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Pushed by practices wanting and needing to produce novelty, computer-
aided design sysiems are increasingly parametric - that is, they represent
designs that change with their input Jata. People find parametric computer
aided design systems powerful, but hard to learn and difficult to use.

Using these new systems well requires knowledge of design, geometry,
computing and the structure of parametric systems themselves.

What new knowledge and skill do designers need to master the parametric
How can they learr and use it? That is what this book is about - it helps
designers realize the potential of the parameter in their work. It combines
the basic ideas of parametric systems with equally basic ideas from both
geometry and computer programming. It uses design patterns as its main
tool. A pattern is a generic solution 1o a shared problem. Using patterns to
think and work will help designers master the new complexity imposed on
them by parametric modeling.

This book explains how to think, model and conceive complex parametric
designs. Through design patterns and many examples, it shows designers
how to lift their knowledge and skill out of the CAD toolbox into higher
levels of design thinking and action.

Robert Woodbury is a professor in the School of Interactive Arts and
Technology at Simon Fraser University in Vancouver, Canada. His research
is.on how people developand use interactive systems. Through work in
computational design, people-centred systems for sustairiability and visual
analytics, he aims to-discover general concepls and designs for systems
that people find engaging and.useful. He is a former Olympian and current

dabbler in sailing:
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Foreword

Parametrics is more about an attitude of mind than any particular software
application. It has its roots in mechanical design, as such, for architects it is
borrowed thought and technology. It is 2 way of thinking that some designers
may find alien, but the first requirement is an attitude of mind that seeks to
express and explore relationships.

Embedded in this method of exploration is the idea of capturing design bistory
and returning it in an editable form ~ that can be varied and then re-played.
The power of the concept is the belief that design history can be extrapolated
to produce design futures. Sometimes it can — but this requires much practice to
achieve a level of fluency which still allows intuition to play its part.

As a concept parametrics is far more likely to be understood by 2 musician
than by an artist. This is because the musician is dedicated to rehearsing for
performance — which is an essential characteristic of a virtuoso in parametrics.
To the artist on the other hand the accumulation of technique is incidental to
the production of an artefact, which is the result of direct interaction witha
medium. For this activity there is no written score that can be fine tuned and
re-played. However, at the highest level of fluency we may yet see a generation
emerge who can “sketch with code”.

Parametrics should perhaps be clearly labelled with a warning along the lines
of “drink deep - or taste not”. So the best advice might be to make your choice
before reading farther - or just allow your curiosity to guide you!

~ Hugh Whitehead




FOREWORD

The beginning of the third millennium brings growing recognition that the
practice of building design will change more rapidly than in preceding decades.
With increasing economic pressure, established practice gives way in favour of
tight integration of design and delivery as well as innovation in sharing risks
and rewards. In parallel, climate change reinvigorates deep concern about our
excessive use of resources, rebalancing values of capital costs and long term
design performance. Integrated design teams make simultaneous, interrelated
design decisions across disciplines and project phases. Such decisions concern
interconnected subsystems with interfaces that propagate change through the
overall system and allow the design team to create many design alternatives. In
addition, investment in validation of design assumptions through analysis or
simulation cycles can further reduce risks.

With parametric modeling, early design models become conceptually stronger
than conventional CAD models and less constrained than building information
models. Parameters express the concepts contained in these new models and
give interactive behaviour to building components and systems. This means a
change in how tools need to support design activities. For example tools like
Bentley Systems’” GenerativeComponents offer a fluid transition between a
CAD-like modeling-based design approach on one side and a scripting-based
design approach on the other side. These new parametric systems support a
shift from one-off CAD-modeling to thinking in and working with geometric
concepts and behaviour. Instead of building a single solution, designers explore
an entire parametrically described solution space.

The new parametric tools challenge CAD work practices - practitioners and
students alike must learn how to use such tools well. We know that quality of
learning depends on quality of teaching. The author of this book, Dr. Robert
Woadbury, has been teaching GenerativeComponents workshops for several
years, while intellectually penetrating the mere instrumental layer of tool use
and elevating his teaching to a new layer of concepts. Dr. Woodbury and his
students chose the motif of patterns to explain this conceptual layer, to unravel
its components’ behaviours and to provide new functions useful for parametric
design. Initial results appeared online at www. designpatterns. ca and now
are revised for this book. Dr. Woodbury also reviews geometric foundations
in a quick but thoroughly understandable way because they are instrumental
to designing with parameters. Interspersed are practice case studies illustraring
types of design this new generation of tools can help designers achieve.

I have enjoyed witnessing Dr. Woodbury’s teaching of GenerativeComponents
over the past years and refer to his design patterns frequently. I hope that this
book will inspire instructors in their teaching of parametric design and invoke
practitioners’ and students’ imaginations about new approaches to design.

— Volker Mueller
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over intellectual virtuosity. I aim to explain. This means that I have often left
out much detail that would be essential in an academic tome. In doing so,  have
selected the material offering the best explanation. For example, the chapter on
curves uses the simplest equations and remains with them throughout. It is far
from complete; hopefully its omissions let its few key ideas shine through.
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Chapter 1

Introduction

Design is change. Parametric modeling represents change. It is an old idea,
indeed one of the very first ideas in computer-aided design. In his 1963 PhD
thesis, Tvan Sutherland was right in putting parametric change at the centre

of the Sketchpad system. His invention of a representation that could adapt

to changing context both created and foresaw one of the chief features of the
computer-aided design (CAD) systems to come. The devices of the day kept
Sutherland from fully expressing what he might well have seen, that parametric
representations could deeply change design worlk itself. I believe that, today, the

. key to both using and making these systems lies in another, older idea.

People do design. Planning and implementing change in the world around us is
one of the key things that make us human. Language is what we say; design and
making is what we do. Computers are simply a new medium for this ancient
enterprise. True, they are the first truly active medium. As general symbol
processors, computers can. present almost limitless kinds of tools. With craft
and care, we can program them to do much of what we call design. But not all.
Designers continue to amaze us with new function and form. Sometimes new
work embodies wisdom, a precious commodity in a finite world. To the human
enterprise of design, parametric systems bring fresh and needed new capabilities
in adapting to context and contingency and exploring the possibilities inherent
in an idea.

What new knowledge and skill do designers need to master the parametric?
How can we learn and use it? That is what this book is about. It aims to help
designers realize the potential of the parameter in their work. It combines the
basic ideas of parametric systems with equally basic ideas from both geometry
and computer programming,.

It turns out that these ideas are not easy, at least for those with typical design
backgrounds. Mastering them requires us to be part designer, part computer




CHAPTER 1. INTRODUCTION

seientist and part mathematician. It is hard enough to be an expert in one of
the§e areas, yet alone all. Yet, some of the best and brightest (and mostly young)
designers are doing just that - they are developing stunning skill in evoking th;g
new and Sl:!rprising, Mostly, the book is about the idea that patterns are a good
tool for thinking abour and using parametric modeling. Patterns are themgselves
an.ether o‘ld idea. A partern is a generic solution to a shared problem. Readers
with .archltecture backgrounds will find this definition more modest.and limited
than is common in the field. It is perhaps more familiar to those with a software
background. Using patterns to think and work may help designers master the
new complexity imposed on them by parametric modeling.

gatltems work when grounded in practice. I'm not an architectural practitioner.
ho as}i{ed three young and thoughtful practitionery researchers to demonstrate
ow they and their firms resolved novel and complex design situations usin
parametric modeling. Onur Yiice Giin, Brady Peters and Roham Skeikholefl i
responded with well-considered and crafted chapters. -

Mz hope .is that the' b09k’s ideas and explanations foster both understanding
and meaningful action in the human enterprise we call design.

The idea of the book originated in 2003, when Robert Aish suggested to me
thaf both new and expert designers needed better explanations of parametric
c!esxgn. In 2005 and 2006, three of us, Robert, Axel Kilian and I met several
times to draft ideas for a possible book. Our aim was both broad and high
Events transpired for each of us so that authorship took different direction's
For me, the result narrowed our original aspirations into this book. Perha s
its 'fc?cus and voice will be useful in what is surely 2 growing body of reseaf::h
writing and computer code about parametric design. ’

Who should read this book?

Hyou area practitioner using parametric design, you will find many manuals
and tutf)rxa}s, both in print and online. Mostly, these provide lists of commands
or detailed, keystroke-by-keystroke instructions to achieve specific tasks. These
may help you see what the tool can do, but are unlikely to teach much aivout
how you can adapt it to new situations or how to extend your skills. They show
you how to do small things, but leave the next steps to your imaginz;tion Zrnd
skill. For you, the book provides foundational geometry for expressing your
own mOfiels and models of computing particular to parametric systems yMostl
though, it provides patterns, which you can adopt and adapt to the prol;lems ’
at hand. The trick to using the book is to see patterns in your problem, that i

to Jearn to divide your work into parts that can be cleanly and clearly r’esolve;’
and then combined into a whole. The case studies may help you see how othe
have woven paramerric thinking and design into entire projects. B

If you are a student learning parametric design, your aim is the practitioner’s
craft. Everything relevant to the practitioner applies to you too. Design can

CHAPTER 1. INTRODUCTION

only be learned by doing. “Talkitecture” is a derogatory term, reserved for
chose who discuss but do not draw. Don’t draw it onto yourself. You need
more; particularly, you need to understand how parametric systems work; how
cheir structure makes them perform and how people have used and are using
them to do design. The middle chapters of the book may have special meaning

for you.

1f you are a teacher, you will find strategies here. I believe that we teachers do
our best work whern we attend to all aspects of design, from vocational skill,
through technique and strategy, and all the way to helping our charges discover
their muse. The book aims mostly at the middle ground, at linking underlying
skills with the higher order understanding needed for good design. Patteras do
yeoman’s work in this enterprise, at least for the hundreds I have taught and the
dozens of tutors who have worked with me in pattern-oriented courses.

if you are a CAD system developer, I believe that you will find some of what
is missing in contemporary systems. Without exception, the market provides
systems with wonderful capabilicy, cleverly constructed and often with nifty
human-computer interfaces. Largely because the needed knowledge is not yet
available, current systems are of little help with strategizing, reflecting and
developing individual and group practice. As software design patterns have
done for sofrware engineering, perhaps the patterns here can suggest new ways
of solving the compositional problems that are at the heart of making systems
scale in complexity, both of model size and human use.

Almost all who use parametric modeling are amateur programmiers . I use the

- word “amateur” in its literal and complimentary sense, describing one who has

interest and skill in an area, but who lacks formal education in it. Amateur and
professional programmers differ in more than expertise. Amateurs tend to work
on programs that relate to current worlk tasks, write short programs, use simple
data structures and create sparse documentation. Amateurs prefer a copy-and-
modify style in their programming work, in which they find, skim, test and
modify code until it works for the task at hand. Amateurs satisfice - they leave
abstraction, generality and reuse mostly for “real programmers”. Professionals
might decry such practices, but they cannot change them. Amateurs program
because they have a task to complete for which programming is 2 good tool.
The task is foremost, the tool need only be adequate to it. Amateurs write most
programs used in our world. Yet almost all programming tools are designed

for the professional and are overly complex for the tasks amareurs attempt. If,
like almost all designers, you are an amateur programmer, you will find in the
boole’s patterns ideas and techniques for achieving your programming tasks.

It is ironic that this book for amateurs is itself a work of amateur programming.
Almost all of its figures were created using GenerativeComponents®, itself a
parametric modeling system. Rather than rely on the tedious and limited image
export capabilities available in the host system at the time, I wrote a system that
output code from the parametric modeler to the TikZ/PGF graphics macro
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package in the IXTEX package in which I typeset the book. This system has three
parts. The first is DR, a graphics package much simpler than TikZ /PGF, that
provides just the functions I needed. DR transiates function calls to TikZ/PGF
calls. The second is code in the parametric modeler’s scripting language that
uses the DR paclsage to describe figures for the book. The third is an Excel®
spreadsheet interface to the parametric modeler, so that all of the figures can be
described in a single Excel® worlsheet. Qutside of this sytem, I programmed
many macros in BIEX, largely to gain control over page layout. This sometimes
messy code suffices for producing the book. Though I know how to make it
general (and know how much work that would take), I focused on the book.
The code will need work if it is ever used for another purpose. So be it.

Lastly in this introduction, T must explain the title. In 1919, William Strunk
first published The Elements of Style,! a brilliant, and brilliantly short, book
giving strategies for effective writing. Much in that book pertains to writers
today. Its clear imperative voice is remarkably similar to much writing about
design patterns. Strunk himself borrowed the title; in 1857, John Ruskin (1857)
had published the wordy and minimally graphical Elements of. Dranwing. Seeing
an obvious good idea, many other authors have undertaken The Elements of.
books on topics ranging across colour (Ttten, 1970), cooking (Ruhlman, 2007),
ecology (Smith and Smith, 2008), graphic design (Williams, 2008)?, interaction
design (Garrett, 2002), mentoring (Johnson and Ridley, 2008), programming
(Gamma et al., 1995), thetoric (Maxwell and Dickman, 2007; Rottenberg and
Winchell, 2008), typography (Williams, 1995, 2003; Bringhurst, 2004) and, of
course, writing (Flaherty, 2009). Serunk and all subsequent authors had a strong
precedent in Euclid’s Elements written circa 300BC. A work and writing style
could not be more deeply embedded in our culture. Absent an original idea, go
with one that works. So I took Euclid’s and Strunk’s leads, with a twist. I make
two points in omitting the “The”. First, the field is young, and I would commit
a ludicrous error in implying that I cover anything like 2 complete set of ideas.
Second, my premise for design patterns is that they are important only if useful,
and useful only if used. The way people use patterns is to try them out, reflect
on them and change them. For me, the ser will never be complete. The definite
article “The” might well be replaced by the indefinite “Some”. But no article is
shorter still,

My personal copy is the 1959 edition, Strunk and White, 1959)

*I have included Robin Williams® books Non-Designer's Design Book, The PC is Not o Bpewriter and
The Mac is Not a Typesariver ia this list. Though not one uses Elements in its title, each is completely
within the genre and each isa very good baok, too!
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Chapter 2

What is parametric modeling?

The archetypal design medium is pencil and paper. More precisely: pencxll, i
eraser and paper. The pencil adds and the eraser s.ubtracts. Add a few tools, de
a T-square, triangle, compass and scale, and drawings can bcicorfle accurate a‘n '
precise models of a design idea. Designers are used to ‘fvorkmg in this mode; a
marks and take them away, with conventions for relating marks together.

Conventional design systems are straightforward emulations of -thxs centuries-
old means of work. Parametric modeling (also known as constraint modelmg)d
introduces a fundamental change: “marks”, that is, parts of a design, relate an

" change together in a coordinated way. No longer must designers simply add

and erase. They now add, erase, relate and rep‘air. The act of relatz:ng requires
explicit thinking about the kind of relation: is this point o7 the line, or near (;o
it? Repairing occurs after an erasure, when Fhe parts that depend. on an erase
part are related again to the parts that remain. Relat?ng and repairing impose
fundamental changes on systems and the work that is done with them.

Many parametric systems have been buile both. in research laboratories aflci byh
companies. An increasing number are present in the rr‘larketplace. Certainly tﬂe
mMOost mature parametric system is the spreadsheet, which operates (;‘lver a 1\%ls;ua y
rectangular table of cells rather than a design. In some fiemgn disciplines, 1he
mechanical engineering, they are now the normal medium for work. In others,
such as architecture, their substantial effects started only about the year 2000

The first computer-aided design system was paramet%-ic. Ivan Sutherlarfd’s PhcliD
thesis on Sketchpad (1963) provided both a propagation-based mechanism and a
simultaneous solver based on relaxation. It was the first report of a feature tl"mt
became central to many constraint languages ~ the merge operator that combines
two similar structures into a single structure governed by the union of all the

constraints on its arguments.

1




CHAPTER 2. WHAT IS PARAMETRIC MODELING?

Hoffmann and Joan-Arinyo (2005) provide an overview of different kinds of
parametric systems. Each is defined by its approach to constraine solving, and
each has its own characteristics and implications for design work. Graph-based
approaches represent objects as nodes in a graph and constraints as links. The
solver attempts to condition a graph so that it divides into easily solvable sub-
problems, solves these problems and composes their answers into to complete
solution. Logic-based approaches describe problems as axioms, over which search
for a solution occurs by applying logical inference rules, Algebraic approaches
translate a set of constraints into a non-linear system of equations, which is
then solved by one or a variety of techniques. Constraints must be expressed
before they can be solved. Large designs can embody thousands of constraints,
which must be clearly expressed, checked and debugged as design proceeds. In
addition to their contributions to solving constraints, several research projects
have focused on devising clear languages for expressing constraints, Borning’s

ThingLab (1981) had both graphical and programming constructs for constraints.

At the same time, Steele and Sussman (1980) reported a LISP-based language

for constraints. Constraint languages such as ASCEND (Piela et al,, 1993) usea
declarative object-oriented language design to build very large constraint models
for engineering design. Constrzint management systems, for example, Delta Blye
(Sannella et al., 1993) provides primitives and constraints that are not bundled
together and with which the user can overconstrain the system, but must give
some value (or utility) for the resolution of different constraints. In this system,
a constraint manager does not need access to the structure of the primitives or
the constraints. Rather its algorithm aims to find a particular directed acyclic
graph that resolves the most highly valued constraints.

Propagation-based systems (Aish and Woodbury, 2005) derive from one aspect
of Hoffmann and Joan-Arinyo’s graph-based approach. They presume that

the user organizes a graph so that it can be directly solved. They are the most
simple type of parametric system. In fact, they are so simple that the literature
hardly mentions them, focusing rather on more complex systems that address
problems beyond those directly solvable with propagation. Discussed in more
detail later in this chaprer, propagation arranges objects in a directed graph such
that known information is upstream of unknown information. The system
propagates from knowns to compute the unknowns.

Of all types of parametric modeling, propagation has the relative advantages of
reliability, speed and clarity. It is used in spreadsheets, dataflow programming
and computer-aided design due to the efficiency of its algorithms and simplicity
of the decision-making required of the user. Propagation systems also support

a simple form of end user extensibility through programming. This simplicity
€Xacts a price. Some systems are not directly expressible, for instance, tensegrity
structures. Also, the designer must explicitly decide what is known and order
information from known to unknown. Propagation’s simplicity makes it is a
good place from which to start building an acount of parametric modeling, The
rest of this chapter explains the basic structure and operation of a propagation-
based parametric modeling system.
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Tt is useful to be precise with language. The following section defines terms
needed for accurate dicsussion of parametric modeling systems. Th(eise terms

) re generic. Any particular propagation-based system has a similar description,
a .

though some details will vary.

Graphs are nodes connected by links. In a directed graph, the links are arro;:;;
they explicitly link arrow tail or predecessor to arrow head or liu;cesso;l no t.
Paths or chains are sequences of nodes, each except the 'last linked to the nex
node in the path. A graph is cyclic if it has paths in which nodes recur.

i des joined by links. In a directed graph, li{'nks join tail
?pieicgel;?;?)}tlgs ;e:iu(:z;rslszi;goge; This };faph is both directed and cyclic.
In parametric modeling, nodes have names. Further, the nodes are scha@ta,d
that is, they are objects containing properties. 'Eac}.l property has an associated )
value, accessed by dot notation, that is, by appending to a schema name a pezm
followed by the property name. For example, p.X accesses the X property o
point p and has the value stored in that property.

Point p
{
CoordSystem: cs;
X 3.0;
Y: 4.0;
Z: 1.0;
}

i i ies for its coordinate system and x, y
2.2: A schema for a point named p, with properties ; b
anzd z csso:dinates. 'Il?he value of the CoordSystem property is }the name of 2 coord)x(nate
system node elsewhere in the model that contains the point. Using dot notation, p.

identifies the X property of p and equals 3.0.

