

DUAL ENERGY CT Principles & Clinical Applications

Izabella Barreto, PhD, DABR

Clinical Assistant Professor Division of Medical Physics - Department of Radiology University of Florida

1. Physics principles of dual energy CT

OUTLINE 2. Acquisition & reconstruction

3. Clinical Applications

CONVENTIONAL CT PROVIDES ANATOMICAL INFORMATION, BUT LITTLE ON TISSUE COMPOSITION

BASICS OF CT IMAGING

- CT number depends on x-ray attenuation caused by
 - Photoelectric Absorption
 - Compton Scatter
- It is calculated as a function of the **linear attenuation coefficient** μ :

$$HU = 1000 \times \frac{\mu - \mu_{water}}{\mu_{water}}$$

- μ is **not unique for a material**, but is a function of:
 - Atomic Number (Z)
 - Physical density (g/cm³)
 - Photon energy
- Different materials may have the same CT number due to their density

BASICS OF CT IMAGING

- The attenuation coefficient varies over x-ray photon energies
- Materials show different CT numbers at different energies

-Iodine -Bone -Adipose -Skeletal Muscle

ENERGY DEPENDENCE

K-Edge (keV) Atomic Number (Z) **Substance** Hydrogen 0.01 0.28 Carbon 6 Nitrogen 0.40 7 8 Oxygen 0.53 Calcium 4.00 20 33.20 53 lodine

Soft tissues Mainly C, H, N, O Low Z elements

• No relevant k-edge

ENERGY DEPENDENCE

Substance	K-Edge (keV)	Atomic Number (Z)
Hydrogen	0.01	1
Carbon	0.28	6
Nitrogen	0.40	7
Oxygen	0.53	8
Calcium	4.00	20
lodine	33.20	53

Soft tissues Mainly C, H, N, O

- Low Z elements
 - No relevant k-edge

Bone

- Contains calcium
 Higher Z & k-edge
- Bone absorbs <u>more</u> x-rays than soft tissues

ENERGY DEPENDENCE

Substance	K-Edge (keV)	Atomic Number (Z)
Hydrogen	0.01	1
Carbon	0.28	6
Nitrogen	0.40	7
Oxygen	0.53	8
Calcium	4.00	20
lodine	33.20	53

Soft tissues

- Mainly C, H, N, O
 - Low Z elements
 - No relevant k-edge

Bone

- Contains calcium
 Higher Z & k-edge
- Bone absorbs <u>more</u> lower energy x-rays than soft tissues lodine
- Higher Z & k-edge
- Large difference in attenuation as a function of energy

To allow differentiation on DECT, material must have differences in x-ray attenuation at different photon energies

Differences in attenuation and CT number as a function of energy:

• Soft tissue: Low

ENERGY DEPENDENCE

To allow differentiation on DECT, material must have differences in x-ray attenuation at different photon energies

Differences in attenuation and CT number as a function of energy:

- Soft tissue: Low
- Bone: Medium

ENERGY DEPENDENCE

To allow differentiation on DECT, material must have differences in x-ray attenuation at different photon energies

Differences in attenuation and CT number as a function of energy:

- Soft tissue: Low
- Bone: Medium
- Iodine: Large

ENERGY DEPENDENCE

DUAL ENERGY CT

• μ and CT numbers vary at different photon energies

Different materials show different CT numbers at different energies

80 kVp

140 kVp

DUAL ENERGY CT

 Dual energy CT obtains data with different beam spectra to exploit the energy-dependent nature of the CT number

Can provide information on
 material composition

ACQUISITION METHODS

SIEN	IENS	PHILIPS	Canon	Canon, GE
Dual source	Twin beam	Dual layer	Sequential kV	Fast kV switching
High kV Low kV	Low kV High kV	Low kV High kV	High KV Low KV	High kV Low kV

ACQUISITION METHODS FOR DECT

Low Energy **High Energy** Dual Fast kV Sequential Dual Source switching kV switching layer

