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Summary

1. While teaching statistics to ecologists, the lead authors of this paper have noticed common statis-

tical problems. If a random sample of their work (including scientific papers) produced before doing

these courses were selected, half would probably contain violations of the underlying assumptions

of the statistical techniques employed.

2. Some violations have little impact on the results or ecological conclusions; yet others increase

type I or type II errors, potentially resulting in wrong ecological conclusions. Most of these viola-

tions can be avoided by applying better data exploration. These problems are especially trouble-

some in applied ecology, where management and policy decisions are often at stake.

3. Here, we provide a protocol for data exploration; discuss current tools to detect outliers, hetero-

geneity of variance, collinearity, dependence of observations, problems with interactions, double

zeros in multivariate analysis, zero inflation in generalized linear modelling, and the correct type of

relationships between dependent and independent variables; and provide advice on how to address

these problems when they arise. We also address misconceptions about normality, and provide

advice on data transformations.

4. Data exploration avoids type I and type II errors, among other problems, thereby reducing the

chance of making wrong ecological conclusions and poor recommendations. It is therefore essential

for good quality management and policy based on statistical analyses.

Key-words: collinearity, data exploration, independence, transformations, type I and II

errors, zero inflation

Introduction

The last three decades have seen an enormous expansion of the

statistical tools available to applied ecologists. A short list

of available techniques includes linear regression, generalized

linear (mixed) modelling, generalized additive (mixed) model-

ling, regression and classification trees, survival analysis, neu-

ral networks, multivariate analysis with all its many methods

such as principal component analysis (PCA), canonical corre-

spondence analysis (CCA), (non-)metric multidimensional

scaling (NMDS), various time series and spatial techniques,

etc. Although some of these techniques have been around for

some time, the development of fast computers and freely avail-

able software such as R (R Development Core Team 2009)

makes it possible to routinely apply sophisticated statistical

techniques on any type of data. This paper is not about these

methods. Instead, it is about the vital step that should, but

frequently does not, precede their application.

All statistical techniques have in common the problem of

‘rubbish in, rubbish out’. In some methods, for example, a sin-

gle outlier may determine the final results and conclusions.

Heterogeneity (differences in variation) may cause serious

trouble in linear regression and analysis of variance models

(Fox 2008), and with certain multivariate methods (Huberty

1994).

When the underlying question is to determine which covari-

ates are driving a system, then the most difficult aspect of the

analysis is probably how to deal with collinearity (correlation

between covariates), which increases type II errors (i.e. failure

to reject the null hypothesis when it is untrue). In multivariate

analysis applied to data on ecological communities, the pres-

ence of double zeros (e.g. two species being jointly absent at

various sites) contributes towards similarity in some techniques

(e.g. PCA), but not others. Yet other multivariate techniques

are sensitive to species with clumped distributions and low

abundance (e.g. CCA). In univariate analysis techniques like

generalized linear modelling (GLM) for count data, zero

inflation of the response variable may cause biased parameter

estimates (Cameron & Trivedi 1998). When multivariate tech-

niques use permutation methods to obtain P-values, for exam-
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ple in CCA and redundancy analysis (RDA, ter Braak & Ver-

donschot 1995), or the Mantel test (Legendre & Legendre

1998), temporal or spatial correlation between observations

can increase type I errors (rejecting the null hypothesis when it

is true).

The same holds with regression-type techniques applied on

temporally or spatially correlated observations. One of the

most used, and misused, techniques is without doubt linear

regression. Often, this technique is associated with linear pat-

terns and normality; both concepts are often misunderstood.

Linear regression ismore than capable of fitting nonlinear rela-

tionships, e.g. by using interactions or quadratic terms (Mont-

gomery & Peck 1992). The term ‘linear’ in linear regression

refers to the way parameters are used in the model and not to

the type of relationships that are modelled. Knowing whether

we have linear or nonlinear patterns between response and

explanatory variables is crucial for how we apply linear regres-

sion and related techniques.We also need to knowwhether the

data are balanced before including interactions. For example,

Zuur, Ieno & Smith (2007) used the covariates sex, location

and month to model the gonadosomatic index (the weight of

the gonads relative to total body weight) of squid. However,

both sexes were not measured at every location in each month

due to unbalanced sampling. In fact, the data were so unbal-

anced that it made more sense to analyse only a subset of the

data, and refrain from including certain interactions.

