
18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 1/23

1. Simple Features for R
What is a feature?

Dimensions
Simple feature geometry types
Coordinate reference system

How simple features in R are organized
sf: objects with simple features
sfc: simple feature geometry list-column
Mixed geometry types
sfg: simple feature geometry
Well-known text, well-known binary, precision

WKT and WKB
Precision

Reading and writing
Driver-speci�c options
Create, read, update and delete
Benchmarks
Connection to spatial databases

Coordinate reference systems and transformations
Conversion, including to and from sp
Geometrical operations
Non-valid geometries

Units
How attributes relate to geometries

Simple features (https://en.wikipedia.org/wiki/Simple_Features) or simple feature access
(http://www.opengeospatial.org/standards/sfa) refers to a formal standard (ISO 19125-1:2004) that
describes how objects in the real world can be represented in computers, with emphasis on the spatial
geometry of these objects. It also describes how such objects can be stored in and retrieved from databases,
and which geometrical operations should be de�ned for them.

The standard is widely implemented in spatial databases (such as PostGIS), commercial GIS (e.g., ESRI ArcGIS
(http://www.esri.com/)) and forms the vector data basis for libraries such as GDAL (http://www.gdal.org/). A
subset of simple features forms the GeoJSON (http://geojson.org/) standard.

R has well-supported classes for storing spatial data (sp (https://CRAN.R-project.org/package=sp)) and
interfacing to the above mentioned environments (rgdal (https://CRAN.R-project.org/package=rgdal), rgeos
(https://CRAN.R-project.org/package=rgeos)), but has so far lacked a complete implementation of simple
features, making conversions at times convoluted, ine�cient or incomplete. The package sf
(http://github.com/r-spatial/sf) tries to �ll this gap, and aims at succeeding sp (https://CRAN.R-
project.org/package=sp) in the long term.

This vignette:

explains what is meant by features, and by simple features
shows how they are implemented in R
provides examples of how you can work with them
shows how they can be read from and written to external �les or resources
discusses how they can be converted to and from sp objects
shows how they can be used for meaningful spatial analysis

https://en.wikipedia.org/wiki/Simple_Features
http://www.opengeospatial.org/standards/sfa
http://www.esri.com/
http://www.gdal.org/
http://geojson.org/
https://cran.r-project.org/package=sp
https://cran.r-project.org/package=rgdal
https://cran.r-project.org/package=rgeos
http://github.com/r-spatial/sf
https://cran.r-project.org/package=sp

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 2/23

What is a feature?
A feature is thought of as a thing, or an object in the real world, such as a building or a tree. As is the case
with objects, they often consist of other objects. This is the case with features too: a set of features can
form a single feature. A forest stand can be a feature, a forest can be a feature, a city can be a feature. A
satellite image pixel can be a feature, a complete image can be a feature too.

Features have a geometry describing where on Earth the feature is located, and they have attributes, which
describe other properties. The geometry of a tree can be the delineation of its crown, of its stem, or the
point indicating its centre. Other properties may include its height, color, diameter at breast height at a
particular date, and so on.

The standard says: “A simple feature is de�ned by the OpenGIS Abstract speci�cation to have both spatial
and non-spatial attributes. Spatial attributes are geometry valued, and simple features are based on 2D
geometry with linear interpolation between vertices.” We will see soon that the same standard will extend
its coverage beyond 2D and beyond linear interpolation. Here, we take simple features as the data
structures and operations described in the standard (http://www.opengeospatial.org/standards/sfa).

Dimensions
All geometries are composed of points. Points are coordinates in a 2-, 3- or 4-dimensional space. All points in
a geometry have the same dimensionality. In addition to X and Y coordinates, there are two optional
additional dimensions:

a Z coordinate, denoting altitude
an M coordinate (rarely used), denoting some measure that is associated with the point, rather than
with the feature as a whole (in which case it would be a feature attribute); examples could be time of
measurement, or measurement error of the coordinates

The four possible cases then are:

1. two-dimensional points refer to x and y, easting and northing, or longitude and latitude, we refer to
them as XY

2. three-dimensional points as XYZ
3. three-dimensional points as XYM
4. four-dimensional points as XYZM (the third axis is Z, fourth M)

Simple feature geometry types
The following seven simple feature types are the most common, and are for instance the only ones used for
GeoJSON (https://tools.ietf.org/html/rfc7946):

type description

POINT zero-dimensional geometry containing a single point

LINESTRING sequence of points connected by straight, non-self
intersecting line pieces; one-dimensional geometry

POLYGON geometry with a positive area (two-dimensional); sequence
of points form a closed, non-self intersecting ring; the �rst
ring denotes the exterior ring, zero or more subsequent
rings denote holes in this exterior ring

http://www.opengeospatial.org/standards/sfa
https://tools.ietf.org/html/rfc7946

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 3/23

type description

MULTIPOINT set of points; a MULTIPOINT is simple if no two Points in the
MULTIPOINT are equal

MULTILINESTRING set of linestrings

MULTIPOLYGON set of polygons

GEOMETRYCOLLECTION set of geometries of any type except
GEOMETRYCOLLECTION

Each of the geometry types can also be a (typed) empty set, containing zero coordinates (for POINT the
standard is not clear how to represent the empty geometry). Empty geometries can be thought of being the
analogue to missing (NA) attributes, NULL values or empty lists.

The remaining geometries 10 are more rare, but increasingly �nd implementations:

type description

CIRCULARSTRING The CIRCULARSTRING is the basic curve type, similar to a
LINESTRING in the linear world. A single segment requires
three points, the start and end points (�rst and third) and
any other point on the arc. The exception to this is for a
closed circle, where the start and end points are the same. In
this case the second point MUST be the center of the arc, ie
the opposite side of the circle. To chain arcs together, the
last point of the previous arc becomes the �rst point of the
next arc, just like in LINESTRING. This means that a valid
circular string must have an odd number of points greated
than 1.

COMPOUNDCURVE A compound curve is a single, continuous curve that has both
curved (circular) segments and linear segments. That means
that in addition to having well-formed components, the end
point of every component (except the last) must be
coincident with the start point of the following component.