The algorithms needed are most simply described %:\y considering ofnly iedes ;
with a single property. Dot notation accesses the single property o O(Siuc aB node,
for example, n.Value gives the data held in the value property of node n. z

convention, for single-property nodes, the name of the node itself returns the

data in its single property.
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A constraint expression is » well-formed formula comprising objects, function
calls and operators. The objects comprise numbers and property values given
with dot notation. When evaluated, constraint expressions result in values.

Constraint expression
3.0

Sin{30.0}

false

true

3.04+Sqrt(5.0)

p.X+ 3.0

p.X > 1.0 ? true : false

Result

3.0

0.5

false

true

approximately 5.236067977
the X property of p + 3.0
either true or false

depending on the X property of p.
p the node named “p”
p.CoordSystem.Y the Y property of the
CoordSystem property of p
distance(p,q}+1.618 the distance between
pand q plus 1.618

2.3: Examples of constraint expressions.

Property values can be constraint expressions, which in turn can use, that is,
contain properties from other nodes. Such properties are said to be contained
by both the property and expression in which they occur. They define the
links in the graph. The system ensures that properties and their expressions

are evaluated whenever their contained properties change value. Informally,

we say that data flows into a node when its constraint expressions are evaluated.
Nodes (properties) used in a constraint expression are predecessors of the node
(property) holding the expression. Links in the graph record that a successor
node has a constraint expression that uses a property value from a predecessor
node. In single-property nodes, links directly encode property predecessors and

SUCCESSOLs.

A property can have (or be assigned) an explicit value or an expression using no
property values; such properties are called graph-independent. Alternatively it
can have a constraint expression using one or more property values from other
nodes; such are called graph-dependent properties.

A source node has no graph-dependent properties and thus no predecessor nodes.
A sink node is used in no constraint expressions; it has no successor nodes. An
internal node is neither source nor sink. A node can be both source and sink. A
subgraph has its own source and sink nodes.

The system maintains graph consistency by evaluating the expressions in each

property. We say that it evaluates a node by evaluating all node’s properties and
thus all its contained expressions. It must choose an order of evaluation so that a

14
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propesty is evaluated after all of its predecessor properties have been evaluated.
The graph thus cannot have any cycles, else a node would have to be evaluated

. .. o
in order for it to be evaluated, leading o a contradiction of the algorithm’s need

for prior evaluation of predecessor nodes.

A parametric design (or just design) is an directed graph of the nqdes and links
above. A well-formed design has no cycles - it is a directed acyclic graph.

A chain is an ordered set € of nodes, with each node ¢;,0 < i < |C}in the chain
being an immediate successor of ¢;_;.

The system uses three algorithms: one orders the graph, one propagates values
through the graph and one displays the results.

The first algorithm requires 2 well-formed parametric model and produces a
total ordering of the graph nodes. It finds a sequence of nodes such that a n.ode
oceurs in the order only after all of its predecessor nodes. .Such a sequence is
called a topological order, many of which may exist for a given graph. It does 4
not matter which of the possible total orders is chosen. For a given graph, this
algorithm need only be run once.

2.5: The tuple (b,d,a,c.f,€) is atopological sort - a sequence such that all predeces(s:ﬁr
nodes of any node occur before the node in the sequence. A graph can have many s“lbl s
for example, { a,b,c,d.e,f), {a,b,c,d.f.e}and( b,a,c.e,‘d,f) are among the poshsx e
sorts for this graph. Any one suffices as a result of the sorting algorithm, though there
may be advantages in the user interface for choosing one over another.
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2.4: Nodes ¢, ... Cg form a chain



{3;2 - unvisited node

{&) - current node
8/
‘@) - visited node

2.7: Using the topological sort
(b, d, a ¢ f, e)},theprop-
agation algorithm visits each
node in sequence. It evaluates the
graph-dependent properties in
each node.

CHAPTER 2. WHAT IS PARAMETRIC MODELING?

2.6: In a graph with cycles a node can be predecessor of itself. Such a graph cannot be
sorted topologically. A naive algorithm that tried to evaluate it would loop infinitely.

The second algorithm is propagation. In its most simple form, it evaluates each
node in a sequence by evaluating its contained constraint expressions. More
sophisticated and faster versions of this algorithm only evaluate those nodes that
are successors of the nodes that have changed.

A graph models 1 usually infinite collection of parametric design instances (or
just instances when clear in context), each of which is defined by assigning
values to the graph-independent properties of the graph. To compute an
instance order its graph and propagate values throughout it. Both algorithms
are simple and efficient, enabling interaction with large models. For instance,
the ordering algorithm is topological sort, with worst case time complexity of
O(n + e) where 1 is the number of nodes and e js the number of links in the
graph. The propagation algorithm has time complexzity O(n + ¢), presuming
that the internal node algorithms are O(1). (The O function is called big-Oh
and describes the running time or memory requirement of an algorithm as the
size 7 of inputs grow. Informally, a time complexity of O(#n) means that, as 7
81ows, a plot of the running time of the algorithm remains below some non-
vertical straight line on the graph. If an algorithm is O(1) the running time is
independent of the size of the input 7.)

The third algorithm displays the graph symbolically (that is, as nodes and links)
and as a model in 3D. A useful, though not universal, convention for symbolic
views is to arrange the nodes such that the links flow in a consistent direction
{up, down, right or left). Such arrangements reveal the inherent flow of data
through a propagation graph. The system invokes the propagation and display
algorithms continucusly. When the model is sufficiently smali that each cycle of
these algorithms takes less than approximately 1/30 of a second, designers feel
like they are directly interacting with the parametric model.

For systems of one-property nodes the ordering algorithm can be viewed equally
as ordering properties and nodes. Multi-property nodes are more complex.
Figure 2.8 shows that such a node can be viewed as containing (or condensing) a
collection of single property nodes and as replacing those nodes in a graph.
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i i 1 f single-property nodes. (a) A
.8: Multi-property nodes can be viewed as coHeqxons o - - )
;arametricpmfdel Zomprising six nodes, representing the d::ordxr:iates oflrz:)t 1[::1:;:; evcvtxlt‘i
i i i 1 . {b) Nodes p and g colle
being a simple translation of the other. (b) the
:i?xeglfz)}i?;pe;:yg nodesl‘; {c) The prior single-prqperry nodes bec?me properties in p and q.
One link joining p and q replaces the three prior single-node links.

A problem arises in that an acyclic graph of single-property nodes 1cam bec:lme
cyclic when it is condensed into multi«property n?des. F‘or example, cor;six. e;;
two points p and 4, with the y coordinate of 4 being assxgned th;: x ;0(? inate
of p and the y coordinate of p being assigned the x coor.dfnate.o g ox;lts ~Pt
and ¢ will always define a line segment at 135° to the origin, “’X‘th its endpoints
equidistant from their nearest axis. This ~graph is ac?rchc <When it oompndsessed
single-property nodes, but becomes cyclic when points p and § are conhen
into nodes. Further, if multi-property nodes are used from the ou.tset, t en.
some models that “should” be expressible are not due to the acychf: consltra‘mt
of the topological ordering algorithm (Algorithm # 1).‘ Some prAacucal $0 uui)(ns
to this problem are to define the sorting ax‘ld‘ propagation algonthrlns to wglr
over properties; or to accept the inexpressibility of some apparently sensible
models. There are advantages and disadvantages to both approaches.
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2.9: Point ¢ is a simple translatio:
of point p, in this case 4, =p+
and g, = p, + 2. When p move
so does 4.



l N

2.11: The y properry of point

p depends oni the x property of
point § and vice versa. When

Px = 4., p and g coincide, other-
wise they define a line at 135° to
the x-axis.
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Propagating over properties yields a larger and more “complete” range of
expr?ssible models and often faster model updatin 8. It can create problems in
user u.]terfaces, which most often rely on the acyclic constraint to make model
visualizations readable. Propagating over multi-property nodes can sim lify
the user interface, but also can result in slower updates and confusion wfl)uen a
modeling step that “should” work fails for no apparently sensible reason.

|

©

2.10: Condensing single-property nodes into multi-property nodes can produce cyclical

g;aghs.v @A Pa;ametrlc mo<.iel comprising six nodes, representing the coordinates of
Poinfsomts,dwu tlixe ¥ coordmatgs of .“Ch point being the x coordinate of the other. b)
P bp and q collect .the'respecnve single-property nodes. (c) The prior single-property
5 become properties in P and ¢f. The three links joining the single-property node:
replaced by two links joining pand q to form a cycle. 7 S

I\;Illlllu-property nodes present major advantages in what computer scientists
¢ Encapsulatfon and data abstraction. With them, data describing a distinct
conceptual object can be stored in one logical place; multiple operations can
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be defined over this data; logical relations among the data can be automatically
aintained; and data access can be made uniform. Figure 2.2 on page 13 shows
2 simple multi-property node comprising a coordinae system and the three
coordinates needed to define a point. It demonstrates two key ideas: first, that
properties can contain (refer 1) other multi-property nodes (the cs held in the
CoordSystem property); and second, that nodes can be typed.

Dot notation extends to properties holding multi-property nodes. For example,
the path notation p.CoordSystem.X accesses the x coordinate of the coordinate
system held in p.CoordSystem.

Typed nodes are instances of types. A type is a template specifying a property set
and a set of update algorithms for computing properties defined within the type.

We take a type and its set of properties to represent a concept or object in the
world. It is useful to distinguish between the nodes and their properties and
the corresponding objects and properties to which they refer. By convention,
we render nodes and properties in a sans-serif font and their corresponding
objects in italicized (mathematical) notation. For example, 2 node named p of
type Point might have properties X, Y and Z. The corresponding point p has
coordinates p,, p, and p, respectively. The node p represents the concept or
object p.

An update algorithm uses some node properties to compute others. In the scope
of a node, those properties whose values are computed by an update algorithm
are node-dependent (or just dependent when clear in context). Node-dependent
properties are successors to the input properties to the update algorithm. The
node-dependent properties are determined by the update algorithm and cannot
have a user-defined value or expression attached to them. All other properties
are node-independent (or just independent). An instance of a type selects one of
the available update algorithms as an active update algorithm.

Point p
update byCartesianCoordinates
{
CoordSystem: cs;
Xy g.X+ 2.0;
Y: 3.0 % 2.0;
Z; 1.0;
Azimuth: dep AtanZ{X.,Y) = 51.13;
Radius: dep Sgri{X«X + YY) = 5.0;
Height: dep £ = 1.0;
¥

2.12: A node of type Point with 2 ByCartesianCoordinates update algorithm may
have a user-defined constraint expression in each of its X, ¥ or Z properties. In contrast,
the constraint expressions in its Azimuth, Radius or Height properties are given by its
update algorithm. In this figure the CoordSystem and X property are graph-dependent
and the Y and Z properties are graph-independent.
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2.14: Steps in constructing a line
through a point j and tangent 1o

a circle & with centre ¢ and radius

7. Find the intersection § of two

circles, with centres at p (radius
—

|#¢]) and ¢ (radius 27). Intersect

the circle & and 3¢ to find the

tangent point.
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Even objects as simple as points have multiple update algorithms. For instance,
a point node might include its containing coordinate system CoordSystenm,

its X, Y and Z coordinates and, in cylindrical coordinates, its Azimuth, Radius
and Height. A ByCartesianCoordinates update algorithm would require that
the CoordSystem, X, Y and Z properties be defined and use these to compute
the point node’s Azimuth, Radius and Height properties. Conversely, using

a ByCylindricalCoordinates update algorithm would use the CoordSystem,

Azimuth, Radius and Height properties to compute values for its X, Y and Z
properties.

Point p
update byCartesianCoordinates
{
CoordSystem: c¢s;
X: 3.0;
Y: 4.0;
z: 1.0;
Azimuth; dep Atan2(X,Y} = 51.13;
Radius: dep Sqr{X+X + YY) = 5.0;
Helight: dep Z = 1.0;
}
Point g
update byCylindricalCoordinates
CoordSystem: cs;
X: dep Radiuskcos{Azimuth) = 3.0;
Y: dep Radius*sin{Azimuth) = 4.0;
Z: dep Height = 1.0;
Azirnuth: 51.13;
Radius: 5.0;
Height; 1.0;

2.13: Different update algorithms imply different sets of node-dependent and node-
independent properties. The two points p and g are at the same location. Using the
ByCartesianCoordinates update algorithm, the properties CoordSystem, X, Y znd
Z are independent. The node-dependent properties are marked with the keywork dep.
Using the ByCylindricalCoordinates update algorithm, CoordSystem, Azimuth,
Radius and Height are independent.

A node may use several nodes in its contained expressions, that is, it can be

a successor of several nodes. It can also use several properties from each used
node; a link thus indicares that one or more properties from a predecessor node
are used in the expressions within a node.
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Point p
update byCartesianCoordinates
{
CoordSystem: ¢s;
X (p0. X+p1.X)/2.0;
Y: (p0.Y+p1.¥})/2.0;
Z: {p0.Z4+pl.2}/2.0;

2.15; A node may depend on several nodes and several propert}es 'withi_n itself. For L
instance, the constraint expressions in point p use the properties in points p0 and P,
which, by this fact, are predecessors of p. Evaluating these expressions plaf:es the point

p equidistant from and collinear with points jo and py, that is, the midpoint of a line
segment between pg and py.

Constraint expressions can be written in a way that expresses the flow of d.ata‘
In the example above, p depends on p, and p;, by taking the average, that is, the
expression, p = 29—‘—;&. Reversing the order of the expression and using an arrow
to indicate data flow gives the following expression.

Potpr .
5 »

This vector equation expands to an equation for of its coordinates. These are
shown below as parametric modeling constraint expressions.

{p0.X + pL.X}/2 — p.X
(p0.Y + pl.Y}/2 -+ p.Y

(p0.Z + pl.Z}j2 ~ p.Z

Dataflow visualization of constraint expressions provides a more accurate view
of property values; one that reverses their usual reading. Ifl programming, the
common view of a property value is that it bolds or contains the object it names.
In parametric modeling, a more insightful view is that a property value uses

the nodes named within it. Such nodes are predecessors of the property in the
model. Dot notation therefore gives access to only those parts of 2 moﬂdel that
precede (are upstream from) the property. An expression in dot. notation records
achain of nodes, starting at the bottom of the chain. The notation provides

no direct way of discovering the nodes (properties) that use a particular no?{e
(property). If provided, such back links must be computed by the modeler itself.
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2.16: An alternative construction
sequence for a line through a
point p and tangent to acircle ¢
with centre ¢, Draw acircle cen-
tred on the midpoint of p and ¢.
Intersect this circle and the circle «
to find the tangent point.



2.17: To construct a line tangent
to two circles find the parametric
point p(¢) berween the circle
centres that divides the centre-
to-centre distance proportional
to the circle radii. Using p(z)
replaces several steps of Euclidean
construction. Use Figure 2.14

or 2.16 to construct the tangents
from p(2) to each circle.
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Propagation is by far the most simple form of parametric modeling. Over other
bases for modeling, it has the major advantage of generality. Update algorithms
can compute anything (or at Jeast, anything computable), whereas other schemes
restrict their domain, for example, to real-valued expressions. With it, many
constructs thar designers would like 1o use become difficult to express. For
example, computing the two lines tangent to two circles requires a multi-step
geometric construction unless a specific update algorithm for such lines exists,
Some constructions require cyclical networks and these can only be solved with
global graph techniques. The number of potentially useful update algorithms
boggles the mind and would devastate any user interface that tried to provide
them all, Even if a huge set of algorithms could somehow be made available and
accessible in a system, geometry is too big a topic and design too advenrurous
an enterprise 1o be fully covered. The reality is that designers will work at the
boundaries of any system and need a combination of techniques 1o do so. Two
key techniques are geometric construction and programming.

Geometric construction involves making sequences of simple operations to
solve problems. It is the child of the compass and straight-edge constructions

of Euclidean geometry, but adds the entire set of parametric update methods to
the primitive operations of this ancient system. Almost all constructions can be
done in different ways, For example, Figures 2.14 and 2.16 show distinct ways
to construct a tangent from a point to a circle. While brevity is important (see
Figure 2.16), sometimes longer solutions are easier to find and may give new and
perhaps valuable insight (see Figure 2.14). Once a good geometric construction
has been discovered, it can be used in other, more complex constructions, for
ezample, in finding the tangent line between two circles (see Figure 2.17).

Programming is writing algorithrms that either build models or work as update
algorithms in their own right. Both construction and programming are foreign
to most designers. The last half of the 20th Century saw a dramatic decline in
teaching the closest geometric topic, descriptive geometry; and a modest and
erratic introduction of programming. Parametric modeling and contemporary
design conspire to demand both of these skills, Before addressing either of the
technical skills of programming or geometry, the next chapter outlines how
designers are using parametric maodeling as they work.
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How designers use parameters

The generic description of parametric modeling in the previous cilaptfzr deﬁrfles
important technical terms and structures, but does not speak tot ee dect.s o
such a system on design work. This chapter sketches hoy parametric eilhgn ’
work changes what designers do and What.they mmust think about while hey ?1&
doing it. The treatment is mainly descriptive. It derives from the properties 3
parametsic systems themselves; from my own knowled.ge of computation and
design; but mostly from working, over several years, with designers using an

learning parametric systems.

31 Conventional and parametric design tools

In conventional design tools it is “easy” to create an initial model - you jl‘lst add
parts, relating them to each other by such thing§ as smaps as you go. Maklng
changes to 2 model can be difficult. Even changmg‘; one dimension can requmlt
adjusting many other parts and all of this rework is rm}nual. The more complex
the model, the more work can be entailed. From a design perspective, decisions
that should be changed can take too much work to change. Tools like these can
limit exploration and effectively restrict design.

On the other hand, erasing conventional work is easy. You sc.elect a:nd delete.

Since parts are independent, that is, they have no lasting }-elamonshxg to other
parts, there is no more work to do to fix the representation. Yotf might well

have to fix the design, by adding parts to take the place of the thing erased or
adjusting existing parts to fit the changed design.

Since the 1980’s, conventional tools have used the ubiitp.litous generic concepts
of copy, cut and paste. These combine erasure and addition of parts to support
rapid change by copying and repositioning like elemerfts. Copy, cut and paste
work in conventional design precisely because of part independence.
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Parametric modeling aims to address chese limitations. Rather than the designer
creating the design solution (by direct manipulation) as in conventional design
tools, the idea is that the designer establishes the relationships by which parts
connect, builds up a design using these relationships and edits the relationships
by observing and selecting from the results produced. The system takes care of
keeping the design consistent with the relationships and thus increases designer
ability to explore ideas by reducing rhe redium of rework.

Of course, there is a cost. Parametric design depends on defining relationships
and the willingness (and ability) of the designer to consider the relationship-
definition phase s an integral part of the broader design process. It initially
requires the designer to take one step back from the direct activity of design and
focus on the logic that binds the design together. This process of relationship
creation requires a formal notation and introduces additional concepts that have
not previously been considered as part of “design thinking™.

The cost may have a benefit. Parametric design and its requisite modes of thought
may well extend the intellectual scope of design by explicitly representing ideas
that are usually treated intuitively. Being able 1o explain concepts explicitly is a
part of at least some real understanding,

Defining relationships is a complex act of thinking. It involves strategies and
skills, some new to designers and some familiar, The following sections outline
some of these straregies and connect them with what designers already have in
their repertoire. The first section, entitled New Skills, outlines the small-scale,
technical knowledge and craft in evident use by effective parametric modeling
practitioners. The second section, entitled New Strategies, steps slightly closer
to design to sketch the new tasks that designers can and do undertake with the
new tools. Both sections are descriptive, not normative. By this I mean they are
based on observing and working with designers using parametric modelers, not
on surmising what designers might, in some sense, need to know.

3.2 New skills

Drawing is a skill. Combining multiple orthographic and perspective sketches
to reveal the implications of design idea is strategy. Here are six skills held by
those who know and use parametric tools. Some have analogues to historical
design skills. Others are new to design. Parametric mastery requires them all.

