
	
	

1. Instrumental	Variables	

	

	
	
Nota:	Problema	C1	a	seguir	se	refere	ao	exemplo	15.2.	
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For comparison, we first obtain the OLS estimates:

  ! log(wage)    � �.185 � .109 educ

 (.185) (.014) [15.15]
 n � 428, R2 � .118.

The estimate for C1 implies an almost 11% return for another year of education.
Next, we use father’s education (  fatheduc) as an instrumental variable for educ. We 

have to maintain that fatheduc is uncorrelated with u. The second requirement is that educ 
and fatheduc are correlated. We can check this very easily using a simple regression of 
educ on fatheduc (using only the working women in the sample):

  ! educ    � 10.24 � .269 fatheduc

 (.28) (.029) [15.16]
 n � 428, R2 � .173.

The t statistic on fatheduc is 9.28, which indicates that educ and fatheduc have a statisti-
cally significant positive correlation. (In fact, fatheduc explains about 17% of the variation 
in educ in the sample.) Using fatheduc as an IV for educ gives

  ! log(wage)    � .441 � .059 educ

 (.446) (.035) [15.17]
 n � 428, R2 � .093.

The IV estimate of the return to education is 5.9%, which is barely more than one-half of the 
OLS estimate. This suggests that the OLS estimate is too high and is consistent with omitted 
ability bias. But we should remember that these are estimates from just one sample: we can 
never know whether .109 is above the true return to education, or whether .059 is closer to 
the true return to education. Further, the standard error of the IV estimate is two and one-
half times as large as the OLS standard error (this is expected, for the reasons we gave ear-
lier). The 95% confidence interval for C1 using OLS is much tighter than that using the IV; 
in fact, the IV confidence interval actually contains the OLS estimate. Therefore, although 
the differences between (15.15) and (15.17) are practically large, we cannot say whether the 
difference is statistically significant. We will show how to test this in Section 15.5.

In the previous example, the estimated return to education using IV was less than that 
using OLS, which corresponds to our expectations. But this need not have been the case, 
as the following example demonstrates.

 EXAMPLE 15.2 ESTIMATING THE RETURN TO EDUCATION FOR MEN

We now use WAGE2.RAW to estimate the return to education for men. We use the vari-
able sibs (number of siblings) as an instrument for educ. These are negatively correlated, 
as we can verify from a simple regression:

  ! educ    � 14.14 � .228 sibs

 (.11) (.030)

 n � 935, R2 � .057.
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This equation implies that every sibling is associated with, on average, about .23 less of 
a year of education. If we assume that sibs is uncorrelated with the error term in (15.14), 
then the IV estimator is consistent. Estimating equation (15.14) using sibs as an IV for 
educ gives

  ! log(wage)    � 5.13 � .122 educ

 (.36) (.026)

 n � 935.

(The R-squared is computed to be negative, so we do not report it. A discussion of  
R-squared in the context of IV estimation follows.) For comparison, the OLS estimate of 
C1 is .059 with a standard error of .006. Unlike in the previous example, the IV estimate 
is now much higher than the OLS estimate. While we do not know whether the difference 
is statistically significant, this does not mesh with the omitted ability bias from OLS. It 
could be that sibs is also correlated with ability: more siblings means, on average, less 
 parental attention, which could result in lower ability. Another interpretation is that the 
OLS  estimator is biased toward zero because of measurement error in educ. This is not 
entirely convincing because, as we discussed in Section 9.3, educ is unlikely to satisfy the 
classical errors-in-variables model.

