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During the last three decades, Bayesian methods have developed greatly in the field of epi-
demiology. Their main challenge focusses around computation, but the advent of Markov
Chain Monte Carlo methods (MCMC) and in particular of the WinBUGS software has opened
the doors of Bayesian modelling to the wide research community. However model com-
plexity and database dimension still remain a constraint.

Recently the use of Gaussian random fields has become increasingly popular in epidemi-
ology as very often epidemiological data are characterised by a spatial and/or temporal
structure which needs to be taken into account in the inferential process. The Integrated
Nested Laplace Approximation (INLA) approach has been developed as a computationally
efficient alternative to MCMC and the availability of an R package (R-INLA) allows
researchers to easily apply this method.

In this paper we review the INLA approach and present some applications on spatial and
spatio-temporal data.

� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

During the last three decades, Bayesian methods have
developed greatly and are now widely established in many
research areas, from clinical trials (Berry et al., 2011), to
health economic assessment (Baio, 2012) to the social
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sciences (Jackman, 2009), to epidemiology (Greenland,
2006).

The basic idea behind the Bayesian approach is that
effectively only one form of uncertainty exists, which is de-
scribed by suitable probability distributions. Thus, there is
no fundamental distinction between observable data or
unobservable parameters, which are also considered as
random quantities. The uncertainty about the realised va-
lue of the parameters given the current state of informa-
tion (i.e. before observing any new data) is described by
a prior distribution. The inferential process combines the
prior and the (current) data model to derive the posterior
distribution, which is typically, but not necessarily, the
objective of the inference (Bernardo and Smith, 2000; Lind-
ley, 2006).

There are several advantages to the Bayesian approach:
for instance the specification of prior distributions allows
the formal inclusion of information that can be obtained
through previous studies or from expert opinion; the (pos-
terior) probability that a parameter does/does not exceed a
certain threshold is easily obtained from the posterior dis-
tribution, providing a more intuitive and interpretable
quantity than a frequentist p-value. In addition, within
the Bayesian approach, it is easy to specify a hierarchical
structure on the data and/or parameters, which presents
the added benefit of making prediction for new
observations and missing data imputation relatively
straightforward.

Epidemiological data, e.g. in terms of an outcome and
one or more risk factors or confounders, are often
characterised by a spatial and/or temporal structure which
needs to be taken into account in the inferential process.
Under these circumstances, the Bayesian approach is gen-
erally particularly effective (Dunson, 2001) and has been
applied in several epidemiological applications, from ecol-
ogy (Clark, 2005) to environmental studies (Wikle, 2003;
Clark and Gelfand, 2006), to infectious disease (Jewell
et al., 2009). For example, if the data consist of aggregated
counts of outcomes and covariates, typically disease map-
ping and/or ecological regression can be specified (Lawson,
2009). Alternatively, if the outcome or risk factors data are
observed at point locations, then geostatistical models are
considered as suitable representations of the problem
(Diggle and Ribeiro, 2007).

Both models can be specified in a Bayesian framework
by simply extending the concept of hierarchical structure,
allowing to account for similarities based on the neigh-
bourhood or on the distance, for area-level or point-refer-
ence data, respectively. However, particularly in these
cases, the main challenge in Bayesian statistics resides in
the computational aspects. Markov Chain Monte Carlo
(MCMC) methods (Brooks et al., 2011; Robert and Casella,
2004), are normally used for Bayesian computation, argu-
ably thanks to the wide popularity of the BUGS software
(Lunn et al., 2009, 2012). While extremely flexible and able
to deal with virtually any type of data and model, in all but
trivial cases MCMC methods involve computationally- and
time-intensive simulations to obtain the posterior distri-
bution for the parameters. Consequently, the complexity
of the model and the database dimension often remain
fundamental issues.
The Integrated Nested Laplace Approximation (INLA;
Rue et al., 2009) approach has been recently developed
as a computationally efficient alternative to MCMC. INLA
is designed for latent Gaussian models, a very wide and
flexible class of models ranging from (generalized) linear
mixed to spatial and spatio-temporal models. For this rea-
son, INLA can be successfully used in a great variety of
applications (e.g. Li et al., 2012; Riebler et al., 2012;
Ruiz-Cárdenas et al., 2012; Martino et al., 2011; Roos
and Held, 2011; Schrödle and Held, 2011a,b; Schrödle
et al., 2011; Paul et al., 2010), also thanks to the availabil-
ity of an R package named R-INLA (Martino and Rue,
2010). Furthermore, INLA can be combined with the
Stochastic Partial Differential Equation (SPDE) approach
proposed by Lindgren et al. (2011) in order to implement
spatial and spatio-temporal models for point-reference
data.

The objective of this paper is to present the basic fea-
tures of the INLA approach as applied to spatial and spa-
tio-temporal data. The paper is structured as follows:
first in Section 2 we review the main characteristics of spa-
tial and spatio-temporal data defined at the point and area
level; then we provide an overview of the theory behind
INLA in Section 3 and present two practical applications
on area level data in Sections 3.2 and 3.3. After this in Sec-
tion 4 we review the SPDE approach to deal with geostatis-
tical data, and then present two practical applications on
spatial and spatio-temporal point level data (Sections 4.1
and 4.2). Finally Section 5 discusses some of the issues
and provides some conclusions.
2. Spatial and spatio-temporal data

Spatial data are defined as realisations of a stochastic
process indexed by space

YðsÞ � fyðsÞ; s 2 Dg

where D is a (fixed) subset of Rd (here we consider d ¼ 2).
The actual data can be then represented by a collection of
observations y ¼ fyðs1Þ; . . . ; yðsnÞg, where the set
ðs1; . . . ; snÞ indicates the spatial units at which the mea-
surements are taken. Depending on D being a continuous
surface or a countable collection of d-dimensional spatial
units, the problem can be specified as a spatially continu-
ous or discrete random process, respectively (Gelfand
et al., 2010).

For example, we can consider a collection of air pollu-
tant measurements obtained by monitors located in the
set ðs1; . . . ; snÞ of n points. In this case, y is a realisation of
the air pollution process that changes continuously in
space and we usually refer to it as geostatistical or point-
reference data. Alternatively, we may be interested in
studying the spatial pattern of a certain health condition
observed in a set ðs1; . . . ; snÞ of n areas (rather than points),
defined for example by census tracts or counties; in this
case, y may represent a suitable summary, e.g. the number
of cases observed in each area.

The first step in defining a spatial model within the
Bayesian framework is to identify a probability distribu-
tion for the observed data. Usually we select a distribution
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from the Exponential family, indexed by a set of parame-
ters h accounting for the spatial correlation — note that
for the sake of simplicity we slightly abuse the notation
and index the generic spatial point or area by using just
the subscript i, rather than the indicator si, in the following.

In the case of geostatistical data, the parameters are de-
fined as a latent stationary Gaussian field (GF), a function of
some hyper-parameters w associated with a suitable prior
distribution pðwÞ. This is equivalent to assuming that h

has a multivariate Normal distribution with mean
l ¼ l1; . . . ; ln

� �0 and spatially structured covariance ma-
trix R, whose generic element is Rij ¼ Cov hi; hj

� �
¼

r2
CCðDijÞ. Here r2

C is the variance component and for
i; j ¼ 1; . . . ; n

CðDijÞ ¼
1

CðkÞ2k�1 jDij
� �kKk jDij

� �
ð1Þ

is the (isotropic) Matérn spatial covariance function2 (Cres-
sie, 1993) depending on the Euclidean distance between the
locations Dij ¼ ksi � sjk. Here, Kk denotes the modified Bessel
function of second kind and order k > 0, which measures the
degree of smoothness of the process and is usually kept
fixed. Conversely, j > 0 is a scaling parameter related to
the range r, i.e. the distance at which the spatial correlation
becomes almost null. Typically, the empirically derived def-
inition r ¼

ffiffiffiffi
8k
p

j is used (see Section 2 in Lindgren et al.
(2011)), with r corresponding to the distance at which the
spatial correlation is close to 0.1, for each k.