3.2 Conceiving data flow

Caveat: The examples in Sections 3.2.1 to 3.2.4 are very simple, almost trivial.
This is deliberate. Through simpliciry, I hope to explain crucial principles that
are easily obscured, Reader, please bear with me,
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The detailed explanation of propagation-based systems in Chapter 2 reﬂect's a
real need to understand propagation in use. Data flows t}?l'ougl? a parametric
model, from independent to dependent nodes. T.he way in Whlch‘ datz}: ﬂow’.} "
deeply affects the designs possible and how a designer interacts with E fem1 is
can be illustrated with a very simple example: a three-room rectangular p an
drawn with lines representing walls. In the figures that f()'llow, the propagation
graph represents only the dimensions of the r?oms; the l{nes Wfbuld, in tulrn,d
depend on the nodes in this graph. In Figure 3.1, room dimensions are ;e ;te
by open dimension chains. Figure 3.2 shows the same set of rooms, with the
additional relationship that roomz, is always square. Here the graph has an new
link (berween w, and h,) and one fewer source node (h,). In fxgure 3:3, room,
rernains square and is a constant proportion of Fhe overall width. This makes
w, an internal node and introduces the proportional constant a as a new source

node.
-
W, A room, I
‘\ / Y
W 1001, oy
room; | .

3.1: The plan has room,_,. Each room; has a width w; ?.nd a height &;. ‘The total w1dthd
is w,; the rotal height is 4,. Dimensions w, and w, are mdc?pendent. Dlmensx.ozés wy ;:.in
w, are dependent: w, — wy — w, and w; — w;. Dimensions 4, an(% by arein e]fen sirlltt,
whereas b, and by are dependent: b, — hyandh, — by — b, An mcx:uasefmh , results
in 700m; remaining the same height: ro0m, anfi 7003, expand o take ;1;) {‘) tbe new
space. For graphical clarity, the floor plans omit the sxm_ple relations of equality between
dimensions where such are implied by the drawing, for instance, w, = w,.

@ -i - sink node
a - source node ar - internal node (o)

Concetving, arranging and editing dependencies is the key parametric task.

To make things more complex, dependency chains - several nodes il:l seq}lential
dependency - tend to grow. Figure 3.4 expands the examples above it to include
the points and lines representing the floor plan. It shows that lonfg dependency
chains are the norm, and that visualizing the graph can become difficuls.
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{71. - b

room,
Wy
room, -
\ T
) room,

h, hy)
- fo BTy k)

b =w

3.2: The main interactive difference between
room, is always square and its size is explicitl
distinctly different,

this design and that of Figure 3.1 is that
y controlled. The propagation graph is

-
room, I
-
T
roomyg <
8
7"007721 i
<
[ ‘w‘-wl . arw,
@,
— : —

33 In addition to the constraints in the desi; 1 Figure > the raty een W, an wy
gn in Fi 3.2, th tio betwr d
TemMains constant; 4 s Wy — wy.

fDeﬁgners use fiependencies in combination to exhibit some desired aggregate
orm or behaviour. Dependencies may correspond to geometric relationships

(fo.r example, between a surface and its defining curves), but are not restricted to
this and may in fact represent higher order (or more abs
Par?.metmf :fpproaches to design aim to provide designers with tools to capture
design decisions in an explicit, auditable, editable and re-executable form,
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3.4: Adding the points and lines defining the floor plan increases both the length of the
dependency chains, the overall graph complexity, the difficulty of inventing short, clear,
descriptive names, and, especially, the challenge of achieving a readable graph layout.
This diagram is based on that of Figure 3.2, It changes the layout of the nodes in the prior
graph and breaks the convention of uniform direction of dataflow in favour of a layout
that mimics the location of points and lines in the floor plan. Some arcs are curved to
avoid intervening nodes. Arcs whose sole purpose is to carry coordinate information are
thin. External walls are labeled with n, €, 5 and w (for north, east, south and west); and
internal walls are prefixed with the character m (largely because this character was not
used elsewhere). Finally the node Il or lower left) is presumed 1o be at (0,0); if it were
locatable anywhere, arcs would have to go from it to other nodes in the graph.

322 Dividing to conquer

For very good reasons, designers organize their work as near-hierarchies, that
is, recursive systems of parts with limited interactions between parts. This is
anear-universal claim, and it is easy to test. Think of a designed object that is
so organized, for example, an automobile organized into body, drive train and
electrical systems. Now think of a designed object that is a nop-near-hierarchy
in some way, cither by having only one part or by having extremely complex
interactions among its parts. Compare the relative difficulty of imagining each.
See?

One of the many reasons for near-hierarchies is that the limited interactions
among systemn parts enables a divide-and-conquer design strategy ~ divide the
design into parts, design the parts and combine the parts into an entire design,
all the while managing the interactions among the parts. The strategy works
best when the interactions are simple.
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Parametric modeling enables, indeed almost requires, a divide—and-conquer
strategy. In building a parametric design, it is easy to keep adding nodes to the
graph. A moment comes though, when the graph is too complex to fully grasp.
At a much earlier moment, it becomes difficult to explain the graph to another,
or to resume work on it after an inevitable interruption (in this siruation, there
really is “another” - it is you, after you've taken a break and come back with a
different memory state). Using a divide-and-conquer strategy is to organize a
parametric design into parts so that there are limited and understandable links
from part to part. Directional of data flow assures a hierarchical model, with
parts higher in the flow typically being assemblies ~ organizing concepts. Parts
at the bottom of the flow usually correspond to physical parts of the design.

7
70011y room,

room.
ro0m, 2

0017,
room, 1007,

oom, room.
roomyg | room, room, roomt; | 100y, 2

Returning to the three-room floor plan, even this seemingly simple design could
be given a hierarchical structure. Figures 3.5 and 3.6 show that a decision to
model the three rooms in two wings, assigning each room to one of the wings,
has profound effects on the plans obtainable, particularly when the number of
rooms in each wing increases.

3.6: All arrangements of an organization into two wings with room, and room, in the
west wing and room, in the east wing.

room, room,
room, roam, )
0 ) 3.23 Naming
roanm, room,
Parts have names. This is designerly practice, not physical law. But there isa
good reason for this ~ names facilitate communication. “The column at grid
location E2:54” is a more reliable way of identifying a particular cohfnn than
S E o | & “that square mark a third or the way across and halfway up the sheet”.
Foom, § 1§ room, § 1§ ‘ f
SE E Parametric modelers spend much time in devising and refining the names o
their parts. Simply renaming the rooms and dimensions of the three-room floor

plan shows why they do this. Figure 3.7 is identical to Figure 3.2 in all respects,
except that the nodes and rooms have been given arbitrary names.

3.5: All possible arrangements of an organization into two wings with r00my, i the west
wing and room; and raom, in the east wing.

Skilled designers spend much time on developing and refining the near-hierarchical &
structure of their models. They arrive at parametric design as able practitioners rat _;lé

of divide-and-conquer - architects usually organize designs (especially at the b &
construction documentation phase) into technical subsystems. In conceptual & TT‘
design, common design schema separately play on space and tectonics. Bur skills shunk 3
transfer poorly across domains, The divide-and-conquer of parametric modeling

requires knowledge from both the design domain and about how to strucrure

parametric designs so that data flows from part to part in a clear and explainable
manner.

3.7: Confusion reigns with arbitrary names. Even though this figure afld Figure 3.2 are
identical except for names, it takes much more effort to understand this one.
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3.24 Thinking with abstraction

The word “abstraction” is laden, that is, its meaning depends on context,
Designers and computer scientists use the term differently.

An abstraction describes a general concept rather than a specific example, In
common usage, abstraction is associate with vagueness; it may be hard to infer
much from an abstract idea, In design, abstract ideas are often protean, that is,
they are used as a base from which to generate many alternatives. In this role,
both connotations of the word apply: a general concept can be realized in many
ways, and a vague concept can be given many interpretations, each of which
may have multiple realizations.

In computer science, abstraction has the first meaning: an abstracrion describes
of a class of instances, leaving out inessential detaif. Computer scientists (and
their craftful cousins, programmers) are constantly seeking formalisms and
code that apply in many situations. In fact, the utility of a computational idea
is deeply linked 1o its generality ~ the more often it applies, the more useful

it becomes). Designers 100 kngw and practice such abstraction. Dimensional
modules, structural centrelines and standard details all are media for abstract
design ideas.

To abstract a parametric model is to make it applicable in new situations, to
miake it depend only on essential inputs and to remove reference to and use

of overly specific terms, Tt i particularly important because much modeling
work is similar, and time is always in short supply. ¥ part (remember divide-
and-conquer?) of one model can be used in another, it displays some abstraction
by the very fact of reuse. Well-crafted abstractions are a key part of efficient
modeling, For example, in floor plans comprising rectangular rooms, two good
abstractions are to consider the rooms and the walls respectively as as nodes.
Using rooms as nodes (Figure 3.8) creates two independent subgraphs in the
design, one for west-to-east relations and one for north-to-south relations.

When walls are nodes, as in Figure 3.9, the graph becomes a very simple tree
structure of successive subdivisions, either vertical or horizontal, dividing an
overall rectangular plan. Each of the four abstractions in this section, based on
dimensions (Figures 3.1, 3.2 and 3.3); points and line segments (Figure 3.4);
rectangles (Figure 3.8); and walls (Figures 3.9 and 3.10) represents layouts of
two-dimensional rectangles; each offers advantages and disadvantages; and,

An important form of abstraction for parametric modeling is condensing and

expanding graph nodes. In any graph, a collection of nodes can be condensed
1nto a single node; and graphs with condensed nodes are called compound graphs,
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A condensed node can be expanded to restore the grapllj to.it‘s origi(x;al state. -
Condensing and expanding implement hxerarc.:hy and aid divide-an ~cc;{niq3:1of
strategies. Parametric modelers implerr%ent this strategy to crez}te newh ax; ot
multi-property nodes, to support copying and reuse of parts o a}g}ra;: o
to build user-defined libraries of parametric models. See Section 3.3.7 on p. 45.

north

WESTE ==

3.8: The loosely-packed arrangement of rectangles (LOOS) representation (Flemrr‘xingﬁ 1§8§,
1.98'9) Treating each rectangle as a graph node creates two separact:i sulzgrﬁ}e)dhs in ,;tb e etsxgn
. h-to-south). There are four distinguished n es (called north, east,
S(::ZS]: :Z: isv;at;‘?h::gounojfhe az:rual rectangles in the design. Each }nterial nod; carm;.js
ini i ions: ~east direction and one for the north-sour
two minimum dimensions: one for the west—east " r -
irecti i all consistent with these constraints.
direction. The node computes a location of the Wi 1 1 ;
i i al) wall location as being as far west
h algorithm computes every vertical (hf)rxzont ;
82::2‘;; i\tgz:(:m1 possiblyie. In addition to its simple graph, the LOOS represex;tauoqd
has the benefit of being able to represent every pos.sible layout of rectangles, and provides
relatively simple operations for inserting and deleting rectangles.

2

o
L8

3.9: In the subregion represenntation (Kundu, 1.988; Harada, 1997), the rgprese:;tapiii a
simple tree, with each square node representing b'oth a rectangular r;gxox:l an ii_tsemin
vertical () or borizontal (b) wall dividu.lg the region gnd each ﬁ]un no e.lrcindersm ;gd
a specific rectangle. This representation is extrepxely simple and has an easily
dimensioning scheme; each v and % node contains an independent parameter.
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o]

7y 7y

7
3 ¥y 75

®

L[]

)

3.11: The graph on the left condenses to
) the compound graph on the righe. T
collection of nodes (in red) on the left becomes the singl§ sell)ected nod: int theh:i;fllte wied
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3.2.5 Thinking mathematically

Whether conventional or parametric, a CAD model is a set of mathemarical
propositions. A line object is a statement that the segment between its end
points is a part of the model. Mathematical calculations are routinely made by
the system: putting new points on the active plane, placing a line tangent o a
circle through a point and specifying a point as the centroid of a polygon each
model basic mathematical inferences. Designers do more than make collections
of propositions: they make proofs of their designs. By using constructions such
as grids, snaps, circle intersections and tangents, they construct mathematical
proofs that the designs thus specified are consequent to their base assumptions.
Of course, designers seldom look at their work in this way, and mathematicians
might cringe to consider such special-purpose constructions as meaningful
proofs. But the analogy stands; in some sense, designers “do” mathematics.
Practically though, designers use mathematics more than they do mathematics.
To use mathematics is to begin with established mathematical fact and 1o rely
on it to make a construction or, even more loosely, as a metaphor for a design
move. To do mathematics is to derive theorems (new mathematical facts) by
inference from prior known statements. The difference is in both intent and
practice. A designer sets out to create a design, a description of a special artefact
suited to purpase. A mathematician secks to discover new and general facts
from old or new paths of inference to already known facts. Design work is
more like McCullough's (1998) digital craft and less like Lakatos’s (1991) cycle
of proof and refutation. We can quibble about how similar (or not) these two
acts are, but there is an essential difference in license taken and understanding
sought. Using mathernatics to do design requires far less understanding than
doing mathematics for its own sake. Note the word *requires”. Some designers
choose to delve into the mathematics of their work. Sometimes such apparent
distraction becorries core to developing a body of work. Other times it follows
the time-honoured tradition of curiosity as its own reward.

Design has always had practitioners who take more than slight steps towards
mathematical maturity. Gothic buildings can be understood and were evidently
designed as complex sequences of geometric construction proceeding from a
few key dimensions. Traditional Persian Rasmi domes result from projecting a
drawing onto a predetermined dome geometry. In Persian, the verb for drawing
and the word “rasmi” have the sarne linguistic root. DaVinci’s Vitruvian Man
drawing is the centrepiece of a collection of notes on Vitruvins’s The Ten Books
on Architecture (Pollio, 2006).

Palladio (1742; 1965) expounded on and (sometimes) used proportional systems
in his building plans and elevations. Antoni Gaud{ limited his form-finding
mostly to developable surfaces, to great sculptural effect. Le Corbusier espoused
The Modular, a manifesto on the play of the golden ratio ¢ = (1 + v/5) /2, also
the solution to the equation 1/¢b = ¢ /(1 + $), and in turn the division of a
line segment such that the small and large parts are in the same ratio as the large
part to the whole. Canadian architect James W. Strutt (see Figure 3.2.6) based
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Salishury Cathedral.

Source: Bernard Gagnon.

A sequenice of Rasmi domes in
NasirAl-Molk Mosgue, Shiraz, Ira
Projection from 2 base drawing
is the main generator for Rasmi
domes.

Source: Babak Nikkhah Bahrami,

Da Vinci’s Vitruwian Man.

Source: Luc Viatour.




Palladio’s Villa Rotunds,
Source: Palladio (1965).

Geometrically Antoni Gaudf’s,
Temple Expiatori de la Sagrada
Familia is an exploration of
the possibilities of developable
surfaces.

Source: Paolo de Reggio.
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his life’s work on the play of sphere and polyhedral packings and their duals,
Geometric construction and visual clarity are signatures for Foster -+ Partners.
These are statements of historical fact, not judgments on the work obtained.
Valuing design for using geometry is circular reasoning at best,

Parametr{c Systems can make such mathematics active, By coding theorems and
constructions into propagation graphs and node update methods, designers can
experience mathematical ideas ar play. The once dry ideas of surface normals,
¢ross products, tangencies, Projections and plane equations become an essential
part of the modeler’s repertoire. Active and visual mathematics can become
means and strategy to the ends of design.

Modern mathernatics is too vast for the lifetime of a single mind. Indeed, it
seems too vast for an entire industry. New geometric operators appear slowly
1n CAD, leaving much design possibility unexplored. For examnple, in 2009, the
mesh subdivision and refinement techniques common in animation system;
were only beginning 1o appear in CAD. The field of computational geometry
provides such basic constructs as convex hulls, Voronoi diagrams and Delauney

know about something these other fields — their demands may well push system
developers to richer tools. Section 3.3.5 outlines some of the new strategies in
contempo‘ry parametric design. Chapter 6 explains some of the fundamental
mathematics needed to master parametric modeling.

3.2.6 Thinking algorithmically

A parametric design is a graph. Its graph-dependent nodes contain either or
both update methods and constraint expressions. Both are algorithms and can
be change‘d by users, at least in principle. Long practice in using, programuming
and teaching parametric systems shows that, sooner or later, designers will need
(or at least Want) to write algorithms to make their intended designs.

Iris ‘mef.ul to consider what an algorithm is. There are many definitions.
Berlinski (1999) (whose book you should read!) writes on page xix

An algorithm is

a finite procedure,

written in  fixed symbolic vocabulary,
governed by precise instructions,
moving in discrete steps, 1,2,3....,

~Whose execution requires no insight, cleverness,
intwition, intelligence or perspicuity,

and that, sooner or later, comes to an end,
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Berlinski’s definition is less formal than those you will find in dictionaries and
computer science texts, but contains all of the accepted essential elements of

an afgorithm. Design highlights two of its aspects. The first is “procedure”:

an algorithm is a process that must be specified step-by-step. Designers largely
describe objects rather than processes. The second is “precise”: one misplaced
character means that an algorithm likely will not work. In contrast, designerly
representations are replete with imprecision ~ they rely on human readers to
interpret marks appropriately. It is hardly surprising then that many designers
encounter difficulty in integrating algorithmic thinking into their work, in spite
of over 30 years of valiant attempts o teach programming in design schools.

It is even less surprising that computer-aided design relegates programming to
the background. Almost all current systems have a so-called scripting language.
These are programming languages; developers call them scripting languages to
make them appear less foreboding. In almost all of these, to use the language
your must remove yourself from the actual task and your accustomed visual,
interactive representation. You must work in a domain of textual instructions.
This is not surprising either ~ algorithmic thinking differs from almost all other
forms of thought. But the sheer distance between representations familiar to
designers and those needed for algorithms exacerbates the gap.

In both conventional and parametric systems, the scripting language can be used
to make designs. The language provides functions that can add, modify or erase
objects in a model. In addition, parametric systems bring the algorithm closer
to design models. They do this by localizing algorithms in nodes of 2 graph,
either as constraint expressions or as update methods. However, designers still
must grasp and use algorithmic thought if they are to get the most out of such
systems. Chapter 4 summarizes the programmer’s craft and shows how and
why programming is built into parametric modeling,

3.3 New strategies

Conceiving data flow; dividing to conquer; naming; and thinking abstractly,
mathematically and algorithmically form the base for designers to build their
parametric craft. In this section, I describe strategies that my research group has
observed over several years of running courses and workshops in parametric
modeling. Our observation techniques have ranged from informal interaction
and journaling to structured participant observer studies (Qian et al., 2007).

334 Sketching

The sketch occupies a near sacred place in the design pantheon. A library of
books attests to its importance to design, extolls its protean virtues and urges
students to learn this allimportant skill. Toothy paper and the 2B pencil are
among the saints of architectural hagiography. Irony aside, all design teachers
know that the student who sketches well tends to do well in the studio; and
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= 216

108 cm ——

The core of the Modulor. The e
series originates with dimension
of 108 cmn (pusatively at navel
height); the Blue series with 216 ¢
(the top of an outstretched arm).
Each is geometric in the golden
ratio l’%& Corbusier rounded
imperfectly—the Modulor dimen
sions are not in the golden ratio t
the nearest integer.

James W. Strutt’s Rochester House
is based on a close packing of
rhombic dodecahedra.

Source: James W, Strutt Family.

The Albion Riverside apartments
by Foster + Partners combines
multiple trigonometric functions
to compose an overall form.

Source: Chris Kench.
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that pencil sketching remains a vital and important tool for design. But what

is a sketch? In Sketching User Experiences, Bill Buxton (2007) crafts a thorough
argument for the qualities and uses of sketches in interaction design. In the
chapter The Anatomy of Sketching (pp. 111-120), he posits 11 qualities of design
sketches. For Buxton sketches are (or have) guick; timely; inexpensive; disposable;
plentiful; clear vocabulary; distinet gesture; minimal detail; suggest and explore
rather than confirm; appropriate degree of refs s and ambiguity. Of these,
only clear vocabulary, distinct gesture and appropriate degree of refinement
make any reference to the media conveying a sketch. All of the other eight (and
much of these three) refer rather to the role of sketches in the design process.
Busxton does not have the only or final word on sketching in design, but his
voice is both recent and clear. To paraphrase his words: Designers have always
sketched. It is how they do their work.