Izabella Barreto, PhD, Department of Radiology

DUAL-SOURCE GEOMETRY (SIEMENS)

- Two tubes allow simultaneous collection of dual-kVp data
- Pros:
 - mA & filter selection for each tube
 - Good spectral separation
- Cons:
 - Requires cross-scatter correction
 - Limited FOV

Low Energy: 80 kVp High Energy: 150 kVp

RAPID KV SWITCHING (GE, CANON)

- kVp switches (low, high) between views
 - 0.25 ms interval for both kV
- Both data sets acquired within 1 tube rotation
- Pros:
 - Good temporal registration
 - Projection-based algorithm available
- Cons:
 - Longer rotation time = motion artifacts
 - One mA for both kV results in high noise for low kV and high dose for high kV

Low Energy: 80 kVp High Energy: 140 kVp

SEQUENTIAL KV SWITCHING (CANON)

- Consecutive scan of entire scan volume
- Pros:
 - One mA for each kVp for optimal noise and dose
 - Projection-based algorithm available
- Cons:
 - Only possible in broad (320) detectors
 - Delay between both acquisitions may produce cardiac or respiratory motion

High Energy: 135 kVp Low Energy: 80 kVp

DUAL LAYER DETECTORS (PHILLIPS)

- Differentially absorb low and high energy photons from a single beam
- Top : absorbs lower energies, transparent to higher energies
- Bottom : absorbs high energy photons
- Pros:
 - Perfect temporal matching
- Cons:
 - Broad spectral overlap causes limited contrast in spectral information

SPLIT BEAM FILTRATION (SIEMENS)

- Beam is prefiltered with 2 different materials: Gold (Au) & Tin (Sn)
- Beam is split into a high (Sn) and low Au) energy x-ray spectrum
- Pros:
 - Perfect temporal matching
- Cons:
 - Greater x-ray output is necessary as the pre-filtration absorbs ~ 2/3 of the radiation
 - Pitch values are limited to the 0.25–0.45 range, requiring a longer scan time (9 s for lung)

RADIATION DOSE?

- Dose concerns
- Double the dose?
- Individual scans don't need high dose
- DECT has similar doses to single energy CT

 Table 1. Reported CT abdomen doses of DECT and SECT in

 mean CTDIvol

Study	DECT (mGy)	SECT (mGy)		
Takeuchi et al [26]	10.9	11.8		
Jepperson et al [23]	12.7	20.0		
Dubourg et al [22]	12.8	20.1		
Shuman et al [25]	12.8	14.4		
Ascenti et al [21]	17.6	15.0		
Lin et al [24]	21.8	20.1		
CTDIvol = CT dose index in a volume; DECT = dual-energy CT; SECT = single-energy CT.				

DECOMPOSITION OF μ

• The attenuation coefficient μ of a material can be decomposed into 2 functions:

Photoelectric Effect Compton Effect

$$\mu(r, E) = a_p(r) \cdot E^{-3} + a_c(r) \cdot f_{KN}(E) \quad (A$$

Alvarez and Macovski, 1976)

• μ can also be decomposed to contributions from **2 basis materials**:

Basis Material #1

$$u(r, E) = a_1(r) \cdot \left(\frac{\mu}{\rho}\right)_{1,E} + a_2(r) \cdot \left(\frac{\mu}{\rho}\right)_{2,E}$$
(Lehman et al, 198)

• To solve for the 2 basis materials, measurements from 2 energy spectra are required

MATERIAL DECOMPOSITION

• The CT numbers of materials in high and low energy images can be plotted

2 MATERIAL DECOMPOSITION

water

2 MATERIAL DECOMPOSITION

• Assumes:

- The human body is a mixture of 2 different materials
 - Ex: water and iodine
 - Basis materials should have different spectral properties
- Voxels are composed of these 2 materials in different proportions