With this wealth of potential pitfalls, ensuring that the scien-

tist does not discover a false covariate effect (type I error),

wrongly dismiss a model with a particular covariate (type II

error) or produce results determined by only a few influential

observations, requires that detailed data exploration be applied

before any statistical analysis. The aim of this paper is to pro-

vide a protocol for data exploration that identifies potential

problems (Fig. 1). In our experience, data exploration can take

up to 50%of the time spent on analysis.

Although data exploration is an important part of any anal-

ysis, it is important that it be clearly separated from hypothesis

testing. Decisions about what models to test should be made

a priori based on the researcher’s biological understanding of

the system (Burnham & Anderson 2002). When that under-

standing is very limited, data exploration can be used as a

hypothesis-generating exercise, but this is fundamentally dif-

ferent from the process that we advocate in this paper. Using

aspects of a data exploration to search out patterns (‘data

dredging’) can provide guidance for future work, but the

results should be viewed very cautiously and inferences about

the broader population avoided. Instead, new data should be

collected based on the hypotheses generated and independent

tests conducted.When data exploration is used in this manner,

both the process used and the limitations of any inferences

should be clearly stated.

Throughout the paper we focus on the use of graphical tools

(Chatfield 1998; Gelman, Pasarica & Dodhia 2002), but in

some cases it is also possible to apply tests for normality or

homogeneity. The statistical literature, however, warns against

certain tests and advocates graphical tools (Montgomery &

Peck 1992; Draper & Smith 1998, Quinn & Keough 2002).

Läärä (2009) gives seven reasons for not applying preliminary

tests for normality, including: most statistical techniques based

on normality are robust against violation; for larger data sets

the central limit theory implies approximate normality; for

small samples the power of the tests is low; and for larger data

sets the tests are sensitive to small deviations (contradicting the

central limit theory).

All graphs were produced using the software package R

(R Development Core Team 2008). All R code and data used

in this paper are available in Appendix S1 (Supporting Infor-

mation) and from http://www.highstat.com.

Step 1: Are there outliers in Y and X?

In some statistical techniques the results are dominated by out-

liers; other techniques treat them like any other value. For

example, outliers may cause overdispersion in a Poisson GLM

or binomial GLM when the outcome is not binary (Hilbe

2007). In contrast, in NMDS using the Jaccard index (Legen-

dre & Legendre 1998), observations are essentially viewed as

presences and absences, hence an outlier does not influence the

outcome of the analysis in any special way. Consequently, it is

important that the researcher understands how a particular

technique responds to the presence of outliers. For the

moment, we define an outlier as an observation that has a

relatively large or small value compared to the majority of

observations.

A graphical tool that is typically used for outlier detection is

the boxplot. It visualizes themedian and the spread of the data.

Depending on the software used, the median is typically pre-

sented as a horizontal line with the 25% and 75% quartiles

forming a box around the median that contains half of the

observations. Lines are then drawn from the boxes, and any

Fig. 1. Protocol for data exploration.
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points beyond these lines are labelled as outliers. Some

researchers routinely (but wrongly) remove these observations.

Figure 2a shows an example of such a graph using 1295

observations of a morphometric variable (wing length of the

saltmarsh sparrow Ammodramus caudacutus; Gjerdrum, Elp-

hick & Rubega 2008). The graph leads one to believe (perhaps

wrongly, as we will see in a moment) that there are seven

outliers.

Another very useful, but highly neglected, graphical tool to

visualize outliers is the Cleveland dotplot (Cleveland 1993).

This is a graph in which the row number of an observation is

plotted vs. the observation value, thereby providing much

more detailed information than a boxplot. Points that stick out

on the right-hand side, or on the left-hand side, are observed

values that are considerable larger, or smaller, than the major-

ity of the observations, and require further investigation. If

such observations exist, it is important to check the raw data

for errors and assess whether the observed values are reason-

able. Figure 2b shows a Cleveland dotplot for the sparrow

wing length data; note that the observations identified by the

boxplot are not especially extreme after all. The ‘upward’ trend

in Fig. 2b simply arises because the data in the spreadsheet

were sorted by weight. There is one observation of a wing

length of about 68 mm that stands out to the left about half

way up the graph. This value is not considerably larger than

the other values, so we cannot say yet that it is an outlier.

Figure 3 shows a multi-panel Cleveland dotplot for all of

the morphometric variables measured; note that some vari-

ables have a few relatively large values. Such extreme values

could indicate true measurement errors (e.g. some fit the char-

acteristics of ‘observer distraction’ sensu Morgan 2004,

whereby the observer’s eye is drawn to the wrong number on a

measurement scale). Note that one should not try to argue that

such large values could have occurred by chance. If they were,

then intermediate values should also have been generated by

chance, but none were. (A useful exercise is to generate, repeat-

edly, an equivalent number of random observations from an

appropriate distribution, e.g. the Normal distribution, and

determine how the number of extreme points compares to the

empirical data.) When the most likely explanation is that the

extreme observations are measurement (observer) errors, they

should be dropped because their presence is likely to dominate

the analysis. For example, we applied a discriminant analysis

on the full sparrow data set to see whether observations dif-

fered among observers, and found that the first two axes were

mainly determined by the outliers.