CURVEPOLYGON Example compound curve in a curve polygon:
CURVEPOLYGON(COMPOUNDCURVE(CIRCULARSTRING(0 0,2
0, 2 1, 2 3, 4 3),(4 3, 4 5, 1 4, 0 0)), CIRCULARSTRING(1.7 1, 1.4
0.4, 1.6 0.4, 1.6 0.5, 1.7 1))

MULTICURVE A MultiCurve is a 1-dimensional GeometryCollection whose
elements are Curves, it can include linear strings, circular
strings or compound strings.

MULTISURFACE A MultiSurface is a 2-dimensional GeometryCollection whose
elements are Surfaces, all using coordinates from the same
coordinate reference system.

CURVE A Curve is a 1-dimensional geometric object usually stored as
a sequence of Points, with the subtype of Curve specifying
the form of the interpolation between Points

SURFACE A Surface is a 2-dimensional geometric object

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 4/23

type description

POLYHEDRALSURFACE A PolyhedralSurface is a contiguous collection of polygons,
which share common boundary segments

TIN A TIN (triangulated irregular network) is a PolyhedralSurface
consisting only of Triangle patches.

TRIANGLE A Triangle is a polygon with 3 distinct, non-collinear vertices
and no interior boundary

Note that CIRCULASTRING , COMPOUNDCURVE and CURVEPOLYGON are not described in the SFA standard, but in
the SQL-MM part 3 standard (https://www.iso.org/standard/38651.html). The descriptions above were
copied from the PostGIS manual (http://postgis.net/docs/using_postgis_dbmanagement.html).

Coordinate reference system
Coordinates can only be placed on the Earth’s surface when their coordinate reference system (CRS) is
known; this may be an spheroid CRS such as WGS84, a projected, two-dimensional (Cartesian) CRS such as a
UTM zone or Web Mercator, or a CRS in three-dimensions, or including time. Similarly, M-coordinates need
an attribute reference system, e.g. a measurement unit (https://CRAN.R-project.org/package=units).

How simple features in R are organized
Package sf represents simple features as native R objects. Similar to PostGIS (http://postgis.net/), all
functions and methods in sf that operate on spatial data are pre�xed by st_ , which refers to spatial and
temporal; this makes them easily �ndable by command-line completion. Simple features are implemented as
R native data, using simple data structures (S3 classes, lists, matrix, vector). Typical use involves reading,
manipulating and writing of sets of features, with attributes and geometries.

As attributes are typically stored in data.frame objects (or the very similar tbl_df), we will also store
feature geometries in a data.frame column. Since geometries are not single-valued, they are put in a list-
column, a list of length equal to the number of records in the data.frame , with each list element holding
the simple feature geometry of that feature. The three classes used to represent simple features are:

sf , the table (data.frame) with feature attributes and feature geometries, which contains
sfc , the list-column with the geometries for each feature (record), which is composed of
sfg , the feature geometry of an individual simple feature.

We will now discuss each of these three classes.

sf: objects with simple features
As we usually do not work with geometries of single simple features, but with datasets consisting of sets of
features with attributes, the two are put together in sf (simple feature) objects. The following command
reads the nc dataset from a �le that is contained in the sf package:

https://www.iso.org/standard/38651.html
http://postgis.net/docs/using_postgis_dbmanagement.html
https://cran.r-project.org/package=units
http://postgis.net/

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 5/23

library(sf)
Linking to GEOS 3.6.2, GDAL 2.2.3, proj.4 4.9.3
nc <- st_read(system.file("shape/nc.shp", package="sf"))
Reading layer `nc' from data source `/tmp/Rtmpaq4C0b/Rinst79437936646a/sf/shape/nc.shp' us
ing driver `ESRI Shapefile'
Simple feature collection with 100 features and 14 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
epsg (SRID): 4267
proj4string: +proj=longlat +datum=NAD27 +no_defs

(Note that users will not use system.file but give a filename directly, and that shape�les consist of more
than one �le, all with identical basename, which reside in the same directory.) The short report printed gives
the �le name, the driver (ESRI Shape�le), mentions that there are 100 features (records, represented as
rows) and 14 �elds (attributes, represented as columns). This object is of class

class(nc)
[1] "sf" "data.frame"

meaning it extends (and “is” a) data.frame , but with a single list-column with geometries, which is held in
the column with name

attr(nc, "sf_column")
[1] "geometry"

If we print the �rst three features, we see their attribute values and an abridged version of the geometry

print(nc[9:15], n = 3)

which would give the following output:

In the output we see:

in green a simple feature: a single record, or data.frame row, consisting of attributes and geometry
in blue a single simple feature geometry (an object of class sfg)
in red a simple feature list-column (an object of class sfc , which is a column in the data.frame)
that although geometries are native R objects, they are printed as well-known text

Methods for sf objects are

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 6/23

methods(class = "sf")
[1] $<- [[[<-
[4] aggregate as.data.frame cbind
[7] coerce dbDataType dbWriteTable
[10] identify initialize merge
[13] plot print rbind
[16] show slotsFromS3 st_agr
[19] st_agr<- st_as_sf st_bbox
[22] st_boundary st_buffer st_cast
[25] st_centroid st_collection_extract st_convex_hull
[28] st_coordinates st_crs st_crs<-
[31] st_difference st_geometry st_geometry<-
[34] st_intersection st_is st_line_merge
[37] st_node st_point_on_surface st_polygonize
[40] st_precision st_segmentize st_set_precision
[43] st_simplify st_snap st_sym_difference
[46] st_transform st_triangulate st_union
[49] st_voronoi st_wrap_dateline st_write
[52] st_zm
see '?methods' for accessing help and source code

It is also possible to create data.frame objects with geometry list-columns that are not of class sf , e.g. by

nc.no_sf <- as.data.frame(nc)
class(nc.no_sf)
[1] "data.frame"

However, such objects:

no longer register which column is the geometry list-column
no longer have a plot method, and
lack all of the other dedicated methods listed above for class sf

sfc: simple feature geometry list-column
The column in the sf data.frame that contains the geometries is a list, of class sfc . We can retrieve the
geometry list-column in this case by nc$geom or nc[[15]] , but the more general way uses st_geometry :

(nc_geom <- st_geometry(nc))
Geometry set for 100 features
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
epsg (SRID): 4267
proj4string: +proj=longlat +datum=NAD27 +no_defs
First 5 geometries:
MULTIPOLYGON (((-81.47276 36.23436, -81.54084 3...
MULTIPOLYGON (((-81.23989 36.36536, -81.24069 3...
MULTIPOLYGON (((-80.45634 36.24256, -80.47639 3...
MULTIPOLYGON (((-76.00897 36.3196, -76.01735 36...
MULTIPOLYGON (((-77.21767 36.24098, -77.23461 3...