In the previous examples, the endogenous explanatory variable (educ) and the 
 instrumental variables (  fatheduc, sibs) had quantitative meaning. But nothing  prevents 
the explanatory variable or IV from being binary variables. Angrist and Krueger (1991), 
in their simplest analysis, came up with a clever binary instrumental variable for educ, 
using census data on men in the United States. Let frstqrt be equal to one if the man was 
born in the first quarter of the year, and zero otherwise. It seems that the  error term in 
(15.14)—and, in particular, ability—should be unrelated to quarter of birth. But frstqrt 
also needs to be correlated with educ. It turns out that years of education do  differ 
 systematically in the population based on quarter of birth. Angrist and Krueger argued 
persuasively that this is due to compulsory school attendance laws in effect in all states. 
Briefly, students born early in the year typically begin school at an older age. Therefore, 
they reach the compulsory schooling age (16 in most states) with somewhat less edu-
cation than students who begin school at a younger age. For students who finish high 
school, Angrist and Krueger verified that there is no relationship between years of educa-
tion and quarter of birth.

Because years of education varies only slightly across quarter of birth—which 
means R 2   x,z  in (15.13) is very small—Angrist and Krueger needed a very large sample 
size to get a reasonably precise IV estimate. Using 247,199 men born between 1920 
and 1929, the OLS estimate of the return to education was .0801 (standard error .0004), 
and the IV estimate was .0715 (.0219); these are reported in Table III of Angrist and 
Krueger’s paper. Note how large the t statistic is for the OLS estimate (about 200), 
whereas the t statistic for the IV estimate is only 3.26. Thus, the IV estimate is statisti-
cally  different from zero, but its confidence interval is much wider than that based on 
the OLS estimate.

An interesting finding by Angrist and Krueger is that the IV estimate does not differ 
much from the OLS estimate. In fact, using men born in the next decade, the IV estimate 
is somewhat higher than the OLS estimate. One could interpret this as showing that 
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be a binary variable equal to one if the student attends a Catholic high school. A linear 
probability model is

college � C0 � C 1CathHS  � other factors � u,

  where the other factors include gender, race, family income, and parental education.
(i) Why might CathHS  be correlated with u?
(ii)  Evans and Schwab have data on a standardized test score taken when each student 

was a sophomore. What can be done with this variable to improve the ceteris paribus 
estimate of attending a Catholic high school?

(iii)  Let CathRel be a binary variable equal to one if the student is Catholic. Discuss 
the two requirements needed for this to be a valid IV for CathHS  in the preceding 
 equation. Which of these can be tested?

(iv)  Not surprisingly, being Catholic has a significant positive effect on attending a 
 Catholic high school. Do you think CathRel is a convincing instrument for CathHS ?

 11  Consider a simple time series model where the explanatory variable has classical 
 mea surement error:

 yt � C0 � C1x *   t   � ut
 

[15.58]
 xt � x *   t   � et,

   where ut has zero mean and is uncorrelated with x *   t   and et. We observe yt and xt only. 
 Assume that et has zero mean and is uncorrelated with x *   t   and that x *   t   also has a zero mean 
(this last assumption is only to simplify the algebra).
(i)  Write x *   t   � xt � et and plug this into (15.58). Show that the error term in the new 

equation, say, vt, is negatively correlated with xt if C1 � 0. What does this imply 
about the OLS estimator of C1 from the regression of yt on xt?

(ii)  In addition to the previous assumptions, assume that ut and et are uncorrelated with 
all past values of x *   t   and et; in particular, with x *   t  �1 and et�1. Show that E(xt�1vt) � 0, 
where vt is the error term in the model from part (i).

(iii) Are xt and xt�1 likely to be correlated? Explain.
(iv)  What do parts (ii) and (iii) suggest as a useful strategy for consistently estimating  

C0 and C1?

Computer Exercises
 C1 Use the data in WAGE2.RAW for this exercise.

(i)  In Example 15.2, if sibs is used as an instrument for educ, the IV estimate of the 
return to education is .122. To convince yourself that using sibs as an IV for educ 
is not the same as just plugging sibs in for educ and running an OLS regression, 
run the regression of log(wage) on sibs and explain your findings.

(ii)  The variable brthord is birth order (brthord is one for a first-born child, two for a 
second-born child, and so on). Explain why educ and brthord might be negatively 
correlated. Regress educ on brthord to determine whether there is a statistically 
significant negative correlation.