So far, we have loosely defined an ‘outlier’ as an observation

that sticks out from the rest. A more rigorous approach is to

consider whether unusual observations exert undue influence

on an analysis (e.g. on estimated parameters). We make a dis-

tinction between influential observations in the response vari-

able and in the covariates. An example of the latter is when

species abundances are modelled as a function of temperature,

with nearly all temperature values between 15 and 20 �C, but
one of 25 �C. In general, this is not an ideal sampling design

because the range 20–25 �C is inadequately sampled. In a field

study, however, there may have been only one opportunity to

sample the higher temperature. With a large sample size, such

observations may be dropped, but with relative small data sets

the consequent reduction in sample size may be undesirable,

especially if other observations have outliers for other explana-

tory variables. If omitting such observations is not an option,

then consider transforming the explanatory variables.

In regression-type techniques, outliers in the response vari-

ables are more complicated to deal with. Transforming the

data is an option, but as the response variable is of primary

interest, it is better to choose a statistical method that uses a

probability distribution that allows greater variation for large

mean values (e.g. gamma for continuous data; Poisson or neg-

ative binomial for count data) because doing this allows us to
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Fig. 2. (a) Boxplot of wing length for 1295 saltmarsh sparrows. The line in the middle of the box represents the median, and the lower and upper

ends of the box are the 25% and 75% quartiles respectively. The lines indicate 1.5 times the size of the hinge, which is the 75%minus 25% quar-

tiles. (Note that the interval defined by these lines is not a confidence interval.) Points beyond these lines are (often wrongly) considered to be out-

liers. In some cases it may be helpful to rotate the boxplot 90� to match the Cleveland dotplot. (b) Cleveland dotplot of the same data. The

horizontal axis represents the value of wing length, and the vertical axis corresponds to the order of the data, as imported from the data file (in this

case sorted by the bird’s weight).
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work with the original data. For multivariate analyses, this

approach is not an option because these methods are not based

on probability distributions. Instead, we can use a different

measure of association. For example, the Euclidean distance is

rather sensitive to large values because it is based on Pythago-

ras’ theorem, whereas the Chord distance down-weights large

values (Legendre &Legendre 1998).

Some statistical packages come with a whole series of diag-

nostic tools to identify influential observations. For example,

the Cook statistic in linear regression (Fox 2008) gives infor-

mation on the change in regression parameters as each obser-

vation is sequentially, and individually, omitted. The problem

with such tools is that when there are multiple ‘outliers’ with

similar values, they will not be detected. Hence, one should

investigate the presence of such observations using the graphi-

cal tools discussed in this paper, before applying a statistical

analysis.

Ultimately, it is up to the ecologist to decide what to

do with outliers. Outliers in a covariate may arise due to

poor experimental design, in which case dropping the

observation or transforming the covariate are sensible

options. Observer and measurement errors are a valid jus-

tification for dropping observations. But outliers in the

response variable may require a more refined approach,

especially when they represent genuine variation in the var-

iable being measured. Taking detailed field or experiment

notes can be especially helpful for documenting when unu-

sual events occur, and thus providing objective information

with which to re-examine outliers. Regardless of how the

issue is addressed, it is important to know whether there

are outliers and to report how they were handled; data

exploration allows this to be done.

Step 2: Do we have homogeneity of variance?

Homogeneity of variance is an important assumption in analy-

sis of variance (ANOVA), other regression-related models and

in multivariate techniques like discriminant analysis. Figure 4

shows conditional boxplots of the food intake rates of Hudso-

nian godwits (Limosa haemastica), a long-distance migrant

shorebird, on a mudflat in Argentina (E. Ieno, unpublished

data). To apply an ANOVA on these data to test whether

mean intake rates differ by sex, time period or a combination

of these two variables (i.e. an interaction), we have to assume

that (i) variation in the observations from the sexes is similar;

(ii) variation in observations from the three time periods is sim-

ilar; and (iii) variation between the three time periods within

the sexes is similar. In this case, there seems to be slightly less

variation in the winter data formales andmore variation in the

male data from the summer. However, such small differences

in variation are not something to worry about. More serious

examples of violation can be found in Zuur et al. (2009a). Fox

(2008) shows that for a simplistic linear regressionmodel heter-

ogeneity seriously degrades the least-square estimators when

the ratio between the largest and smallest variance is 4 (conser-

vative) ormore.

