 3.4. The R-code
for analysing all examples and generating the corre-
sponding figures in this report, is available at www.r-
inla.org/examples/case-studies/.
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