(iii)  Use brthord as an IV for educ in equation (15.1). Report and interpret the results.
(iv)  Now, suppose that we include number of siblings as an explanatory variable in the 

wage equation; this controls for family background, to some extent:

log(wage) � C0 � C1educ � C2sibs � u.
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  Suppose that we want to use brthord as an IV for educ, assuming that sibs is exog-
enous. The reduced form for educ is

educ � Q0 � Q1sibs � Q2brthord � v.

 State and test the identification assumption.
(v)  Estimate the equation from part (iv) using brthord as an IV for educ (and sibs as 

its own IV). Comment on the standard errors for  ̂  C�  educ and  ̂  C�  sibs.
(vi)  Using the fitted values from part (iv),  ! educ   , compute the correlation between  ! educ   

and sibs. Use this result to explain your findings from part (v).

 C2  The data in FERTIL2.RAW include, for women in Botswana during 1988, informa-
tion on number of children, years of education, age, and religious and economic status 
variables.
(i) Estimate the model

children � C0 � C1educ � C2age � C3age2 � u

   by OLS, and interpret the estimates. In particular, holding age fixed, what is the 
estimated effect of another year of education on fertility? If 100 women receive 
another year of education, how many fewer children are they expected to have?

(ii)  The variable frsthalf is a dummy variable equal to one if the woman was born dur-
ing the first six months of the year. Assuming that frsthalf is uncorrelated with the 
error term from part (i), show that frsthalf is a reasonable IV candidate for educ. 
(Hint: You need to do a regression.)

(iii)  Estimate the model from part (i) by using frsthalf as an IV for educ. Compare the 
estimated effect of education with the OLS estimate from part (i).

(iv)  Add the binary variables electric, tv, and bicycle to the model and assume these 
are exogenous. Estimate the equation by OLS and 2SLS and compare the esti-
mated coefficients on educ. Interpret the coefficient on tv and explain why televi-
sion ownership has a negative effect on fertility.

 C3 Use the data in CARD.RAW for this exercise.
(i) The equation we estimated in Example 15.4 can be written as

log(wage) � C0 � C1educ � C2exper � … � u,

  where the other explanatory variables are listed in Table 15.1. In order for IV to 
be consistent, the IV for educ, nearc4 , must be uncorrelated with u. Could nearc4  
be correlated with things in the error term, such as unobserved ability? Explain.

(ii)  For a subsample of the men in the data set, an IQ score is available. Regress IQ on 
nearc4  to check whether average IQ scores vary by whether the man grew up near 
a four-year college. What do you conclude?

(iii)  Now, regress IQ on nearc4 , smsa66, and the 1966 regional dummy variables 
reg662 , …, reg669 . Are IQ and nearc4  related after the geographic dummy vari-
ables have been partialled out? Reconcile this with your findings from part (ii).

(iv)  From parts (ii) and (iii), what do you conclude about the importance of controlling 
for smsa66 and the 1966 regional dummies in the log(wage) equation?

 C4  Use the data in INTDEF.RAW for this exercise. A simple equation relating the three-
month T-bill rate to the inflation rate (constructed from the Consumer Price Index) is

i3 t � C0 � C1inft � ut.
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k � 2 is given in the equations in (15.25); along with z2, z1 appears in the set of moment 
conditions used to obtain the IV estimates. More generally, z1, ..., zk�1 are used in the mo-
ment conditions along with the instrumental variable for y2, zk.

The reduced form for y2 is

 y2 � Q0 � Q1z1 � … � Q k�1zk�1 � Q kzk � v2, [15.30]

and we need some partial correlation between zk and y2:

 Q k p 0. [15.31]

Under (15.29) and (15.31), zk is a valid IV for y2. [We do not care about the remaining Q j 
in (15.30); some or all of them could be zero.] A minor additional assumption is that there 
are no perfect linear relationships among the exogenous variables; this is analogous to the 
assumption of no perfect collinearity in the context of OLS.

For standard statistical inference, we need to assume homoskedasticity of u1. We give 
a careful statement of these assumptions in a more general setting in Section 15.3.