In regression-type models, verification of homogeneity

should be done using the residuals of themodel; i.e. by plotting

residuals vs. fitted values, and making a similar set of condi-

tional boxplots for the residuals. In all these graphs the residual

variation should be similar. The solution to heterogeneity of

variance is either a transformation of the response variable to

stabilize the variance, or applying statistical techniques that

do not require homogeneity (e.g. generalized least squares;

Pinheiro&Bates 2000; Zuur et al. 2009a).

Step 3: Are the data normally distributed?

Various statistical techniques assume normality, and this has

led many of our postgraduate course participants to produce

histogram after histogram of their data (e.g. Fig. 5a). It is

important, however, to know whether the statistical technique

to be used does assume normality, andwhat exactly is assumed

to be normally distributed? For example, a PCA does not

require normality (Jolliffe 2002). Linear regression does

assume normality, but is reasonably robust against violation

of the assumption (Fitzmaurice, Laird & Ware 2004). If you

want to apply a statistical test to determinewhether there is sig-
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nificant group separation in a discriminant analysis, however,

normality of observations of a particular variable within each

group is important (Huberty 1994). Simple t-tests also assume

that the observations in each group are normally distributed;

hence histograms for the raw data of every group should be

examined.

In linear regression, we actually assume normality of all the

replicate observations at a particular covariate value (Fig. 6;

Montgomery&Peck 1992), an assumption that cannot be veri-

fied unless one has many replicates at each sampled covariate

value. However, normality of the raw data implies normality

of the residuals. Therefore, we can make histograms of residu-

als to get some impression of normality (Quinn & Keough

2002; Zuur et al. 2007), even though we cannot fully test the

assumption.

Even when the normality assumption is apparently violated,

the situation may be more complicated than it seems. The

shape of the histogram in Fig. 5a, for example, indicates skew-

ness, which may suggest to one that data transformation is

needed. Figure 5b shows a multi-panel histogram for the same

variable except that the data are plotted by month; this lets us

see that the skewness of the original histogram is probably

caused by sparrow weight changes over time. Under these

circumstances, it would not be advisable to transform the data

as differences among months may be made smaller, and more

difficult to detect.

Step 4: Are there lots of zeros in the data?

Elphick & Oring (1998, 2003) investigated the effects of straw

management on waterbird abundance in flooded rice fields.

One possible statistical analysis is tomodel the number of birds

as a function of time, water depth, farm, field management

method, temperature, etc. Because this analysis involves mod-

elling a count, GLM is the appropriate analysis. Figure 7

shows a frequency plot illustrating how often each value for

total waterbird abundance occurred. The extremely high num-

ber of zeros tells us that we should not apply an ordinary Pois-

son or negative binomial GLM as these would produce biased

parameter estimates and standard errors. Instead one should

consider zero inflated GLMs (Cameron & Trivedi 1998; Zuur

et al. 2009a).

One can also analyse data for multiple species simulta-

neously using multivariate techniques. For such analyses, we

need to consider what it means when two species are jointly

absent. This result could say something important about the

ecological characteristics of a site, for example that it contains

conditions that are unfavourable to both species. By extension,
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when two sites both have the same joint absences, this might

mean that the sites are ecologically similar. On the other hand,

if a species has a highly clumped distribution, or is simply rare,

then joint absences might arise through chance and say

nothing about the suitability of a given site for a species, the

similarity among the habitat needs of species or the ecological

similarity of sites. A high frequency of zeros, thus, can greatly

complicate interpretation of such analyses. Irrespective of our

attitude to joint absences, we need to know whether there are

double zeros in the data. This means that for each species-pair,

we need to calculate how often both had zero abundance for

the same observation (e.g. site). We can either present this

information in a table, or use advanced graphical tools like a

corrgram (Fig. 8; Sarkar 2008). In our waterbird example, the

frequency of double zeros is very high. All the blue circles cor-

respond to species that have more than 80% of their observa-

tions jointly zero. This result is consistent with the biology of

the species studied, most of which form large flocks and have

highly clumped distributions. A PCA would label such species

as similar, although their ecological use of habitats is often

quite different (e.g. Elphick & Oring 1998). Alternative multi-

variate analyses that ignore double zeros are discussed in

Legendre&Legendre (1998) and Zuur et al. (2007).

Step 5: Is there collinearity among the
covariates?

