
Lecture 15
Anisotropic flow
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What is anisotropic flow?

In lecture 13, we studied the radial expansion of the fluid, assuming it
what the same in all azimuthal directions
In fact, there is a small azimuthal angular dependance, this is the
anisotropic flow.
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So we write:

E
d3N
dp3 =

d3N
dyd2p⊥

=
d2N

2πdyp⊥dp⊥

[
1 +

∞∑
n=1

2vn(p⊥, y) cos(n(φp − ψn(p⊥, y)))

]
and

d2N
dφpdy

=
dN

2πdy

[
1 +

∞∑
n=1

2vn(y) cos(n(φp − ψn(y)))

]
• The term [1+ before the sum corresponds to radial flow
(independant of φp) that we studied:

• The term n=1 in the sum, corresponds to directed flow:

Left v1: comes from different number of nucleon collisions and breaking in the overlap region. Right v1: comes from

the fluctuations (hot spots) in a transverse slice. 3 / 13



In the following, we concentrate on n>1, where fluctuations have an
important part

• The term n=2 is elliptic flow: it comes mostly from the existing
shape of overlap region but also on its hot spots.
• n>1 odd terms would not exist without the fluctuations.
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A signature of collectivity
The presence of elliptic flow and its large value are signal of
collectivity

T.Hirano,N. van der Kolk, A. Bilandzic arXiv:0808.2684

If the mean free path was larger than the system size, particles would
be emitted isotropically. On the other side, if matter is thermalized,
pressure gradients are larger horitally (smaller distance) than
vertically (larger distance) and flow is enhanced horizontally
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Gluons undergoing elastic collisions in an almond shape region: from B. Zhang, M. Gyulassy, C.M. Ko: Phys. Lett. B

455 (1999) 45

In the simple case above, we see that:

I v2 is not generated in the free-streaming case, so elliptic flow is
generated indeed through secondary collisions

I elliptic flow is generated in the early stage of the collision and
saturates after the first 2 to 3 fm/c

I the saturated value of v2 is sensitive to the cross section among
the particles so, in the kinetic theory of gases, to η
σ ∝ 1/lmfp ∝ 1/η (see lecture 11)

I for large cross sections, the system is expected to reach the
ideal hydrodynamic result (lmfp → 0)
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The observation of elliptic flow saturating the hydro limit (STAR
collboration, 2000), was a major step to establish the validity of the
hydrodynamic description. It also became soon clear, that a quark
gluon phase was necessary for a proper description.

Black dots are STAR data and white boxes are various ideal hydro predictions
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Mass ordering
In lecture 13, we saw that for the freeze out of a cylindrical perfect
fluid with constant transverse expansion and boost invariance

d3N
m⊥dm⊥dφpdy

=
gR2/2
(2π)3 τf .out

∞∑
n=1

(±)n+1e
nµ

Tf .out

∫
f .out

dηsdφ cosh(y − ηs)

m⊥ exp(−nm⊥ cosh ρ cosh(y − ηs)

Tf .out
+

np⊥ sinh ρ cos(φp − φ)
Tf .out

)

So ignoring angular dependance we had derived

d2N
m⊥dm⊥dy

=
gR2

2π
τf .outm⊥

∞∑
n=1

(±)n+1e
nµ

Tf .out K1(nm⊥ cosh ρ/Tf .out)I0(np⊥ sinh ρ/Tf .out)

∼ gR2

2π
τf .outm⊥e

µ
Tf .out K1(m⊥ cosh ρ/Tf .out)I0(p⊥ sinh ρ/Tf .out)

To study elliptic flow, angular dependance must be included. Instead
of a constant ρ, we use ρ = ρ0 + ρa cos(2φ) so

d3N
m⊥dm⊥dφpdy

=
gR2/2
(2π)3 τf .out

∞∑
n=1

(±)n+1e
nµ

Tf .out

∫
f .out

dφ

m⊥ K1(
nm⊥ cosh ρ

Tf .out
)exp(

np⊥ sinh ρ cos(φp − φ)
Tf .out

)
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Therefore: d3N
m⊥dm⊥dφpdy ∼

gR2/2
(2π)3 τf .oute

µ
Tf .out

∫
f .out dφm⊥ K1(

m⊥ cosh ρ
Tf .out

)exp( p⊥ sinh ρ cos(φp−φ)
Tf .out

)

To compute v2, we note the general property (using the expression in
blue p.3):

vm(p⊥, y) =

∫
dφp cos(m(φp − ψm))

d3N
m⊥dm⊥dφpdy∫

dφp
d3N

m⊥dm⊥dφpdy

So in our particular wave case:

v2(p⊥, y) =
∫ 2π

0 dφcos(2(φ−ψ2))K1(
m⊥ cosh ρ

Tf .out
)I2(

p⊥ sinh ρ

Tf .out
)∫ 2π

0 dφK1(
m⊥ cosh ρ

Tf .out
)I0(

p⊥ sinh ρ

Tf .out
)

To go farther, we approximate the elliptic fireball
by 4 sources. We get:

v2(p⊥, y) =
I2(

γx vx p⊥
Tf .out

)−e
E

Tf .out
(γx−γy )

I2(
γy vy p⊥

Tf .out
)

I0(
γx vx p⊥

Tf .out
)+e

E
Tf .out

(γx−γy )
I0(

γy vy p⊥
Tf .out

)

The particle mass enters only in the term e
E

Tf .out
(γx−γy ), so if all other

variables are held fixed, v2 decreases with increasing mass.
This model is presented in P.Huovinen et al. Phys.Lett.B503 (2001) 58, arXiv:hep-ph/0101136
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This prediction has indeed been confirmed. Mass ordering seem to
hold also for n > 2. This is another fact that established the
hydrodynamical description.
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Challenge

Using the 4 sources model, show that
a) at midrapidity v2(p ⊥) ∼ tanh

(
1
2 (

(κp⊥−λm⊥
Tf .out

+ µ)
)

where

κ = γxvx − γy vy , λ = γx − γy and µ = ln
√
γxvx/(γy vy ),

b) for intermediate p⊥, v2 is approximately linear in p⊥ (use Tf .out =
140 MeV, vx = 0.6, and vy = 0.5).
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Homework
At midrapidity, an angular distribution is given by:

d2N
dφpdy |y=0

= dN
2πdy [1 + 2× 0.1 cos(2φp)− 2× 0.05 cos(3(φp − π/6))]

What are the values of v2 and v3?
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Other references on this topic
I T.Hirano,N. van der Kolk, A. Bilandzic arXiv:0808.2684
I P.F.Kolb and U. Heinz nucl-th/0305084.pdf
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