BASIS MATERIAL DECOMPOSITION

I/H2O Water subtracted Iodine remains

H2O/I Water remains Iodine subtracted

Ca/H2O Water subtracted Calcium remains

H2O/Ca Water remains Calcium subtracted

DUAL ENERGY PROCESSING

- Source images
 - 80 & 140 kVp images
- Blended images
 - Combine low and high energy images
 - Emulate single-energy 120 kVp images
 - Improved image contrast
- Energy selective images
 - Virtual monoenergetic images
 - Improved image contrast + Metal artifact reduction
- Material selective images
 - Basis material images
 - Material specific or cancelled images
 - lodine image, water image, bone image
 - "virtual non-contrast" scans

DUAL ENERGY PROCESSING

- Source images
 - 80 & 140 kVp images
- Blended images
 - Combine low and high energy images
 - Emulate single-energy 120 kVp images
 - Improved image contrast
- Energy selective images
 - Virtual monoenergetic images
 - Improved image contrast + Metal artifact reduction
- Material selective images
 - Basis material images
 - Material specific or cancelled images
 - lodine image, water image, bone image
 - "virtual non-contrast" scans

SOURCE IMAGES

Increased conspicuity of hepatic lesions on lower-kV images

80 kVp

140 kVp

Lesions are better visualized on 80 kVp (arrowheads) or ONLY visualized on 80 kVp (arrows)

Coursey, et al, Radiographics, 2010

BLENDING

 High and low kV images can be blended to generate a weighted kV equivalent image at any level within the acquired kV range

DUAL ENERGY PROCESSING

- Source images
 - 80 & 140 kVp images
- Blended images
 - Combine low and high energy images
 - Emulate single-energy 120 kVp images
 - Improved image contrast
- Energy selective images
 - Virtual monoenergetic images
 - Improved image contrast + Metal artifact reduction
- Material selective images
 - Basis material images
 - Material specific or cancelled images
 - Iodine image, water image, bone image
 - "virtual non-contrast" scans

- Dual-energy CT data can be decomposed to form a simulated monochromatic image
- Monochromatic images can be chosen between 35 keV and 135 keV

For improved noise & contrast resolution

80 kVp

140 kVp

Monochromatic

Visible, but noisy

Difficult to see

Decreased image noise & improved contrast resolution

Arrows = Enhancement of hypervascular metastasis

Silva, et al, Radiographics, 2011

BEST CONTRAST-TO-NOISE RATIO (CNR)

- Automatic CNR calculation after placement of two ROIs:
 - 1. Contrast ROI
 - on enhancing tissue
 - 2. Base ROI
 - on least enhancing tissue
- Automatic display of best monochromatic CNR image

BEST CONTRAST-TO-NOISE RATIO (CNR)

BLENDING & BEST CNR

For attenuation curves (HU)

- Multiples ROI's can be placed for calculation of HU values for each keV
- ROI values are color coded and plotted across an HU/keVgraph
- Useful tools for tissue analysis

 Using iodine as a biomarker for tumor viability allows quantitative assessment of response to therapy by analyzing spectral attenuation curves

The flatter attenuation curves for two lesions (blue & yellow) indicate *less iodine content* than a third lesion (pink) and normally enhancing hepatic parenchyma (green)

For reducing beam-hardening artifacts

- Polychromatic x-ray beams become hardened when passing through dense materials
- Monochromatic x-ray beams do not
- The HU would not change if monochromatic x-ray beam were available and used at CT

135 kVp

Dual Energy 110 keV

40 keV: Beam hardening & photon starvation artifacts in thoracic inlet and shoulder are **pronounced**

60 keV: Artifacts are reduced in higher keV images

DUAL ENERGY PROCESSING

- Source images
 - 80 & 140 kVp images
- Blended images
 - Combine low and high energy images
 - Emulate single-energy 120 kVp images
 - Improved image contrast
- Energy selective images
 - Virtual monoenergetic images
 - Improved image contrast + Metal artifact reduction
- Material selective images
 - Basis material images
 - Material specific or cancelled images
 - lodine image, water image, bone image
 - "virtual non-contrast" scans

