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Introduction 

Geographically Weighted Regression (GWR) is a powerful tool for exploring spatial heterogeneity. Spatial 

heterogeneity exists when the structure of the process being modelled varies across the study area. We term a 

simple linear model such as 

iii xy   10  

a global model – the relationship between y and x is assumed to be constant across the study area – at every 

possible location in the study area the values of 0 and 1 are the same. The residuals from this model i are 

assumed to be independent and normally distributed with a mean of zero (sometimes this is termed iid – 

independent and identically distributed).  

This short tutorial is designed to introduce you to the operation of the Geographically Weighed Regression 

Tool in ArcGIS 9.3. It assumes that you understand both regression and Geographically Weighted Regression 

(GWR) techniques.  A separate ESRI White Paper is available which outlines the theory underlying GWR.  

 

 

Modelling the Determinants of Educational Attainment in Georgia 

We use a simple example: modelling the determinants of educational attainment in the counties of of the State 

of Georgia.  The dependent variable in this example is the proportion of residents with a Bachelor’s degree or 

higher in each county (PctBach). The four independent variables that we shall use are: 

Proportion of elderly residents in each county:    PctEld 

Proportion of residents who are foreign born:    PctFB 

Proportion of residents who are living below the poverty line: PctPov 

Proportion of residents who are ethnic black:   PctBlack 

The spatial variation in each of the variables should be mapped by way of initial data exploration. There are 

some clear patterns in the educational attainment variable – high values around Atlanta and Athens.  This is 

perhaps not surprising since the campuses of Georgia Institute of Technology, Georgia State University, 

Kennesaw State University, and Georgia Perimeter College are around Atlanta, and the University of Georgia 

(which has the largest enrolment of all the universities in Georgia) is located in Athens.  

Mapping the individual independent variables suggests that there might be some relationships with the 

variation in educational attainment, and some initial analysis also suggests that these variables are reasonable 

as predictors. The proportion of elderly is included because concentrations of educational attainment are 

usually associated with concentrations of the young rather than the old – we would expect there to be 

increased proportions of the elderly to have a negative influence on educational attainment. It is suspected that 

there might be a higher value given to further education amongst recent migrants who are anxious for their 

children to succeed. Educational attainment is generally associated with affluence, so we would expect those 

parts of the State with higher proportions of those living below the poverty line to have lower proportions of 

those educated to degree level. Higher proportions of ethnic black residents in the population are sometimes 

associated with poorer access to grad schools and lower interest in higher education.  
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Before any analysis with regression takes place, we will have undertaken some initial statistical analysis to 

determine the characteristics of each of the variables which are proposed for the model. Some summary 

statistics for the variables in the exercise are presented in the Table 1. 

 

Table 1: Summary Statistics 

Variable Mean Std Deviation Median Minimum Maximum 

PctBach 10.95 5.70 9.40 4.20 37.50 

PctEld 11.74 3.08 12.07 1.46 22.96 

PctFB 1.13 1.23 0.72 0.04 6.74 

PctPov 19.34 7.25 18.60 2.60 35.90 

PctBlack 27.39 17.38 27.64 0.00 79.64 

 

The  correlation analysis shown in Table 2 reveals some initial associations. 

 

Table 2: Correlation Coefficients 

 PctBach PctEld PctFB PctPov 

PctEld -0.46    

PctFB 0.67 -0.48   

PctPov -0.40 0.57 -0.33  

PctBlack -0.11 0.30 -0.11 0.74 

 

Most of the associations with PctBach are in the expected direction. One interesting correlation is that 

between PctBlack and PctPov  - there is some colinearity here (r=0.74), but probably not enough for us to 

worry about at this stage.  