In the case of area level data, it is possible to reformu-
late the problem in terms of the neighbourhood structure.
Under the Markovian property that the generic element of
the parameters vector hi is independent on any other ele-
ment, given the set of its neighbours NðiÞ

hi �h�ijhNðiÞ;

(h�i indicates all the elements in h but the i�th), the preci-
sion matrix Q ¼ R�1 is sparse, which produces great com-
putational benefits. In other words, for any pair of
elements ði; jÞ

hi �hjjh�ij () Q ij ¼ 0

i.e. the non-zero pattern in the precision matrix is given by
the neighbourhood structure of the process. Thus, Q ij – 0
only if j 2 i;NðiÞf g. This specification is known as Gaussian
Markov Random Field (GMRF, Rue and Held, 2005)

The concept of spatial process can be extended to the
spatio-temporal case including a time dimension. The data
are then defined by a process

Yðs; tÞ � fyðs; tÞ; ðs; tÞ 2 D 2 R2 � Rg

and are observed at n spatial locations or areas and at T
time points. When spatio-temporal geostatistical data
are considered (Chapter 23 Gelfand et al., 2010), we
2 Other models for the spatial covariance function are available in the
geostatistical literature (see e.g. Cressie, 1993 and Banerjee et al., 2004).
The fact that here we focus on the Matérn model – as required by the SPDE
approach described in Section 4 – should not be considered as a restriction.
In fact, as described in Guttorp and Gneiting (2006), the Matèrn family is a
very flexible class of covariance functions able to cover a wide range of
spatial fields.
need to define a valid spatio-temporal covariance func-
tion given by Cov hit ; hju

� �
¼ r2

CCðsi; sj; t;uÞ. If we assume
stationarity in space and time, the space-time covari-
ance function can be written as a function of the spatial
Euclidean distance Dij and of the temporal lag
Ktu ¼ jt � uj, i.e. Cov hit; hju

� �
¼ r2

CCðDij; KtuÞ; several exam-
ples of valid non-separable space-time covariance func-
tions are reported in Cressie and Huang (1999) and
Gneiting, 2002.

In practice, to overcome the computational complexity
of non-separable models, some simplifications are intro-
duced. For example, under the separability hypothesis
the space-time covariance function is decomposed into
the sum (or the product) of a purely spatial and a purely
temporal term (Gneiting et al., 2006), e.g.
Cov hit; hju

� �
¼ r2

CC1ðDijÞC2ðKtuÞ, with C1 and C2 being the
spatial and temporal correlation function, respectively.
Alternatively, it is possible to assume that the spatial cor-
relation is constant in time, giving rise to a space-time
covariance function that is purely spatial when t ¼ u, i.e.
Cov hit; hju

� �
¼ r2

CCðDijÞ, and is zero otherwise. In this case,
the temporal evolution could be introduced assuming that
the spatial process evolves in time following an autore-
gressive dynamics (see e.g. Harvill, 2010).

Similar reasoning can be applied to area level data; the
GMRF framework can be extended to include a precision
matrix defined also in terms of time, assuming again a
neighbourhood structure. If a space-time interaction is in-
cluded, its precision can be obtained through the Kroneck-
er product of the precision matrices for the space and time
effects interacting — see Clayton (1996) and Knorr-Held
(2000) for a detailed description.
3. Integrated Nested Laplace Approximation (INLA)

Often, in a statistical analysis the interest is in estimat-
ing the effect of a set of relevant covariates on some func-
tion (typically the mean) of the observed data, while
accounting for the spatial or spatio-temporal correlation
implied in the model.

A very general way of specifying this problem is by
modelling the mean for the i-th unit by means of an addi-
tive linear predictor, defined on a suitable scale (e.g. logis-
tic for binomial data)

gi ¼ aþ
XM

m¼1

bmxmi þ
XL

l¼1

flðzliÞ: ð2Þ

Here a is a scalar representing the intercept; the coeffi-
cients b ¼ ðb1; . . . ; bMÞ quantify the effect of some covari-
ates x ¼ ðx1; . . . ; xMÞ on the response; and
f ¼ ff1ð�Þ; . . . ; f Lð�Þg is a collection of functions defined in
terms of a set of covariates z ¼ ðz1; . . . ; zLÞ. Upon varying
the form of the functions flð�Þ, this formulation can accom-
modate a wide range of models, from standard and hierar-
chical regression, to spatial and spatio-temporal models
(Rue et al., 2009).

Given the specification in (2), the vector of parameters
is represented by h ¼ fa; b; f g. In line with the discussion
in Section 2, we can assume a GMRF prior on h, with mean
0 and a precision matrix Q . In addition, because of the con-
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ditional independence relationships implied by the GMRF,
the vector of the K hyper-parameters w ¼ ðw1; . . . ; wKÞ will
typically have dimension of order ð1þ LÞ and thus will be
much smaller than h.

The objectives of the Bayesian computation are the
marginal posterior distributions for each of the elements
of the parameters vector

pðhijyÞ ¼
Z

pðwjyÞpðhijw; yÞdw

and (possibly) for each element of the hyper-parameters
vector

pðwkjyÞ ¼
Z

pðwjyÞdw�k:

Thus, we need to compute: (i) pðwjyÞ, from which also
all the relevant marginals pðwkjyÞ can be obtained; and
(ii) pðhijw; yÞ, which is needed to compute the marginal
posterior for the parameters. The INLA approach exploits
the assumptions of the model to produce a numerical
approximation to the posteriors of interest, based on the
Laplace approximation (Tierney and Kadane, 1986).

The first task (i) consists of the computation of an
approximation to the posterior marginal distribution of
the hyper-parameters as

pðwjyÞ ¼ pðh;wjyÞ
pðhjw; yÞ /

pðwÞpðhjwÞpðyjhÞ
pðhjw; yÞ

� pðwÞpðhjwÞpðyjhÞ
~pðhjw; yÞ

����
h¼h�ðwÞ

¼: ~pðwjyÞ ð3Þ

where ~pðhjw; yÞ is the Gaussian approximation (Rue et al.,
2009 Section 2.2) of pðhjw; yÞ and h�ðwÞ is its mode. As de-
scribed in Rue et al. (2009), (3) is equivalent to the Laplace
approximation of a marginal posterior density as proposed
in Tierney and Kadane (1986).