 EXAMPLE 15.4 USING COLLEGE PROXIMITY AS AN IV FOR EDUCATION

Card (1995) used wage and education data for a sample of men in 1976 to estimate the 
return to education. He used a dummy variable for whether someone grew up near a four-
year college (nearc4) as an instrumental variable for education. In a log(wage) equation, 
he included other standard controls: experience, a black dummy variable, dummy variables 
for living in an SMSA and living in the South, and a full set of regional dummy variables 
and an SMSA dummy for where the man was living in 1966. In order for nearc4 to be a 
valid instrument, it must be uncorrelated with the error term in the wage equation—we 
 assume this—and it must be partially correlated with educ. To check the latter require-
ment, we regress educ on nearc4 and all of the exogenous variables appearing in the equa-
tion. (That is, we estimate the reduced form for educ.) Using the data in CARD.RAW, we 
obtain, in condensed form,

 educ � 16.64 � .320 nearc4 � .413 exper � …

 (.24) (.088) (.034)

 n � 3,010, R2 � .477.

We are interested in the coefficient and t statistic on nearc4. The coefficient implies that 
in 1976, other things being fixed (experience, race, region, and so on), people who lived 
near a college in 1966 had, on average, about one-third of a year more education than 
those who did not grow up near a college. The t statistic on nearc4 is 3.64, which gives 
a p-value that is zero in the first three decimals. Therefore, if nearc4 is uncorrelated with 
unobserved factors in the error term, we can use nearc4 as an IV for educ.

The OLS and IV estimates are given in Table 15.1. Interestingly, the IV estimate 
of the return to education is almost twice as large as the OLS estimate, but the standard 
error of the IV estimate is over 18 times larger than the OLS standard error. The 95% 
 confidence interval for the IV estimate is between .024 and .239, which is a very wide 
range. The presence of larger confidence intervals is a price we must pay to get a consis-
tent estimator of the return to education when we think educ is endogenous.
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T A B L E  1 5 . 1  Dependent Variable: log(wage)

Explanatory Variables OLS IV

educ .075
(.003)

.132
(.055)

exper .085
(.007)

.108
(.024)

exper 2 �.0023
(.0003)

�.0023
 (.0003)

black �.199
(.018)

�.147
  (.054)

smsa .136
(.020)

.112
(.032)

south �.148
(.026)

�.145
 (.027)

Observations
R-squared

3,010
.300

3,010
.238

Other controls: smsa66, reg662 , …, reg669

As discussed earlier, we should not make anything of the smaller R-squared in the 
IV estimation: by definition, the OLS R-squared will always be larger because OLS mini-
mizes the sum of squared residuals.

It is worth noting, especially for studying the effects of policy interventions, that a 
reduced form equation exists for y1, too. In the context of equation (15.28) with zk an IV 
for y2, the reduced form for y1 always has the form

 y1 = H0 � H1z1 � … � Hkzk + e1, [15.32]

where Hj � Cj � C1πj � for j < 1, Hk � C1πk, and e1 � u1 � C1v2—as can be verified by 
plugging (15.30) into (15.28) and rearranging. Because the zj are exogenous in (15.32), 
the Hj can be consistently estimated by OLS. In other words, we regress y1 on all of the 
exogenous variables, including zk, the IV for y2. Only if we want to estimate C1 in (15.28) 
do we need to apply IV.

When y2 is a zero-one variable denoting participation, and zk is a zero-one variable 
representing eligibility for program participation—which is, hopefully, either randomized 
across individuals or, at most, a function of the other exogenous variables z1, ..., zk−1 (such 
as income)—the coefficient Hk has an interesting intepretation. Rather than an estimate of 
the effect of the program itself, it is an estimate of the effect of offering the program. Unlike 
C1 in (15.28)—which measures the effect of the program itself—Hk accounts for the pos-
sibility that some units made eligible will choose not to participate. In the program evalu-
ation literature, Hk is an example of an intention-to-treat parameter: it measures the  effect 
of being made eligible and not the effect of actual participation. The intention-to-treat  
coefficient, Hk � C1πk, depends on the effect of participating, C1, and the change (typi-
cally, increase) in the probability of participating due to being eligible, πk. [When y2 is 
 binary, equation (15.30) is a linear probability model, and therefore πk measures the  ceteris 
 paribus change in probability that y2 � 1 as zk switches from zero to one.]
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(i)  Estimate this equation by OLS, omitting the first time period for later compari-
sons. Report the results in the usual form.