The attribute table for the Georgia shapefile is shown in Figure 1. You will notice that there some other 

variables in the file which we will not use. The AreaKey item contains the FIPS codes for the counties in 

Georgia. The X and Y columns contain the coordinates in a UTM projection suitable for Georgia.  
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Figure 1: Georgia counties feature class attribute table 
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Getting started: OLS Regression 

GWR is not a panacea for all regression ills and it should not be the automatic first choice in any regression 

modelling exercise. We will begin by fitting an ‘ordinary’ linear regression model – this is ‘ordinary’ in the 

sense that it’s the default regression model in packages such as SPSS or R and the estimation of the 

coefficients is by Ordinary Least Squares.  The residuals are assumed to be independently and identically 

normally distributed around a mean of zero. The residuals are also assumed to be homoscedastic – that is, any 

samples taken at random from the residuals will have the same mean and variance.  

There is an OLS regression modelling tool in the Spatial Statistics Tools in Arc Toolbox. You may need to 

uncheck the Hide Locked Tools option for Arc Toolbox before you can see the tool listed. The form to specify 

the model structure for this example is shown in Figure 2. You should save both the coefficients and 

diagnostics to separate DBF tables for later scrutiny. 

 

Figure 2: Ordinary Least Squares Tool 

` 
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Clicking on the [OK] button will run the Tool.  The results of the OLS analysis are shown in Figure 3. 

 

A useful place to start is with the model diagnostics. There are a number of different goodness-of-fit measures: 

the r2 is 0.53 and the adjusted r2 is 0.51. The r2 measures the proportion of the variation in the dependent 

variable which is accounted for by the variation in the model, and the possible values range from 0 to 1. 

Values closer to 1 indicate that the model has a better predictive performance. However, its values can be 

influenced by the number of the variables which are in the model – increasing the number of variables will 

never decrease the r
2
. The adjusted r

2
 is a preferable measure since it contains some adjustment for the number 

of variables in the model. In the model we have just fitted, the value of 0.51 indicates that it accounts for 

about half the variation in the dependent variable.  This suggests that perhaps some variables have been 

omitted from the model, or the form of the model is not quite right: we are failing to account for 49% of the 

variation in educational attainment with our model.   

A slightly different measure of goodness-of-fit is provided by the Akaike Information Criterion (AIC). Unlike 

the r
2
 the AIC is not an absolute measure – it is a relative measure and can be used to compare different 

models which have the same independent variable.  It is a measure of the ‘relative distance’ between the 

model that has been fitted and the unknown ‘true’ model. Models with smaller values of the AIC are 

preferable to models with higher values (where 5 is less than 10 and -10 is less than -5); however, if the 

difference in the AIC between two models is less than about 3 or 4, they are held to be equivalent in their 

explanatory power. The AIC formula contains log terms and sometimes the values can be unexpectedly large 

or negative – this is not important – it is the difference between the AICs that we are interested in.  The AIC in 

this case is 969.82.  

We have fitted an OLS model to spatial data.  It is likely that there will be some structure in the residuals. We 

have not taken this into account in the model, which may be one contributory factor towards its rather 

indifferent performance. The value of the Jarque-Bera statistic indicates that the residuals appear not to be 

normally distributed. The OLS tool prints a warning that we should test to determine whether the residuals 

appear to be spatially autocorrelated. 

We now examine the model coefficient estimates which are shown in Table 3 along with the t-statistics for 

each estimated coefficient. The signs on the coefficient estimates are as expected, with the exception of 

PctBlack (we have already noted a raised correlation between it and PctPov).  

Figure 1: Output feature class attribute table 
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Table 3: OLS Model Parameter Estimates 

Variable Coefficient t-Statistic 

Intercept 12.789636 8.410249 

PctEld -0.116422 -0.896639 

PctFB 2.538762 8.928844 

PctPov -0.272978 -3.723328 

PctBlack 0.073405 2.800241 

 

The t-statistics test the hypothesis that the value of an individual coefficient estimate is not significantly 

different from zero. With the exception of PctEld, the coefficient estimates are all statistically significant (this 

is, their values are sufficiently large for us to assume that they are not zero in the population from which our 

sample data have been drawn). The Variance Inflation Factors are all reasonably small, so there is no strong 

evidence of variable redundancy.  