The second task (ii) is slightly more complex, because in
general there will be more elements in h than there are in w

and thus this computation is more expensive. One easy
possibility is to approximate the posterior conditional dis-
tributions pðhijw; yÞ directly as the marginals from ~pðhjw; yÞ,
i.e. using a Normal distribution, where the precision ma-
trix is based on the Cholesky decomposition of the preci-
sion matrix Q (Rue and Martino, 2007). While this is very
fast, the approximation is generally not very good. Alterna-
tively, it is possible to re-write the vector of parameters as
h ¼ ðhi; h�iÞ and use again Laplace approximation to obtain

pðhijw; yÞ ¼
p ðhi; h�iÞjw; yð Þ
pðh�ijhi;w; yÞ

� pðh;wjyÞ
~pðh�ijhi;w; yÞ

����
h�i¼h��iðhi ;wÞ

¼: ~pðhijw; yÞ ð4Þ

where ~pðh�ijhi;w; yÞ is the Gaussian approximation of
pðh�ijhi;w; yÞ and h��iðhi;wÞ is its mode. Because the random
variables h�ijhi;w; yð Þ are in general reasonably Normal, the
approximation provided by (4) typically works very well.
This strategy, however, can be very expensive in computa-
tional terms. Consequently, the most efficient algorithm is
the ‘‘Simplified Laplace approximation’’, which is based on
a Taylor’s series expansion of the Laplace approximation
~pðhijw; yÞ in (4). This is usually ‘‘corrected’’ by including a
mixing term (e.g. spline), to increase the fit to the required
distribution. The accuracy of this approximation is sufficient
in many applied cases and the time needed for the computa-
tions is much shorter and thus this is the standard option.

Operationally, INLA proceeds by first exploring the mar-
ginal joint posterior for the hyper-parameters ~pðwjyÞ in or-
der to locate the mode; a grid search is then performed and
produces a set G of ‘‘relevant’’ points fw�g together with a
corresponding set of weights fww� g, to give the approxima-
tion to this distribution. Each marginal posterior ~pðw�jyÞ
can be obtained using interpolation based on the com-
puted values and correcting for (probable) skewness,
e.g. by using log-splines. For each w�, the conditional pos-
teriors ~pðhijw�; yÞ are then evaluated on a grid of selected
values for hi and the marginal posteriors ~pðhijyÞ are ob-
tained by numerical integration

~pðhijyÞ �
X
w�2G

~pðhijw�; yÞ~pðw�jyÞww� :

More details on this methods can be found in Rue et al.
(2009), Martins et al. (2012) and Blangiardo and Cameletti
(2013).

3.1. The R-INLA package

The INLA approach described in the previous section is
implemented in the R package R-INLA, which substitutes
the standalone INLA program built upon the GMRFLib li-
brary (Martino and Rue, 2010). R-INLA is available for Li-
nux, Mac and Windows operating systems. The web-site
http://www.r-inla.org/ provides documentation for the
package as well as many worked examples and a discussion
forum.

Assuming a vector of two covariates x ¼ ðx1; x2Þ and a
function f ð�Þ indexed by a third covariate z1, (2) is repro-
duced in R-INLA through the command formula:

> formula <�y 	 1þ x1þ x2þ fðz1; . . .Þ

where y, x1, x2 and z1 are the column names of the data
frame containing the data (for simplicity, we assume
throughout that the data frame name is data). The regres-
sion coefficients a; b1 and b2 are by default given indepen-
dent prior Normal distributions with zero mean and small
precision (or equivalently large variance).

The term f(�) is used to specify the structure of the
function f ð�Þ, using the following notation:

> fðz1;model ¼ " . . ."; . . .Þ

where the string associated with the option model

specifies the type of function. The default choice is
model="iid", documented typing inla.doc("iid")

and it amounts to assuming exchangeable Normal distri-
butions on z1. This specification can be used to build stan-
dard hierarchical models. The list of the other alternatives
is available typing names(inla.models()$latent); in
addition, a detailed description of all the possible choices
is available at the webpage http://www.r-inla.org/mod-
els/latent-models.

Once the model has been specified, we can run the INLA
algorithm using the inla function:

> mod <�inlaðformula;family ¼ " . . .";dataÞ

http://www.r-inla.org/
http://www.r-inla.org/models/latent-models
http://www.r-inla.org/models/latent-models
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where formula has been specified above, data is the data
frame containing all the variables in the formula and fam-

ily is a string that specifies the distribution of the data
(likelihood). The available data distributions are retrieved
typing names(inla.models()$likelihood) and com-
plete descriptions with examples are provided at http://
www.r-inla.org/models/likelihoods. The inla function in-
cludes many other options; see ?inla for a complete list.
Note that INLA by default estimates the posterior marginal
distribution for the hyperparameters using an integration
free algorithm, described in Martins et al. (2012) and which
has been showed to provide reasonably accurate estimates.
Nevertheless if the interest lays primarily on the hyperpa-
rameters, an alternative method based on a more computa-
tional intensive grid exploration can be employed, using the
command inla.hyperpar after running inla. We advise
the reader to refer to the above cited paper for more details.

We illustrate more functionalities of R-INLA using the
real data applications described in the following sections.
The complete code for running the four examples can be
downloaded from Case studies section at http://www.
r-inla.org.3

3.2. INLA for spatial areal data: suicides in London

Disease mapping is commonly used in small area
studies to assess the pattern of a particular disease and
to identify areas characterised by unusually high or low
relative risk (Lawson, 2009; Pascutto et al., 2000). Here
we use the example presented in Congdon (2007) to inves-
tigate suicide mortality in n ¼ 32 London boroughs in the
period 1989-1993.

For the i-th area, the number of suicides yi is modelled
as

yi 	 PoissonðkiÞ;

where the mean ki is defined in terms of a rate qi and the
expected number of suicides Ei as ki ¼ qiEi. In this case, the
linear predictor is defined on the logarithmic scale

gi ¼ logðqiÞ ¼ aþ ti þ mi; ð5Þ

a is the intercept quantifying the average suicide rate in
all the 32 boroughs; ti ¼ f1ðiÞ and mi ¼ f2ðiÞ are two area
specific effects; i ¼ 1; . . . ; nf g is the indicator for each bor-
ough (spatial areas) and corresponds to the variable ID in
the data frame.

We assume a Besag–York–Mollie (BYM) specification
(Besag et al., 1991), so ti is the spatially structured resid-
ual, modelled using an intrinsic conditional autoregressive
structure (iCAR)

tijtj–i 	 Normalðmi; s2
i Þ

mi ¼

X
j2NðiÞ

tj

#NðiÞ and s2
i ¼

r2
t

#NðiÞ ;
3 Note that all the code has been developed using the INLA version
released on the 5th of November 2012.
where #NðiÞ is the number of areas which share bound-
aries with the i-th one (i.e. its neighbours), as presented
in Banerjee (2004). The parameter mi represents the
unstructured residual, modelled using an exchangeable
prior: mi 	 Normalð0;r2

mÞ.
To run this model in R-INLA we first specify the for-

mula, typing

formula <- y 	 1 + f(ID, model="bym",graph=

LDN.adj)

where LDN.adj is the graph which assignes the set of
neighbours for each borough and that can be obtained
from the shape file of the study region using the R packages
maptools and spdep. Note that R-INLA parametrises
ni ¼ ti þ mi and ti through f(ID, model="bym",. . .).4

By default, minimally informative priors are specified (i)
on the log of the unstructured effect precision5

log sm 	 log Gammað1;0:0005Þ and (ii) on the log of the
structured effect precision5 log st 	 log Gammað1;0:0005Þ.
Different priors can be specified through the option hyper

in the formula specification, for instance

formula <- y 	 1 + f(ID, model="bym",graph=LD-

N.adj, hyper = list(prec.unstruct = list(prior=

"loggamma",param=c(1,0.01)), prec.spatial = list

(prior="loggamma",param=c(1,0.001))))

Of course, as in any Bayesian analysis, the choice of the
prior may have a considerable impact on the results. Thus,
it is necessary to think carefully about what is being used
and perform sensitivity analyses to assess how the prior
influences the estimations.