Geometries are printed in abbreviated form, but we can can view a complete geometry by selecting it,
e.g. the �rst one by

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 7/23

nc_geom[[1]]
MULTIPOLYGON (((-81.47276 36.23436, -81.54084 36.27251, -81.56198 36.27359, -81.63306 36.3
4069, -81.74107 36.39178, -81.69828 36.47178, -81.7028 36.51934, -81.67 36.58965, -81.3453 3
6.57286, -81.34754 36.53791, -81.32478 36.51368, -81.31332 36.4807, -81.26624 36.43721, -81.2
6284 36.40504, -81.24069 36.37942, -81.23989 36.36536, -81.26424 36.35241, -81.32899 36.3635,
 -81.36137 36.35316, -81.36569 36.33905, -81.35413 36.29972, -81.36745 36.2787, -81.40639 36.
28505, -81.41233 36.26729, -81.43104 36.26072, -81.45289 36.23959, -81.47276 36.23436)))

The way this is printed is called well-known text, and is part of the standards. The word MULTIPOLYGON is
followed by three parenthesis, because it can consist of multiple polygons, in the form of
MULTIPOLYGON(POL1,POL2) , where POL1 might consist of an exterior ring and zero or more interior rings, as

of (EXT1,HOLE1,HOLE2) . Sets of coordinates are held together with parenthesis, so we get
((crds_ext)(crds_hole1)(crds_hole2)) where crds_ is a comma-separated set of coordinates of a ring.

This leads to the case above, where MULTIPOLYGON(((crds_ext))) refers to the exterior ring (1), without
holes (2), of the �rst polygon (3) - hence three parentheses.

We can see there is a single polygon with no rings:

par(mar = c(0,0,1,0))
plot(nc[1])
plot(nc[1,1], col = 'grey', add = TRUE)

but some of the polygons in this dataset have multiple exterior rings; they can be identi�ed by

par(mar = c(0,0,1,0))
(w <- which(sapply(nc_geom, length) > 1))
[1] 4 56 57 87 91 95
plot(nc[w,1], col = 2:7)

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 8/23

Following the MULTIPOLYGON datastructure, in R we have a list of lists of lists of matrices. For instance, we
get the �rst 3 coordinate pairs of the second exterior ring (�rst ring is always exterior) for the geometry of
feature 4 by

nc_geom[[4]][[2]][[1]][1:3,]
[,1] [,2]
[1,] -76.02717 36.55672
[2,] -75.99866 36.55665
[3,] -75.91192 36.54253

Geometry columns have their own class,

class(nc_geom)
[1] "sfc_MULTIPOLYGON" "sfc"

Methods for geometry list-columns include

methods(class = 'sfc')
[1] Ops [[<-
[4] as.data.frame c coerce
[7] format identify initialize
[10] print rep show
[13] slotsFromS3 st_as_binary st_as_text
[16] st_bbox st_boundary st_buffer
[19] st_cast st_centroid st_collection_extract
[22] st_convex_hull st_coordinates st_crs
[25] st_crs<- st_difference st_geometry
[28] st_intersection st_is st_line_merge
[31] st_node st_point_on_surface st_polygonize
[34] st_precision st_segmentize st_set_precision
[37] st_simplify st_snap st_sym_difference
[40] st_transform st_triangulate st_union
[43] st_voronoi st_wrap_dateline st_write
[46] st_zm str summary
see '?methods' for accessing help and source code

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 9/23

Coordinate reference systems (st_crs and st_transform) are discussed in the section on coordinate
reference systems. st_as_wkb and st_as_text convert geometry list-columns into well-known-binary or
well-known-text, explained below. st_bbox retrieves the coordinate bounding box.

Attributes include

attributes(nc_geom)
$n_empty
[1] 0

$crs
Coordinate Reference System:
EPSG: 4267
proj4string: "+proj=longlat +datum=NAD27 +no_defs"

$class
[1] "sfc_MULTIPOLYGON" "sfc"

$precision
[1] 0

$bbox
xmin ymin xmax ymax
-84.32385 33.88199 -75.45698 36.58965

Mixed geometry types
The class of nc_geom is c("sfc_MULTIPOLYGON", "sfc") : sfc is shared with all geometry types, and
sfc_TYPE with TYPE indicating the type of the particular geometry at hand.

There are two “special” types: GEOMETRYCOLLECTION , and GEOMETRY . GEOMETRYCOLLECTION indicates that each
of the geometries may contain a mix of geometry types, as in

(mix <- st_sfc(st_geometrycollection(list(st_point(1:2))),
 st_geometrycollection(list(st_linestring(matrix(1:4,2))))))
Geometry set for 2 features
geometry type: GEOMETRYCOLLECTION
dimension: XY
bbox: xmin: 1 ymin: 2 xmax: 2 ymax: 4
epsg (SRID): NA
proj4string: NA
GEOMETRYCOLLECTION (POINT (1 2))
GEOMETRYCOLLECTION (LINESTRING (1 3, 2 4))
class(mix)
[1] "sfc_GEOMETRYCOLLECTION" "sfc"

Still, the geometries are here of a single type.