In completing the OLS model form we specified DBF output tables for the coefficient estimates and the 

regression diagnostics.  These may be examined – the coefficient estimates from the OLS model are shown in 

Figure 4 and the diagnostics table is shown in Figure 5. 

Figure 4: Report from Ordinary Least Squares Tool 

Executing: OrdinaryLeastSquares GeorgiaEduc FID_1 D:\Georgia\GeorgiaEduc_OLS.shp PctBach 
PctEld;PctFB;PctPov;PctBlack D:\Georgia\GeorgiaEduc_OLS_Coefficients.dbf 
D:\Georgia\GeorgiaEduc_OLS_Diagnostics.dbf 
Start Time: Mon Jan 19 14:59:13 2009 
Running script OrdinaryLeastSquares... 
                                Summary of OLS Results                                
Variable  Coefficient StdError t-Statistic Probability Robust_SE Robust_t  Robust_Pr VIF [1]  
Intercept 12.789636   1.520720 8.410249    0.000000*   2.012447  6.355267  0.000000* -------- 
PCTELD    -0.116422   0.129842 -0.896639   0.371177    0.143566  -0.810931 0.418536  1.828902 
PCTFB     2.538762    0.284333 8.928844    0.000000*   0.585029  4.339550  0.000028* 1.353249 
PCTPOV    -0.272978   0.073316 -3.723328   0.000276*   0.122553  -2.227421 0.027229* 3.332809 
PCTBLACK  0.073405    0.026214 2.800241    0.005701*   0.033751  2.174877  0.031020* 2.418869 
 
                                       OLS Diagnostics                                         
Number of Observations:      174          Number of Variables:                         5          
Degrees of Freedom:          169          Akaike's Information Criterion (AIC) [2]:    969.823038 
Multiple R-Squared [2]:      0.525104     Adjusted R-Squared [2]:                      0.513864   
Joint F-Statistic [3]:       46.716921    Prob(>F), (4,169) degrees of freedom:        0.000000*  
Joint Wald Statistic [4]:    89.061691    Prob(>chi-squared), (4) degrees of freedom:  0.000000*  
Koenker (BP) Statistic [5]:  43.772814    Prob(>chi-squared), (4) degrees of freedom:  0.000000*  
Jarque-Bera Statistic [6]:   275.825399   Prob(>chi-squared), (2) degrees of freedom:  0.000000*  
 
 
                           Notes on Interpretation                             
 *  Statistically significant at the 0.05 level.                                
[1] Large VIF (> 7.5, for example) indicates explanatory variable redundancy.   
[2] Measure of model fit/performance.                                           
[3] Significant p-value indicates overall model significance.                   
[4] Significant p-value indicates robust overall model significance.            
[5] Significant p-value indicates biased standard errors; use robust estimates. 
[6] Significant p-value indicates residuals deviate from a normal distribution. 
 
WARNING 000851: Use the Spatial Autocorrelation (Moran's I) Tool to ensure residuals are not spatially 
autocorrelated. 
Writing Coefficient Output Table.... 
D:\Georgia\GeorgiaEduc_OLS_Coefficientx.dbf 
Writing Diagnostic Output Table.... 
D:\Georgia\GeorgiaEduc_OLS_Diagnostic.dbf 
Completed script OrdinaryLeastSquares... 
Executed (OrdinaryLeastSquares) successfully. 
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In the diagnostics DBF table shown in the Figure 5 those statistics which have been discussed are highlighted. 

 

 

The output feature class attribute table shown in Figure 6 contains three extra columns in addition to the 

original observed data. 

 

The column headed PCTBACH contains the observed dependent variable values and the columns headed 

PCTELD, PCTFB, PCTPOV and PCTBLACK contain the values for the independent variables in the 

model. The column headed Estimated contains the predicted y values given the model coefficients and the 

data for each observation. The predicted y values are sometimes known as the fitted values. The residual is the 

difference between the observed values of the dependent variable (in this case in the column headed 

PCTBACH) and the fitted values – these are found in the column headed Residual. Finally, the column 

headed StdResid contains standardised values of the residuals: these have a mean of zero and a standard 

deviation of 1. Observations of interest are those which have positive standardised residuals greater than 2 

(model underprediction) or negative standardised residuals less than -2 (model overprediction).  