The model can be run using the inla function:
mod <- inla(formula,family="poisson",data=

data,E=E)

With respect to the discussion of Section 3, in this case
the parameters estimated by INLA are represented by
h ¼ fa; n; tg and the hyper-parameters are given by the
precisions w ¼ fs2

t ; s2
mg.

Summary information (e.g. the posterior mean and stan-
dard deviation, together with a 95% credible interval) can be
obtained for each component of h and w. In particular, for the
so called ‘‘fixed’’ effects (a, in this case), this can be obtained
typing mod$summary.fixed; similarly, the summary sta-
tistics for the ‘‘random’’ effects (i.e. n and t) are produced
by mod$summary.random. The latter is a data frame formed
by 2n rows: the first n rows include information on the area
specific residuals ni, which are the primary interest in a dis-
ease mapping study, while the remaining present informa-
tion on the spatially structured residual ti only.

The posterior mean of the exponentiated intercept a im-
plies a 4% suicide rate across London, with a 95% credibility
interval ranging from 1% to 8%. Fig. 1(a) shows the map of
the posterior mean for the borough-specific relative risks
of suicides f ¼ expðnÞ, compared to the whole of London.
Their posterior distributions are easily obtained applying
an exponential transformation to the components of n,
4 Alternatively it is possible to specify the two BYM components
separately using f(ID, model="besag",graph=LDN.adj) for the spatial
structured one (iCAR) and f(ID2, model="iid",graph=LDN.adj) for the
unstructured one (exchangeable). In this case the ID needs to be duplicated
(ID2=ID) as it is not allowed to define two functions on the same variable.

5 Recall that the precision is defined as s ¼ 1=r2.

http://www.r-inla.org/models/likelihoods
http://www.r-inla.org/models/likelihoods
http://www.r-inla.org
http://www.r-inla.org


Fig. 1. Borough specific relative risks and posterior probabilities.

Table 1
Summary statistics: posterior mean, posterior standard deviation (SD) and
posterior 95% credible interval for the fixed effects of the ecological
regression model.

Mean SD 2.5% 50% 97.5%

a 0.059 0.016 0.028 0.059 0.091
b1 0.089 0.023 0.042 0.089 0.133
b2 0.180 0.021 0.138 0.180 0.222
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which are in turn produced by the command mod$margin-
als.random. The built-in functions inla.marginal.

transform and inla.emarginal compute marginals of
transformed variables and expected values.

The uncertainty associated with the posterior means
can also be mapped and provide useful information (Rich-
ardson et al., 2004). In particular, as the interest lays in the
excess risk, we can visualise pðfi > 1jyÞ, using the built-in
function inla.pmarginal; the resulting map is presented
in Fig. 1(b).

Finally, it could be interesting to evaluate the propor-
tion of variance explained by the structured spatial compo-
nent. The quantity r2

t is the variance of the conditional
autoregressive specification, while r2

m is the variance of
the marginal unstructured component. Thus, the two are
not directly comparable. Nevertheless it is possible to ob-
tain an estimate of the posterior marginal variance for
the structured effect empirically through

s2
t ¼

Xn

i¼1

ðti � �tÞ2

n� 1
;

where �t is the average of t, and then compare it to the pos-
terior marginal variance for the unstructured effect, pro-
vided by r2

m

fracspatial ¼ s2
t=ðs2

t þ r2
mÞ:
In the current example, the proportion of spatial vari-
ance is about 0.97 suggesting that almost all the variability
is explained by the spatial structure.

When risk factors are available and the aim of the study
is to evaluate their effect on the risk of disease (or death),
ecological regression models can be specified, simply
extending the procedure described above. For instance, in
the present example for each of the 32 boroughs the values
of an index of social deprivation and an index of social frag-
mentation (describing lack of social connections and of
sense of community) are known and stored, respectively,
in the variables x1 and x2. To evaluate their impact on the
risk of suicides, the model in (5) can be reformulated as
gi ¼ aþ b1x1i þ b2x2i þ ti þ mi;

which can be coded in R-INLA using the formula



Table 2
Deviance Information Criterion (DIC) for the three spatio-temporal models
considered defined by Eqs. (6)–(8). D is the posterior mean of the deviance,
measuring model fit; pD is effective number of parameters, representing
model complexity.

Model D pD DIC

mod1 11698.5 173.2 11871.7
mod2 11709.9 155.9 11865.9
mod3 11509.9 306.7 11816.6
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formula.cov <- y 	 1+ f(ID,model="bym",

graph=LDN.adj) + x1 + x2

The fixed effects ða; b1; b2Þ estimated by INLA are pre-
sented in Table 1. If exponentiated, they can be interpreted
as relative risks: an increase of 1 unit in the deprivation in-
dex and in the social fragmentation index is associated,
respectively, with an increase of around 9% ¼ expð0:089Þ
and around 20% ¼ expð0:18Þ in the risk of suicides.

The map of the borough specific relative risks f and
their posterior probability of exceeding 1 are shown in
Fig. 1(c–d); note that now they are interpreted as the resid-
ual relative risk for each area (compared to the whole of
London) after the risk factors x1 and x2 are taken into
account.

3.3. INLA for spatio-temporal areal data: low birth weight in
Georgia

In this section we use counts of low birth weight, de-
fined as less than 2500 g, for the 159 counties in the US
state of Georgia during 2000–2010 (Lawson, 2009) to build
a space-time disease mapping.

The classical parametric formulation was introduced by
Bernardinelli et al. (1995), and assume that the linear pre-
dictor can be written as

git ¼ aþ ti þ mi þ ðbþ diÞ � t: ð6Þ

This formulation includes the same spatial structured
and unstructured components as in (5), with: ni ¼ ti þ mi;
a main linear trend b, which represents the global time ef-
fect; and a differential trend di, which identifies the inter-
action between time and space.

Since, for identifiability purposes a sum-to-zero con-
straint is imposed on d and m, the terms di represent the
difference between the global trend b and the area specific
trend. If di < 0 then the area-specific trend is less steep
than the mean trend, whilst di > 0 implies that the area-
specific trend is steeper than the mean trend. We assume
di 	 Normalð0; sdÞ, but other specification can be used,
e.g. a conditional autoregressive structure, see Bernardi-
nelli et al., 1995; Schrödle and Held, 2011a for a detailed
description.

In R-INLA the interaction term needs to be specified
through the formula as follows:

formula1 <- y 	 1 + f(ID.area, model="bym",

graph=Georgia.adj) + f(ID.area1,year,model=

"iid") + year

(we save the model associated with this formula in an
inla object named mod1). Note that each function f(�)
can only be assigned to one covariate in R-INLA, so in this
case we need to create a new variable ID.area1 which is a
duplicate of ID.area. In addition, year in the f(�) term is
treated as a vector of weights.

This specification assumes a linear effect of time for
each area (di). According to Section 3 the parameters esti-
mated by INLA are h ¼ fa; b; n; t; dg and the hyper-parame-
ters are represented by w ¼ fst; sm; sdg.

The assumption of linearity in the di can be released
(Knorr-Held, 2000) using a dynamic non parametric for-
mulation for the linear predictor
git ¼ aþ ti þ mi þ ct þ /t: ð7Þ

Here a; ti and mi have the same parametrisation as in
(6); however, the term ct represents the temporally struc-
tured effect, modelled dynamically (e.g. using a random
walk) through a neighbouring structure

ctjc�t 	 Normal ctþ1;sc
� �

fort ¼ 1

ctjc�t 	 Normal
ct�1 þ ctþ1

2
;
sc

2

� �
fort ¼ 2; . . . ; T � 1

ctjc�t 	 Normal ct�1;sc
� �

fort ¼ T:

Finally /t is specified by means of a Gaussian exchange-
able prior: /t 	 Normalð0; s/Þ.