The second GEOMETRY , indicates that the geometries in the geometry list-column are of varying type:

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 10/23

(mix <- st_sfc(st_point(1:2), st_linestring(matrix(1:4,2))))
Geometry set for 2 features
geometry type: GEOMETRY
dimension: XY
bbox: xmin: 1 ymin: 2 xmax: 2 ymax: 4
epsg (SRID): NA
proj4string: NA
POINT (1 2)
LINESTRING (1 3, 2 4)
class(mix)
[1] "sfc_GEOMETRY" "sfc"

These two are fundamentally di�erent: GEOMETRY is a superclass without instances, GEOMETRYCOLLECTION is
a geometry instance. GEOMETRY list-columns occur when we read in a data source with a mix of geometry
types. GEOMETRYCOLLECTION is a single feature’s geometry: the intersection of two feature polygons may
consist of points, lines and polygons, see the example below.

sfg: simple feature geometry
Simple feature geometry (sfg) objects carry the geometry for a single feature, e.g. a point, linestring or
polygon.

Simple feature geometries are implemented as R native data, using the following rules

1. a single POINT is a numeric vector
2. a set of points, e.g. in a LINESTRING or ring of a POLYGON is a matrix , each row containing a point
3. any other set is a list

Creator functions are rarely used in practice, since we typically bulk read and write spatial data. They are
useful for illustration:

(x <- st_point(c(1,2)))
POINT (1 2)
str(x)
Classes 'XY', 'POINT', 'sfg' num [1:2] 1 2
(x <- st_point(c(1,2,3)))
POINT Z (1 2 3)
str(x)
Classes 'XYZ', 'POINT', 'sfg' num [1:3] 1 2 3
(x <- st_point(c(1,2,3), "XYM"))
POINT M (1 2 3)
str(x)
Classes 'XYM', 'POINT', 'sfg' num [1:3] 1 2 3
(x <- st_point(c(1,2,3,4)))
POINT ZM (1 2 3 4)
str(x)
Classes 'XYZM', 'POINT', 'sfg' num [1:4] 1 2 3 4
st_zm(x, drop = TRUE, what = "ZM")
POINT (1 2)

This means that we can represent 2-, 3- or 4-dimensional coordinates. All geometry objects inherit from sfg
(simple feature geometry), but also have a type (e.g. POINT), and a dimension (e.g. XYM) class name. A
�gure illustrates six of the seven most common types.

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 11/23

With the exception of the POINT which has a single point as geometry, the remaining six common single
simple feature geometry types that correspond to single features (single records, or rows in a data.frame)
are created like this

p <- rbind(c(3.2,4), c(3,4.6), c(3.8,4.4), c(3.5,3.8), c(3.4,3.6), c(3.9,4.5))
(mp <- st_multipoint(p))
MULTIPOINT (3.2 4, 3 4.6, 3.8 4.4, 3.5 3.8, 3.4 3.6, 3.9 4.5)
s1 <- rbind(c(0,3),c(0,4),c(1,5),c(2,5))
(ls <- st_linestring(s1))
LINESTRING (0 3, 0 4, 1 5, 2 5)
s2 <- rbind(c(0.2,3), c(0.2,4), c(1,4.8), c(2,4.8))
s3 <- rbind(c(0,4.4), c(0.6,5))
(mls <- st_multilinestring(list(s1,s2,s3)))
MULTILINESTRING ((0 3, 0 4, 1 5, 2 5), (0.2 3, 0.2 4, 1 4.8, 2 4.8), (0 4.4, 0.6 5))
p1 <- rbind(c(0,0), c(1,0), c(3,2), c(2,4), c(1,4), c(0,0))
p2 <- rbind(c(1,1), c(1,2), c(2,2), c(1,1))
pol <-st_polygon(list(p1,p2))
p3 <- rbind(c(3,0), c(4,0), c(4,1), c(3,1), c(3,0))
p4 <- rbind(c(3.3,0.3), c(3.8,0.3), c(3.8,0.8), c(3.3,0.8), c(3.3,0.3))[5:1,]
p5 <- rbind(c(3,3), c(4,2), c(4,3), c(3,3))
(mpol <- st_multipolygon(list(list(p1,p2), list(p3,p4), list(p5))))
MULTIPOLYGON (((0 0, 1 0, 3 2, 2 4, 1 4, 0 0), (1 1, 1 2, 2 2, 1 1)), ((3 0, 4 0, 4 1, 3
 1, 3 0), (3.3 0.3, 3.3 0.8, 3.8 0.8, 3.8 0.3, 3.3 0.3)), ((3 3, 4 2, 4 3, 3 3)))
(gc <- st_geometrycollection(list(mp, mpol, ls)))
GEOMETRYCOLLECTION (MULTIPOINT (3.2 4, 3 4.6, 3.8 4.4, 3.5 3.8, 3.4 3.6, 3.9 4.5), MULTIPO
LYGON (((0 0, 1 0, 3 2, 2 4, 1 4, 0 0), (1 1, 1 2, 2 2, 1 1)), ((3 0, 4 0, 4 1, 3 1, 3 0),
 (3.3 0.3, 3.3 0.8, 3.8 0.8, 3.8 0.3, 3.3 0.3)), ((3 3, 4 2, 4 3, 3 3))), LINESTRING (0 3, 0
 4, 1 5, 2 5))

The objects created are shown here:

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 12/23

Geometries can also be empty, as in

(x <- st_geometrycollection())
GEOMETRYCOLLECTION EMPTY
length(x)
[1] 0

Well-known text, well-known binary, precision

WKT and WKB
Well-known text (WKT) and well-known binary (WKB) are two encodings for simple feature geometries.
Well-known text, e.g. seen in

x <- st_linestring(matrix(10:1,5))
st_as_text(x)
[1] "LINESTRING (10 5, 9 4, 8 3, 7 2, 6 1)"