IODINE MAP

- Iodine distribution
- Color map display

IODINE SUBTRACTION

Iodine subtracted images

IODINE MAP & SUBTRACTION

- Iodine distribution is displayed as a color map
- Adjustable fusion between mono and iodine map
- Virtual Non-Contrast (VNC) image is also generated

BONE REMOVAL

- Bone can hamper interpretation of intracranial vessels
- DECT can remove bone with 3-material decomposition

- DECTA is useful for facilitating interpretation of vessels in surgically treated aneurysms (Postma, et al. Curr Radiol Rep. 2015)
- Compared to conventional CTA, visualization of aneurysms and calcified aneurysms was superior with DECTA (Watanabe, et al, Neuroradiology 2014)

CLINICAL APPLICATIONS

Body Region	Iodine	VNC*	Calcium	Fat	Uric acid	Other Materials
Head and neck	Hemorrhage vs contrast-medium extravasation, in- tracranial hemor- rhage of unknown etiology, tumoral invasion of carti- laginous structure	++	Bone removal			Xenon (para- nasal sinus imaging)
Chest	Pulmonary perfu- sion, pulmonary emboli, pulmo- nary nodules	++	Cardiovascular plaque			Xenon and kryp- ton (ventila- tion imaging)
Abdomen	Lesion detection and characterization, tumor staging, metal-related artifact reduction, fibrosis	+++	Aortic and mes- enteric plaque, calcifications vs contrast me- dium, kidney stones	Liver fat quantifica- tion, fat- containing lesions	Kidney stones	Iron (hemochro- matosis)
Musculo- skeletal		+	Bone mineral density, bone marrow edema	Marrow fat	Gout	Tendons and ligaments

Patino, et al, Radiographics, 2016

DE STONE ANALYSIS

- Characterize renal stones for treatment planning
- Uric acid kidney stone differentiation
- A slope of HU characterizing each material is graphed with low and high kV
- Either Uric Acid or "Other"
 - Calcium oxalate
 - Calcium phosphate
 - Struvite
 - Cystine

High kV Low mA - 135kV 75mAs

Low kV High mA - 80kV 350mAs

GOUT COMPOSITION ANALYSIS

• Identification of monosodium urate crystal deposits

DECT IN STROKE IMAGING

- Patients with ischemic stroke may be treated with tissue plasminogen activator (tPA)
 - Helps break up clot that caused stroke
 - Can only be used up to 4 hours after onset of symptoms
- Risk of posttreatment intracerebral hemorrhage
- Monitoring of patients: ICU for 24 hours
 - Follow up CT within 24 hours to asses for complications from tPA
 - Hemorrhage may be obscured by iodinated contrast staining from prior cerebral CT angiogram study
 - Differentiation of contrast and hemorrhage may influence decision to continue or reverse tPA

Ischemic Stroke

Hemorrhage/blood leaks into brain tissue

Clot stops blood supply to an area of the brain

DECT IN STROKE IMAGING

25-30 HU

 Attenuation of intracranial blood depends on concentration of hemoglobin protein molecules

ICH Stage	Appearance	HU	
Hyperacute (immediate)	Isodense	40-60	
Acute (1-3 days)	Hyperdense	60-90	Grav matter: 30-35 H
Sub acute (3-14 days)	Isodense	30-40	White matter: 25-30
Chronic (>14 days)	Hypodense	< 30	

- Acute bleeds appear hyperdense due to increased density from clot formation
- After a few weeks, lysis occurs and HU returns to normal
- May appear hypodense if have tissue loss

CLINICAL STROKE CASE

- 61 year old male presented with stroke symptoms
- Brain Perfusion CT ordered
 - IV Contrast administration
 - Identified narrow arteries in neck
- 7 hours later
- Stroke symptoms worsened
 - Single energy CT ordered
 - Stroke evolved

Are hyperdensities due to **hemorrhagic transformation** or **residual contrast material** from prior CT?