This model is specified in R-INLA as
formula2 <- y 	 1 + f(ID.area,model="bym",

graph=Georgia.adj) + f(ID.year,model="rw1") +

f(ID.year1,model="iid")

We save the resulting model in the inla object mod2. In
this formulation h ¼ fa; n; t; c;/g and w ¼ fst; sm; sc; s/g.

It is easy to expand this model to allow for an interac-
tion between space and time, which would explain differ-
ences in the time trend of low birth weight for different
areas, e.g. using the following specification:

git ¼ aþ ti þ mi þ ct þ /t þ dit : ð8Þ

There are several ways to define the interaction term:
here, we assume that the two unstructured effects mi and
/t interact. We re-write the precision matrix as the prod-
uct of the scalar sm (or s/) and the so called structure ma-
trix Fm (or F/), which identifies the neighbouring structure;
here the structure matrix Fd can be factorised as the
Kronecker product of the structure matrix for m and /

(Clayton, 1996): Fd ¼ Fm 
 F/ ¼ I
 I ¼ I (because both m
and / are unstructured). Consequently, we assume no spa-
tial and/or temporal structure on the interaction and there-
fore dit 	 Normalð0; sdÞ — see Knorr-Held, 2000 for a
detailed description of other specifications. In this model
h ¼ fa; n; t; c;/; dg and w ¼ fst; sm; sc; s/; sdg.

The corresponding R-INLA coding is

formula3 <- y 	 1 + f(ID.area,model="bym",

graph=Georgia.adj) + f(ID.year,model="rw1") +

f(ID.year1,model="iid") + f(ID.area.year,model="iid")

and the resulting model is saved in the object mod3.
In the three models presented in this section, we as-

sume the default specification of R-INLA for the distribu-
tion of the hyper-parameters; therefore, similarly to the
disease mapping model presented earlier, log st 	
log Gammað1;0:0005Þ and logsm 	 log Gammað1;0:0005Þ.
In addition we specify a Gammað1;0:0005Þ prior on the



Fig. 2. Spatial and temporal effects.

Fig. 3. Posterior probability for the space–time interaction: years 2001, 2004 and 2010 and 159 counties of Georgia.
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precision of the random walk and of the two unstructured
effects.

One possible tool to evaluate the fit of these three com-
peting models is the Deviance Information Criterion (DIC,
Spiegelhalter et al., 2002), which can be computed in R-
INLA, using the option control.compute=list(dic=

TRUE). Table 2 presents the DIC components for the three
models: the dynamic parametrisation of the time trend im-
proves the model fit and including the interaction shows the
smaller DIC suggesting that, despite the added complexity,



Fig. 4. Example of a spatial continuous random field and the corresponding basis function representation according to (11).
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this model has a more appropriate fit to the data in hand. For
this reason we focus on the results from this model.

The spatial trend fi ¼ expðniÞ is presented in Fig. 2(a) for
the 159 counties in Georgia, while Fig. 2(b) depicts the
measure of uncertainty pðfi > 1jyÞ. An increased risk can
be seen in some parts of the country, characterised by a
spatial relative risk above 1, and a posterior probabilities
above 0.8, indicating a relatively small level of associated
uncertainty. The temporal trend is included in Fig. 2(c)
and shows an increase in the risk of low birth weight be-
tween 2000 and 2010.

The posterior probabilities for the interactions,
pðexpðditÞ > 1jyÞ, are presented in Fig. 3 for three years:
as expected only a handful of areas shows evidence of an
interaction larger than 1, changing in different years.
6 Here we consider the case of normally distributed data, but this is not a
requirement as INLA and the SPDE approach can deal with non Gaussian
responses. However, it is worth to note that in the Gaussian case, the INLA
calculations are exact and the only approximation is the numerical
integration required for computing ~pðwjyÞ in (3).

7 The terminology SPDE is related to the linear fractional stochastic
partial differential equation reported in Eq. (2) of Lindgren et al. (2011)
whose (only stationary) exact solution is given by a GF with Matèrn
covariance function. This exact solution is then approximated using the
finite element representation of (11).
4. The stochastic partial differential equation approach
for geostatistical data

Point-reference data can be dealt with the stochastic
partial differential equation (SPDE) approach proposed by
Lindgren et al. (2011). This consists in representing a
continuous spatial process, e.g. a GF with the Matèrn
covariance function defined in (1), as a discretely indexed
spatial random process (e.g. a GMRF). This in turn pro-
duces substantial computational advantages. In fact, spa-
tial GFs are affected by the so called ‘‘big n problem’’
(Lasinio et al., 2012; Banerjee et al., 2004), which is due
to the computational costs of Oðn3Þ to perform matrix
algebra operations with n� n dense covariance matrices
(whose dimension is given by the number of observations
at all spatial locations and time points).

In contrast, as introduced in Section 2, GMRFs are char-
acterised by sparse precision matrices; this feature allows
to implement computationally efficient numerical meth-
ods, especially for fast matrix factorization (Rue and Held,
2005). For a GMRF model in R2 the computational cost is
typically Oðn3=2Þ, which is a significant speed up compared
to Oðn3Þ of the GF. Moreover, Bayesian inference involving
spatial GMRFs can be performed employing the INLA ap-
proach introduced in Section 3.

In this section we sketch the basics of the SPDE ap-
proach and we refer to Lindgren et al. (2011) for a com-
plete description and the proofs of the results.
Applications of SPDE for geostatistical data can be found
in Simpson et al. (2012a), Simpson et al. (2012b), Bolin
(2012), Cameletti et al. (2011b) and Simpson et al. (2011).

Consider a simple setting for geostatistical data where for
the i-th spatial point location the observation yi is modelled
as6

yi 	 Normal gi;r
2
e

� �
ð9Þ

where r2
e is the variance of the zero mean measurement

error ei which is supposed to be independent on ej with
i – j. The response mean is defined as

gi ¼ aþ
XM

m¼1

bmxmi þ ni ð10Þ

whereni is the i-th realisation of the latent GF nðsÞwith Maté-
rn spatial covariance function defined in (1). In the geostatis-
tics literature, the term aþ

PM
m¼1bmxmi is often referred to as

large-scale component, while the measurement error vari-
ance r2

e is known as nugget effect (see Cressie, 1993). With
respect to the linear predictor introduced in (2), the function
fið�Þ is represented by the spatially structured term ni. The
key idea of the SPDE approach consists in defining the con-
tinuously indexed Matérn GF nðsÞ as a discrete indexed
GMRF by means of a basis function representation defined
on a triangulation of the domain D

nðsÞ ¼
XG

g¼1

ugðsÞ~ng : ð11Þ

Here G is the total number of vertices in the triangulation,
fugg is the set of basis functions and f~ngg are zero-mean
Gaussian distributed weights. For computational reasons
as explained in Lindgren et al. (2011), the basis functions
are chosen to be piecewise linear on each triangle, i.e. ug is
1 at vertex g and 0 elsewhere. Notice that we use the formal
notation nðsÞ in the left-hand side of (11) since SPDE7 pro-
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vides a representation of the whole spatial process (defined
for any point s) that varies continuously in the considered do-
main D.