(but without the leading ## [1] and quotes), is human-readable. Coordinates are usually �oating point
numbers, and moving large amounts of information as text is slow and imprecise. For that reason, we use
well-known binary (WKB) encoding

st_as_binary(x)
[1] 01 02 00 00 00 05 00 00 00 00 00 00 00 00 00 24 40 00 00 00 00 00 00
[24] 14 40 00 00 00 00 00 00 22 40 00 00 00 00 00 00 10 40 00 00 00 00 00
[47] 00 20 40 00 00 00 00 00 00 08 40 00 00 00 00 00 00 1c 40 00 00 00 00
[70] 00 00 00 40 00 00 00 00 00 00 18 40 00 00 00 00 00 00 f0 3f

WKT and WKB can both be transformed back into R native objects by

st_as_sfc("LINESTRING(10 5, 9 4, 8 3, 7 2, 6 1)")[[1]]
LINESTRING (10 5, 9 4, 8 3, 7 2, 6 1)
st_as_sfc(structure(list(st_as_binary(x)), class = "WKB"))[[1]]
LINESTRING (10 5, 9 4, 8 3, 7 2, 6 1)

GDAL, GEOS, spatial databases and GIS read and write WKB which is fast and precise. Conversion between R
native objects and WKB is done by package sf in compiled (C++/Rcpp) code, making this a reusable and fast
route for I/O of simple feature geometries in R.

Precision
One of the attributes of a geometry list-column (sfc) is the precision : a double number that, when non-
zero, causes some rounding during conversion to WKB, which might help certain geometrical operations
succeed that would otherwise fail due to �oating point representation. The model is that of GEOS, which
copies from the Java Topology Suite (JTS (http://tsusiatsoftware.net/jts/main.html)), and works like this:

if precision is zero (default, unspeci�ed), nothing is modi�ed
negative values convert to �oat (4-byte real) precision
positive values convert to round(x*precision)/precision .

For the precion model, see also here
(http://tsusiatsoftware.net/jts/javadoc/com/vividsolutions/jts/geom/PrecisionModel.html), where it is
written that: “… to specify 3 decimal places of precision, use a scale factor of 1000. To specify -3 decimal

http://tsusiatsoftware.net/jts/main.html
http://tsusiatsoftware.net/jts/javadoc/com/vividsolutions/jts/geom/PrecisionModel.html

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 13/23

places of precision (i.e. rounding to the nearest 1000), use a scale factor of 0.001.” Note that all coordinates,
so also Z or M values (if present) are a�ected. Choosing values for precision may require some
experimenting.

Reading and writing
As we’ve seen above, reading spatial data from an external �le can be done by

filename <- system.file("shape/nc.shp", package="sf")
nc <- st_read(filename)
Reading layer `nc' from data source `/tmp/Rtmpaq4C0b/Rinst79437936646a/sf/shape/nc.shp' us
ing driver `ESRI Shapefile'
Simple feature collection with 100 features and 14 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
epsg (SRID): 4267
proj4string: +proj=longlat +datum=NAD27 +no_defs

we can suppress the output by adding argument quiet=TRUE or by using the otherwise nearly identical but
more quiet

nc <- read_sf(filename)

Writing takes place in the same fashion, using st_write :

st_write(nc, "nc.shp")
Writing layer `nc' to data source `nc.shp' using driver `ESRI Shapefile'
features: 100
fields: 14
geometry type: Multi Polygon

If we repeat this, we get an error message that the �le already exists, and we can overwrite by

st_write(nc, "nc.shp", delete_layer = TRUE)
Deleting layer `nc' using driver `ESRI Shapefile'
Writing layer `nc' to data source `/tmp/Rtmpaq4C0b/Rbuild7943369cd14d/sf/vignettes/nc.shp'
 using driver `ESRI Shapefile'
features: 100
fields: 14
geometry type: Multi Polygon

or its quiet alternative that does this by default,

write_sf(nc, "nc.shp") # silently overwrites

Driver-speci�c options
The dsn and layer arguments to st_read and st_write denote a data source name and optionally a layer
name. Their exact interpretation as well as the options they support vary per driver, the GDAL driver
documentation (http://www.gdal.org/ogr_formats.html) is best consulted for this. For instance, a PostGIS
table in database postgis might be read by

http://www.gdal.org/ogr_formats.html

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 14/23

meuse <- st_read("PG:dbname=postgis", "meuse")

where the PG: string indicates this concerns the PostGIS driver, followed by database name, and possibly
port and user credentials. When the layer and driver arguments are not speci�ed, st_read tries to guess
them from the datasource, or else simply reads the �rst layer, giving a warning in case there are more.

st_read typically reads the coordinate reference system as proj4string , but not the EPSG (SRID). GDAL
cannot retrieve SRID (EPSG code) from proj4string strings, and, when needed, it has to be set by the user.
See also the section on crs (crs).

st_drivers() returns a data.frame listing available drivers, and their metadata: names, whether a driver
can write, and whether it is a raster and/or vector driver. All drivers can read. Reading of some common data
formats is illustrated below:

st_layers(dsn) lists the layers present in data source dsn , and gives the number of �elds, features and
geometry type for each layer:

st_layers(system.file("osm/overpass.osm", package="sf"))
Driver: OSM
Available layers:
layer_name geometry_type features fields
1 points Point NA 10
2 lines Line String NA 9
3 multilinestrings Multi Line String NA 4
4 multipolygons Multi Polygon NA 25
5 other_relations Geometry Collection NA 4

we see that in this case, the number of features is NA because for this xml �le the whole �le needs to be
read, which may be costly for large �les. We can force counting by

Sys.setenv(OSM_USE_CUSTOM_INDEXING="NO")
st_layers(system.file("osm/overpass.osm", package="sf"), do_count = TRUE)
Driver: OSM
Available layers:
layer_name geometry_type features fields
1 points Point 1 10
2 lines Line String 0 9
3 multilinestrings Multi Line String 0 4
4 multipolygons Multi Polygon 13 25
5 other_relations Geometry Collection 0 4