(ii)  Some economists feel that the Consumer Price Index mismeasures the true rate of 
inflation, so that the OLS from part (i) suffers from measurement error bias. Re-
estimate the equation from part (i), using inft�1 as an IV for inft. How does the IV 
estimate of C1 compare with the OLS estimate?

(iii) Now, first difference the equation:

$i3 t � C0 � C 1$inft � $ut.

  Estimate this by OLS and compare the estimate of C1 with the previous estimates.
(iv)  Can you use $inft�1 as an IV for $inft in the differenced equation in part (iii)? Ex-

plain. (Hint: Are $inft and $inft�1 sufficiently correlated?)

 C5 Use the data in CARD.RAW for this exercise.
(i)  In Table 15.1, the difference between the IV and OLS estimates of the return to 

education is economically important. Obtain the reduced form residuals,  ̂  v 2, from 
the reduced form regression educ on nearc4, exper, exper2, black, smsa, south , 
smsa66, reg 662, ..., reg 669—see Table15.1. Use these to test whether educ is 
exogenous; that is, determine if the difference between OLS and IV is statistically 
significant.

(ii)  Estimate the equation by 2SLS, adding nearc2  as an instrument. Does the coeffi-
cient on educ change much?

(iii) Test the single overidentifying restriction from part (ii).

 C6  Use the data in MURDER.RAW for this exercise. The variable mrdrte is the murder 
rate, that is, the number of murders per 100,000 people. The variable exec is the total 
number of prisoners executed for the current and prior two years; unem is the state un-
employment rate.
(i)  How many states executed at least one prisoner in 1991, 1992, or 1993? Which 

state had the most executions?
(ii)  Using the two years 1990 and 1993, do a pooled regression of mrdrte on d93 , 

exec, and unem. What do you make of the coefficient on exec?
(iii)  Using the changes from 1990 to 1993 only (for a total of 51 observations), esti-

mate the equation

$mrdrte � E0 � C 1$exec � C 2$unem � $u

  by OLS and report the results in the usual form. Now, does capital punishment ap-
pear to have a deterrent effect?

(iv)  The change in executions may be at least partly related to changes in the expected 
murder rate, so that $exec is correlated with $u in part (iii). It might be reasonable 
to assume that $exec�1 is uncorrelated with $u. (After all, $exec�1 depends on ex-
ecutions that occurred three or more years ago.) Regress $exec on $exec�1 to see 
if they are sufficiently correlated; interpret the coefficient on $exec�1.

(v)  Reestimate the equation from part (iii), using $exec�1 as an IV for $exec. Assume 
that $unem is exogenous. How do your conclusions change from part (iii)?

 C7 Use the data in PHILLIPS.RAW for this exercise.
(i)  In Example 11.5, we estimated an expectations augmented Phillips curve of the form

$inft � C0 � C1unemt � et,
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 2  Let corn denote per capita consumption of corn in bushels at the county level, let price be 
the price per bushel of corn, let income denote per capita county income, and let rainfall be 
inches of rainfall during the last corn-growing season. The following simultaneous equa-
tions model imposes the equilibrium condition that supply equals demand:

 corn � B1 price � C1income � u1

 corn � B2 price � C2rainfall � H2rainfall2 � u2.

Which is the supply equation, and which is the demand equation? Explain.

 3  In Problem 3 of Chapter 3, we estimated an equation to test for a tradeoff between minutes 
per week spent sleeping (sleep) and minutes per week spent working (totwrk) for a random 
sample of individuals. We also included education and age in the equation. Because sleep 
and totwrk are jointly chosen by each individual, is the estimated tradeoff between sleep-
ing and working subject to a “simultaneity bias” criticism? Explain.