If the underlying question in a study is which covariates are

driving the response variable(s), then the biggest problem to

overcome is often collinearity. Collinearity is the existence of

correlation between covariates. Common examples are covari-

ates like weight and length, or water depth and distance to the

shoreline. If collinearity is ignored, one is likely to end up with

a confusing statistical analysis in which nothing is significant,

but where dropping one covariate can make the others signifi-

cant, or even change the sign of estimated parameters. The

effect of collinearity is illustrated in the context of multiple

linear regression, but similar problems exist in analysis of

variance, mixed effects models, RDA, CCA,GLMs orGAMs.

Table 1 gives the results of amultiple linear regression inwhich
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the number of saltmarsh sparrows captured in a study plot is

modelled as a function of covariates that describe the relative

abundance of various plant species (for details, see Gjerdrum,

Elphick & Rubega 2005; Gjerdrum et al. 2008). The second

column of the table gives the estimated P-values of the t-statis-

tics for each regression parameter when all covariates are

included in the model. Note that only one covariate, that for

the per cent cover of the rush Juncus gerardii, is weakly signifi-

cant at the 5% level.

In linear regression, an expression for the variances of the

parameters bj is given by (Draper & Smith 1998; Fox 2008):

VarianceðbjÞ ¼
1

1� R2
j

� r2

ðn� 1ÞS2
j

The term Sj depends on covariate values, n is the sample size

and r2 is the variance of the residuals, but these terms are not

relevant to the current discussion (and therefore their mathe-

matical formulation is not given here). It is the first expression

that is important. The term Rj
2 is the R2 from a linear regres-

sionmodel in which covariateXj is used as a response variable,

and all other covariates as explanatory variables. A high R2 in

such a model means that most of the variation in covariate Xj

is explained by all other covariates, which means that there is

collinearity. The price one pays for this situation is that the

standard errors of the parameters are inflated with the square

root of 1 ⁄ (1 ) Rj
2), also called the variance inflation factor

(VIF), whichmeans that theP-values get largermaking itmore

difficult to detect an effect. This phenomenon is illustrated in

Table 1; the third column of the table gives the VIF values for

all covariates and shows that there is a high level of collinearity.

One strategy for addressing this problem is to sequentially

drop the covariate with the highest VIF, recalculate the VIFs

and repeat this process until all VIFs are smaller than a pre-

selected threshold. Montgomery & Peck (1992) used a value of

10, but amore stringent approach is to use values as low as 3 as

we did here. High, or even moderate, collinearity is especially

problematic when ecological signals are weak. In that case,

even a VIF of 2 may cause nonsignificant parameter estimates,

compared to the situation without collinearity. Following this

process caused three variables to be dropped fromour analysis:

the tall Spartina alterniflora, and those for plant height and

stem density. With the collinearity problem removed, the

Juncus variable is shown to be highly significant (Table 1).

Sequentially dropping further nonsignificant terms one at a

time gives a model with only the Juncus and Shrub variables,

but with little further change in P-values, showing how drop-

ping collinear variables can have a bigger impact on P-values

than dropping nonsignificant covariates.

Other ways to detect collinearity include pairwise scatter-

plots comparing covariates, correlation coefficients or a PCA

biplot (Jolliffe 2002) applied on all covariates. Collinearity can

also be expected if temporal (e.g. month, year) or spatial vari-

ables (e.g. latitude, longitude) are used together with covariates

like temperature, rainfall, etc. Therefore, one should always

plot all covariates against temporal and spatial covariates. The

easiest way to solve collinearity is by dropping collinear covari-

ates. The choice of which covariates to drop can be based on

the VIFs, or perhaps better, on common sense or biological

knowledge. An alternative consideration, especially when

future work on the topic will be done, is how easy alternative

covariates are tomeasure in terms of effort and cost.Whenever

two covariatesX andZ are collinear, andZ is used in the statis-

tical analysis, then the biological discussion in which the effect

of Z is explained should include mention of the collinearity,

and recognize that it might well be X that is driving the system

(cf. Gjerdrum et al. 2008). For a discussion of collinearity in

combination with measurement errors on the covariates, see

Carroll et al. (2006).