We have known since McLuhan that media and content deeply intertwine; the
carrier and carried cannot be pulled apart. Well-mastered, the skill of pencil
sketching meets all of Buxton’s criteria. But when taken in their own terms, so
do other media and tools. Unencumbered with the 2B religion, students use the
media at hand, and today such media are mostly digital. These fresh newcomers
consistently do work that meets all of Buxton’s criteria - see Figure 3.12. And
their eyes are different. What old-timers like Buxton and I might see as overly
determined and graphically definite, the new generation sees as ambiguous and
free. If you don’t like it, change it! The digital generation might well add the
word dynamic to Buxton’s list.

Parametric models are, by their nature, dynamic. Once made, they can be rapidly
changed to answer the archetypal design question: “What if,..»* Sometimes a
single model replaces pages of manual sketches, On the other hand, parametric
models are definite, complex structures that take time to create. Too often, they
are not quick. A challenge for system developers is to enable rapid modeling, so
that their systems can better serve sketching in design.

33.2 Throw code away

Designers do design, not media. Unless they get seduced by the siren of the
parametric tool, they model just what they need to the level of confidence and
completeness they need. From project to project, day to day or even hour to
hour, they tend to rebuild rather than reuse. In stark contract, much of the
toolkit of computer programming (and parametric modeling is programming)
aims at making clear code, reducing redundancy and fostering reuse. In the
world of professional programming, these aims make eminent sense. In the
maelstrom of design work, they give way to such simple devices as copying,
pasting and slightly modifying entire blocks of code. Professional programmers
would be horrified by such acts, Designers are delighted if the resulting model
works, right now.
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3.12: The initial sketches ((2) & (b) in the margin) led to this paramegpc sketc;h,r ::Z}S,eit

urpose was to build and understand how a surface could react to objects }mh e: neath 3
?['hep screen elements spanning the surface (c) were builr, h.terally, on top of the sh e:ic .
The relatively low resolution of the sketch image reflects its eghenterall rolerxéz the design
process — whatever gets saved in the moment determines the historical record.

Source: Mark Davis and Stephen Pitman.

At the 2007 ACADIA conference, Brady Peters presente.d a paper on t‘he fiemgn
and construction of a roof over the courtyard of the Srmthsoma'n Insltrcutmx;x
Patent Office Building (Peters, 2007) by Foster + Parmers: During hz§ talk, he
showed some of the computer code that generatfed the design altemat%ves, I; was
highly repetitive. Entire blocks of almost identical code appea;edhagam, ar}x{ o
again. To an audience question (OK, it was from me) about why ;, das as 1
programmer, would not have made his code more clear, he responde sn;xp. y

“I didn’t need to do that.” Peters wasn’t being la.zy or'uncraftful; he was being a
designer. Throw-away code is a fact of parametric design.

3.3.3 Copy and modify

Designers may throw their own models away, bL’}t will invest com;d'er‘ab}ile t(lﬁne
in finding existing models and using them in their oW context. This is ard y
surprising, References such as Architectuml_ Graphics Standardsl(Ramsazjg ;;b)
Sleeper, 2007a) and their recent digital versions (Ramsay and Sleeper,
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provide exempigry dt?tails that, for much design, are the foundation for detailed
;Vor%{. Inan engineering design domain, Gantt and Nard; (1992) report script
nding and reuse as an tmportant mode of work. Given the additional work

that i £ i
e MUST g0 1nto a parametric model, we should expect to see an intellectual
trade in models and techniques. As both a learn

code reduces the job of making a model. It
C(.)de that works than it is to create code fro
differs from current intentions. The key is
produces a result. Starting with a working

ensuring that the model works, is often m
from scratch.

m scratch, even if what it produces
the word “works”, that is, code that
model and moving in steps, always
ore efficient than building a model

3.13: The roof over the cou i 7
e rtyard of the Smithsonian Institus; Office Build;
Source: Nigel Young / Foster + Partners, o rostion Putent < Bulding

but they are happy to use such code when it is available. This makes “good”
code a treatsured community resource. The copy-and-modify strate fe (il'

a community f’f practice that generates the code, The World Wide g\;’eb ?os‘i .
such communities. Enabled by the fact that pages are written in humamrea;:;le

III.N[L (&ﬂd other lan ages N web desxgn p
€rs Oitﬁﬂ mine EXISU!lg ages for code

5.14: Detals ofthe Smithsonian examples partially fill the need for such models and code.
courtyard roof.
Source: Nigel Young /

Foster + Pariners,
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3.15: The figure on the left was copied and modified by a designer learning recursion to
create the figure on the right.
Source: Dieter Toews.

3.3.4 Search for form

Parametric modeling opens new windows to design. Nowhere is this more
evident than with curves and surfaces. These are naturally parametric objects;
mathematically they are defined as parametric functions over sets of control
points. Conventional systems provide these mathematically motivated controls.
In contrast, parametric systems enable a new set of controls to overlay the basis
controls, This creates endless opportunities to explore for forms that are not
practically reachable otherwise. To the technically-minded, such exploration
can appear as play that is both aimless and ungrounded. A broader and longer
perspective reveals serious purpose in the play. The history of design can be
read as a constantly changing process of exploring for new form-making ideas,
using whatever tools and intellectual concepts are at hand. New languages and
styles of design require such exploratory play, especially at their early stages.
Figure 3.17 shows recent exploratory work by Aranda\Lasch.

335 Use mathematics and computation to understand design

Understanding mathematics (especially geometry) and computation can bring
some design concepts into sharp focus. Working with such formal descriptions
restricts the range of forms that can be expressed, but links them in a common
logic that may be worth the cost paid. For example, taking sections of a toroidal
surface yields a surprisingly rich language of form, with the benefit of planar
faceting and a limited set of edge lengths for facets.

3.16: The same design shown at
increasing recursive depth.

39




CHAPTER 3. HOW DESIGNERS USE PARAMETERS

recursion, which occurs when a

wholes they compose,

3.18: Sections cut from a torus.

3.17: The quasi-series is about th i i
3 #m,?st oo ofondr oo s: aﬁx’xrsmt of orders that are rigorously modular but wild

2 new phase of matter discovered in 1984, represent
overs on the edge of falling apart. Unlike a regular
periodic (or repetitive in all directions), the distinctive

?[ulssdgr dclaf a qu;sicrystal is thf\r its strucrural pattern never repeats the same way twice.

modular;S:r atx; 'f‘l}?ievfin’ !?ut it can be described by the arrangement of a small set of |
- 115 furntture piece explores an aperiodi i

Source: Aranda\Lasch, fabrication by James Moore. perlodicasembly in wood.

Sometimes you ne.ed to understand the underlying mathematics to effectively
Erealtje 2 m(;)del. Hler-archy 15 a time-honoured architectural design strategy, yet
33 limited support in most CAD systems. The intellectual key to hierarchy is

program invokes itself. (See Section 8.16 below

and Figure 3.15.) With recursion, parts can be made to directly resemble the
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3.19: A single recursive structure with minor variations produces a wide range of designs.
The central diagram demonstrates the basic tree structure of two motifs replicating at
each recursive level. Along the upper branch, the location of the motifs changes with each
successive figure. For the last four figures, the motif changes from a line to a triangle and
only the final level of motifs appears. In the lower branch, only location changes; the line
motif remains the same. In the final figure on this branch, the number of levels in the
recursion increases and only the final level of motifs appears.

Source: Woodbury {1993).

A geodesic curve is the shortest path on a surface that joining two points p

and ¢ also on the surface. For spheres, the geodesic curve between p and ¢ is
the shortest arc linking the two points taken from the great circle defined by

the two points and the sphere centre. Discrete points along a sphere geodesic
curve can be found by projecting points on the 3D line between p and 4 to the
sphere’s surface. Geodesic meshes can be generated by subdividing polyhedral
faces and then projecting the new vertices onto the sphere. Figure 3.18 shows
that successive subdivisions produce more sphere-like forms. On the other
hand, subdivision can be cleanly understood as a recursive operation. Even such
a qualitative understanding of geodesic concepts enables complex form making.
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3.21: Starting with an icosahedron
(20 equilateral triangular faces),
successive subdivisions of each
triangle make geodesic meshes
that better approximate a sphere,
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3.20: A geodesic curve on sphere isa fragment of a great circle.

Ma'ny contemporary parametric designers are exploring mathematically-based
des%gn strategies. I cannot help but notice a pattern. They browse the web and
their social networks for math, picking ideas and playing them into design work.
The reasoning chains (from pigeon-hole principle to permutations to binomial
theorem to permutation cycles...) that structure classical mathematics learning
and understanding are seldom part of the game. Designers mostly enter above
the foundations, understand something of mathematical mechanism and move
on 3o use it in design. Of course, there is co-evolution here. The web enables
f:asual access (try doing it in a physical library of mathematics texts) and itself
is conditioned by such use. It should come as no surprise that the constructive
recursive definition of the Bézier curve is much more common on the web tha:m
the Bernstein basis definition, in spite of revealing less mathematically. Visual
con-struction trumps mathernatical inference for design, As with algorithms
designers exhibir a copy-and-modify style in using mathemaics. Even more ’
quickly, they encounter limits, Just as 2 program may not even compile in the
face of a minor coding error, a mathematical formula or theorem may break
dt?wn completely with a seemingly minor change. There are no Pythagorean
trq;?lets for cubes, that is, there are no integer solutions to ¢ + b3 = ¢3. (This is
an instance of Fermat’s Last Theorem, proved only in 1995, that is, there is no
integer solution 10 " 4 5" = ¢" with 7 > 2)

Th‘e ma}ti}ematieal knowledge available in libraries, especially those of research
umversities, staggers the mind. Much of this material can be accessed only by
physically visiting, and relatively little can be understood withour concentrated
fmd sustained study of mathematical foundations, The World Wide Web and
mnteractive software for working with mathematics have thrown open doors
through which come a large crowd unfamiliar to the mathematically astute,
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Ougline resources such as Wolfram’s MathWorld (Weisstein, 2009) and many
university courses provide immediate access to (sometimes carefully constructed)
explanations that can help bridge to mathematical understanding, Packages such
as Mathematica@ and Maple™ are to mathematics what parametric modeling
is to design - by making math active, they enable exploration and discovery.

3.3.6 Defer decisions

In design, accuracy measures how the design relates to the thing being desigred.
Precision measures how design parts relate to each other. Conventional systems
require geometric precision and provide tools such as snaps to help achieve it.
Without precise size and location, models look messy. They do not have the
ambiguity and appropriate refinement of a sketch; they are just messy. I argue
that, more than anything else, this need to commit to specific locations at the
outset of modeling is what is least sketch-like about computer-aided design. A
clear exception is the implicit modeling toolset widely used in animation and
gaming. Implicit surfaces lie “somewhere near” their generating objects and
provide rules to merge “nearby” surfaces together. Implicit modeling removes
both the need for precision and the possibility of accuracy.

Parametric modeling introduces a new strategy: deferral. A parametric design
commits to a network of relations and defers commitment to specific locations
and details. The system maintains the prior decisions made. Deferral pervades
parametric practice. Those new to parametric modeling often ask how to locate
their initial points and lines. Those teaching delight in the answer: “Tt doesn’t
matter; you can change that later.”

One of the earliest (and effective!) demonstrations of parametric modeling in
architecture was the International Terminal Waterloo by Nicholas Grimshaw &
Partners (see Figures 3.23 to 3.22). Lars Hesselgren crafted the original model in
the I_EMS system. More than 15 years later Robert Aish used a similar model
o demonstrate the CustomObjects system (which later became Generative-
Components™). A salient site condition is that the train track curves through
the station, A parametric model need not be initially constrained by this curve;
fitting it to location can be deferred. Changing the order in which modeling and
design decisions can be made is both a major feature of and deliberate strategy
for parametric design. Indeed, a principal financial argument for parametric
modeling is its touted ability to support rapid change late in the design process.

The Eden Project also by Nicholas Grimshaw & Partners, (see Figure 3.26),
combined parametric modeling and geodesic geometry to address an unusual
problem. The site was a quarry that remained active until very late in the design
process. Consequently ground levels could not be predicted in advance. The
geodesic geometry made it easy to extend and rearrange partial spheres, while
parametric modeling shortened revision cycles.
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3.22: The International Terminal Waserloo by Nicholas Grimshaw & Partners.
Source: James Pole.

3.24: Using parametric modeling, the exact location of the structure can be changed at the  3.25: Plan view of a parametric
very end of the modeling process. model of Waterloo Station.

3.26: The Eden Project, Cornwall, United Kingdom.
Source: (C)2006 Jiirgen Matern (htrp:/ /www.juergen-matern.de).

3'23.: The International Terminal Waterloo by Nicholas Grimshaw & Partners. The
station was designed around an existing path for the track sysrem.
Source: Jo Reid and John Peck.

3.3.7 Make modules

Propagation graphs can, and do, get big, Large size increases system update
times and, more importantly, makes models hard to understand. Copying parts
of a large graph and reconnecting them elsewhere in a model is prohibitively
difficult. Reducing graph complexity and enabling reuse are the main reasons
that systems universally provide module-making tools. The names and details of
these vary from system to system, but their essence is the same. They provide
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a means to etlFapsulate asub-graphasa single node with js ow

mdeper‘ldenr (input) parameters. Copying and reuse then re o e
copy of a single node and reconnecting its inputs as needed
It rakes much effort 10 make a module work we
develop surprisingly sophisticaged module-maki
the process iterates;
Later in this book, the Prace Ho

constructions.

3.3.8 Help others

In Gardenérs 4y Gurus: Patterns ' ‘ ‘
? " Lattern; 7
Nard: (1992) con N s of Cooperation among CAD Users, Ganrt and

oncept of the gardener 1o describe int
ernal d
extenders) of CAD Systems who are supporred by their organr;zat FVEIOPerS e

paende whe . on. P
peak example of gardening in architectural design in 2010 is the Specei;iéslfs

o g I}:'ear-after-year, to mentor students and
etric modeling.
such evenge oo oop g. Of course, other rewards are at play:

erb
the bt s o ila‘ces o meet peers, scour for employees and check out
(mmjng o . fom thieir offices and studios, some Pparametric practitioners
2 tew would be unfair ~ there are just too mary good ones)

practitioners new to p
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freely share code and insight into modeling tasks. To them flow the rewards
not just of fame, bur more importantly, of new problems and approaches to
solutions. Formalized or not, helping others is a clear strategy to at least some
aspects of mastery,

3.3.9 Develop your toolbox

The parametric medium is complex, perhaps more so than any other media in
the history of design. Using it well necessarily combines conceiving data flow;
new divide-and-conquer strategies; naming; abstraction; 3D visualization and
mathematics; and thinking algorithmically. These are the basics, and mastery
requires more. We can expect that new technique and strategy will fow from
the practices and schools that invest time and effort in the tools. Between the
basics and the designs that are the focus and aim of professional worl, lies a
largely unexplored territory of what might be called parametric craft. 1 choose
the word “craft” on purpose, to align with Malcolm McCullough’s (1998) case
for a developing digital craft. Some of his examples were of parametric models.
Understandably, given the date and breadth of the book, McCullough merely
hinted at the richness of parametric technique.

We can expect explorers in the new territory of parametric craft. Unlike the
medieval sailors in whose portolanos we can see cartography slowly develop,
the current explorers can learn from other fields that have undertaken similar
voyages of discovery. There are numerous books on spreadsheets; some, lile
Monahan (2000), focus on strategies for spreadsheet design. Borrowing partly
from film, computer animation has grown an extensive repertoire of technique.
Software engineering has forged and polished a powerful tool. Software Design
FPatterns describe fragments of systems both functionally (by what they do) and
structurally (by how they are composed of simpler structures). Their origins lie
in architecture, particularly in Alexander’s many works on pattern languages.
In software, though, design patterns have a new and philosophically different
logic and application. They have come to occupy a pragmatic place berween the
technical description of computer languages and the overall organization of a
complex computer program. In software, design patterns record demonstrably
useful ideas for system design. I have both adopted and adapred software design
patterns as a basis for expressing the new parametric craft.

We can expect, as with the medieval nation-states, that some of the parametric
portolanos will be kept strictly private. But practices and universities alike will
come to use and value only those that are public. I devote much of this book to
a small, initial set of design patterns. My aim is to begin what I hope will be 2
long and fruitful process of developing an explicit, shareable and learnable craft
of parametric design. Before patterns must come programming and geometry -
the practical manifestations of algorithms and mathematics for much of design.
Explaining particular patterns relies on a few key ideas from each of these very
large fields.
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Programming

Algorithms are realized as programs, which in turn are written in precise and
prescribed programming languages. Almost universally, designers learn to think
algorithmically by learning a programming language to accomplish design work.
Anyone who has become a good programmer will tell you that, at some time,
they focused intensely on programming and spent a great deal of time learning
10 do it well. The term “programming language” itself gives a hint as 1o why
this is so. Just as the most effective way to learn a new natural language is to
immerse yourself in the daily life of native speakers of that language, the best
way to learn programming is to work intensely with a programming language
to the near exclusion of other forms of thought. But even when a designer has
expended all of this effort and has become an accomplished programmer, there
will be aspects of algorithmic thinking still unlearned, This happens because
there are general language-independent concepts to master. Computer scientists
learn these through a combination more abstract algorithmic descriptions and
programming in multiple languages. In fact, most computer scientists would
assert that the science of computing is quite separate from programming skill.
In particular, they will claim that not all programmers are commputer scientists
and (more reluctantly) that not all computer scientists are programmers. Like
drawing in design, programming is the craft skill by which much of computer
science is done.

Programming is not a monolith. It is a multi-faceted skill mostly raught in
sequence. At every stage in the sequence you rely on concepts learned earlier.
Importantly, at every stage you can accomplish sore work with what you know.
Almost all books and courses on programming languages progress through such
a sequence of concepts each realized as short programs. Sequences are startlingly
similar across books, courses and languages. Every programming language is, in
fact, a concrete realization of the general concept of the algorithm, and inherirs
much of its structure from that source. It is a strange and frustrating experience
to read such bools as an expert in computing. By the term “expert”, I mean one
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who both understands abstract algorithmic concepts and demonstrates effective
programming skill. The expert wants 2 concept explained in general terms. A
boolk almost always explains only by specific examples in its focus language. Of
course, hundreds of authors are unlikely to be wrong. They use this concrete
style of writing because it works to teach programming as it is usually taught in
schools - as an isolated skill. It does presume that people learn computing ideas
at first almost exclusively by learning a language. Skills-based learning makes

it doubly hard to simultaneously master difficult abstract ideas. The tragedy in
this all-too-common structure is that, withowr dedicated and formal study, it

is hard to rise above the particulars of a language 10 see the general, powerful
concepts at play.

each step in the sequence enables the designer/programmer to accomplish. For
the novice, it mighs provide an principled overview, so often missing in basic
programming books. For the expert, its brevity mighe help in reviewing and
connecting key ideas.

4.1 Values

A valne is a piece of data. Values are the basic objects over which computations
“occur. In computing in general,  valye can be any symbol, Practically though,
values usually come in kinds (or types, see Section 4.7 below). Most computer
languages support a suite of such kinds, for example:

5 aninteger
3.14159 g real number
“f"  acharacter
"aalto”  astring -
false  a Boolean, either true or false

4,2 Variables

A wvariable is 2 container that holds a value, It hasa name. We use variableg

to hold onto dara so that we can use the data later, The nodes in a parametric
model are, in fact, variables. They hold values, often multiple values (as shown
in Section 4.8 below). In the foﬂowing list, the variable name comes first, then
the value it contains, then the value’s kind of object. Variables names can (and
often should) be long, A good (and common) programming convention, called
camel casing, or camel, Casing, makes memorable names by adding several words
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rogether with no spaces and by capitalizing the first character of each word.
The word “camel” refers to the “humps” in the variable names so created.

a=5 an integer
SiRatio=1.414  a real number
buildingPart = "elevator” 3 string
qua = true  a Boolean

Variables enable description. With variables alone, a collection of dara can be
organized so that it makes sense 10 an external reader. Variables allow us to
express a design as a collection of values,

By themselves, variables impose no ordering. A collection of variables, with no
duplicates, can be considered in any order without changing the values held in
the variables.