 4 Suppose that annual earnings and alcohol consumption are determined by the SEM

 log(earnings) � C0 � C1alcohol � C2educ � u1

 alcohol � H0 � H1log(earnings) � H2educ � H3log(price) � u2,

   where price is a local price index for alcohol, which includes state and local taxes.  Assume 
that educ and price are exogenous. If C1, C2, H1, H2, and H3 are all different from zero, 
which equation is identified? How would you estimate that equation?

 5  A simple model to determine the effectiveness of condom usage on reducing sexually 
transmitted diseases among sexually active high school students is

infrate � C0 � C1conuse � C2percmale � C3avginc � C4city � u1,

 where 

  infrate �  the percentage of sexually active students who have contracted  
venereal disease.

 conuse � the percentage of boys who claim to use condoms regularly.
 avginc � average family income.
      city � a dummy variable indicating whether a school is in a city. 

The model is at the school level.
(i) Interpreting the preceding equation in a causal, ceteris paribus fashion, what should 

be the sign of C1?
(ii) Why might infrate and conuse be jointly determined?
(iii) If condom usage increases with the rate of venereal disease, so that H1 � 0 in the 

equation

conuse � H0 � H1infrate � other factors,

 what is the likely bias in estimating C1 by OLS?
(iv) Let condis be a binary variable equal to unity if a school has a program to distribute 

condoms. Explain how this can be used to estimate C1 (and the other betas) by IV. 
What do we have to assume about condis in each equation?
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expenditures. Using panel data for the years 1992, 1994, and 1996, we postulate the 
model

lHPRICEit � V t � C1lEXPENDit � C2lPOLICEit � C3lMEDINCit 

 ��C 4PROPTAXit � ai1 � uit1,

   where POLICEit is per capita police expenditures, MEDINCit is median income, and 
PROPTAXit is the property tax rate; l denotes natural logarithm. Expenditures and housing 
price are simultaneously determined because the value of homes directly affects the rev-
enues available for funding schools.

Suppose that, in 1994, the way schools were funded was drastically changed: rather 
than being raised by local property taxes, school funding was largely determined at the 
state level. Let lSTATEALLit denote the log of the state allocation for district i in year t, 
which is exogenous in the preceding equation, once we control for expenditures and a dis-
trict fixed effect. How would you estimate the C j?

Computer Exercises
 C1 Use SMOKE.RAW for this exercise.

(i)  A model to estimate the effects of smoking on annual income (perhaps through 
lost work days due to illness, or productivity effects) is

log(income) � C0 � C1cigs � C2educ � C3age � C4age2 � u1,

  where cigs is number of cigarettes smoked per day, on average. How do you 
interpret C1?

(ii)  To reflect the fact that cigarette consumption might be jointly determined with 
 income, a demand for cigarettes equation is

cigs � H0 � H1log(income) � H2educ � H3age � H4age2 

� � H5log(cigpric) � H6restaurn � u2,

  where cigpric is the price of a pack of cigarettes (in cents), and restaurn is a 
 binary variable equal to unity if the person lives in a state with restaurant smoking 
 restrictions. Assuming these are exogenous to the individual, what signs would 
you  expect for H5 and H6?

(iii) Under what assumption is the income equation from part (i) identified?
(iv) Estimate the income equation by OLS and discuss the estimate of C1.
(v)  Estimate the reduced form for cigs. (Recall that this entails regressing cigs on all 

 exogenous variables.) Are log(cigpric) and restaurn significant in the reduced form?
(vi)  Now, estimate the income equation by 2SLS. Discuss how the estimate of  

C1  compares with the OLS estimate.
(vii)  Do you think that cigarette prices and restaurant smoking restrictions are 

 exogenous in the income equation?

 C2 Use MROZ.RAW for this exercise.
(i)  Reestimate the labor supply function in Example 16.5, using log(hours) as the 

d ependent variable. Compare the estimated elasticity (which is now constant) to 
the estimate obtained from equation (16.24) at the average hours worked.