Table 1. P-values of the t-statistic for three linear regression models and variance inflation factor (VIF) values for the full model. In the full

model, the number of banded sparrows, which is a measure of how many birds were present, is modelled as a function of the covariates listed in

the first column. In the second and third columns, the P-values and VIF values for the full model are presented (note that no variables have been

removed yet). In the fourth column P-values are presented for the model after collinearity has been removed by sequentially deleting each

variable for which the VIF value was highest until all remaining VIFs were below 3. In the last column, only variables with significant P-values

remain, giving themost parsimonious explanation for the number of sparrows in a plot

Covariate P-value (full model) VIF P-value (collinearity removed) P-value (reduced model)

% Juncus gerardii 0Æ0203 44Æ9953 0Æ0001 0Æ00004
% Shrub 0Æ9600 2Æ7818 0Æ0568 0Æ0727
Height of thatch 0Æ9989 1Æ6712 0Æ8263
% Spartina patens 0Æ0640 159Æ3506 0Æ3312
% Distichlis spicata 0Æ0527 53Æ7545 0Æ2538
% Bare ground 0Æ0666 12Æ0586 0Æ8908
% Other vegetation 0Æ0730 5Æ8170 0Æ9462
% Phragmites australis 0Æ0715 3Æ7490 0Æ2734
% Tall sedge 0Æ2160 4Æ4093 0Æ4313
% Water 0Æ0568 17Æ0677 0Æ6942
% Spartina alterniflora (short) 0Æ0549 121Æ4637 0Æ2949
% Spartina alterniflora (tall) 0Æ0960 159Æ3828
Maximum vegetation height 0Æ2432 6Æ1200
Vegetation stem density 0Æ7219 3Æ2064
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Step 6: What are the relationships between Y
and X variables?

Another essential part of data exploration, especially in

univariate analysis, is plotting the response variable vs. each

covariate (Fig. 9). Note that the variable for the per cent of tall

sedge in a plot (%Tall sedge) should be dropped from any

analysis as it has only one non-zero value. This result shows

that the boxplots and Cleveland dotplots should not only be

applied on the response variable but also on covariates (i.e. we

should not have calculated theVIFswith%Tall sedge included

in the previous section). There are no clear patterns in Fig. 9

between the response and explanatory variables, except per-

haps for the amount of Juncus (see also Table 1). Note that the

absence of clear patterns does not mean that there are no rela-

tionships; it just means that there are no clear two-way rela-

tionships. A model with multiple explanatory variables may

still provide a good fit.

Besides visualizing relationships between variables, scatter-

plots are also useful to detect observations that do not comply

with the general pattern between two variables. Figure 10

shows a multi-panel scatterplot (also called a pair plot) for the

1295 saltmarsh sparrows for which we have morphological

data. Any observation that sticks out from the black cloud

needs further investigation; these may be different species,

measurement errors, typing mistakes or they may be correct

values after all. Note that the large wing length observation

that we picked up with the Cleveland dotplot in Fig. 2b has

average values for all other variables, suggesting that it is

indeed something that should be checked. The lower panels in

Fig. 10 contain Pearson correlation coefficients, which can be

influenced by outliers meaning that outliers can even contrib-

ute to collinearity.

Step 7: Should we consider interactions?

Staying with the sparrow morphometric data, suppose that

one asks whether the relationship between wing length and

weight changes over the months and differs between sexes. A

common approach to this analysis is to apply a linear regres-

sion model in which weight is the response variable and wing

length (continuous), sex (categorical) and month (categorical)
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are covariates. Results showed that the three-way interaction is

significant, indicating that the relationship between weight and

wing length is indeed changing over the months and between

sexes. However, there is a problemwith this analysis. Figure 11

shows the data in a coplot, which is an excellent graphical tool

to visualize the potential presence of interactions. The graph

contains multiple scatterplots of wing length and weight; one

for eachmonth and sex combination. A bivariate linear regres-

sion line is added to each scatterplot; if all lines are parallel,

then there is probably no significant interaction (although only

the regression analysis can tell us whether this is indeed the

case). In our example, lines have different slopes, indicating the

potential presence of interactions. In some months, however,

the number of observations is very small, and there are no data

at all from males in September. A sensible approach would be

to repeat the analysis for only the June–August period.

Step 8: Are observations of the response
variable independent?

A crucial assumption of most statistical techniques is that

observations are independent of one another (Hurlbert 1984),

meaning that information from any one observation should

not provide information on another after the effects of other

variables have been accounted for. This concept is best

explainedwith examples.

The observations from the sparrow abundance data set were

taken at multiple locations. If birds at locations close to each

other have characteristics that are more similar to each other

than to birds from locations separated by larger distances, then

we would violate the independence assumption. Another

example is when multiple individuals of the same family (e.g.

all of the young from one nest) are sampled; these individuals

might be more similar to each other than random individuals

in the population, because they share a similar genetic make-

up and similar parental provisioning history.

