

PGF5312 – 1 FUNDAMENTOS DE PROCESSAMENTO DIGITAL DE IMAGENS MÉDICAS

Aula 13 – Qualidade de imagens Parte 2

Paulo R. Costa Grupo de Dosimetria das Radiações e Física Médica Instituto de Física - USP

		Datas	Dias	Aulas	Tema		
		23/08	Terça	1	ABERTURA DO CURSO		
	I – INTRODUÇAO	25/08	Quinta	2	Prática 1 – Elementos de percepção visual	GRUPO DE DOSIMETRIA DAS RADIAÇÕES • FÍSICA MÉDICA	
	II – DOMÍNIOS	30/08	Terça	3	Domínios espacial e de frequências 1		
	ESPACIAL E DE FREOUÊNCIAS	01/09	Quinta	4	Prática 2 – Introdução ao ImageJ	IFUSP - Instituto de Física da USP	
	FERIADO	06/09 — 09/09	Terça e Ouinta	-	Semana da pátria: RECESSO PARA ESCOLHA DOS TEMAS DAS MONOGRAFIAS		
	II – DOMÍNIOS	13/09	Terça	5	Domínios espacial e de frequências 2		
	ESPACIAL E DE FREOUÊNCIAS	15/09	Quinta	6	Prática 3 - Domínios espacial e de frequências		
	III – IMAGENS DIGITAIS	20/09	Terça	7	Fundamentos de Imagens Digitais 1		
		22/09	Quinta	8	Prática 4 – Fundamentos de Imagens Digitais 2/Contraste		
	IV – IMAGENS MÉDICAS	27/09	Terça	9	Imagens Médicas 1: RX, MAMO, CT		
		29/09	Quinta	10	Imagens Médicas 2: FLUORO, DO, MN, RM, US		
		04/10	Terça	11	Qualidade de imagens 1		
	-	06/10	Quinta	12	AULA IZABELLA BARRETO		
	-	11/10	Terça	13	Qualidade de imagens 2		
	V- QUALIDADE DE	13/10	Quinta	14	Prática 5 - Qualidade de imagens 2/CNR/SNR		
	IMAGENS	18/10	Terça	15	Qualidade de imagem 3		
		20/10	Quinta	16	Prática 6 - Qualidade de imagens 3/ COQ, MTF e NPS		
		25/10	Terça	17	Qualidade de imagens 4		
		27/10	Quinta	18	Prática 7 - Qualidade de imagens 4/Detectabilidade		
	VI – AJUSTE DE CONTRASTE	01/11	Terça	19	Ajuste de contraste		
		03/11	Quinta	20	Prática 8 - Ajuste de contraste		
	VII – FILTROS PARA IMAGENS	08/11	Terça	21	Filtros para imagens		
		10/11	Quinta	22	Prática 9 - Filtros para imagens		
	FERIADO	15/11	Terça	-	Proclamação da república		
	VIII – INOVAÇÕES EM PROC. DE IMG MÉDICAS	17/11	Quinta	23	Inteligência artificial em imagens médicas		
		22/11	Terça	24	Reconstrução iterativa em imagens médicas		
	PRÉVIAS DAS APRESENTAÇÕES	24/11	Quinta	25	Apresentação das Prévia dos trabalhos finais		
		29/11	Terça	26	Apresentação das Prévia dos trabalhos finais		
	AVALIAÇÃO DO CURSO	01/12 - 06/12	Quinta e Terça	-	Preparação para as monografias		
7		08/12	Quinta	27	Apresentação dos trabalhos e discussões		
		13/12	Terça	28	Apresentação dos trabalhos e discussões		
	-	15/12	Quinta	29	Apresentação dos trabalhos e discussões		

Decomposição do ruído Relações entre contraste e ruído Razão sinal-ruído Razão contraste-ruído De novo um pouco do Modelo de Rose

Resolução espacial

Decomposição do ruído

Fluência ou kerma no ar no detector

 $\sigma_{\text{tot}}^2 = e + qQ + fpQ^2$

 $NPS_{tot}(f) = NPS_e(f) + NPS_q(f)Q + NPS_{fp}(f)Q^2$

Decomposição do ruído: polinomial

DETECTOR DE Se-AMORFO USADO EM MAMOGRAFIA

DOSIMETRIA

DAS RADIAÇÕES

Decomposição do ruído: polinomial

DETECTOR DE Se-AMORFO USADO EM MAMOGRAFIA

DOSIMETRIA

DAS RADIAÇÕES

Relações entre contraste e ruído

IFUSP - Instituto de Física da USP

Razão sinal-ruído

Para o caso Grandeza básica e intuitiva reral de um processo estocástico Definição "bruta" da razão sinal ruído: Todos os N fótons detectados são incluídos no sinal Mais interessante: razão sinal-ruído diferencial Signal $\text{SNR}_{\text{diff}} = \frac{\Delta S}{\sigma} = \frac{CS}{\sigma} = \frac{CN}{\sqrt{N}} = C\sqrt{N}$ \rightarrow contraste