Another example of reading kml and kmz �les is:

https://cran.r-project.org/web/packages/sf/vignettes/crs

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 15/23

Download .shp data
u_shp <- "http://coagisweb.cabq.gov/datadownload/biketrails.zip"
download.file(u_shp, "biketrails.zip")
unzip("biketrails.zip")
u_kmz <- "http://coagisweb.cabq.gov/datadownload/BikePaths.kmz"
download.file(u_kmz, "BikePaths.kmz")
Read file formats
biketrails_shp <- st_read("biketrails.shp")
if(Sys.info()[1] == "Linux") # may not work if not Linux
 biketrails_kmz <- st_read("BikePaths.kmz")
u_kml = "http://www.northeastraces.com/oxonraces.com/nearme/safe/6.kml"
download.file(u_kml, "bikeraces.kml")
bikraces <- st_read("bikeraces.kml")

Create, read, update and delete
GDAL provides the crud (https://en.wikipedia.org/wiki/Create,_read,_update_and_delete) (create, read,
update, delete) functions to persistent storage. st_read (or read_sf) are used for reading. st_write (or
write_sf) creates, and has the following arguments to control update and delete:

update=TRUE causes an existing data source to be updated, if it exists; this options is by default TRUE
for all database drivers, where the database is updated by adding a table.
delete_layer=TRUE causes st_write try to open the the data source and delete the layer; no errors

are given if the data source is not present, or the layer does not exist in the data source.
delete_dsn=TRUE causes st_write to delete the data source when present, before writing the layer

in a newly created data source. No error is given when the data source does not exist. This option
should be handled with care, as it may wipe complete directories or databases.

Benchmarks
Benchmarks show that st_read() is faster than rgdal::readOGR() , for example:

shp_read_sp <- function() rgdal::readOGR(dsn = ".", layer = "biketrails")
shp_read_sf <- function() st_read("biketrails.shp")
if(Sys.info()[1] == "Linux") {
 kmz_read_sp <- function() rgdal::readOGR(dsn = "BikePaths.kmz")
 kmz_read_sf <- function() st_read("BikePaths.kmz")
} else {
 kmz_read_sp <- function() message("NA")
 kmz_read_sf <- function() message("NA")
}
kml_read_sp <- function() rgdal::readOGR("bikeraces.kml")
kml_read_sf <- function() st_read("bikeraces.kml")
microbenchmark::microbenchmark(shp_read_sp(), shp_read_sf(),
 kmz_read_sp(), kmz_read_sf(),
 kml_read_sp(), kml_read_sf(), times = 10)

On a laptop with an Intel i5-4300M CPU @ 2.60GHz with ssd the results were as follows:

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 16/23

Unit: milliseconds
 expr min lq mean median uq
 shp_read_sp() 4993.954530 5010.798950 5072.94155 5049.68057 5116.050416
 shp_read_sf() 331.580349 341.608044 352.99233 353.00169 364.601151
 kmz_read_sp() 4940.108931 4966.177983 5021.47680 4989.82589 5038.393259
 kmz_read_sf() 1086.925988 1088.850196 1103.04846 1090.15794 1100.518670
 kml_read_sp() 167.556454 176.395750 182.10324 185.31941 187.720235
 kml_read_sf() 8.132629 8.268952 10.44328 8.52626 9.420043
 max neval cld
 5186.16240 10 e
 376.64045 10 c
 5282.25874 10 e
 1178.42358 10 d
 189.29191 10 b
 26.20221 10 a

This shows that sf::st_read() is substantially faster than rgdal::readOGR() : by a factor of 14-18 for the
Shape�le and KML �les, and more than a factor of 4 for the KMZ �le used in this benchmark, respectively.

Connection to spatial databases
Read and write functions, st_read() and st_write() , can handle connections to spatial databases to read
WKB or WKT directly without using GDAL. Although intended to use the DBI interface, current use and
testing of these functions are limited to PostGIS.

Coordinate reference systems and
transformations
Coordinate reference systems (CRS) are like measurement units for coordinates: they specify which location
on Earth a particular coordinate pair refers to. We saw above that sfc objects (geometry list-columns) have
two attributes to store a CRS: epsg and proj4string . This implies that all geometries in a geometry list-
column must have the same CRS. Both may be NA , e.g. in case the CRS is unknown, or when we work with
local coordinate systems (e.g. inside a building, a body, or an abstract space).

proj4string is a generic, string-based description of a CRS, understood by the PROJ.4 (http://proj4.org/)
library. It de�nes projection types and (often) de�nes parameter values for particular projections, and hence
can cover an in�nite amount of di�erent projections. This library (also used by GDAL) provides functions to
convert or transform between di�erent CRS. epsg is the integer ID for a particular, known CRS that can be
resolved into a proj4string . Some proj4string values can resolved back into their corresponding epsg ID,
but this does not always work.

The importance of having epsg values stored with data besides proj4string values is that the epsg refers
to particular, well-known CRS, whose parameters may change (improve) over time; �xing only the
proj4string may remove the possibility to bene�t from such improvements, and limit some of the

provenance of datasets, but may help reproducibility.

Coordinate reference system transformations can be carried out using st_transform , e.g. converting
longitudes/latitudes in NAD27 to web mercator (EPSG:3857) can be done by

http://proj4.org/

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 17/23

nc.web_mercator <- st_transform(nc, 3857)
st_geometry(nc.web_mercator)[[4]][[2]][[1]][1:3,]
[,1] [,2]
[1,] -8463267 4377519
[2,] -8460094 4377510
[3,] -8450437 4375553