4.3 Expressions

An expression combines values, variables, operators and function calls that return
values. Expressions are classified by the kind of value they return. For example,
a Boolean expression returns a bit (either trwe or false). Expressions are units
from which larger structures are built. Some examples of expressions include
the following:

@  avariable is a simple expression
2+(5%8) this arithmetic expression returns the value 42
(1 +5qrt(5))/2  expressions can contain function calls
b+1 the variable b must be defined already

Expressions support daza dependency. By using an expression, a piece of data can
be computed from (made dependent upon) other pieces of data.

The values returned by expressions can be held by variables. This simple fact
imposes a partial ordering on a set of variables. If an expression uses a variable,
then that variable needs to be given a value before the expression occurs.

4.4 Statements

A statement is a unit of code that 2 language can execute. A program comprises
a sequence of statements that are to be executed in the given order,

Statements can be simple (made of one statement) or compound (being a block

made of a sequence of statements), Like a variable, a compound statement can
be thought of as 2 container. In this case the container holds code.
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A particularly imporrant statement is the assignment statement, which assigns
a value or the result of evaluating an expression to a variable. For example, the
variable a may be assigned the value of the golden ratio.

a = (1.0 + sqrt{5))/2.0;

Two successive assignment statements with the same variable being assigned
have the result of the second statement overriding the first. The statements

1]

a
a8

{1.0 + sqrt(5))/2.0;
3.14159;

it

result in the variable a holding an approximation of the value of 7, not ¢ the
golden ratio.

Statements in a sequence, executed statement-by-statement, in the order given,
capture key aspects of algorithms: ... governed by precise instructions, moving in
discrete steps ... (remember Berlinski (1999)?). Together, variables, expressions
and statement sequences enable a simple bur useful form of algorithm,

Each parametric model node can be thought of as a program, that is, 2 sequence
of statements. Each use of a value or of a constraint expression in a node property
is equivalent to an assignment statement. Taken together, all of the individual
node programs compose a larger program in which nodes must occur before

they are used in another node’s constraint expressions.

4.5 Control statements

The flow of control of a program is the sequence of statements that are executed
when the program is run. Programming languages provide a class of statements
whose purpose is to change the flow of control. The most simple of these is the
if statement, which executes 2 block of code if some condition is true. Another
example is the switch statement that provides a list of possible actions given the
value of a variable.

if {a> 5.0}
{

/1 A sequence of statements goes here.
}

4.1: When executed, an if-starement transfers the flow of control into its code block #f the
Boolean expression comprising its condition is true.

More complex is the for-loop, which calls an initializer for a control variable and
repeats a block of code until its loop condition fails. At the end of each stage the
for-loop executes a counting statement (the control variable usually oceurs in this
statement ~ exceptions abound, but these are hackery). Typical programming
languages provide several such statements, for example, foreach and while,
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for [i=0; i<10; i=i+1)
/ifer (initializer; loop condition; counting statement)

{

it A sequence of statements goes here .,

7/ Usually, but not necessarily, these statements
/1 use the variable i, so that each iteration

// through the loop has a different effect.

4.2: When executed, the for-loop initializes the control variable i and transfers control
m;o the body of the loop. When it exits the body, it executes the counting expression, in
this case it adds 1 1o i. Then it tests the loop condition, in this case that i is less than 10.
I true, it enters the loop body again.

Control statements enable programs to perform actions that depend on the state
of the program, that is, the current variable assignments. Statements such as the
for-loop facilitate expressing repeated similar actions as a single block of code,
and thus can make programs much shorter, easier to maintain and sometimes
more readable.

A simple list of statements can achieve a surprising amount. Just as in the real
world where actions may depend on context, in programs, the computation
may rely on data values. In the absence of control statements, programmers
would have to write separate code for each situation and themselves determine
which piece of code to use.

4.6 Functions

A function is 2 named block of statements, wrapped up in a box. See Figure 4.3.
Tt has inputs (these are called arguments) that go into the box and returns values
that leave the box. The code in the function acts on the inputs to compute the
return values.

4.3: A function can be imagined as a box. The function is known by its name, in this case
anyFunctionName. The arguments go into the left side of the box, The statements in
the box use the arguments. The results exit the right side of the box as a result of execut-
ing the function. Unless there are side effects, the contents of the box are hidden from the
containing program.
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I%mguages though provide devices by which functions can have side effocss, A
side effect happens when a function either refers to or changes data outsi(;le its
box. The most glaring example of a side effect happens when 2 function changes
a global variable, thar is, a variable thar exists within the program as a whole ®
and can be changed at any time by any function. As programs grow in size, side
ef.fects make them harder 10 understand and debug. Professional programn;ers
will BO to great lengths to avoid {or at least constrain) the use of global variables
specifically and side effects generally,

Fun‘ction calls enter Programs as part of expressions. Every language includes

3 suite of predefined functions; programmers can define functions extendin

this set. Fu.nctions can call funcrions, enabling composition as 5 design tool fgor
Programming, Devising and refining layers of functions, each performing more

specific work, is 5 key part of writing effective programs,

Fu‘ncfions are the first and simplest tool of softeware engineering, the discipline of
building complex, reliable, maintainable and understandable programs.

In parametric modeling, a node can be thought of as 5 function call, jn which an
upd;-tte method maps the nputs of the node to irs outputs, Nodes c;n be drawn
a.nd 18 some systems are so drawn, as function boxes with the arguments on one,
side and the returns on the other. Functions are the first and most sim, le devi
for building the modules of Section 3.3.7, P e

4. 7 Types

Value§ have kinds, There are numbers, characters, strings, bits and others Tipes
organize these kinds by providing templates for their data and operatorr; an}?
functions tha.t work with these templates. For example, the type integer gives a
Way 1o store integer numbers, I also provides such OPErators as +, —, %, /%, «
52 >= and == a5 wel] g funcrions such as max(a,b) (the mamxr;ur;x o; tv::o
}ntegers) and print(a) (veturns true or false and has the side effect of printing the
::;gje:t;a:zg :g]:.\ onto the screen). User-defined types can extend the range of
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Typically, variables must be explicitly declared to be of 2 specific type (although
some languages have a generic type that holds any value). Expressions usually
require their operands and function calls their arguments to be of specific types.

double a.b.c;
Vector p.q,r;

/1 initializing a, b, p and q

/1 initialization code goes here. examples below

= 3.141592654;

a
b = 2.718281828;
¢ = 1,618033989;
p.X=1.0;
p.Y=2.3;
p.Z= 1.5;

@

// statements with expressions using the + operator
/1 integer exampie

int b= 4;
int ¢ = 5;
C=a+b; /7 ¢ is equal to 9

!/ string example
string a = '‘four’ ‘:

string b = "’five’’;
C=a+b; i1 ¢ is equal to '‘fourfive*”
function CrossProduct(Vector xVec, Vector yVec)

{

Vector zVec; // declaration of return value type
/7 cede to produce zVet, the resuit
return zvec;

}

©
/1 a call to the function CrossProduct
r = CrossProduct(p, q);

@
4.4: (a) Variables are declared 1o be of specific types. Programmers typically initialize
thern to a specific known value.
(b) The expression a + b implicitly requires its arguments to be of type integer, double
or string. Operators that perform different operations depending on their input types are

said to be overloaded.
(c) The function CrossProduct requires two objects of type Vector as input and returns

an object of type Vector as output,
(d) Functions expose these type constraints when defined through their formal

lists, but not in their actual argument lists when they are called,

argument

Types enable 2 language compiler to perform some consistency checks prior to
running a program, making some kinds of errors easier to find. Using explicit
types helps as programs grow in size, but can hinder quick, exploratory coding,
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4.8 Objects, classes and methods

Objects generalize values, Whereas a value typically has little or no internal
structure (an integer is just 4 number), an object combines multiple values (or
other objects) into 4 coherent collection. Objects have Properties (sometimes
called slors), thar is, named parts. Dot notation accesses these properties. If p is
a poix.n, the object P.X refers o the property holding its X-coordinate. Like s
function, an objectisa container; it contains values and other objects, not code.

;; An. ob{'ect can be imagined as a box. The object has a name, in this case anyPoint,
e object’s Properties each have a name and 3 value. The values need not be primitive;

ey can be other objects, in this case, the CoordinateSyst
aNnYCS, itself an object, Yo property boldsthe vlue

Classes generalize types. A class is a template giving properties for objects of its
class'. An object can be an instance of a clags - instances have all the properties
specified in the clags. The name of the class is jts type. Each class property is
of a particular type; only objects that are instances of thar spi

41,6: ’A class 100 can be imagined as a box. The class has a name, in this case Point. The
©lass's properties each have a name and a type. The types nieed not be primirive; they

can be other classes, in this case, the CoordinateSystem
CoordinateSystem class, Y Property holds  value of the
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Methods are essentially functions specific to a class. Many methods of the same
pame may exist in a class hierarchy, each defines a function. The call signature,
that is the types of the arguments in the method call, determine which of these
functions is actually called. Such methods are said to be polymorphic (meaning
of multiple bodies). Polymorphism enables programmers to express similar
operations with the same name, thus potentially simplifying code. The same
dot notation used for properties applies to methods. ¥ P is a point, the method
call P.subtract(Q) returns the vector that is the result of subtracting Q from P.
Dot notation for methods makes object properties and methods almost the
same from a programming perspective. It aids encapsulation - a programmer
using it need hardly be aware of the internal structure of an object, only of the
set of methods defined over the object.

Objects, classes and methods present a double-edged sword to amateurs. Largely,
they help programmers make big programs more robust and understandable.
Used well, they can make programs truly beautiful (at least to the eyes of us
nerdy programmers) - they are elegant and powerful programming tools. Most
modern languages implement some aspects of objects, classes and methods. Like
power tools, they require setup and this rakes time and effort. In the contingent,
rushed style of programming usual in parametric design, minimal classes, simple
objects and “messy” functions often produce acceptable results.

4.9 Data structures, especially lists and arrays

Data structures allow programmers to organize data themselves. A data structure
comprises types {or classes) and functions (or methods) that perform coherent
operations on objects of these types (classes). The linked list (see Figure 4.7)

gives a basic example in which its single type has two properties, one for the

first element (the head) of the list it represents and the other for the rest (the tasl)
of the list. To access a member of a list, one must start with the head of the list.
If the head is not the member sought, visit the tail, until the desired member is
found.

or Car) points to a value held ar the place of the cell in the list. The second property
(called Tail, Rest or Cdr), points to the rest of the List from that cell. The symbol [
refers to the null fist, and is ofteq called nil. Instances of the List type are organized 1o
represent structures including lists, trees, directed acyclic graphs and general networks,
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Like a linked list, an array implements a sequence of objects. Unlike linked lists,
access is by index, that is, position in the collection. Typically, array positions
start at 0, 50 the expression a[0] gives the first element of the array and a[2]
yields the third element.

0123456789

4.8: The array data structure comprises an ordered collection of cells and an associated
index set. The cells hold data, By common convention the index set comprises the natural
flumbers, thatis 0,1,2,3,.... A member of the index set accesses the associated cell, for
instance, 4 accesses the fifth member of the array. In most programming languages’index
Sets start at zero, which creates linguistic, but not mathematical, difficulty in workin,
with arrays. This quirk is a fact of history and programmers just have to get used to ii

Data structures are a key abstraction technique in programming. Once built
.they can be used over and over again withour worrying about how they do tileir
job. Lists are just about the simplest data structure. They are easy to use, have

a huge range of operations and functions and can hold values of any type. On
the other hand, for some operations they are not very efficient and their very
ge.nerality can make them hard to debug and maintain, Lists and arrays are well
suited to quick, contingent programming in parametric modeling and are the
first structure that modelers should learn to use and make.
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4,10 Conventions for this book

Snippets of code appear throughout this book. The “language” to use for these
was a difficult decision. The choices were three: an existing language, faithfully
reproducing its syntax; the pseudo code used by computer scientists 1o express
algorithms for publication; or a simplified language hopefully readable for many.
Irejected the first two choices. The first requires the reader to know a specific
language and might give the impression that the book is somehow about that
language. The second, while precise and elegant, is not for amateurs, who often
have not bridged 1o the abstractions required. The third lent itself to the license
1 needed, both to express ideas as simply as possible and to add some notation
specific to parametric modeling. Here are some conventions:

[} comment Two forward slashes turn the rest of the line into a
commient.

p.-X Dot notation accesses object properties.

CamelCasing  Camel casing is a convention, not a programming
language feature. Used to combine words into names
while raintaining readability.

variableName  Variable names begin with a lower-case letter and are
otherwise CamelCased.

TypeOrClassName  Type or class names are pure CamelCase.

Point p = new Point(); A method with the same name as a class defines a
constructor for that class. When called, it produces an
instance of the class.

p-ByCoordinates(1,4,3)  Using By or At in dot notation signals that the method
is a node update method.

a={1,3,638} The principle of replication is that a variable can hold
a list or a single value. When a function is called on a
list it applies to each element of the list in turn.

Replication (Aish and Woodbury, 2005) needs some explanation. A node’s
independent variables may be either singletons or collections. A collection has
the interpretation that each object in the collection specifies 2 node in and of
itself. When multiple variables representing independent nodes are collection-
valued, collections propagate to variables representing dependent nodes in two
distincr ways as shown in Figure 4.9. The fisst produces a collection of objects,
of size equal to the shortest of the input collections, by using the i*# value of
each of the input collections as independent inputs. The second form generates
the Cartesian product of the input collections. The Cartesian product X x ¥’
of collections X and Y is the collection of all possible ordered pairs, taking the
first member the pair from X and the second member from Y. For example,
{(1,2) x (@, b, ¢} = {(1,4), (1,5} ,(L,¢),{2,4), {2, b}, (2,¢)}. Both cases result in
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asingle node in the graph, with its elements being accessed through an arr
indexing convention. The identification of sin o
2 form of programming-by-example whereby
instance can be propagated to multiple instan
input arguments,

gletons and collections supports
the work done to create a single

ces simply by providing additional

4.9: A line joining two point collections,
aline. (2) A symbolic model represent;
same symbalif: model represents (b),

ns, each in turn expressed as a parametric point on
ing the parametric points and connecting line. The

4.11 It’s more than writing code

Progr
" g amr?crs use the Vabo‘ve language constructs (and others) to write programs
€ act ot programming itself has several facets, A

To desi; i
ol ;zgnt code is to unde;stand the problem, decompose the problem into parts
ata structures and algorithms for th ’
' € parts and co; i
an entire program design. ? posethe pars o
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Coding translates a design into a program. It takes the abstract ideas of a design
and turns them into precise instructions in some programming language. Code
seldom works as written. Sometimes, coding and design go together, especially
at eatly, exploratory stages of an idea.

Errors, which programmers call bugs, make themselves evident anytime from
inirial compilation to only after several years of use of a particular piece of code.
Finding and fixing such bugs can be a fascinating intellectual activity in its own
right. Without any slight to programmers, it is common that more time goes to
debugging than any other part of the programming task. In fact, programmers
will express real surprise when a piece of code works the first time as written!

A program may work, but may be unclear or may need to be used in a more
general way. Refactoring is the process of redesigning code to improve its clarity
and its interfaces to other code. Refactoring makes code more adaptable so that
it can work in a range of situations.

Most good, large programs are built in modules. A module is a collection of data
structures that implement a coherent and consistent behaviour. For example, in
geometric computing, a common Jow-level module implements a concrete form
of wector spaces, that is, collections of vectors that obey certain mathematical
rules. Vector spaces rely on real number arithmetic in the language below and
provide consistent vector operations to programming layers above. Vector
space operations do not include any concept of location, as vectors are simply
directions and magnitudes. Location is typically introduced in an affine space
layer above vector spaces. To design and program in modules is to conceive of
the “world” being programmed as having multiple descriptions, each one in
turn expressed as a description in some more atomic module. Designing and
implementing systems made of modules is the focus of the discipline of software
engineering.

A very important and surprisingly difficult programming skill is to abstract

to the lowest level. If an operation or piece of data can be expressed without a
domain-specific term, it should be. For example, inserting punched windows
and doors into walls can be accomplished by devising a data structure specific

to walls, into which holes are cut by special-purpose functions. More abstractly,
walls can be represented as solids, in which case the hole-cutting operation can
be conceived as the subtraction of a sweep of an outline representing 2 window
or door from a solid representing 2 wall. In the latter case, details of the wall (its
construction, thickness and shape,...) are invisible to the solid representing it. In
turn, the hole-punching operation relies only upon the geometry of the solid.

Functions and data structures can be general or specific, complete or partial. To
be general is to accommodate many cases. To be complete is to handle all cases
in some logical class. For example, data structures and functions over vectors
will be general as vectors are the basis for almost all computational geometry.
A complete set of functions for vectors might take a very long time to write.
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Most languages come with associated data structures and functions, These are
almost always incomplete in some context and for some tasks. Programmers
must write their own functions when needed. People who spend a lot of time
programming will often build up personal collections of classes and functions,
which they use and refine again and again in new projects.

Programming is algorithmic thinking in action. Two programs may express an
identical algorithm, yet differ in fundamental ways. Above the basics lies a craft
of programming, which takes time to master. The craft comprises concepts,
constructs and skills. Parametric modelers are mostly amateur programmers.
Their work patterns show a tendency to short code in which the craft manifests
to a greater or lesser degree,

4.12 Combining parametric and algorithmic thinking

Programming enters parametric modeling in four distinet ways: parametric
model construction, update method programming, module development and
meta-programming,

Almost all conventional CAD systers have a programming language, either
internal or accessible from the system. Designers program in these languages
to build and edit models. Once built, models can be changed either by hand or
by the action of other programs. Certainly, parametric thinking can and does
engage programming of this sort. Programmers use some of the variables that
are passed to functions as parameters that link to new parametric structures
created in the program. An early CAD book, The Art of Computer Graphics
Programming: A Structured Introduction for Architects and Designers Mitchell
et al., 1987) was essentially the reverse of this book. Through many examples, it
showed how to build a parametric layer onto the top of a structured program.
Parametric modeling inherits this programming mode but builds parametric
models, that is propagation graphs, rather than fixed models.

4.10: When executed, the block of code on the left creates or modifies the paramerric
model on the right. The arrow along the side of the code block represents the flow of
control through the code when it is executed.
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role of programming is in writing node update methf)ds. This is
E}E: jzcxzzcé lexpressxi)onf in the cells of a spreadsheet. The‘expfssfxons ax;e c;llled
at each update of the spreadsheet to Qroduce a value. Unlike t e ormbu ae&uin
spreadsheets, update methods are written once and used mzun;ii times gcmodii
not copying, the method. In this role, programs may be sprea 1;:;ro\m aded) m,
so that it becomes hard (though, with small programs, this is sl om 1:xee Ve
visualize the code as a coherent collection. In.thxs mode of wor h, each prog
stands on its own, at most calling other functions defined elsewhere.

4.11: The nodes 4, d and ¢ have user-defined upd:m? methods. As pr?ipagation Vm:f; ;:;:h

model niode, for example, in order {b,d,4,¢, f, €}, it executes the node update me!

for each node in turn. N
Creating a module requires design, coding, debugging, refining ;nd mmnﬁﬁ;g
a data structure and a suite of functions over t?lat structure. Such new m 1

are needed if a system does not support a p@cﬂu design task. For e.xarxgz ;:

a layout module for rectangular roorms (see Fxgures.3.8 and ?.10) requires ain
structures representing rooms and walls, and funcm.ons for m'sgrtmci, remo;l1 regs
and dimensioning both. It can take a great d.eal of time to b}ul 51; .Istru; .
Consequently, complete modules are a relative raity in designer-built Cﬁ e. .
Once a serious commitment to parametric craft is made (or sn?aks \.}lpdth roug
sustained work), it is inevitable that a designer/programmer will b}n }e: own
modules. As with the master carpenter’s jigs, cla.x:nps, racks and guides, these
modules become an integral part of the parametric craft.
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4.12: The code blocks on the left represent functions. They are called by the update
methods on nodes « and e.

