
09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf6.html

https://cran.r-project.org/web/packages/sf/vignettes/sf6.html 1/5

6. Miscellaneous
What is this EPSG code all about?
How does sf deal with secondary geometry columns?
Does st_simplify preserve topology?
Why do dplyr verbs not work for sf objects?
What is this error/warning/message about?

although coordinates are longitude/latitude, xxx assumes that they are planar
st_centroid does not give correct centroids for longitude/latitude data
dist is assumed to be in decimal degrees (arc_degrees).

This vignette describes a number of issues that did not come up in the previous vignettes, and that may or
may not be categorized as “frequently asked questions”. Readers are encouraged to provide entries for this
vignette (as for the others).

What is this EPSG code all about?
EPSG stands for a maintained, well-understood set of spatial reference systems, maintained by the
International Association of Oil & Gass Producers (IOGP), and found at epsg.org (http://epsg.org/). From R,
we can get access to the EPSG dataset programatically (as a data.frame) by:

rgdal::make_EPSG()

see also the �rst vignette.

How does sf deal with secondary geometry
columns?
sf objects can have more than one geometry list-column, but always only one geometry column is

considered active, and returned by st_geometry . When there are multiple geometry columns, the default
print methods reports which one is active:

http://epsg.org/

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf6.html

https://cran.r-project.org/web/packages/sf/vignettes/sf6.html 2/5

library(sf)
demo(nc, ask = FALSE, echo = FALSE)
Reading layer `nc.gpkg' from data source `/tmp/Rtmpaq4C0b/Rinst79437936646a/sf/gpkg/nc.gpk
g' using driver `GPKG'
Simple feature collection with 100 features and 14 fields
Attribute-geometry relationship: 0 constant, 8 aggregate, 6 identity
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
epsg (SRID): 4267
proj4string: +proj=longlat +datum=NAD27 +no_defs
nc$geom2 = st_centroid(st_geometry(nc))
Warning in st_centroid.sfc(st_geometry(nc)): st_centroid does not give
correct centroids for longitude/latitude data
print(nc, n = 2)
Simple feature collection with 100 features and 14 fields
Attribute-geometry relationship: 0 constant, 8 aggregate, 6 identity, 1 NA's
Active geometry column: geom
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
epsg (SRID): 4267
proj4string: +proj=longlat +datum=NAD27 +no_defs
First 2 features:
AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74
1 0.114 1.442 1825 1825 Ashe 37009 37009 5 1091
2 0.061 1.231 1827 1827 Alleghany 37005 37005 3 487
SID74 NWBIR74 BIR79 SID79 NWBIR79 geom
1 1 10 1364 0 19 MULTIPOLYGON (((-81.47276 3...
2 0 10 542 3 12 MULTIPOLYGON (((-81.23989 3...
geom2
1 POINT (-81.49826 36.4314)
2 POINT (-81.12515 36.49101)

We can switch the active geometry by using st_geometry<- or st_set_geometry , as in

plot(st_geometry(nc))

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf6.html

https://cran.r-project.org/web/packages/sf/vignettes/sf6.html 3/5

st_geometry(nc) <- "geom2"
plot(st_geometry(nc))

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf6.html

https://cran.r-project.org/web/packages/sf/vignettes/sf6.html 4/5

Does st_simplify preserve topology?
st_simplify is a topology-preserving function, but does this on the level of individual feature geometries.

That means, simply said, that after applying it, a polygon will still be a polygon. However when two features
have a longer shared boundary, applying st_simplify to the object does not guarantee that in the resulting
object these two polygons still have the same boundary in common, since the simpli�cation is done
independently, for each feature geometry.

Why do dplyr verbs not work for sf objects?
They do! However, many developers like to write scripts that never load packages but address all functions
by the sf:: pre�x, as in

i = sf::st_intersects(sf1, sf2)

This works up to the moment that a dplyr generic like select for an sf object is needed: should one call
dplyr::select (won’t know it should search in package sf) or sf::select (which doesn’t exist)? Neither

works. One should in this case simply load sf , e.g. by

library(sf)

What is this error/warning/message about?

although coordinates are longitude/latitude, xxx
assumes that they are planar
Most (but not all) of the geometry calculating routines used by sf come from the GEOS
(https://trac.osgeo.org/geos/) library. This library considers coordinates in a two-dimensional, �at, Euclidian
space. For longitude latitude data, this is not the case. A simple example is a polygon enclosing the North
pole, which should include the pole:

polygon = st_sfc(st_polygon(list(rbind(c(0,80), c(120,80), c(240,80), c(0,80)))),
 crs = 4326)
pole = st_sfc(st_point(c(0,90)), crs = 4326)
st_intersects(polygon, pole)
although coordinates are longitude/latitude, st_intersects assumes that they are planar
Sparse geometry binary predicate list of length 1, where the predicate was `intersects'
1: (empty)

which gives a wrong result (no intersection).

st_centroid does not give correct centroids for
longitude/latitude data
Similar to the above, centroids are computed assuming �at, 2D space:

https://trac.osgeo.org/geos/

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf6.html

https://cran.r-project.org/web/packages/sf/vignettes/sf6.html 5/5

st_centroid(polygon)[[1]]
Warning in st_centroid.sfc(polygon): st_centroid does not give correct
centroids for longitude/latitude data
POINT (120 80)

where the centroid should have been the pole.

dist is assumed to be in decimal degrees
(arc_degrees).
This message indicates that sf assumes a distance value is given in degrees. To avoid this message, pass a
value with the right units:

pt = st_sfc(st_point(c(0,0)), crs = 4326)
buf = st_buffer(polygon, 1)
Warning in st_buffer.sfc(polygon, 1): st_buffer does not correctly buffer
longitude/latitude data
dist is assumed to be in decimal degrees (arc_degrees).
buf = st_buffer(polygon, units::set_units(1, degree))
Warning in st_buffer.sfc(polygon, units::set_units(1, degree)): st_buffer
does not correctly buffer longitude/latitude data