Conversion, including to and from sp
sf objects and objects deriving from Spatial (package sp) can be coerced both ways:

showMethods("coerce", classes = "sf")
Function: coerce (package methods)
from="Spatial", to="sf"
from="sf", to="Spatial"
methods(st_as_sf)
[1] st_as_sf.Spatial* st_as_sf.data.frame* st_as_sf.lpp*
[4] st_as_sf.map* st_as_sf.ppp* st_as_sf.psp*
[7] st_as_sf.sf*
see '?methods' for accessing help and source code
methods(st_as_sfc)
[1] st_as_sfc.SpatialLines* st_as_sfc.SpatialMultiPoints*
[3] st_as_sfc.SpatialPixels* st_as_sfc.SpatialPoints*
[5] st_as_sfc.SpatialPolygons* st_as_sfc.WKB*
[7] st_as_sfc.bbox* st_as_sfc.blob*
[9] st_as_sfc.character* st_as_sfc.dimensions*
[11] st_as_sfc.factor* st_as_sfc.list*
[13] st_as_sfc.map* st_as_sfc.raw*
see '?methods' for accessing help and source code
anticipate that sp::CRS will expand proj4strings:
p4s <- "+proj=longlat +datum=NAD27 +no_defs +ellps=clrk66 +nadgrids=@conus,@alaska,@ntv2_0.gs
b,@ntv1_can.dat"
st_crs(nc) <- p4s
Warning: st_crs<- : replacing crs does not reproject data; use st_transform
for that
anticipate geometry column name changes:
names(nc)[15] = "geometry"
attr(nc, "sf_column") = "geometry"
nc.sp <- as(nc, "Spatial")
class(nc.sp)
[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"
nc2 <- st_as_sf(nc.sp)
all.equal(nc, nc2)
[1] "Attributes: < Component \"class\": Lengths (4, 2) differ (string compare on first 2)
 >"
[2] "Attributes: < Component \"class\": 1 string mismatch >"

[3] "Component \"geometry\": Attributes: < Component \"crs\": Component \"epsg\": 'is.NA'
 value mismatch: 1 in current 0 in target >"

As the Spatial* objects only support MULTILINESTRING and MULTIPOLYGON , LINESTRING and POLYGON
geometries are automatically coerced into their MULTI form. When converting Spatial* into sf , if all
geometries consist of a single POLYGON (possibly with holes), a POLYGON and otherwise all geometries are

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 18/23

returned as MULTIPOLYGON : a mix of POLYGON and MULTIPOLYGON (such as common in shape�les) is not
created. Argument forceMulti=TRUE will override this, and create MULTIPOLYGON s in all cases. For LINES the
situation is identical.

Geometrical operations
The standard for simple feature access de�nes a number of geometrical operations.

st_is_valid and st_is_simple return a boolean indicating whether a geometry is valid or simple.

st_is_valid(nc[1:2,])
[1] TRUE TRUE

st_distance returns a dense numeric matrix with distances between geometries. st_relate returns a
character matrix with the DE9-IM (https://en.wikipedia.org/wiki/DE-9IM#Illustration) values for each pair of
geometries:

x = st_transform(nc, 32119)
st_distance(x[c(1,4,22),], x[c(1, 33,55,56),])
Units: m
[,1] [,2] [,3] [,4]
[1,] 0.00 312184.9 128341.85 475623.3
[2,] 440561.15 114939.7 590434.80 0.0
[3,] 18944.03 352719.1 78756.89 517527.8
st_relate(nc[1:5,], nc[1:4,])
although coordinates are longitude/latitude, st_relate assumes that they are planar
[,1] [,2] [,3] [,4]
[1,] "2FFF1FFF2" "FF2F11212" "FF2FF1212" "FF2FF1212"
[2,] "FF2F11212" "2FFF1FFF2" "FF2F11212" "FF2FF1212"
[3,] "FF2FF1212" "FF2F11212" "2FFF1FFF2" "FF2FF1212"
[4,] "FF2FF1212" "FF2FF1212" "FF2FF1212" "2FFF1FFF2"
[5,] "FF2FF1212" "FF2FF1212" "FF2FF1212" "FF2FF1212"

The commands st_intersects , st_disjoint , st_touches , st_crosses , st_within , st_contains ,
st_overlaps , st_equals , st_covers , st_covered_by , st_equals_exact and st_is_within_distance

return a sparse matrix with matching (TRUE) indexes, or a full logical matrix:

st_intersects(nc[1:5,], nc[1:4,])
although coordinates are longitude/latitude, st_intersects assumes that they are planar
Sparse geometry binary predicate list of length 5, where the predicate was `intersects'
1: 1, 2
2: 1, 2, 3
3: 2, 3
4: 4
5: (empty)
st_intersects(nc[1:5,], nc[1:4,], sparse = FALSE)
although coordinates are longitude/latitude, st_intersects assumes that they are planar
[,1] [,2] [,3] [,4]
[1,] TRUE TRUE FALSE FALSE
[2,] TRUE TRUE TRUE FALSE
[3,] FALSE TRUE TRUE FALSE
[4,] FALSE FALSE FALSE TRUE
[5,] FALSE FALSE FALSE FALSE

https://en.wikipedia.org/wiki/DE-9IM#Illustration

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 19/23

The commands st_buffer , st_boundary , st_convexhull , st_union_cascaded , st_simplify ,
st_triangulate , st_polygonize , st_centroid , st_segmentize , and st_union return new geometries, e.g.:

sel <- c(1,5,14)
geom = st_geometry(nc.web_mercator[sel,])
buf <- st_buffer(geom, dist = 30000)
plot(buf, border = 'red')
plot(geom, add = TRUE)
plot(st_buffer(geom, -5000), add = TRUE, border = 'blue')

Commands st_intersection , st_union , st_difference , st_sym_difference return new geometries that
are a function of pairs of geometries:

par(mar = rep(0,4))
u <- st_union(nc)
plot(u)

The following code shows how computing an intersection between two polygons may yield a
GEOMETRYCOLLECTION with a point, line and polygon:

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 20/23

opar <- par(mfrow = c(1, 2))
a <- st_polygon(list(cbind(c(0,0,7.5,7.5,0),c(0,-1,-1,0,0))))
b <- st_polygon(list(cbind(c(0,1,2,3,4,5,6,7,7,0),c(1,0,.5,0,0,0.5,-0.5,-0.5,1,1))))
plot(a, ylim = c(-1,1))
title("intersecting two polygons:")
plot(b, add = TRUE, border = 'red')
(i <- st_intersection(a,b))
GEOMETRYCOLLECTION (POINT (1 0), LINESTRING (4 0, 3 0), POLYGON ((5.5 0, 7 0, 7 -0.5, 6 -
0.5, 5.5 0)))
plot(a, ylim = c(-1,1))
title("GEOMETRYCOLLECTION")
plot(b, add = TRUE, border = 'red')
plot(i, add = TRUE, col = 'green', lwd = 2)

par(opar)