When such dependence arises, the statistical model used to

analyse the data needs to account for it. For example, by mod-

elling any spatial or temporal relationships, or by nesting data

in a hierarchical structure (e.g. nestlings could be nested within

nests). Testing for independence, however, is not always easy.

In Zuur et al. (2009a) a large number of data sets were analy-

sed in which dependence among observations played a role.

Examples include the amount of bioluminescence at sites along

an oceanic depth gradient, nitrogen isotope ratios in whale

teeth as a function of age, pH values in Irish rivers, the number

of amphibians killed by cars at various locations along a road,

feeding behaviour of different godwits on a beach, the number

of disease-causing spores affecting larval honey bees frommul-

tiple hives and the number of calls from owl chicks upon arri-

val of a parent. Another commonly encountered situation

where non-independence must be addressed is when there is

phylogenetic structure (i.e. dependence due to shared ancestry)

within a data set.

There aremany ways to include a temporal or spatial depen-

dence structure in a model for analysis. These include using

lagged response variables as covariates (Brockwell & Davis

2002), mixed effects modelling (Pinheiro & Bates 2000), impos-

ing a residual correlation structure using generalized least

squares (Zuur et al. 2009a) or allowing regression parameters

to change over time (Harvey 1989). It is also possible to fit a

model with and without a correlation structure, and compare

the models using a selection criterion or hypothesis test

(Pinheiro & Bates 2000). The presence of a dependence struc-

ture in the raw data may be modelled with a covariate such as

month or temperature, or the inclusion of a smoothing func-

tion of time or a two-dimensional smoother of spatial coordi-

nates (Wood 2006). Regardless of the method used, the model

residuals should not contain any dependence structure. Quite

often a residual correlation structure is caused by an important

covariate that was not measured. If this is the case, it may not

be possible to resolve the problem.

When using regression techniques, the independence

assumption is rather important and violation may increase the

type I error. For example, Ostrom (1990) showed that ignoring

auto-correlation may give P-values that are 400% inflated.
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Hence, it is important to check whether there is dependence in

the raw data before doing the analysis, and also the residuals

afterwards. These checks can be made by plotting the response

variable vs. time or spatial coordinates. Any clear pattern is a

sign of dependence. This approach is more difficult if there is

no clear sequence to the observations (e.g. multiple observa-

tions on the same object), but in this case one can include a

dependence structure using random effects (Pinheiro & Bates

2000; Fitzmaurice et al. 2004; Brown & Prescott 2006; Zuur

et al. 2009a). Figure 12a,c shows a short time series illustrating

the observed abundance of two bird species on a mudflat in

Argentina over a 52 week period (E. Ieno, unpublished data).

The first time series shows high numbers of white-rumped

sandpipers Calidris fuscicollis during the first 20 weeks, fol-

lowed by zeros (because the species migrates), and then an

abundance increase again after 38 weeks. The second time ser-

ies does not show a clear pattern in the abundance of kelp gulls

(Larus dominicanus).

A more formal way to assess the presence of temporal

dependence is to plot auto-correlation functions (ACF) for

regularly spaced time series, or variograms for irregularly

spaced time series and spatial data (Schabenberger & Pierce

2002). An ACF calculates the Pearson correlation between a

time series and the same time series shifted by k time units.

Figures 12b,d show the auto-correlation of the time series in

panels (a) and (c). Panel (b) shows a significant correlationwith

a time lag of k = 1 and k = 2. This means that abundances at

time t depend on abundances at time t ) 1 and t ) 2, and any

of the methods mentioned above could be applied. For

the L. dominicanus time series, there is no significant auto-

correlation.

Discussion

All of the problems described in this paper, and the strategies

to address them, apply throughout ecological research, but

they are particularly relevant when results are to be used to

guide management decisions or public policy because of the

repercussions of making a mistake. Increasing attention has

been paid in recent years to the body of data supporting partic-

ular management practices (Roberts, Stewart & Pullin 2006;

Pullin & Knight 2009), and applied ecologists have become

increasingly sophisticated in the statistical methods that they

use (e.g. Ellison 2004; Stephens et al. 2005; Robinson & Ha-

mann 2008; Koper & Manseau 2009; Law et al. 2009; Sonde-

regger et al. 2009). But more fundamental questions about the

appropriateness of the underlying data for a given analysis can

be just as important to ensuring that the best policies are

derived from ecological studies.

In this paper, we have discussed a series of pitfalls that can

seriously influence the results of an analysis. Some of these

problems are well known, some less so, but even the well-

known assumptions continue to be violated frequently in the

ecological literature. In all cases, the problems can lead to sta-

tistical models that are wrong. Such problems can be avoided

only by applying a systematic data exploration before embark-

ing on the analysis (Fig. 1).