The report from the OLS advised that we should carry out a test to determine whether there is spatial 

autocorrelation in the residuals. If the residuals are sufficiently autocorrelated then the results of the OLS 

regression analysis are unreliable – autocorrelated residuals are not iid, so one of the underlying assumptions 

of OLS regression has been violated.  An appropriate test statistic is Moran’s I: this is a measure of the level 

of spatial autocorrelation in the residuals. This tool is available under Spatial Statistics Tools / Analyzing 

Patterns / Spatial Autocorrelation and is shown in Figure 7 

Figure 6: OLS Model Diagnostics DBF Table 

Figure 5: OLS Model Coefficient Estimate DBF Table 
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The Input Feature Class should be the Output Feature Class specified in the OLS Regression tool. The Input 

Field should be Residual (the results are the same if you use StdResid instead). The other choices should be 

left as their defaults.  

The report from the tool is shown in Figure 8 

 

Figure 8: Report from Spatial Autocorrelation Tool 

Executing: SpatialAutocorrelation GeorgiaEduc_OLS Residual true "Inverse Distance" "Euclidean 
Distance" None # # 0 0 0 
Start Time: Tue Jan 06 16:16:06 2009 
Running script SpatialAutocorrelation... 
WARNING 000853: The default neighborhood search threshold was 40696.962105194. 
 
 Global Moran's I Summary 
Moran's Index:   0.144841  
Expected Index:  -0.005780 
Variance:        0.017554  
Z Score:         1.136833  
p-value:         0.255608  
 
Completed script SpatialAutocorrelation... 
Executed (SpatialAutocorrelation) successfully. 

 

The value of Moran’s I for the OLS model is 0.14, and the p-value for the hypothesis that this value is not 

significantly different from zero is 0.26 (Z = 1.14). We would normally accept the hypothesis that 

autocorrelation is not present in the residuals given this value of p, but the graphical output warns that 

although the pattern is “somewhat clustered” it may also be due to “random chance”.However, we have made 

the assumption here that the model structure is spatially stationary – in other words we assume that the 

process we are modelling is homogenous. Although we have a model that performs moderately well with 

reasonably random residuals, we nevertheless would be justified in attempting to improve the reliability of the 

predictions from the models by using GWR. We also will be able to map the values of the county specific 

coefficient estimates to examine whether the process appears to be spatially heterogenous.  

 

 

Figure 7: Spatial Autocorrelation Tool 
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Geographically Weighted Regression 

The ArcGIS 9.3 GWR tool is an exploratory tool. It can be found in Spatial Statistics Tools / Modeling Spatial 

Relationships / Geographically Weighted Regression.  The model choices are specified in a form. The choices 

we use in this example are shown in Figure 9. 

 

Figure 9: Geographically Weighted Regression Tool 

 

 

The Input feature class will be the same as that which was specified in the OLS model.  The Output feature 

class will contain the coefficient estimates and their associated standard errors, as well as a range of 

observation specific diagnostics. The Dependent variable and the Explanatory  variable(s) will be those which 

were specified for the OLS model. There are a number of options which may be specified which need some 

initial thought from the user.  
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There are two possible choices for the Kernel type: FIXED or ADAPTIVE. A spatial kernel is used to provide 

the geographic weighting in the model. A key coefficient in the kernel is the bandwidth – this controls the size 

of the kernel.  Which kernel is chosen largely depends on the spatial configuration of the feature in the Input 

feature class.  If the observations are either reasonably regularly positioned in the study area (perhaps they are 

the mesh points of a regular grid) then a FIXED kernel is appropriate; if the observations are clustered so that 

the density of observations varies around the study area, then an ADAPTIVE kernel is appropriate.  If you are 

not sure which to use, ADAPTIVE will cover most applications.  