Ordered a dual energy CT...

CLINICAL STROKE CASE

80 kVp

Iodine Map

120 kV Equivalent

VNC

DECT demonstrated hyperdensities to be contrast material from perfusion CT

No evidence of subarachnoid hemorrhage

CLINICAL STROKE CASE

Confirmed on next day MRI

The differentiation of contrast from blood permitted continuation of anticoagulation with the intent of preventing new clot formation or propagation of the infarction

RADIATION DOSE?

Dual-Energy Brain Volume

No.	Protocol	#of scan(s)	kVp	CTDivol (mGy)	DLP (mGy.cm)
1	DualScano	1	120		
2	DualScano	1	120		
3	DE-Vol	1	135	54.60 (Head)	872.90 (Head)

Single-Energy Brain Helical

No.	Protocol	#of scan(s)	kVp	CTDivol (mGy)	DLP (mGy.cm)
1	DualScano	1	120		
2	DualScano	1	120		
3	Helical	1	120	65.70 (Head)	1256.30 (Head)

DECT acquired both image sets with *less* dose than conventional CT

HU ACCURACY AND REPRODUCIBILITY

- Clinical applications rely on accurate material differentiation
- Can we rely on material differentiation with DECT?
 - HU Information
 - Visual representation
 - Quantitative measurements
- Stroke:
 - Blood, lodine, *mixtures* of blood + iodine

HU ACCURACY AND REPRODUCIBILITY

- Gammex Multi Energy CT Phantom
- 19 inserts representing different dimensions and concentrations of iodine, calcium, blood, adipose and other materials

Material:	HE CT Solid Water®	
Interchangeable Inserts:	18 solid inserts plus 1 true water container, each tagged with a CT- visible rod identification code	
4 lodine Inserts with Variable Concentrations:	4 inserts with concentrations of 2.0, 5.0, 10.0, and 15.0 mg/mL	
3 lodine Inserts with Variable Diameters:	5.0 mg/mL concentration at diameters of 2.0, 5.0, and 10.0 mm	
3 Calcium Inserts:	Calcium concentrations of 50, 100, and 300 mg/mL	
3 Blood [iron] Inserts:	Blood-mimicking material at relative electron densities of 1.03, 1.07, and 1.10	
2 Blood [iron] with lodine Inserts:	Blood-mimicking material plus iodine at 2.0 and 4.0 mg/mL	
3 Tissue-Mimicking Inserts:	High-Equivalency Brain, High- Equivalency Adipose, High- Equivalency CT Solid Water	

https://www.sunnuclear.com

IODINE MAP & VNC

- HUs overlap in:
 - Iodine map
 - lodine 2 mg/mL &
 - Blood (40)+ Iodine (2 mg/mL)
 - VNC
 - Blood (70) &
 - Blood (40)+ Iodine (4 mg/ml)
- Need <u>both</u> iodine map and VNC to differentiate iodine & blood

Data obtained & graphs created by PhD student Catherine Olguin, MS

CHALLENGES

Technology

- Further optimization
 - Material decomposition
- More versatile DECT applications
 - Expanded clinical utility

CHALLENGES

Workflow

- Scanner accessibility
 - Scheduling
 - Longer reconstruction time
- Technologist training
 - Scan acquisition & post-processing
- Physician & Radiologist training
 - Protocoling & ordering
 - Additional information made available

MUITO OBRIGADA

Izabella.Barreto@radiology.ufl.edu | https://medphysics.med.ufl.edu

Instagram: @**ProfessorInPink** 💓 Twitter: @**BarretoPhd** | www.IzabellaBarreto.com