Meta-programming - programming the program - completes the set. It affects
the whole, not the parts, Here the program affects or traverses the propagation
graph itself. For instance, a design space explorer program takes a model and a
small set of source nodes and systematically tries combinations of node values,
updating the model for each combination and reporting the results, either on
the screen, to files on the computer or to another process. Systerns enabling
meta-programming provide a set of functions that control graph updates. When
called, these functions invoke the graph propagation algorithm starting either
at the sources or at specified nodes. Graph updating provides a key entry point
for techniques that can make a propagation-based parametric modeler perform
cyclical caleulations, perform systemaric searches and produce animations.

4.13: The code block on the left acts as a meta-program. It resets some of the graph-

independent properties of the model, calls UpdateGraph() and records the result
external to the system.
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Building and using parametric models mixes propagation graphs and programs.
Deciding when and how to employ each mode of work is itself part of the craft.
Sometimes, clarity comes from the careful construction of new parts from old
by building successive nodes in the graph. For instance, the two-circle tangent
construction in Figure 2.17 builds and demonstrares a clear geometric method.
On the other hand, a formula may be at hand that reduces this construction

1o a simple set of assignment statements, which is then wrapped in a function.
Proficient parametric modelers routinely slip from modeling to programming
and back.

4.13 End-user programming

Designers are not alone in facing increasing complexity in their tasks and tools.
Many disciplines face a fundamental need and opportunity to do more with
their computing tools. All encounter the fact that the graphical user interface,
which makes computers so easy to use, also makes them hard to use powerfully.

The graphical user interface (GUI) has profoundly changed our engagement
with computers. It does so by providing a shared visual metaphor that enables
manual interactive tasks. It largely ignores computation’s most vital aspect —
the algorithm. Far too often, people must perform repetitive tasks through the
GUI that could be completed more quickly and cosrectly with an algorithm.
End-user programming tools promise to support people in expressing and using
algorithms within computing tools such as spreadsheets, word processing tools,
image systems and computer-aided design systems. However, useful end-user
programming systems have been hard to achieve.

End-user programming systemns aim to amplify work. They support domain
specialists in doing work “better” (this means being more effective, efficient or
replacing old tasks with new tasks). End users program to resolve unusual or
repeated tasks. Their knowledge and skill lie within their domain and they have
acquired programming ability as an adjunct. Further, they view their work as
being primarily in their domain, rather than as the development of programs to
support others (though many end-user programs are used by others). The point
here is that the task comes first and programming is a means to its end.

Typically, end-user programmers work with specialized software. Writers use
Emacs, Microsoft Word® or the Adobe Creative Suite®. Designers may use
ArchiCAD®, AutoCAD®, CATIA®, formoZ®, GenerativeComponents®,
May2®, Revit®, Rhinoceros®, its add-on Grasshopper™or SolidWorks®.
Garmne designers may use CinematD® or Virtools®, They program if the task
at hand requires much repetitive work, involves redundant data or must cohere
in some way; and when the tools available make work difficult to accomplish.
Motivation increases for unique, high-value tasks; when the work repeats; or
programs will be reused.
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End-user programmers “come our” of their own domain to clarify, abstract and
generalize. End-user programming is thus a form of meta-work, in which the
programmer must reflect on the tasks ar hand, develop, test and refine tools to
aid it and then use those 100l to accomplish the actual rasks,

End-user programming comes with costs, Increasing capabili ty adds complexiry.
First introduced by Dertouzos et al. (1992) as gentleslope systems and further
developed by Myers et al. (2000), each end-user programming system has an

increasing difficulty with capability; the typical situation jn which difficulty

becomes an insurmountable obstacle to progress; and a realistic goal in which
simple programming features can be Jearned and used incrementally withous

removing the end-user programmer from his task,

Parametric modelers do have common cause with professional programmers,
Software engineering is the body of knowledge and craft for making provable,
reliable, reusable and maintainable programs. In recent years software engineers
have paid considerable attention to so-called agile methods (Highsmith, 2002), in
which programs and their specifications develop in tandem, and programmers
work in continuous consultation with those who use (or will use) their work.
The Manifesto for Agile Sofrware Development Beck et al., 2009) declares four
core principles for agile methods:

Individuals and interactions over processes and tools
Working software gver comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

These sound much Jike design. Clearly, the contingent, task-focused style of
parametric work and agile methods share much common ground. At the time
of writing though, there was little explicit connection between them,
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2142 d strategy for end-user programuning is to aim at a relatively large number of
:ni:n jsxregposoin the caggability/difﬁculty ﬁxngﬁon. Adopted fr'om I.va-ers etal. (2000) the
diagram compares fictional but fepresentative systems offering similar capabllmes.. The
intent of the figure is to give a sense for the relative difficulty of using !:ools to ac{hxeve
results. The specific shape of each curve can be only anecdotaﬂy. exglmned For instance,
System A provides an initial low barrier to use, b\'lt has a confusing interface tha.t makes
it difficult to learn new features, It presents a sxgmﬁcgnt incremental step when its key.
feature of constraints are used. Its scripting language is separate from the interface and is
based on an old and inelegant language, making }t hard to connect programs 1o the model.
In comparison, System B’s user interface has a high initial barr{er as it is prmcxple—ba;ed,
but a low slope as its principles make it predictable. Programr{ung in ?ystextc} B requires
invocation of an integrated development environmex.xt, and rhxs a b.arner w its use. In
System C, programming language constructs are avad'able directly in the interface and
are carefully factored so that they can be Iar.gely used mdependently.'A typical end-user
programer learns and uses these features in inerements, seldom straying far from the task
at hand. At some point, the end-user programming does need to tak? advantage of t}?e full
system capabilities. The jump to its full programming environment is reduced by prior
practice with programming elements. Though these three systems are a.b.stract, their basic
structure can be found in several CAD systems that were on the marker in 2010,
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Chapter 5

The New Elephant House

Copenhagen, Denmark
Architect: Foster + Partners

by Brady Peters

5.1 Introduction

Copenhagen’s New Elephant House opened in June 2008 replacing a structure
dating from 1914. The Copenhagen Zoo, set within a historic park, is one of
the largest cultural institutions in Denmark. The New Elephant House seeks
to create a close visual relationship between the zoo and the park, to provide
the elephants with a stimulating environment, and to create exciting spaces that
provide excellent views of the elephants. The House brings a sense of light and
openness to a traditionally closed building type. Two lightweight, glazed domes
cover the building and maintain a strong visual connection to the sky and the
changing pacterns of daylight. The elephants can congregate under these glazed
domes or out in the connecting paddocks. In the wild, bull elephants have a
tendency to roam away from the main herd. The plan form therefore comprises
two separate enclosures, a large one for the main herd, and a smaller one for

the more aggressive bull elephants. Dug into the site, the building has minimal
visual impact on the landscape and excellent passive thermal performance. For
visitors, a ramped promenade leads down through the building looking into the
elephant enclosures along the way.

This chapter focuses on the design of the glazed domes of the New Elephant
House. The canopy design was explored in many ways, through sketching,
physical model making, and three-dimensional explorations using computer
modeling. The torus, a mathematical form, harnessed the complexity of the
design by providing a geometric logic to which the structural and glazing could
relate. A parametric computer model encoded this set-out and constructional
logic. This allowed for the generation and exploration of many different design
options. As the design comprised a collection of relationships and the computer
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model could be updated instantaneously, the design remained fuid un] late in
the design process. A series of opening panels and 4 varying fritting pattern on
the glazing panels of the canopy formed the design’s environmenta) strategy.
The design of this system ~ the distribution of the different panel types and the
creation of the bespoke fritting patterns ~ was explored using custom computer

5.2 Capturing design intent

The architect’s design studies suggested two canopy structures rising from the
landscape, one larger than the other, with the bulk of the building built into

the earth. The two canopies relate to the internal arrangement of the elephant

explored to achieve families of similar options, Shown in Figure 5.1, canopy
design concepts were developed and tested using many form-making techniques:
grid shells made from wood and metal, form-found models in metal and fabric,
sculpted vacuum-form models, cable net structures and bendable metal mesh
each suggested exciting new formal compositions.

As the design rules developed, 2 more descriptive solution became necessary,
and digital models became essential. The geometric logic of the New Elephant
House was neither pre-rationalized nor post-rationalized; the construction
system concepts developed with the design. When a design concept became
both interesting and sufficiently clear, it was translated into a computer model.

»

modeling, In this project, one of the first tasks for computer modeling became
templates for making detailed physical models of the canopy structure. Through

exploring these digital sketches with three dimensional CAD models, not just
simple two dimensional drawings. This was an important part of the design
process, and computer modeling an essential too] throughout the project, not
just a drafting and rationalization tool 1o be used at the end of the project.
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5.1: Physical sketch models.
Source: Foster + Partners / Buro Happold

5.3 The torus

The torus, colloquially known as a “donut”, 15 a mathematicaﬂ?’ ilefined j;.xsxi'(f;ce
of revolution. It is generated by revolving 2 circle around ;m 3.:;15 }qu?én c; ide
and in the plane of the circle. Useful deﬁnmg parameters for this sl ace e
radius of the circle, and the distance of the circle from its r?tatlona : d e
torus form has many benefits for architect'ure: 4the surface is c;nstr‘zc e "
a series of arcs; the arcs in the rotational direction are equfalg the illlr z;:e C:tated
discretized into planar four-sided panels; thos? par{e]s are 1de1;1nc wl e:l A
about the torus’s axis, but not along the defining circle; and the pan; sl gr
with each other along their edges. The torus thus dfﬁnes an ar‘rag ofp a'\:la )
faces suitable for manufacture. Project cost constraints put a l(lixg prxona I}lroother
using repeated identical panelli. Thifs geo;neglnc s?:;)aur: Sssszfsjcezr;f:z:z, moth
very useful property as this a ows for reliable soli rce offe ;n )
many complex issues of design and production. Typic: lly,

gil;;;tourszciﬁy par}: ofa Sorus surface, which is referred to as a torus patch.

Physical model making motivated the inital (;)ln;p;;te; m;)d;?}rﬁ; f;:ngi:;e
the computer, and then assembled by hand. rus is

:’;s;:;:: ;r(zg practicalpi'form, it does not capture the playfu}nes; tl;at exxstef«i ;rr;
many of the original physical study models. The early studies Z t ]e to;use i
produced canopies that did not relate well to each other or to tke p ;n en a‘ .
A more flexible form was needed. Figure 5.3 demonstrate? t.he gy s;ozety;ﬁ
tilting the axes of two torii. Assymetric for'ms result. by §hcxr?g t es; ti tle fzrm
by a horizontal plane By tilting each torus in opposite directions, the plan
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5.3; Torus geometry set-out.
Source: Brady Peters,
based on Foster -+ Partners design
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of both canopies defined a central area between the domes. By adjusting the
parameters of the torus and angle of axis tilt, the form of the canopies came to
both define and fit the New Elephant House plan.

5.2: Study model of torus geometry
Sources Brady Peters / Buro Happold

As shown in an initial sketch model in Figure 5.2, the set-out for the structural
and glazing systems follows the torus geometry. Structural centrelines, as well
as beam and glazing elements, derive from the rorus geometry. The structure
and glazing systems of the canopy terminate at a strucrural ring beam. This ring
beam lies on the horizontal plane intersecting the torus.

To arrive at the basic spatial composition, the design team ernployed a variety
of media in sometimes unanticipated ways. The team started with skeiches and
physical models, worked through a stage of literal computer modeling and then
used parametric modeling to discover and refine a simple underlying geometry
giving a complex visual form. Ironically, once discovered, the form’s geometric
simplicity meant that designers could choose either compurational or analogue
tools in further work.

5.4 Structure generator

As with physical models, design ideas in digital models are often first developed
in a manual fashion, however, as the geometric rules and construction details
are established the case for investing in a parametric model grows.

With the twe-torus geometric framework (though not its specific parameters)
decided, the designers turned to structure and glazing, They quickly found their
task to be designing a family of ideas and discovery of a specific solution, rather
than simple detailing of a single sketch. The level of complexity and the sheer
number of potential configurations necessitated a parametric approach. The
team decided to work with an architectural designer possessing programming
skills to write 2 custom program, called the structure genenator. Programming
freed the team from the limited command palette available in any particular
CAD package. In use, it became like any other design ool - applied iteratively
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¢hroughout the process. Instead of drawing with a pen, the designers sketched
E=)

with code.

“The careful creation (and naming!) of appropriate variables determines much

of usefulness of a parametric system. For the New Elephant HO}.\SE structure
generator, 26 variables controlled the number of elements, the size, spacing and
type of the structural members, the different structural offsets, the primary -
and secondary radii of the torus, and extent of the structure gener'ated. In turn,
these numeric variables related to the torii axes expressed as coordinate systems.
The structure generator produced all of the centrelines, primary, secondary,
tertiary, quaternary structural members, glazing components, as well as tables

of node points.

5.4: Structure generator interface and generated geometry.
Source: Brady Peters, based on Foster + Partners design

In this project phase, programming a parametric m;od‘el enabled creating and
testing many variations of structure and canopy within the two-torus form,
itself a parametric model subject to change. Through. the use of t.he structure
generator many more options could be studied thar.l if the canopies needed to be
rebuilt with each new option. The speed of producing new options also allowed
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the canopy design to be changed late in the design process. Here computation
becarne a refinement and optimization tool, resulting in the design shown in
Figure 5.5,

The fabricator received the dome designs as a document called the Geometry
Method Statement, rather than through a computer program or digital model.
This simple, verifiable document assures reliable data transfer berween CAD
systems ~ fabricators must build their own digital models following its rules.
As an educational and contractual strategy the Geometry Method Statement
helps fabricators fully understand the geometric complexities of the project.
This document describes the design in terms of simple geometric rules. For the
New Elephant House project, it follows directly from the ser-cut logic of the
torii and the structure generator computer prograr.

5.5: Elephant House canopy structure,
Source: Brady Peters, based on Foster + Partners design

5.5 Frit generator

The environmental strategy for the project was expressed both through a series
of opening panels in the canopy, as well as a varying fritting pattern expressed
on the glazing panels of the canopy. Through the use of a computer program,
patterns emerged through a semi-random placement of leaf textures.
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Environmental performance and occupant comfort were important design
goals. The design team decided that glazing panels themselves‘should do as
?nuch environmental control work as possible. Through a series ‘of opening
panels in the canopy and a varying fritting panel it achieved venplatmn, sqlar
control and variable lighting simulating natural conditions. Vanal?le openings
in the glass canopy controlled natural airflow. Fritting patterns printed on the
glass reduced solar radiation received and thus helped maintain a co‘mfort-abl.e
temperature. No other coatings were used on the g%ass so that the light within
the elephant enclosures would be as natural as possible.

The solar control of the fritting depended on the local ratios of transparent to
opaque areas. The environmental analysis defined theilevel of fritting and the
number of panels of each type of fritting density. While the overall amount of
fritting weas critical, the distribution of these different panel types was not. A
new distribution pattern for the different panel types was developed, dubbed
the TREE SORT pattern and shown in Figure 5.6. As W;..ld eleph‘ams gather at
forest edges, the forest became a metaphor for distrib}ltmg shading panels and
fritting density. In the TREE SORT pattern, the opening panels are analog\%es
of forest openings and therefore have no fritting, The pattern found a specified
number of tree trunks (yellow panels) as far away from openings (red panels)

as possible, and created a gradient of panel types radiating away from the tree
trunk (See Figure 5.7). The dense areas of fritting centred :ftround tree trunks,.
with decreasing density from the trunks towards the'o'pemng par{els. The design
team explored 4 range of results by adjusting the position of opening panels,
the number of trees, the minimum distance between trees, the number of panel
types and the number and distribution of each panel rype.

5.6: TREE SORT pattern
Source: Brady Peters
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5.7; Panel Type Distribution on Canopies.
Source: Brady Peters, based on Foster + Partners design

did not work for this project as it would produce even internal light, suitable for
an art gallery or office, but not for the elephant enclosure which needed areas of
light and dack contrast. The intent is that this allows the elephants to seek out
the area in which they would most like to stand,

The frit generator takes a series of shapes for the frit pattern, and a second series
of shapes that the fris pattern will be created within, This last series of shapes
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5.8: Frit generator with interface and generated frit shapes,
Source: Brady Peters, based on Foster + Partners design

5.10: Frit paterns distributed on canopies.
Source: Brady Peters, based on Foster + Partners design
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5.6 Conclusions

The program for the New Elephant House in Copenhagen had both restrictive
constraints and a complex and untested set of requirements. Its design process
used many different media, both analogue and computational. Both physical
and digital model making contributed to the design outcome. The mathematical
form of the torus helped to achieve both an economy and a constructional logic
for the project. A custom computer program enabled extensive exploration of
the three-dimensiona] geometry of the digital model. This generation method
helped to optimize building form and structure. The project’s environmental
performance was integrated into the design through new panel distribution
patterns and semi-random fritting patterns. Figure 5.12 shows that the project

incorporates patterns from nature, patterns from geometry and patterns from
computation.

[

5.11: Plan of the New Elephant House,
Source: Foster + Partners
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5.13: Detail of roof opening,
Source: Richard Davies /
Foster + Partners

5.14: Detail of frit patcern.
Source: Richard Davies /
Foster -+ Partners

5.12: Interior of the main herd enclosure in the New Elephant House.
Source: Richard Davies / Foster -+ Partners
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Chapter 6

Geometry

Geometry is a very big topic. You can spend a lifetime learning it and master
only a tiny fraction of the literature. It uses many mathematical concepts and
formalisms, each of which takes time and effort to learn before you can begin to
master the geometric ideas that use such concepts. Yet most of the objects made
with parametric modeling systems are geometric. How can a designer ever learn
anything like “enough”™

History shows that designers have always “learned enough” geometry in ways
important to them. The master masons used Euclid’s compass and straight-edge
constructions to lay out Gothic cathedrals and their details (see Figures 6.1, 6.2
and 6.3). With a compass and straight-edge, a designer can reliably make many
geometric figures, including straight lines and angles, divisions into two equal
parts, isoceles triangles, and sequences of lengths in ratio to each other. Some
constructions, like the trisection of an angle and the famous squaring of a circle
(constructing a square of equal area to a given circle) are impossible with these
tools.

The addition of rulers to the drawing toolbox allowed designers to work with
scaled drawings and to make and transfer measurements within and berween
drawings.

In the Renaissance designers learned ro construct perspectives explicitly. While
the exact moment of the (re-)introduction of perspective into Western Artisa
matter of debate, at its nexus were artists such as Masaccio and Masolino and
painter-sculptor-architects such as Brunelleschi and Alberti. Notably, Alberti’s
book On Painting (1972) was key in disseminating the new perspective ideas.
From these early beginnings, perspective became a tool for both depicting and
creating architecture, Indeed, the practice of trompe loeil murals quickly came
1o blur the boundary between depiction and design.
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6.1: Stepwise construction of 2
Gothic tracery.




6.3: Examples of Gothic traceries.
Source: Christopher Carlson (1993).
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6.2: Gothic traceries were both drawn and constructed using compass and straightedge
techniques. These simple media deeply influenced the forms created. In effect, they left
indelible marks on the geometry.

Source: Christopher Carlson.

Introduced by Gaspard Monge in 1795, and developed throughout the 19th
Century, descriptive geometry is a body of techniques for constructing drawings
of complex intersecting objects in multiple views. Such drawings enabled new
designs for the increasingly complex machinery of the Industrial Revolution.
Much of manual mechanical and architectural drawing is based on Monge’s
principles. In the first half of the 20th Century, it was taught extensively in
schools of architecture and engineering. In the last half of the century, it largely
faded from the curriculum, at least as an explicit subject.