There are three choices for the Bandwidth method: AICc, CV and BANDWIDTH COEFFICIENT.  The first 

two choices allow you to use an automatic method for finding the bandwidth which gives the best predictions, 

the third allows you to specify a bandwidth.  The AICc method finds the bandwidth which minimises the 

AICc value – the AICc is the corrected Akaike Information Criterion (it has a correction for small sample 

sizes). The CV finds the bandwidth which minimises a CrossValidation score. In practice there isn’t much to 

choose between the two methods, although the AICc is our preferred method. The AICc is computed from (a) 

a measure of the divergence between the observed and fitted values and (b) a measure of the complexity of the 

model. The complexity
1
 of a GWR model depends not just on the number of variables in the model, but also 

on the bandwidth. This interaction between the bandwidth and the complexity of the model is the reason for 

our preference for the AICc over the CV score.  

There may be some modelling contexts where you wish to supply your own bandwidth. In this case, the 

Bandwidth method is BANDWIDTH COEFFICIENT. If you have chosen a FIXED kernel, the coefficient will 

be a distance which is in the same units as the coordinate system you are using for the feature class.  Thus if 

your coordinates are in metres, this will be a distance in metres; if they are in miles, the distance will be in 

miles. If you are using geographic coordinates in decimal degrees, this value will be in degrees – large values 

(90 for example) will create very large kernels which will cover considerable parts of the earth’s surface and 

the geographical weights will be close to 1 for every observation!  If you have chosen an ADAPTIVE kernel 

the bandwidth is a count of the number of nearest observations to include under the kernel – the spatial 

extent of the kernel will change to keep the number of observations in the kernel constant.  In general you 

should have good reasons for specifying an a priori bandwidth, and for most applications allowing the GWR 

tool to chose an ‘optimal’ bandwidth is good practice.  

In the example described here, we have chosen an ADAPTIVE kernel whose bandwidth will be found by 

minimising the AICc value.  

There are a number of optional Additional coefficients which are for more advanced users of GWR.  One of 

the features of GWR is that while a model can be fitted to data collected at one set of locations, coefficients 

may also be estimated as locations at which no data have been collected (for example, the mesh points of a 

raster) or at other locations for which the ys and xs are known (for example a model can be fitted to a 

calibration set of data and then used to estimate coefficients and predictions for a validation set).  

 

 

                                                   

1
 We use the term complexity here as a shorthand for the number of parameters in the model. In an OLS regression 

model, the number of parameters one more than the number of independent variables (the intercept is also a parameter). 

In a GWR model the equivalent measure is known as the effective number of parameters and is usually much larger than 

that for an OLS model with the same variables and need not be an integer.  
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Figure 10: Report from the Geographically Weighted Regression Tool 

Executing: GeographicallyWeightedRegression GeorgiaEduc PctBach PctEld;PctFB;PctPov;PctBlack 
D:\Georgia\Georgia_GWR.shp ADAPTIVE AICc # 30 # # 1819.529 # # # D:\Georgia\Georgia_GWR_supp.dbf # 
Start Time: Sat Oct 18 11:44:48 2008 
Neighbours          : 121 
ResidualSquares     : 1815.1926630181806 
EffectiveNumber     : 19.691366786638696 
Sigma               : 3.4297799048143567 
AICc                : 937.9369828885825 
R2                  : 0.6597640641724919 
R2Adjusted          : 0.6185513689517778 
Executed (GeographicallyWeightedRegression) successfully. 

 

The GWR tool will create a report and a DBF table which contains the diagnostic statistics which are also 

listed in the report shown in Figure 10. The report is the first place to start when interpreting the results from a 

GWR exercise as it provides not only a list of the coefficients which have used by the tool, but also a set of 

important diagnostic statistics.  Recall that the bandwidth of the model has been estimated for an adaptive 

kernel, unsing AICc minimisation.  The Neighbours value is the number of nearest neighbours that have been 

used in the estimation of each set of coefficients. In this case it’s 121: this is large in comparison with the 

number of observations in the dataset (175), and means that under each kernel there are about 70% of the data. 