Ruído

Razão sinal-ruído

 $C^2 A$

Area A

$$C = \frac{\Delta S}{S}$$

$$SNR_{diff} = C\sqrt{N} = C\sqrt{N_a A}.$$

$$N_a = \frac{SNR_{diff}^2}{N_a}$$

$$\int V_a = \frac{N_a}{V_a}$$

Número de fótons por unidade de área para se ter um dado SNR_{diff} em uma imagem com contraste C

Pelos resultados de Rose, SNR_{diff} > 5 para que o contraste possa ser percebido por observadores humanos

Razão sinal-ruído

Considerações importantes

- Supõe-se que o sinal é pequeno, de forma que o ruído nas vizinhanças do objeto de interesse é somente minimamente influenciado pelas variações de exposição dentro do objeto
- A ROI usada para calcular o σ é grande o suficiente para que a média seja confiável e que todas as frequências espaciais de interesse sejam incluídas na medição do ruído

 Qualquer estrutura no background que possa ser atribuída a artefatos ou não uniformidades do detector tenham sido eliminadas

→ Em uma dada ROI a SNR é dada por

$$SNR_{pixel} = \frac{\overline{d}}{\sigma} \quad \overline{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (d_i - \overline{d})^2$$

→ Na existência de um "alvo" na imagem, o CNR pode ser dado por

$$CNR = \frac{C_w}{\sigma}$$

SNR e CNR

Critério de Rose

Albert Rose

David Sarnoff Research Center RCA Princeton, New Jersey

1974

PLENUM PRESS • NEW YORK-LONDON

Rose A unified approach to the performance of photographic film, television pick-up tubes and the human eye, J Soc Motion Pict Telev Eng 47, 273-294 (1946) A. Rose Sensitivity performance of the human eye on an absolute scale, J Opt Soc Am 38, 196-208 (1948)

A. Rose Quantum and noise limitations of the visual process, J Opt Soc Am 43, 715-716 (1953)

Modelo de Rose

Modelo de Rose

IAEA. Diagnostic Radiology Physics: a handbook for teachers and students

Modelo de Rose

Contrast resolution is determined by contrast and noise

Contrast to Noise Ratio (CNR)

$$SNR = \frac{\bar{X}_{bg}}{\sigma_{bg}}$$
 $CNR = \frac{(\bar{X}_S - \bar{X}_{bg})}{\sigma_{bg}}$

Detalhes em imagens

- Resolução espacial
- Habilidade do sistema em transferir detalhes do objeto para o sinal na imagem

RADIACÕES

stationary

non-stationary

 $I(x, y) = \int_{x} \int_{y'} I'(x', y') h(x - x', y - y') dx' dy'$

Optical transfer Function (OTF)

$$OTF(f_x, f_y) = \int \int_{-\infty}^{\infty} PSF(x, y) e^{-i2\pi(xf_x + yf_y)} dxdy$$

Modulation Transfer Function (MTF)

Módulo da OTF

Phase Transfer Function (PTF)

Fase da OTF

 $OTF(f_x, f_y) = |OTF(f_x, f_y)| e^{iPTF(f_x, f_y)}$

 $= \mathrm{MTF}(f_x, f_y)e^{i\mathrm{PTF}(f_x, f_y)}$

Considerando o sistema de imagem como uma série de *n* sub-sistemas

$$PSF(x,y) = PSF_1 * PSF_2 * ... PSF_n$$

No espaço de frequências, temos

$$OTF(f_x, f_y) = \prod_i OTF_i(f_x, f_y) \qquad MTF(f_x, f_y) = \prod_i MTF_i(f_x, f_y)$$
$$\phi(f_x, f_y) = \sum_i \phi_i(f_x, f_y)$$

- Objetos simuladores (phantoms)
- Estruturas e contrastes conhecidos a priori
- → Pode-se estimar a probabilidade de que s observadores forneçam a resposta correta (PC)
- Forma principal de avaliar qualidade de imagens em CQ
- Phantoms tipo Burger-Rose
- Dois métodos
- → Free response (FR): o observador identifica qual seu limite de identificação das estruturas.
 - Multiple alternative-forced choice (M-AFC): phantom com estímulos diferentes em algum quadrante

Pipe

Imagem radiografada

TOR

Manual do phantom

Imagem flat panel

Imagem no intensificador de imagem

Check Flu

Manual do phantom

Imagem radiografada

CDMAM

4-AFC paradigm

FIGURE 24.1 Contrast-detail (CD) curves measured using CDMAM as a function of DAK for a digital mammography system. Also shown is corresponding mean glandular dose and the Acceptable and Achievable image quality levels in the EU guidelines.

CDRAD

FR paradigm

Smans, K., et al. Med. Phys., 37 (2010) https://doi.org/10.1118/1.3377772

CDRAD-phantom

)	0	0	0	9
X	-	0	5	0.	9
Part Part	0	0	20	2	
100	20.0	10	2.7	0.0	
			1	*	

FIGURE 24.2 CD curves for a CsI diagnostic FP detector measured at 70 kV and 1 mm Cu added filter, as a function of DAK. (Adapted from Van Peteghem, N., H. Bosmans, and N.W. Marshall. 2016. *Physics in Medicine and Biology* 61:N575–N591.)

IFUSP - Instituto de Física da USP