An illustration of the SPDE approach is given in
Fig. 4, which displays a continuously indexed spatial
random field and the corresponding finite element rep-
resentation with piecewise linear basis functions over
a triangulated mesh. Lindgren et al., 2011 show that
the vector of basis weights ~n ¼ ð~n1; . . . ; ~nGÞ0 is a GMRF
with sparse precision matrix Q ~n depending on the Maté-
rn covariance function parameter j and variance r2

C , for
a ¼ 1;2;3; . . . where a ¼ kþ 1 (recall that k is the
smoothness parameter).

Given the GF representation provided by the SPDE
method, we can rewrite the linear predictor of (10) as
Fig. 5. Swiss rainfall data (on the ro
gi ¼ aþ
XM

m¼1

bmxmi þ
XG

g¼1

~Aig
~n ð12Þ

where ~A is the sparse n� G matrix that maps the GMRF ~n

from the n observation locations to the G triangulation
nodes. Note that in R-INLA this kind of model can be easily
implemented specifying model=spde in the f(�) term of
the formula definition.

The next two sections are dedicated to the implementa-
tion of a spatial and a spatio-temporal geostatistical model
in R-INLA providing some details about the SPDE func-
tions. At the moment R-INLA implements the SPDE ap-
proach for 0 < a 6 2; in our models we have specified
a ¼ 2 which corresponds to a smoothness parameter k
equal to 1, thus to a second-order conditional autoregres-
ot square scale) and elevation.



stack.est = inla.stack(

data=list(rain=est.data),

A=list(A.est,1),

effects=list(c(field.indices,list

(Intercept=1),

list(Elevation=est.elevation)),

tag = "est")
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sive structure. Anticipating an R-INLA feature for
managing geostatistical data, we rewrite here (9) and
(10) in matrix notation as

y 	 Normal g;r2
eIn

� �
ð13Þ

g ¼ 1aþ X0bþ ~A~n ð14Þ
where y ¼ ðy1; . . . ; ynÞ

0 is the observation vector, In is a n-
dimensional diagonal matrix, 1 is a vector of ones and X is
the M � n matrix of covariates. Moreover the term
A ¼ f1;X; ~Ag is called observation matrix. According to
the notation introduced in Section 3, in this case the vector
of parameters is defined as h ¼ f~n;a; bg with hyper-param-
eters vector w ¼ ðr2

e ;j;r2
CÞ.

4.1. INLA/SPDE for spatial geostatistical data: Swiss rainfall
data

One of the primary objective of geostatistical modelling
is the prediction of the considered phenomenon at unsam-
pled locations conditionally on the observed data and
available covariates (i.e. kriging, see Gelfand et al., 2010).
To illustrate how to perform spatial prediction using INLA
and the SPDE approach, we consider rainfall measure-
ments (in 10th of mm) taken on the 8th of May 1986 at
467 locations in Switzerland. The rainfall data are part of
the sic data set in the geoR library (Ribeiro et al., 2001)
which provides also the spatial coordinates and the eleva-
tion value (in km) for each location.

In order to make the distribution of the rainfall data
approximately Normal, we use a square root transforma-
tion; the transformed values are depicted in Fig. 5(a).
Moreover, following the guidelines described in Dubois
(1998), we use the 100 locations marked with bullets in
Fig. 5(a) for estimation purposes and we retain the remain-
ing 367 stations (marked with triangles) for model valida-
tion, i.e. we predict rainfall in the validation sites and
evaluate through indexes the model predictive perfor-
mance. Finally, we estimate the rain field on a regular grid
Constrained refined Delau

Fig. 6. The Switzerland triangulation with 289 vertices and black dots deno
covering Switzerland with the same resolution of the
elevation surface available from the sic97 data set in
the gstat package (Pebesma, 2004) and depicted in
Fig. 5(b). In particular, the elevation map is named demstd

and is composed by 376� 253 grid points.
In R-INLA the first step required to run the geostatisti-

cal spatial model introduced in Section 4 with only one
covariates (M ¼ 1 represented by elevation), is the triangu-
lation of the considered spatial domain. We use the
inla.mesh.create.helper specifying the spatial coordi-
nates (est.coord) of the 100 stations used for estimation
and the region borders (sic.borders) required to define
the outer domain:
mesh = inla.mesh.create.helper(points=est.

coord, points.domain=sic.borders, offset=c(5,

20), max.edge=c(40,100), min.angle=c(21,21))

The inla.mesh.create.helper performs a con-
strained refined Delaunay triangulation for a set of spatial
locations: firstly the triangle vertices are placed at the
observation locations and then further vertices are added
in order to satisfy triangulation quality constraints (see
Lindgren et al., 2011 and references therein). To this regard
the offset in the inla.mesh.create.helper function
defines how much the domain should be extended in the
inner and outer domains (characterised by small and large
triangles, respectively), while max.edge and min.angle set
the triangle structure. Depending on the values chosen for
nay triangulation

ting the 100 stations used for estimation and included in the mesh.
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inla.mesh.create.helper arguments, the total number
of vertices changes with a trade-off between the accuracy
of the GMRF representation and the computational costs.

With the setting used above we obtain a mesh with
G ¼ 289 vertices, which can be accessed in the R terminal
by typing mesh$n and is displayed in Fig. 6. Given the
mesh, we create the spde model object, to be used later
in the specification of the f(�) term in the R-INLA for-

mula, with

stack.pred = inla.stack(

data=list(rain=NA),

A=list(A.pred),

effects=list(c(field.indices,list

(Intercept=1))),

tat="pred")
spde = inla.spde2.matern(mesh=mesh)

We exploit now the helper function inla.stack which
takes care of building the necessary matrices required by
the SPDE approach and of combining the data, the observa-
tion matrix A and the linear predictor g, introduced in (13)
and (14); some details about the usage of the inla.stack
function can be found also in Cameletti et al. (2011b). Be-
fore employing inla.stack, we create the object A.est
which corresponds to ~A

A.est = inla.spde.make.A(mesh, loc=est.coord)

and is a 100� 289 sparse matrix that extracts the values
of the latent spatial field at the observation locations.
Moreover, we generate the required vectors of indices

field.indices = inla.spde.make.index("field",

n.mesh=mesh$n)
with field.indices being a list whose first component is
called field and contains the spatial vertex indices (i.e, the
sequence of integer number from 1 to G ¼ 289). Finallly, we
mod = inla(formula,

data=inla.stack.data(stack,spde=spde),

family="gaussian",

control.predictor=list(A=inla.stack.

A(stack),

compute=TRUE))
call the inla.stack function that takes in input the data
(data), an identification string (tag) and the components
Table 3
Posterior estimates (mean, standard deviation (SD) and quantiles) and DIC
for the Swiss rainfall geostatistical model with and without elevation
covariate.

Mean SD 2.5% 50% 97.5%

With elevation (DIC = �571.1897)
a 12.084 1.577 8.801 12.134 15.085
b 0.031 0.722 �1.396 0.035 1.442
r 61.479 10.482 42.339 61.044 83.303

Without elevation (DIC = �571.2634)
a 12.109 1.420 9.150 12.147 14.862
r 61.673 10.384 42.709 61.240 83.299
of the observation matrix (A) and of the linear predictor
(effects), combined together in list-type objects:

Note that each term in A has its own linear predictor
component in the effects object so that, for example,
A.est is paired with the list composed by field.indices
and Intercept=1 (this may seem a little strange but it is
due to how the SPDE related functions are internally
coded). The elevation covariate is included in A by means
of 1 – which has to be interpreted as an identity matrix –
and the corresponding altitude values (est.elevation)
are then provided as a list object in the effects term.