There may be some evidence of spatial variation in the coefficient estimates. The ResidualSquares value is the 

sum of the squared residuals – this is used in several subsequent calculations. The EffectiveNumber is a 

measure of the complexity of the model – it is equivalent to the number of parameters in the OLS model and 

is usually larger than the OLS value and is usually not an integer. It is also used in the calculation of several 

diagnostics.  Sigma is the square root of the normalised residual sum of squares. The AICc is the corrected 

Akaike Information Criterion, and with R2 (r2) and R2Adjusted (the adjusted r2) provide some indication of 

the goodness of fit of the model. These diagnostics are also saved in a DBF table whose name is that of the 

output feature class with the suffix _supp.  

We start by comparing the fit of the OLS and GWR models. We’ll refer to the OLS model as the global model 

and the GWR model as the local model.  The global adjusted r2 is 0.51 and the local adjusted r2 is 0.62 which 

suggests that there has been some improvement in model performance. Our preferred measure of model fit is 

the AICc, the global model’s value is 969.82, and the local model’s value is 937.94 – the difference of 31.88 

is strong evidence of an improvement in the fit of the model to the data2.   

 

 

 

 

 

                                                   

2
 As a general rule of thumb, if the AICc difference between the two models is less than about 4 there is little to choose 

between them; if the difference between them is greater than about 10 there is little evidence in support of the model with 

the larger AICc. For further discussion of issues in using the AICc see Burnham and Anderson (2002). 
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Visualising the GWR output 

The attribute table for the output feature class contains the coefficient estimates, their standard errors, and a 

range of diagnostic statistics.  Descriptions of the main column headings in this table are given in Table 4. 

 

Table 4: Items in the output feature class attribute table 

Observed The observed value of the dependent (y) variable 

Cond The condition number of the data matrix – local collinearity produces unreliable coefficient 

estimates – the results should be treated with caution. Values around 5 to 10 suggest weak 

dependencies in the data, whereas values greater than 30 suggest moderate or stronger 

dependencies in the data. See Belsley et al (2004) for further discussion. 

LocalR2 The locally weighed r
2
 between the observed and fitted values. The statistic is a measure of how 

well the model replicates the local y values around each observation. See Fotheringham et al 

(2002, 215-216) for further discussion 

Predicted The local prediction of the y variable (fitted value) 

Intercept The local intercept 

Cn_abc The coefficient for the nth independent variable in the model whose item name is abc 

(C1_PctEld, for example) 

Residual The residual – the difference between the observed and fitted value 

StdError The standard error of the residual 

StdErr_Int The locally weighed standard error of the Intercept 

StdErrCn_P The locally weighed value of the coefficient for the nth variable in the model 

StdResid The standardised residual – these have a mean of zero and a standard deviation of unity. 

Source_ID The FID of the corresponding feature in the Input feature class attribute table. 

 

Mapping the values of StdResid (the standardised residual) is a good starting point – these are shown in Figure 

11. There are two questions of interest (a) where are the unusually high or low residuals and (b) are the 

residuals spatially autocorrelated?  Not surprisingly those counties with the large universities have very large 

positive residuals (StdResid > 3) (University of Georgia, Georgia Southern University), and there are large 

positive residuals for those counties in and around Atlanta which contain major university campuses. We 

would expect that, given the variables we have in the model, the model would underpredict the levels of 

educational attainment in these counties. Two counties have noticeable over-prediction and would certainly 

warrant closer inspection to discover possible reasons for this. 

 

 



 13 

Figure 11: GWR Model: Standardised Residuals 

GeorgiaEduc_GWR

StdResid

-3.223814 - -3.000000

-2.999999 - -2.000000

-1.999999 - -1.000000

-0.999999 - 0.000000

0.000001 - 1.000000

1.000001 - 2.000000

2.000001 - 3.000000

3.000001 - 4.801392
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The report from the Spatial Autocorrelation Tool used on the GWR residuals is shown in Figure 12.  Moran’s 

I for the residuals is 0.04 (p=0.74) so there is little evidence of any autocorrelation in them. Any spatial 

dependencies which might have been present in the residuals for the global model have been removed with the 

geographical weighting in the local model.  