Non-valid geometries
Invalid geometries are for instance self-intersecting lines (left) or polygons with slivers (middle) or self-
intersections (right).

library(sf)
x1 <- st_linestring(cbind(c(0,1,0,1),c(0,1,1,0)))
x2 <- st_polygon(list(cbind(c(0,1,1,1,0,0),c(0,0,1,0.6,1,0))))
x3 <- st_polygon(list(cbind(c(0,1,0,1,0),c(0,1,1,0,0))))
st_is_simple(st_sfc(x1))
[1] FALSE
st_is_valid(st_sfc(x2,x3))
[1] FALSE FALSE

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 21/23

Units
Where possible geometric operations such as st_distance() , st_length() and st_area() report results
with a units attribute appropriate for the CRS:

a <- st_area(nc[1,])
attributes(a)
$units
$numerator
[1] "m" "m"

$denominator
character(0)

attr(,"class")
[1] "symbolic_units"

$class
[1] "units"

The units package can be used to convert between units:

units::set_units(a, km^2) # result in square kilometers
1137.389 km^2
units::set_units(a, ha) # result in hectares
113738.9 ha

The result can be stripped of their attributes if needs be:

as.numeric(a)
[1] 1137388604

How attributes relate to geometries
(This will eventually be the topic of a new vignette; now here to explain the last attribute of sf objects)

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 22/23

The standard documents about simple features are very detailed about the geometric aspects of features,
but say nearly nothing about attributes, except that their values should be understood in another reference
system (their units of measurement, e.g. as implemented in the package units (https://CRAN.R-
project.org/package=units)). But there is more to it. For variables like air temperature, interpolation usually
makes sense, for others like human body temperature it doesn’t. The di�erence is that air temperature is a
�eld, which continues between sensors, where body temperature is an object property that doesn’t extend
beyond the body – in spatial statistics bodies would be called a point pattern, their temperature the point
marks. For geometries that have a non-zero size (positive length or area), attribute values may refer to the
every sub-geometry (every point), or may summarize the geometry. For example, a state’s population
density summarizes the whole state, and is not a meaningful estimate of population density for a give point
inside the state without the context of the state. On the other hand, land use or geological maps give
polygons with constant land use or geology, every point inside the polygon is of that class. Some properties
are spatially extensive (https://en.wikipedia.org/wiki/Intensive_and_extensive_properties), meaning that
attributes would summed up when two geometries are merged: population is an example. Other properties
are spatially intensive, and should be averaged, with population density the example.

Simple feature objects of class sf have an agr attribute that points to the attribute-geometry-relationship,
how attributes relate to their geometry. It can be de�ned at creation time:

nc <- st_read(system.file("shape/nc.shp", package="sf"),
 agr = c(AREA = "aggregate", PERIMETER = "aggregate", CNTY_ = "identity",
 CNTY_ID = "identity", NAME = "identity", FIPS = "identity", FIPSNO = "identity",
 CRESS_ID = "identity", BIR74 = "aggregate", SID74 = "aggregate", NWBIR74 = "aggregat
e",
 BIR79 = "aggregate", SID79 = "aggregate", NWBIR79 = "aggregate"))
Reading layer `nc' from data source `/tmp/Rtmpaq4C0b/Rinst79437936646a/sf/shape/nc.shp' us
ing driver `ESRI Shapefile'
Simple feature collection with 100 features and 14 fields
Attribute-geometry relationship: 0 constant, 8 aggregate, 6 identity
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
epsg (SRID): 4267
proj4string: +proj=longlat +datum=NAD27 +no_defs
st_agr(nc)
AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO
aggregate aggregate identity identity identity identity identity
CRESS_ID BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
identity aggregate aggregate aggregate aggregate aggregate aggregate
Levels: constant aggregate identity
data(meuse, package = "sp")
meuse_sf <- st_as_sf(meuse, coords = c("x", "y"), crs = 28992, agr = "constant")
st_agr(meuse_sf)
cadmium copper lead zinc elev dist om ffreq
constant constant constant constant constant constant constant constant
soil lime landuse dist.m
constant constant constant constant
Levels: constant aggregate identity

When not speci�ed, this �eld is �lled with NA values, but if non- NA , it has one of three possibilities

value meaning

constant a variable that has a constant value at every
location over a spatial extent; examples: soil
type, climate zone, land use

https://cran.r-project.org/package=units
https://en.wikipedia.org/wiki/Intensive_and_extensive_properties

18/05/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf1.html

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html 23/23

value meaning

aggregate values are summary values (aggregates) over
the geometry, e.g. population density,
dominant land use

identity values identify the geometry: they refer to (the
whole of) this and only this geometry

With this information (still to be done) we can for instance

either return missing values or generate warnings when a aggregate value at a point location inside a
polygon is retrieved, or
list the implicit assumptions made when retrieving attribute values at points inside a polygon when
relation_to_geometry is missing.

decide what to do with attributes when a geometry is split: do nothing in case the attribute is
constant, give an error or warning in case it is an aggregate, change the relation_to_geometry to
constant in case it was identity.

Further reading:

1. S. Scheider, B. Gräler, E. Pebesma, C. Stasch, 2016. Modelling spatio-temporal information generation.
Int J of Geographic Information Science, 30 (10), 1980-2008. (pdf
(http://pebesma.sta�.ifgi.de/generativealgebra.pdf))

2. Stasch, C., S. Scheider, E. Pebesma, W. Kuhn, 2014. Meaningful Spatial Prediction and Aggregation.
Environmental Modelling & Software, 51, (149–165, open access
(http://dx.doi.org/10.1016/j.envsoft.2013.09.006)).

http://pebesma.staff.ifgi.de/generativealgebra.pdf
http://dx.doi.org/10.1016/j.envsoft.2013.09.006