Although we have presented our protocol as a linear

sequence, it should be used flexibly. Not every data set requires

each step. For example, some statistical techniques do not

require normality (e.g. PCA), and therefore there is no point in

making histograms. The best order to apply the steps may also

depend on the specific data set. And for some techniques,

assumptions can be verified only by applying data explorations

steps after the analysis has been performed.For example, in lin-

ear regression, normality and homogeneity should be verified

using the residuals produced by the model. Rather than sim-

plistically following through the protocol, ticking off each

point inorder, wewould encourage users to treat it as a series of

questions to be asked of the data. Once satisfied that each issue

has been adequately addressed in a way that makes biological

sense, the data set shouldbe ready for themain analysis.

5 10 15 20 25

0
40

0
80

0

Time (2 weeks)

C
. f

us
ci

co
lli

s 
ab

un
da

nc
e

0 2 4 6 8 10 12

–0
·4

0·
2

0·
8

Lag

A
C

F

C. fuscicollis ACF

5 10 15 20 25

0
4

8
12

Time (2 weeks)L.
 d

om
in

ic
an

us
 a

bu
nd

an
ce

0 2 4 6 8 10 12

–0
·4

0·
2

0·
8

Lag

A
C

F

L. dominicanus ACF

(a) (b)

(c) (d)
Fig. 12. (a) Number of Calidris fuscicollis

plotted vs. time (1 unit = 2 weeks). (b)

Auto-correlation function for the C. fusci-

collis time series showing a significant

correlation at time lags of 2 and 4 weeks

(1 time lag = 2 weeks). (c) Number of Larus

dominicanus vs. time. (d) Auto-correlation

function for L. dominicanus showing no

significant correlation. Dotted lines in panels

(b) and (d) are c. 95% confidence bands.

The auto-correlation with time lag 0 is, by

definition, equal to 1.
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Ecological field data tend to be noisy, field conditions

unpredictable and prior knowledge often limited. In the

applied realm, changes in funding, policy, and research prior-

ities further complicate matters. This situation is especially so

for long-term studies, where the initial goals often change

with circumstances (e.g. the use of many data sets to examine

species responses to climate change). For all these reasons,

the idealized situation whereby an ecologist carefully designs

their analysis a priori and then collects data may be compro-

mised or irrelevant. Having the analytical flexibility to adjust

one’s analyses to such circumstance is an important skill for

an applied ecologist, but it requires a thorough understand-

ing of the constraining assumptions imposed by a given data

set.

When problems arise, the best solutions vary. Frequently,

however, ecologists simply transform data to avoid assump-

tion violations. There are three main reasons for a transforma-

tion; to reduce the effect of outliers (especially in covariates), to

stabilize the variance and to linearize relationships. However,

using more advanced techniques like GLS and GAMs, hetero-

geneity and nonlinearity problems can be solved, making

transformation less important. Zuur et al. (2009a) showed

how the use of a data transformation resulted in different con-

clusions about long-term trends compared to an appropriate

analysis using untransformed data; hence it may be best to

avoid transforming response variables. If a transformation is

used, automatic selection tools such as Mosteller and Tukey’s

bulging rule (Mosteller & Tukey 1977) should be used with

great caution because these methods ignore the effects of cova-

riates. Another argument against transformations is the need

to subsequently back-transform values to make predictions; it

may not always be clear how to do this and still be able to inter-

pret results on the original scale of the response variable. It is

also important to ensure that the transformation actually

solves the problem at hand; even commonly recommended

transformations do not always work. The bottom line is that

the choice of a specific transformation is a matter of trial and

error.

It is a given fact that data exploration should not be used to

define the questions that a study sets out to test. Every step of

the exploration should be reported, and any outlier removed

should be justified and mentioned. Reasons for data transfor-

mations need to be justified based on the exploratory analysis

(e.g. evidence that model assumptions were violated and that

the transformation rectified the situation).

Applying data exploration (e.g. scatterplots to visualize rela-

tionships between response and explanatory variables) to cre-

ate hypotheses and then using the same data to test these

hypotheses should be avoided. If one has limited a priori

knowledge, then a valid approach is to create two data sets;

apply data exploration on the first data set to create hypotheses

and use the second data set to test the hypotheses. Such a pro-

cess, however, is only practical for larger data sets. Regardless

of the specific situation, the routine use and transparent report-

ing of systematic data exploration would improve the quality

of ecological research and any applied recommendations that

it produces.
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