Similarly, we create the corresponding objects inla.-

val and stack.val for the 367 validation stations with
the only difference that, since we are interested in predic-
tion, we specify data=list(rain=NA) in the inla.-

stack function. For rainfall prediction in the
376� 253 ¼ 95128 grid points, we create the A.pred and
stack.pred objects as follows

A.pred = inla.spde.make.A(mesh)

where, for computational reasons, we consider the mesh
locations only and do not include elevation in the linear
predictor. This means that later we will have to move from
the mesh to the grid (with a projection) and to add back
the covariate term.

Finally, we combine all the data, effects and observation
matrices using the command

stack = inla.stack(stack.est, stack.val,

stack.pred)

In the R-INLA formula we include the spde model ob-
ject named field and defined before as well as the Ele-

vation covariate; moreover, note that, due to the way
inla.stack works, we need to specify an explicit Inter-
cept term and remove the automatic intercept with -1.

formula <- rain 	 -1 + Intercept + Elevation +

f(field, model=spde)

Finally, we can run the specified model calling the inla
function as follows:
where the functions inla.stack.data and inla.stack.A

simply extract the required data and the observation
matrix from the stack object. The option compute=TRUE

is required to obtain the marginal distributions for the lin-
ear predictor.

We retrieve the posterior summary statistics of the
fixed effects a and b from the object mod$summary.fixed,
while the posterior marginal of the precision se ¼ 1=r2

e is
included in the list mod$marginals.hyperpar. If we are
interested in the variance r2

e , we employ the function
inla.emarginal for computing the expected value of
the (reciprocal) transformation of the posterior marginal
distribution. The results on the parameters of the Matèrn
spatial covariance function can be obtained typing

mod.field = inla.spde2.result(mod, name=

"field", spde)

where the string name refers to the name of the spde effect
used in the inla formula.

Applying the suitable transformations through the
inla.emarginal function as described in Cameletti et al.
(2011b), we obtain the posterior estimates for the spatial
variance r2

C and for the range r. All the relevant posterior
estimates are reported in the upper part of Table 3. As the



Fig. 7. Map of the rainfall posterior distribution.
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elevation parameter b is not significant, we implement also
the model without elevation and use the DIC as a model
selection criterion. The DIC values reported in Table 3 are al-
most identical so we select the model without elevation
(note that the posterior estimates for a and r do not change
considerably between the two models). With a posterior
mean of 62 km for the range, we can conclude that the data
are characterised by a medium spatial correlation (the max-
imum distance between coordinates is equal to 293 km).

We focus now on the prediction in the 367 validation
stations (this case was previously identified with the string
tag="val"). We first type

index.val = inla.stack.index(stack,"val")

$data
in order to retrieve, from the full stack object, the indi-

ces identifying the validation stations (which are stored in
the data component of the resulting list). Given index.-

val we extract the posterior summaries (mean and stan-
dard deviation) for the linear prediction g (on the square
root scale) as follows

lp.mean.val = mod$summary.linear.predic-
tor[index.val,"mean"] lp.sd.val = mod $ summary.

linear.predictor[index.val,"sd"]

It is then straightforward to compare observed and
predicted values (represented by the posterior mean
lp.mean.val) and to compute predictive performance
statistics. For example, the root mean square error is
equal to 2.30 and the Pearson correlation coefficient is
0.86, which denotes a good correlation between observed
and predicted values.

Prediction on the regular grid (here defined by a data.-
frame object named pred.grid with 376� 253 ¼ 95128
rows and two columns with grid coordinates) requires to
create a linkage between the mesh and the grid, as we
anticipated previously. This can be done using the follow-
ing command:



A.est = inla.spde.make.A(

mesh,

loc=as.matrix(coordinates[Piemonte_
data$Station.ID

c("UTM-X","UTM-Y")]),

group=Piemonte_data$time,
n.group=n_days)

stack.est=inla.stack(

data=list(logPM10=Piemonte_
data$logPM10),
A=lista(A.est,1),

effects=list(c(field.indices, list

(Intercept=1)),

list(Piemonte_data[,3:10])),
tag="est")

stack.pred=inla.stack(

data=list(logPM10=NA),

A=lista(A.pred,1),

effects=list(c(field.indices, list

(Intercept=1)),

list(covariate_matrix_std)),
tag="pred")
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proj_grid = inla.mesh.projector(

mesh,

xlim=range(pred.grid[,1]),

ylim=range(pred.grid[,2]),

dims=c(376,253))

Then, as done previously for the validation sites, we ex-
tract the linear predictor values on the mesh

index.pred = inla.stack.index(stack,"pred")$
data

lp.mean.pred = mod$summary.linear.predictor
[index.pred, "mean"]

lp.sd.pred = mod$summary.linear.predictor
[index.pred, "sd"]

and project it from the mesh to the grid
lp.mean.grid = inla.mesh.project(proj_grid,

lp.mean.pred) lp.sd.grid = inla.mesh.project

(proj_grid, lp.sd.pred)
The map of the smooth rainfall posterior mean (on

the square root scale) and of the prediction standard er-
ror are shown in Fig. 7. The comparison of the prediction
map with the plot reported in Fig. 5(b) leads to the con-
clusion that the considered geostatistical model is able to
reproduce quite well the spatial pattern of the rainfall
data.

4.2. INLA/SPDE for spatio-temporal geostatistical data: PM10

air pollution in Piemonte region

We extend the purely spatial case described in the pre-
vious section to a spatio-temporal model for particulate
matter concentration (PM10 in lg=m3) measured in the re-
gion of Piemonte (Northern Italy) during October 2005–
March 2006 by a monitoring network composed by 24 sta-
tions. Cameletti et al., 2011a provide a complete descrip-
tion of the PM10 data as well as of some covariates
available at the station and grid level (provided by ARPA
Piemonte, Finardi et al., 2008), such as daily maximum
mixing height (HMIX, in m), daily total precipitation (PREC,
in mm), daily mean wind speed (WS, in m/s), daily mean
temperature (TEMP, in K), daily emission rates of primary
aerosols (EMI, in g/s), altitude (A, in m) and spatial coor-
dinates (UTMX and UTMY in km).

We illustrate how to predict air pollution for a given
day in all the region, also where no monitoring stations
are displaced. In addition, we describe how to get a
map for the probability of exceeding the 50 lg=m3

threshold fixed by the European Community for health
protection. Note that this case study has already been
described in Cameletti et al. (2011b), but we present it
again in order to illustrate a variant in the SPDE code
for producing the probability map of exceeding the fixed
threshold.

Let yit denote the logarithm of the PM10 concentration
measured at station located at site si (i ¼ 1; . . . ; n) and
day t ¼ 1; . . . ; T. We assume the following distribution
for the observations

yit 	 Normalðgit;r2
e Þ

with
git ¼
XM

m¼1

bmxmi þxit

where
PM

m¼1bmxmi is the large-scale component including
meteorological and geographical covariates, and r2

e is the
variance of the measurement error defined by a Gaussian
white-noise process, both serially and spatially uncorre-
lated. The term xit is the realisation of the latent spatio-
temporal process (i.e. the true unobserved level of pollu-
tion) which changes in time with first order autoregressive
dynamics with coefficient a and spatially correlated inno-
vations, given by
xit ¼ axiðt�1Þ þ nit: ð15Þ

In (15), we set t ¼ 2; . . . ; T and jaj < 1, and derive xi1

from the stationary distribution Normal 0;r2
C=ð1� a2Þ

� �
.