 

Figure 12: Report from the Spatial Autocorrelation Tool on the GWR Residuals 

Executing: SpatialAutocorrelation D:\Georgia\GeorgiaEduc_GWR.shp Residual false "Inverse Distance" 
"Euclidean Distance" None # # 0 0 0 
Start Time: Mon Jan 19 15:08:33 2009 
Running script SpatialAutocorrelation... 
WARNING 000853: The default neighborhood search threshold was 40696.962105194. 
 
 Global Moran's I Summary 
Moran's Index:   0.037049  
Expected Index:  -0.005780 
Variance:        0.017687  
Z Score:         0.322037  
p-value:         0.747424  
 
Completed script SpatialAutocorrelation... 
Executed (SpatialAutocorrelation) successfully. 

 

The local coefficient estimates should also be mapped. Figure 13 shows the variation in the coefficient 

estimates for the PctFB variable. The estimated value for the global model was 2.54, with a standard error of 

0.28. (95% CI: 2.00 - 3.09). The map for the local coefficients reveals that the influence of this variable in the 

model varies considerably over Georgia, with a strong north-south direction. The range of the local coefficient 

is from 0.67 in the southernmost counties to 3.84 in the northernmost counties – evidence which points to 

heterogeneity in the model structure within Georgia.  
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Figure 13: GWR Model: PctFB Parameter Variation 

GeorgiaEduc_GWR

C2_PctFB

0.663884 - 0.988186

0.988187 - 1.361022

1.361023 - 1.844787

1.844788 - 2.368612

2.368613 - 3.011691

3.011692 - 3.427520

3.427521 - 3.684468

3.684469 - 3.835611
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The global coefficient and all the local coefficients for this variable are positive – there is agreement between 

the two models on the direction of the influence of this variable. There may be some cases where most of the 

local coefficients have one sign, but for a few observations the sign changes. How can a variable have a 

positive influence in the model in some areas but a negative influence in other areas?  

As the values of the coefficients change sign, they will pass through zero. The coefficients themselves are 

estimates and have a standard error, so for some of them they will be so close to zero that any variation in the 

variables concerned will not influence the local variation in the model. In an OLS model it is conventional to 

test whether coefficients are different from zero using a t test. Carrying out such tests in GWR is perhaps a 

little more contentious and raises the problem of multiple significance testing. It would be inappropriate to 

compute local t statistics and carry out 174 individual significance tests. Not only are the local results highly 

dependent, but the problem of carrying out multiple significance tests is that we would expect, with a 5% level 

of significance, that some 8 or 9 would be significant at random. Fotheringham et al (2002) suggest using a 

Bonferroni correction to the significance level; this may well be overly conservative, and a test procedure such 

as the Benjamini-Hochberg False Discovery Rate might be more appropriate (Thissen et al (2002)). However, 

answers to these problems continue to be the subject of research and future publication.  

 

 

 

 

Further Reading 

The definitive text on GWR is: 

Fotheringham, AS, Brunsdon, C, and Charlton, ME, 2002, Geographically Weighted Regression: The 

Analysis of Spatially Varying Relationships, Chichester: Wiley  

A useful text on model selection is: 

Burnham, KA and Anderson, DR, 2002, Model Selection and Multimodel Inference: a practical 

information-theoretic approach, 2
nd

 edition, New York: Springer 

An excellent text on data issues is: 

Belsley, DA, Kuh, E and Welsch, R (1980), Regression Diagnostics: identifying influential data and 

sources of collinearity, Hoboken, NJ: Wiley 

An implementation of the Benjamini-Hochberg False Discovery Rate procedure: 

Thissen, D, Steinberg, L, and Kuang, D, 2002, Quick and easy implementation of the Benjamini-

Hochberg procedure for controlling the false positive rate in multiple comparisons, Journal of 

Educational and Behavioural Statistics, 27(1), 77-83 

  