6.4: The painting Healing of the Cripple and Raising of Tabitha by Masolino de Panicale
(so:ge attribute also to Masaccio) from 1424 in the Brancacci Chapel in Church of Santa
Maria del Carmine in Florence, shows perspectives lines whose common intersection
argues for understanding and deliberate usc of perspective,

Source: The Yorck Project (20023,
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6.5: A simple example of descriptive geometry. Start with a drawing of a cut cylinder
(centre) viewed along the edge of the cut. Produce a view showing the true size of the cut
ellipse (left) and an orthogonal view at 90° to the original (right).

By the end of the 20th Century, CAD systems supported a wide variety of
construction operations. Two principal ideas were snapping and intersection.
Snapping, shown in Figure 6.8, is an interaction technique in which the system
recognizes when a source object is moved sufficiently close to a target object and
then places the source object coincident with the target object. If line midpoints
are the target, then moving a polygon such that one of its vertices becomes close
to a line midpoint will result in the system moving the polygon precisely so that
the two points coincide. Intersection operators compute the precise location
and result where objects intersect. The intersections produced can themselves
take part in subsequent snap interactions. Combined with global locators such
as grids, guides and reference planes, snaps and intersections play the role of

the medieval compass and straight-edge construction system. Contemporary
systems also provide the ability to enter numbers representing dimensions or
positions, either explicitly by typing them into a dialogue box, or implicitly,
through such interaction devices as dimensions and rulers.
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6.7: By 1428, Masaccio’s The Holy
Trinity, with the Virgin and Saint
John and Donors, in the Church of
Santa Maria Novella in Florence,
showed explicit perspectival struc-
turing of space and choice of view.
Source: The Yorck Project (2002).

6.6: Andrea Mantegna's oculus
on the ceiling of the Camera degli
Sposi, Palazzo Ducale, in Mantua
(1471-74) is an early example of
trompe oeil perspective.

Source: The Yorck Project (2002).




6.8: Snapping has become essential
in CAD systems and are part of a
toolset that includes grids and nu-
merical specification of location.
An end point, midpoint or centre
of the source (red rectangle) snaps
to an endpoint or midpoint of the
target (sloped line segment).
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Geometry is at the core of all of these tools, and designers using them certainly
became expert, if implicit, geometers within their domain. Using the “toolbox”
available at the time, designers have always developed a suite of “tricks of the
trade” by which they could reliably create their intended forms. Of course, the
medium massaged the design. Traces of the compass and straight-edge show in
the pointed arches, lancer windows and quatrefoil bosses of Gothic architecture.
Many historians argue that the ability to create perspective changed the focus
of Renaissance architecture from objects to expressing movement and views
through space.

If you watch a designer using a contemporary CAD system, you are likely to
see a combination of all of these techniques (explicit construction, perspective,
descriptive geometry, snapping and intersection) and others at play. Designers
do indeed use geometric tools in their work.

Parametric modeling is merely the newest toolbox for design work. At the risk
of inverpreting history as it happens, I'll argue that the tools in this box force a
new and different relation ro designers. One difference lies in persistence - once
an object is placed parametrically, the operation placing it will continue to act
every tirme the model is changed. This means that designers need to predict how
the tool will work in the design as it develops. A second difference comes from
diversity and abundance - there are simply more tools in the box. Each tool has
a mathematical basis, which is open and available for designers to adapt. A third
difference lies in the medium itself - however large the toolbox, designers will,
at some point, be constrained by it. The solution here is to open the system, to
allow designers to directly express new tools. Designers must explicitly translate
of geometric “good sense” into precise mathematics and algorithms.

Mastering the new toolbox requires a different kind of geometric knowledge,
one that enables designers to predict persistent effects, to understand (at least
qualitatively) the diversity and structure of the mathematical toolbox, and to
shuttle between intended effect and mathematical invention thar models it. This
chapter is my best guess at the set of key ideas designers need to master the new
medium. Each idea may help in understanding an important group of the wols

in the parametric box, as well as having 2 crisp mathematical and algorithmic
structure.

Some ideas are more important than others, at least in practical use. In this
chapter I cover a small set of important ideas. Actually, “cover” is a funny word.
We usually mean it to treat a concept in detail. It means something different
here - what is important is how the concept affects parametric modeling: how
it helps predict effect, explain diversity and implement new ideas.

All of these concepts depend upon some basic mathematical ideas. It is these

that are “covered” here in something like the traditional sense. These ideas are
important because you, the parametric designer, will need them. They are the
basis for much of what you do with a system and are the elements from which
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you ¢onstruct new tools for the parametri.C box. They are necessary,'bxgt not
sufficient. To become truly expert, you will ?eed to grow %Jeyond tils fasxc
starier set. Learning about parametric tools u}volves br‘mgmg together Olff
distinet ways of understanding the mathematics of spaual. objects: geamenl;c,
visual, symbolic and algorithmic. We call each of these a view onto the toolbox.
To think geometrically is to know and apply such ideas as she non-locatxoxll of
vectors, the existence of tangents and normals on curves, distance and angles
between objects, and perpendicularity in general.

The visual realm comprises both static and dynamic disglays. It‘ is im.portant

10 be able to draw and visualize the basic objects afld their relauonshx}?s. Many
problems can be solved with an adroit choice of diagram. Tc.) draw a t.hagram is
to choose to leave out certain information and to add other mformatmn. that

is not actually true. For instance, strictly speaking, vectors cannot b% dr alwn -
they have no location. We draw them anyway, putting them at speml ¢ places
and then hopefully remembering not to form cAonclusxons.based onPocanon.A
Drawings are static; our visual system evolved ina dyn?mxc world. 3rajletrxc )
models enable us to take advantage of movement of objects to better understan
how geometric relationships actually “work”.

Algorithms are recipes. In parametric mode_l'mg they spell out t.he practical t?;ks
of representing and manipulating design objects. 'I:hey are spec1ﬁci cox;frete i ;s
of instructions, meant to be followed literally and in orde{. We write them v%tl
particular goals in mind: move alonga curve, project a point, find an areea. The
medium of spatial computing is the algorithm.

We live in a world culture with over 3000 years c?f collective experience usmgd
symbolic representation. Symbols allow us to join ways of understar:_xd}llng., an
the symbolic realm is where we combine geometric, ‘vxsual and alg{)mt rr;xch .
views. Symbols enable inference. They support precise reasoning beyon u\: ;,‘ .
practical in other views. The symbolic view is complex and we might w;: thin
of it as itself comprising several views. For insta.nce, we can. represent re ;;:mns
between points using symbols such as p — 4, trigonometric relations such as
cos(pgr)= +/2/2 or coordinates such as

[3 2 5]7-{1 ~1 1]T=[2 3 4]T

Each way of using symbols supports different insight?v A very comr;xion way of
using symbols is to make explicit relations between different sym}:)o c v'iews{;. s
For instance, the two definitions of the scalar proiiuct developed in Sectxonbl. A
relate geometric and coordinate-based symbolic views and, by that act, enable

rmany insights and proofs.

"To learn parametric modeling is to combine geo_metric, visual, symiolxcfand
algorithmic representations of objects and espfec1ally to le:arn how these o;.ms
interrelate. We are in the very early days of this new medium and can predict
aeither the tools nor the techniques that will surely develop over time. That
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said, the geometric ideas of this chapter may be a beginning. They are certainly
not an end. As you learn more about geometry, your bookshelf and hard disk
will f1ll with geometry booles and papers. There are classic texts, which you
would do well to have. The surprisingly readable Euclid’s Elements, circa 300BC
(a recent version is (Euclid, 1956)), introduces basic geometric axioms and the
process of proof by construction. Books on descriptive geometry entirely fill
library shelves. Notable early books include the many editions of Gaspard
Monge's (1827) seminal Geométrié Descriptive, Charles Davies’ (1859) text
and Henry Miller’s (1911) simply named Descriptive Geometry . The hand-
illustrated Natural Structure (Williams, 1972) provides a visual introduction to
symmetries in three-dimensional space, largely through polyhedra and their
packings. The best mathematical textbooks are wonders of clarity. Math and
proofs are presented with clear arguments, simple notation and compelling
figures. But math is not done that way. It is an act of invention and discovery.
Proofs and Refutations (Lakatos, 1991) is a fictional documentary of a seminar
in mathematics. In it, a professor and his students model what really happens
in mathematical work. It is surprisingly like design. The cleverly illlustrated
Architectural Geometry (2007) explains geometric ideas particularly attuned 1o
contemporary architectural design. It grounds its clear, visual explanations in
actual design examples. Henderson's (1996) Experiencing Geometry gives many
proofs and connects diverse topics such as symmetry and differential geometry
in context of the plane, cone and sphere, The venerable Mathematical Elements
for Computer Graphics (Rogers and Adams, 1976) constructs an early bridge
from geometry to programming. More succinct is A Programmer’s Geometry
{(Bowyer and Woodwark, 1983), which presents a selection of basic geometric
structures and provides Fortan-like code to represent them. Twenty years later,
with Geometric Tools for Computer Graphics, Schneider and Eberly (2003) gave
the world a near-encyclopedia of algorithms for geometry. You must have this
book if you are serious about geometry and computing. Vince (2005) provides
hundreds of formulae, examples and proofs for fundamental geometric objects
and relations. The slim volume Interactive Curves and Surfaces Rockwood and
Chambers 1996) may lack in depth, but it makes up for this in clarity, insight
and fast pace. I especially treasure these few good books. There are hundreds of
other useful ones out there.

6.1 Vectors and points

Vectors and points are the basic objects upon which three-dimensional spatial
operations are performed. They form the foundation for parametric skill,
6.1.1 Points

Geometrically, a point is a position in space. Mathernatics requires the space, so
drawings of points usually include a coordinate systern to define it.
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Points are everywhere in a CAD system interface. Surprisingly, they mostly act
as placeholders for the actual computational work. Almost .aJI of the .real ng‘k
and concept is carried by vectors. Points mostly act to provide a spatial position
the work done by vectors.

6.1.2 Vectors

Geometrically, a vector is a direction and length (other names for' length are
norm and magnitude). Mathematically, a vector is an abstract object that is part
a of wector space, itself a mathematical object. We den‘?_t)e a vector space by the
symbol V. The length of a vector @ is denoted by | 77|,

Vectors carry most of the computational work in a parametric system. Yet, .in
most CAD, vectors are secondary objects. The representation and arithmen? of
vectors is more complex than that of points, yet is nearly as simple and familiar
as basic algebra.

We represent points and vectors as one-dimensional matrices. By conve~ntion, .
we make a choice of either column (the choice made here) or row matrices. It is
often convenient to express a column vector as a row vector and vice versa; for
this, the 7 operator specifies the matrix transpose.

We call the individual matrix elements the components of vectors and points.

6.1.3 Vectors and points are different

Since we represent vectors and points as identical matrices, it is easy to get them
confused. Consider a tuple of three scalars x, y and z. Two interpretations are
pertinent. The tuple

specifies a point - a location in some coordinate system. Points are “bound” -
they refer to a specific location with respect to some datum. The identical tuple

2|

I
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6.9: Vectors and points are not
the same. We draw them with
distinct glyphs. They obey their
own mathematical rules. Yer, we
represent them in very similar
ways, which can (and does) cause
confusion.
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specifies a vector - a direction and magnitude (but no fixed location). Vectors
are “free” - having no position, they are meaningful at any position in space as
simply a direction and magnitude.

Some texts (like this one) treat points and vectors as column vectors. Others use
row vectors. Some texts even mix the two in different sections. They mean the
same thing, but the notation and order of objects in equations differ. This is life.
Get used to it. Consistency, though, is far from the last refuge of the mediocre.
Tt makes a great deal of sense to use a uniform notation in your own work. Just
don’t expect it elsewhere.

Geometrically, we have different intuitions about points and vectors - we draw
them differently, as shown in Figure 6.9. Not only do they look different when

drawn, but they behave differently. We know that we can “move vectors around”

without affecting them in any material way, but that the essence of a point is its
position. However, we represent them with the same syntax - a row or column
vector. From this notational convenience arises one of the principal obstacles in
developing an intuitive grasp of the mathematics of computer graphics. Among
other things, our intention here is to cement in place an understanding that
makes explicit the difference between these two fundamental kinds of objects.

Later we add a fourth row to the vector and point representation. For vectors

the value in this row will always be 0; for points it will be 1. Vectors and points
s0 represented are said to be in homogeneous coordinates. An example vector is

=[x y z O]T

]
!
O N R

A point so represented is

::[x y z I]T

- N R

You will find more on homogenenous coordinates in almost every book on
spatial computing - we introduce them here as you will see them elsewhere and
as Section 6.5 uses them to represent coordinate systems.
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6.1.4 The arithmetic of vectors

PBasic mathematical literacy is founded on the arithmetic of numbers. Addition,
subtraction, multiplication and division relate numbers to each other, Their
combination into expressions with precedence rules (brackets before exponents
before multiplication and division before addition and subtraction) are skills
learned in grade school and used almost subconsciously in day-to-day work.
Geometry is founded on arithmetic too: the arithmetic of vectors and points.
This differs from number arithmetic in several ways.

Vectors (actually vector spaces) define two operations, vector addition and
scalar multiplication.

Vector addition combines two vectors to create a third:

5|
5l
+
ol
i

el

Scalar multiplication (a %" or a - #) combines a real mumber and a vector to
produce a second vector with the identical direction, but a possibly different
length:
e —
aw ="
a=2

of

4

Vectors, together with vector addition and scalar multiplication, obey rules.
These are the analogues of arithmetic over the familiar real numbers and are the
basis for almost all other geometry in parametric modeling.
Closure of addition
%+ €V, the space of all vectors

Adding two vectors always produces a vector.
Zero vector

-

B}

T4+ 0 =

There is a unique zero vector. This plus arty vector leaves the vector unchanged.
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vector additic

1 2
2 I+ —-1 I=f 1
5 2 7

scalar multiplicath

2 4
2] 1= 2
-3 —6

scalar multiplicati:
alternate notati

a

addition is clos

1 2
+ =1 f=] 1
3 2
zero vect
1 0 1
—3 |+] O |=| ~3
2 0 2




inverse vector

1 —1 0
-3 |+ 3 |= 0
2 -2 e

1 2 2
2 0+ 1= 1 |+
5 2 2

addition is assoclative

N [ )

= e W N e

muitiplication is closed

2 4
2 1 = 2
~3 )
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Inverse vector

e
—
- o]

T+

Every vector has an inverse. By convention, the inverse vector establishes the
operation of subtraction as @ ~ % = % + (7).

Commutativity of addition

A given addition and its reverse order produce the same result.

Associativity of addition

H+(T+@N=(T+)+ 7
The order in which a given addition is done does not affect the outcome.
Closure of scalar multiplication

avev

Scalar multiplication always produces a result.
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Identity element in scalar multiplication
1T=7
Multiplying a vector by 1 yields the original vector.
Associativity of scalar multiplication
(@b)T =a(b?)
Scaling by a number or successively by its factors is the same.
Left distributivity of scalar multiplication
(a+b)T =aT +b7T

Multiplying a vector by a sum of scaling factors is the same as adding vectors
scaled by each factor. You can add scaling factors then multiply or vice versa.

Right distributivity of scalar multiplication

a(T+7)
>
T
v T+T
AT+ Ty=a®w +av

Scaling a vector sum or summing the scaled components gives the same result,

You can add vectors and then multiply, or vice versa.

91

multiplicative identity

2 2
1 1 1= 1
-3 -3

multiplication is associative

2
Bx2)] 1} =
-3
2
312 1
-3

left distributivit

2

(3x2)] 1

-3

2 2

=3 1142 1
-3 -3

right distributivi

1 N

3 21+ -1
3 /
1 2
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6.1.5 The arithmetic of points

In sharp comparison to vectors,

p com points have only a single operation ;
two points yields a vector. seP Sbmting

Points and vectors combine with a sin

gle operation. The additi i
vector produces a point. fion ofapeint and

The overal 1 i i
" I structure of a typical arithmetic calculation in space is to start with
points, use point-point subtraction to convert to vectors,

~vector addition.

6.1.6 Combining vectors

The of i iti
he. perat;lons of vector addition and scalar multiplication act on vectors to
produce other vectors. Several terms describe the vectors so produced

Linear combinations

A linear combination of a set of vectors is 2 sum arbitraril
vectors. Formally, a combination of vecrors Wi = 0...n generating 7 i
linear if it can be expressed in the following form, where 4, are arbit d fl
and are called the coeffcients of the linear combination. e

y scaling each of the

n *n
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Linear dependence and independence

Two vectors are linearly independent if one is not a scalar multiple of the other.
A set of vectors W ;,i = 0...7 is linearly independent if no vector is a linear
combination of the others.

Formally, linear independence occurs if ag == -+ = a, = 01s the only solution to

— -y
40M0+'“+an W= 0.

Span of a set of vectors

The span S of a set of vectors B is the set generatable by a linear combination of
the vectors in B.

Vector basis

A set of vectors B is a basis for a vector space V if it is linearly independent and
spans V.

The symbolic idea of a vector basis captures the geometric idea that a coordinate
system has three vectors. The three vectors of 2 3D coordinate system are basis
vectors for that system.

Uniqueness of a linear combination

Given a basis B, every vector in the space spanned by B can be expressed as a
unique linear combination of the vectors in B.

There are rwo powerful ideas here. First, basis vectors combine to represent any
other vector in the space. Second, such representation is unique: there is only
one combination of the basis vectors that will do the job.

Bases for 2D and 3D

Any two linearly independent vectors form a 2D basis, which can express all 2D
vectors through their linear combinations. Similarly, three linearly independent
vectors form a 3D basis.
natural basis

Natural basis i= [ 1 00 ] T
=[o 1 0]

The natural basis is the most simple form. Each of its unit vectors has precisely =

one non-zero component. So the natural basis for B? comprises three vectors. k= [ 0 0 1 ] T
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6.1.7 Length and distance

The norm (or length) of a vector T = (%,,...,,), denoted | 7| is defined as the
square root of the sum of squares of its components, thar is,

Tl=yu’ ++9,°

Note that, in two dimensions, this is simply a statement of Pythagoras’s Law.
So, for two-dimensional vectors the length of a vector T is

For three-dimensional vectors

[Fl=y 7+ B+,

The distance between two points is the length of the vector that results from
their subtraction.

(3d1=1d - $l= v/ (Go— o)+ +(dy — )

The direction of a vector ¥ is another vector dir (called a direction vector) such
that

—p

v
ity = —

7]

Any direction vector dir is of length 1 (aka wnit length).

When dealing with vectors, it is useful to have a concept of signed distance.
Given an initial point p, a direction vector dir , and a scaling factor d the point
4 is the signed distance d from p along dir. A positive signed distance means
that distance is measured “along” the vector; a negative signed distance means
that distance is measured in the opposite direction. Signed distances do not
translate well into drawings ~ dimension lines convey unsigned distances by

convention. When drawn using a dimension line, a signed distance d reduces to
its absolute value |d].

Signed distances are comparable to our perceptions of subtraction along a real
number line: 8 —5 = 3 is the signed distance from 5 to 8; whereas 5~ 8 = —3 is
the signed distance from 8 to 5.

6.1.8 Bound and free vectors

We usually think of vectors as being free or having no position in space: they
give only length and direction, no matter where they are “located”, Another
interpretation is to treat vectors as bound, that is, beginning at a common point,
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usually the origin, which by convention is labeled O. Position vector is another
phrase for bound vector. A set of bound vectors with the origin as the common
point identifies a set of points, one for each bound vector.