Moreover, nit is a zero-mean GF, is assumed to be tempo-
rally independent and is characterised by the following
spatio-temporal covariance function
Cov nit; nju

� �
¼

0 if t – u

r2
CCðDijÞ if t ¼ u

�
ð16Þ

for i – j, with CðDijÞ denoting the Matèrn spatial covariance
function defined in 1. Such a model is widely used in the
air quality literature thanks to its flexibility in modelling
the effect of relevant covariates (i.e. meteorological and
geographical variables) as well as time and space depen-
dence (e.g. Cocchi et al., 2007; Cameletti et al., 2011a;



Fig. 8. Map of the PM10 posterior mean and exceedance probability. Both
maps refer to the selected day 30/01/2006.
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Sahu, 2012; Fassò and Finazzi, 2011). The main drawback
of this formulation is related to the computational costs re-
quired for model parameter estimation and spatial predic-
tion when MCMC methods are used, especially in case of
massive spatio-temporal datasets. Here we show how to
overcome this computational challenge using the SPDE ap-
proach by representing the Màtern spatio-temporal GF as a
GMRF (see Cameletti et al., 2011b for more details).

To implement this model in R-INLA, we need to define
the triangulation of Piemonte using the inla.mesh.cre-

ate.helper function, as described in the previous section.
After creating an object named mesh including G ¼ 142
vertices, we define the SPDE object with spde=inla.sp-

de2.matern(mesh=mesh). The next step requires to em-
ploy the inla.stack function to combine the data with
the observation matrix and linear predictor components;
this is a slightly more complex task here, since we have
to consider both spatial and temporal indexing. Let
Piemonte_data be the data frame containing all the rele-
vant data; for estimation purposes create the A.est object
with
where the option group specifies that we have 24 mea-
surements for each of the T ¼ 182 days (included as
n_days in the code). Then we generate the spatial and
temporal indexes typing
field.indices = inla.spde.make.index("field",

n.mesh=mesh$n,n.group=n_days)
and then we combine all the relevant objects with

where Piemonte_data[,3:10] refers to the columns con-
taining the covariate values. In a similar way, we create
A.pred and stack.pred for the 56� 72 ¼ 4032 grid
points used for spatial prediction:

A.pred = inla.spde.make.A(mesh, loc=as.

matrix(Piemonte_grid), group=i_day, n.group=

n_days)
where Piemonte_grid and covariate_matrix_std

contain the coordinates and the (standardized) covariate
values for all the grid locations and the selected day (30/
01/2006), respectively. Note that, differently from Sec-
tion 4.1 and Cameletti et al., 2011b, we are including at this
stage (and not after the estimation step) the grid relevant
information. This means that the output of the inla func-
tion will provide directly the estimate of the linear predic-
tor (including covariates) at the grid level.

Finally we create the complete stack object with the
following code

stack = inla.stack(stack.est, stack.pred)

and define the R-INLA formula

formula <- (logPM10 	 -1 + Intercept + A + UTMX

+ UTMY + WS + TEMP + HMIX + PREC + EMI + f(field,

model=spde, group=field.group, control.group=

list(model="ar1")))

that includes an explicit intercept and all the meteoro-
logical and geographical covariates. Moreover, using the
options group and control.group, we specify in the
f(�) term that at each time point the spatial locations are
linked by the spde model object, while across time, the
process evolves according to an AR(1) process.

For computational reasons, it may be useful to run this
model calling the inla function twice. We first compute
only the hyper-parameters modes (se theoretical details
in Section 3) only for the stack.est object by setting
compute=FALSE in the control.preditor argument:

mod.mode = inla(formula, data=inla.stack.data

(stack.est, spde=spde), family="gaussian", con-

trol.predictor=list(A=inla.stack.A(stack.est),

compute=FALSE)

At the second step we perform the linear predictor esti-
mation on the whole grid specifying the full object stack
and using the mode computed previously (see the specifi-
cation of the control.mode argument):

mod = inla(formula, data=inla.stack.data(-

stack, spde=spde), family="gaussian", control.

predictor=list(A=inla.stack.A(stack), compute=

TRUE), control.mode=list(theta=mod.mode$mode
$theta, restart=FALSE)

As shown in the previous sections, we can extract the
posterior summary statistics for b;1=r2

e and a from the ob-
jects mod$summary.fixed and mod$summary.hyperpar,
while posterior estimates for r2

C and r can be obtained
applying the inla.spde2.result function — see Came-
letti et al., 2011b for more details and the relevant results.

Here we focus on the prediction of the (smooth, i.e.
without the nugget effect) air pollution field for the se-
lected day. This task is performed simply by extracting
the posterior mean of the linear predictor – which is avail-
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able for all the grid locations – from mod$summary.lin-
ear.predictor and reshaping it properly in accordance
with the grid size.

index:pred ¼ inla:stack:indexðstack;"pred"Þ$data

lp_grid_mean = matrix(

mod$summary.linear.predictor[index.pred,
"mean"], 56, 72, byrow=T)

The resulting map (on the logarithmic scale) is shown in
Fig. 8 (left).

Analogously, we can retrieve the posterior marginal dis-
tribution of the linear predictor and, through the built-in
function inla.pmarginal employed in Section 3.2 and
3.3, we can obtain the map of the posterior probability of
exceeding the fixed threshold, presented in Fig. 8 (right).

5. Discussion

In this paper we have provided a tutorial on the use of
methods based on Integrated Nested Laplace Approxima-
tion for spatial and spatio-temporal models. While these
models are very popular in applied research, especially in
epidemiology, their general complexity remains, poten-
tially, a fundamental issue for their implementation, par-
ticularly within the Bayesian approach. The INLA
approach is in general able to provide reliable estimations
in lower computational time than their corresponding
MCMC-based estimations.

One of the fundamental differences between MCMC and
INLA methods is that the former provide (asymptotically)
exact inference, while the latter give, by definition, an
approximation to the relevant posterior distributions. In
many applied cases INLA performs just as well as its MCMC
counterparts, especially when the latter are considered in
their standard implementations. This is particularly rele-
vant in presence of large datasets; as discussed earlier, spe-
cifically in the case of geostatistical data, the use of SPDE
algorithms produce massive savings in computational
times and allows the user to work with relatively complex
models in an efficient way. INLA and SPDE could also help
in solving the change-of-support issue, typically arising
when dealing with data characterised by different spatial
supports, e.g. air pollution data available at the point level
combined with a health outcome available as aggregated
counts of deaths/disease at the areal level — see chapter
29 in Gelfand et al. (2010). Finally, INLA (and specifically
its R implementation) covers a wide set of problems that
can be tackled with relatively standard programming,
which generally facilitates the practitioner’s work. In fact,
while most of the commands are similar to those applied
in standard R routines (e.g. lm or glm), a wealth of options
can be specified within the R-INLA functions, that allow
the user to select different model specifications; see Mar-
tins et al., 2012 for new features.

Because of its recent inception, INLA is less established
than MCMC methods (although we acknowledge a flurry of
activity in the development of new MCMC algorithms, e.g.
Girolami and Calderhead, 2011;Hoffman and Gelman,
2011). Consequently, its development is still ongoing, par-
ticularly with respect to some more advanced features
(e.g. the SPDE module described in Section 4). At the same
time, however, it is important to notice that the increasing
popularity of INLA is generating a number of contributed
add-ons able to extend the built-in facilities of the R pack-
age. Given these characteristics, we consider INLA as a
valuable addition to the Bayesian statistician’s toolkit.
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