Bound vectors require a common point. When they are specified as matrices,

they require an entire coordinate system. One has to know to where and in which
direction to apply the components of the vector. The solution is to always have

in mind three vectors, called 7 , ; and k representing the x-axis, y-axis a

T
z-axis respectively. Thus a bound vector ¥ = [ x ¥y z 1 is actually the
vector sum

o e
xi+y] +zk
and the point with which it is associated is

p=0+7

6.1.9 The scalar product

The scalar product of two vectors is a number that can be used in several ways. It
provides a test for perpendicularity, a measure of the angle between two vectors,
a tool for projecting one vector onto another and a measure of the length of a
vector. Informally, the scalar product is also known as the dot product.

—
The scalar product of two vectors % ¢ ¥ is

n

— — —

?OW:E v
i=0

T —_— — T
oy — — —
Forexample,let?:[ W B, uz] and'u_[ T, T, vz]
— s
be two 3D vectors. The scalar product % ¢ 7 is

The scalar product is defined on vectors only. By convention, it can be applied
to points. When a point p is used in a scalar product, the meaning is that the
vector involved is that from the origin O 1o the point p.

The scalar product has several properties. These are useful when working with
constructions and derivations involving the scalar product.
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W 8% is a number
He T =0 e
K TV = 0=Ts w
e =T
(a?)o?:a(?o?): Te(a W)
7 70(7-}-—1}3’):7-?4»7-—5
T e T =0 Perpendicularity of vectors
If % and 7" are two non-zero vectors, they are perpendicular if and only if (iff)
their scalar product is equal to 0.
The angle between two vectors
f % and 7" are two non-zero vectors, then they determine a unique angle a,
\/wr\é\' 0 < « < 180°. It can be shown that another way of stating the scalar product
G FeT=lesg  includesa.
W T =R 7 cosar
[@'}=2
I8 and T are both unit vectors then
— ey
% e =cosa
a=arccos(w o )
N
&
sy W e T=141411
;._~_.¥__Té._.__, 6.1.10 Projecting one vector onto another
v =,

Algebraically the scalar product is the sum of products of the components of its
arguments.

Geometrically, the scalar product is a measure of the projection of one vector
onto another. First, consider the case in which both % and@" are unit vectors.
Then the scalar product is simply cosa or the projection of 3 onto & or vice
versa.

When either % or %" are non-unit, the scalar product is simply scaled by their
lengths. Thus, in general, the projection length L < of a vector 7 onto a vec-
tor T is given by

%% | cost e
{7 7|

lpw=|3cosb =

96

i
1
4
4
5
4

CHAPTER 6. GEOMETRY

Note carefully that /o = is a measure of the length of the vector @ projected
onto the vector T . Often, what is needed is the actual projected vector. The.re
is no universal notation for such vectors. Here we modify the notation used in
Schneider and Eberly (2003, p. 87). The projection of a vector # onto a vector v

is given by

T O Wew T 70?7__, 6.1)
Wby =S == @ .
Iz TR T T Tew
—d
v

6.10: The projection of vector % onto @'

6.1.11 Converse projection

Sometimes the projection of a vector perpendicular to itself and onto another

vector is useful.

o — —
6.11: The converse projection of vector # onto @.

The converse projection # | is given by

—

e n
e —
Y W e

—
v
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6.12: Explicit equations are simple
to plot. Place a point 4 at (0, b)
on the y-axis. Draw 2 line with
slope m through b.
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6.13: Lines of near vertical slope
have high coefficients. Lines with
vertical slope have infinite coeffi-
cients. Designers frequently want
to use such lines.
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6.2 Lines in 2D

After vectors and points, lines are the most basic spatial objects. Lines in two-
dimensional space (2D) are almost exactly analogous to planes in three-dimensional
space. In 2D, lines can be represented in several ways. Each representation makes
some mathematical inferences and/or algorithm steps easier than others.

From a geometric perspective there are several objects from which a line can

be built. For instance, a point known to be on a line, the direction of the line,
the point at which the line crosses 2 principal axis, the slope of the line and a
direction normal to the line can all be used as part of a line representation. Fach
of the four equations below appeal to one or more of these geometric ideas.

6.2.1 Explicit equation

The explicit equation is also called the slope y-intercept equation.
y=mx+b

In this equation, m is the slope of the line {the rise over the run) and b is the
y-intercept. This is, perhaps, the most familiar equation. But it isn’t a very
good one for computing. Vertical lines have an infinite slope, so cannot be
represented with the equation. Lines that are nearly vertical have slopes that
approach or exceed the practical numerical precision of computation.

6.2.2 Implicit equation

The implicit equation is a simple linear equation.
ax+by+d=0

Note: we use d in the equation rather than the more common ¢ in order to
make the corresponding line and plane equations (Section 6.4.2) cohere. The
character d is also a reminder that of the role this variable plays in the equation
- it carries information about distance ~ see below,

The implicit equation provides an easy test to determine if a given point is on a
line. Simply substitute the point’s coordinates for x and y in the equation. If the
equation is satisfied, the point is on the line. In contrast, constructing a point
on the line is less direct,

When d =0 the line passes through the origin, as can be seen by assigning
=0,y =0and d = Uto the equation.
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The vector ¥ = [ a b :I is normal (perpendicular) to the line.

Lo ) e ole
When |7 | = 1 the implicit equation is normalized. In this form, it has 1a si S
at i to the
cometric interpretation, in which the vector components relate dclirzcc y to y
i i = = cos
Enoles 2 and f and d is a signed distance. The valuesa = cosa arlx e
. i i r v ~d is the distance along @ fro
i of the vector @, and —d is ‘
are the direction cosines « nd - ! alon om
the origin to the line. ¥  is negative, the Line is located in the dxrecuoxfx pois
ine li i T in
1o by 7. If d is positive, the line lies at the distance d from the base o

the opposite direction.

— .
When 7 is not normalized, things are more complex. The vector vd ;m:zxs
perpendicular to the line. The direction cosines can no l?nger be rea n;e Z:z
from %'; they can be compured by scaling [heﬁ vector by its I.ength 11/}/12:a dv; .
The quantity d becomes the negative of the distance to the line multip ¥

the length of @, that is, va” + b, The actual signed distanf:e fron? the ox"igin
to the line along @ is —d /| @’|. When |7’} =1, —d is the signed distance!

Changing the sign of d creates a parallel line equidistant from the origin, but

along the opposite vector direction.

6.2.3 Line operator

The 1mphc1t equation gives a very tldjf matrix form for re resenting lines called
e lin pemtm. A € 15 & FOw Vecto; = ‘ a d such thata pont
thy € 0, diel tor y b

j):[ x oy 1 ]Tisonthelineyifandonlyif

x

y;'):[a b d] y | =0
1

ax+by+d=0

. s . ts form
This test has all of the properties of the implicit line equation above Sts jk -
as a matrix makes it easy to visualize other properties. It is useful to re
i i : - and y,, representing the vector and distance
fine operator into two parts: ¥+ 7}

components respectively.

r=[re | 7]
where

y;,:[a b ],and)fd:[ d]
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In spite of the simplicity of the line operator, much can be inferred from it. The
first inference is its effect on vectors. We define the result of applying the line
operator 1o a vector as

x
}’—’17:[4 b d ] ¥
0
=ax+by+0d
=ax+by

Consider any vector @ = [ x y O * Since the third vector element is
zero, the effect of y p is to compute the scalar product of the first two elements
of the line operator and the vector. We know that vectors are perpendicular
when their scalar product is zero. Since y is perpendicular to the line, y o =0
for any vector parallel to the line.

The line operator can be multiplied by any real number r (except 0) without
changing the line. This is equivalent to scaling both the vector y+ and the value
74 by 7. Of course, the result of scaling the line operator by zero is undefined.

Lines are sided. The vector ¥ = [ a b ] points towards the positive side.
When the result of applying the line operator is positive, the point so tested lies
on the positive side of the line. When the result is negative, the point lies on the
negative side: the side away from which 7 points. Multiplying the operator
by & negative number reverses line sidedness. Further, when the line operator is
normalized (yjz = 1), it produces the signed distance from a point to the line;
yp = distance from f to y along y. Sidedness is often used to represent where
solid material lies in a design.

6.2.4 Normal-point equation

The normal-point equation of a line is defined through a point § and a non-zero
vector 7" normal to the line. Since 4 is on the line, any vector between it and
another point on the line must be perpendicular to the line normal 7 and
therefore have a zero scalar product with 7.

W e(p—g)=0

This equation provides a simple test using vectors and points as entire entities
10 determine if j is on the line. It is thus useful in parametric modelers that
provide basic vector operations ~ nio conversion to other equation forms or
unpacking of vector and point components is needed.

100

CHAPTER 6. GEOMETRY
6.2.5 Parametric equation

The parametric equation is perhaps the most widely used form.A T%)is is because

it works in both 2D and 3D and because it is constructive, that 15, ‘1t can be used

to generate points on the line. In contrast, the implicit line equation 15 good for
testing whether a point lies on a line.

A line is uniquely defined by a point and a vector. Given a point p and a vector
%, any point p(¢) on the line has the functional equation

py=p+17T
where t is 4 real value that scales the vector 7. Bach value of ¢ picks out a dis-
tinct point on the line.

Let the point #, be the sum of fi, and 7 . Then

p)=pot t(py— bo)
=(1—t)p+ihy 6.2)

or alternatively (in vector form)

()= o+t (Fobr)

Fach of the forms above is called a parametric line equation with parameter £.

Equation 6.2 can be rewritten as

Pt)= po+ t(B — Po)
=(1—t)p+th
=tpo+tipy  Where (Hp+n= 1)
Even though they involve points, parametric line equations are drawn without

coordinate systems, because the point produced p(t) depends only upon the
points pi and py - itis independent of where the points are located in space.

Changing the parameter ¢ moves the point p(t) along the lin‘e. Specifically, it
moves p(t) in proportionto t. For example, if t = 0.4, p(z) is 4/10ths of the
distance along the line from fy to py. This linear relationship between ¢ and

H(t) holds only for lines. Section 6.9.5 shows that it does not hold for curves.

If £ =0 then p(t)=fo

If t =1 then p{t)=p

Ko<t <1 then p(t) isberween py and p,
If t <0 then p(t) is to the leftof fg

¥ ¢t > 1 then p(t) istothe right of p;
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6.2.6 Projecting a point to a line

Projécting a poinF # onto a line Z means finding the point ¢ that on the line
t.hat is ?lf)sest to p. Alernatively it means finding ¢ such that the line between
p and ¢ is perpendicular to the line I.

fm}ectmn is most easily expressed when the line is in normalized line operator
orm, whete y p is the signed distance from the point to the line. The projection

of p 1o the line is the sum of p and the normal vector to the Line ¥+ scaled by
the result of the line operator y 5. ’

Bproj = P+ (r Py

Of.ten tho’ugh, it is useful to have the parametric coordinate of the projected
point. Using the parametric line equation, one way to compute the projection
isto al?peal to Equation 6.1 on page 97 for vector projection. Given point g
to o ; . ST
grOJf:ct onto ti parame;m‘g line at p(t) = p, + t(p, — p,), simply add the
%rf)je;non of of f4g onto f, p, to the point £,. The projected point p(¢) on line
is thus:

— ey

Pod ® pofy +—

f(t):j;0+—m__'_~‘__) = bob: ©3)
Popr® popy
q
T .
. ©
Po p2)

= Pogd ® Poty
= (6.4)

Doby® Bop

6.14: The projection of point 4 onto parametric line Z at p(t).

The parameter ¢ in Equation 6.4 is exactly the same as the scale factor for the
vector in Equation 6.3.
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6.3 Lines in 3D

In three dimensions, lines have neither an explicit nor an implicit equation. For
almost all practical purposes, the parametric equation dominates. In it, a point
and a vector defines a line. Its form is exactly the same as in two dimensions -
given a point p, and a vector @, any point p(t) on the line has the equation

)=y +t7

The only difference is that the points and vectors have three components rather
than two.

6.4 Planes

Planes in 3D are the natural counterpart to lines in 2D. The implicic and
parametric line equations easily expand to represent planes.

6.4.1 Normal vector

There ate several ways to define a plane: three non-collinear points; a vector
normal to the plane plus a point on the plane; and two non-collinear vectors
parallel to the plane plus a point on the plane all suffice.

Given a vector 7 normal to the plane, and a point p on the plane, any vector
parallel to the plane will be perpendicular to the plane normal 7. The scalar
product provides an easy test for parallelism. The known point # on the plane
defines a vector to any other point § in space. If this vector is perpendicular to
7, then 4 is on the plane.

Without any loss of generality, exactly the same drawings explain both planes
and lines. The third dimension is simply suppressed by using an orthogonal
drawing along one of the principal spatial axes. The only information that this
fails to reveal concerns the angles that vectors make with the principal axes.

6.4.2 Implicit equation

The implicit equation for a plane is
ax+by+cz+d=0

Just as for a two-dimensional line, all but the last term describes a vector. When
the vector is of unit-length, the equation is normalized. 2 = cose, b =cos f and
¢ = cosy are the direction cosines of the vector 0, and ~d is the signed distance
along " from the origin to the line.
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6.4.3 Normal-point equation

The normal-point equation of a plane takes a point 4 and a non-zero vector 7
.normal toithe plane. The equation is exactly the same as for lines; the objects
involved simply have a z-component.

we(p=q)=0

6.4.4 Plane operator

Just as for 2D lines, the implicit equation gives a tidy matrix form to represent
planes.

A plane is represented as a row vector y = [ a b ¢ d ] such that a point

. T,
p‘[x y z l:l is on the plane y if and only if

rp=[a b ¢ d] ©5)

- N R
il
o

ax+by+cz4+d=0

This test, which is a matrix representation of the implicit plane equation, is

kn()wn as the plarze operator. It has all of the propertues of the unphcxt pkme

Thc} direction cosines of the normalized plane operator are the cosines of the
a
ngles @, B and y between the vector " and the x-, y- and z-axes respectively.

For vectors parallel to the plane, the plane operator is equal to 0.

}'72[4 bcd} Y

O N

=ax+by+cz+0d
=ax+by+cz

=0, #f 5" is parallel to the plane.
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The plane operator can be multiplied by any real aumber r (except 0) without
changing the plane.

Plane have sides. As for lines, the vector @ = [ a b ¢ ] points towards
the positive side. When the plane operator is normalized, the number y p itself
gives the signed distance of j o the plane.

6.4.5 Parametric equation

A plane is defined by two vectors and a point  known to be on the plane, The
plane comprises all points that can be reached by binding a linear combination
of the two vectors to the point p.

The parametric equation of a plane takes two parameters; each acts as a scaling
factor for one of two vectors defining the plane.

‘z‘)(u,'u)=ﬁ+(u-7+v-'5’)

Typically, the vectors # and " are chosen to be mutually perpendicular and of
unit length. Such a choice establishes a two-dimensional coordinate system on
the plane. Points can then be represented locally with respect to the plane.

The parametric plane equation is easily derived from three points defining a
plane. Given three non-collinear points P> Py and pye

Py = o+ (- o) +(v - Pof2)

6.4.6 Projecting a point onto a plane

Projecting a point § onto a plane means finding the closest point on the plane
to §. Equivalently, it means finding the poiat on the plane that intersects the
line given by ¢ and the normal vector to the plane. The latter definition gives a
strong hint for using the plane operator.

Just as for lines, in the normalized plane operator, the signed distance berween
a point ¢ and the plane y is given by 4. So, the projection of § to the plane is
the sum of ¢ and the normal vector to the plane y- scaled by the result of the
plane operator y4.

Qpr'oj =q +(74) Ye

1f the parameters of the projected point are needed use the parametric plane
equation. It is best if the plane vectors are mutually perpendicular and of unit

Jength. Then the scalar products of the vector ;a} and each of 7 and 7 give
the parameters # and v of the projected point on the plane.

Jnv)= i+ (e ) T+ (G4 T) T
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6.5 Coordinate systems = frames
What is a coordinate system?

You likely know the answer informally. Coordinate systems define the axes of a
space.‘The x- and y-axes on a graph define the dimensions of 2 two-dimensional
coordm.ate system. Add a z-axis to get a three-dimensional system. Systems are
located in space ~ they move and the objects in them move along. A coordinate
system carries exactly and all of the information needed to place a rigid body in

space. 'I.‘hus the coordinate system, not the point, is the quintessential concept
of location.

Hopefully you will not be surprised that, taking a geometric view, we represent
the co'ordinate system axes as vectors and the location as a point. Formally, a
coordma'te system in 3D is three vectors and a point. In 2D, it is two vecto’rs
and apoint. The vectors must be linearly independent. Collectively, they form
2 basis for the space - all vectors in the space can be expressed as a ux;ique linear
combination of these basis vectors.

Much of the literature uses the term frame instead of coordinate system. Tt is
shorter, so we use it here too.

\

%,
x

6.15: The x-, y- and z-axes of a frame have col ees i int p
i The f;ame i e colours red, green and blue respectively. Point p

Bg'fputtmg constraints on a frame’s vectors and point we can create special kinds
o ;ames. For instance, a frame in which the vectors form a natwral basis, that
is, they are unit length and oriented to the principal global directions can be

th?ught of as representing a simple translation of amount given by the frame’s
point.

.You might have noticed something. Phrases such as “principal global directions”
imply that frames are relative to other frames. Geometrically, there is no master
frame, no universal frame of reference. Practically, choosing a particular frame
and relating all points to it creates an effective master frame for a particular

computation.
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. ey b —d ey emn .
vectors either as [ vz or as [ n 0 4 ] . The formeris

in reference to the x-, -, and z-axes of Fuclidean space, the latter to the words
~Formal, “Frientation and T pproach, To see the relevance of these words, extend
your right hand in front of you with the index finger pointing at something,
the thumb at right angles to the index finger and parallel to the line between
your eyes, and the middle finger vertically at right angles to both index finger
and thumb. You count the T( or 7), 7 or ¢)and Z'( or @) axes from
thumb to middle finger: thumb = *'( or ), index finger = 7( or o) and
middle finger = Z( or @"). The terms normal, orientation and approach relate
1o robotics where they are used to describe the position of 2 right-handed frame
at the effector end of a robotic arm. Why have two ways of describing the axes?
In some situations, x, y and z makes sense, for instance when you are indexing
2 named frame. Other times, for instance, when describing a frame’s internal
components, expressions such as =, (the x-component of the & vector) are
confusing and the 7, 3" and @ notation is better.

By convention we consider only Tiﬁht-/mnded frames. We refer to the three frame

6.16: The X" (Hormal), ¥ (G rientation) and 7 (@pproach) vectors of a right-handed
frame superimposed on a person’s right hand.

A second convention takes a counterclockwise rotation about a coordinate axis
to have a positive rotation angle if we look along the positive axis toward the
coordinate origin. This is well-known as the right-hand rule. A way to stamp it
indelibly into memory is to thumb your nose with your right hand (Go ahead!
Do it! I do in Figure 6.17) and curl your fingers. If you are looking at the origin,
your fingers show the direction of positive rotation. Right-handed frames and the
right-hand rule cohere rogether well. You use the same hand to understand both.
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6.17: An unforgettable way of remembering the right-hand rule for rotation.

There are three really important things to know about frames: how to generate
them, how to represent them and how to compose them.

6.5.1 Generating frames: the cross product

'.I'he cross product constructs one of two unique vectors given any two linearly
independent vectors.

T'aking a geometric view, let % and T be two linearly independent vectors.
Figure 6.18 shows the cross product % ® @ as a third vector perpendicular

to both. Its length is the area of the parallelogram spanned by the two vectors.
The cross product forms the z-axis of a right-handed frame formed with %" as
the x-axis and T as the y-axis. Thus @ ® 7 # 7 @ #. In fact, the two cross

products are vector inverses # @ ¥ =—17 @ 7 .
uweuv
—
v Rwecd
T
7
—
. “

—
v @ H

21.18: The ;:éoss prm;luct of two linearly independent vectors. Since the cross product
w.zys produces 2 right-handed frame, changing the order of the arguments to the cross
product simply inverts the result vector: W@ 7 =~17 @ 7.
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The length of the cross product is the area of the parallelogram defined by w
and 7. The area of a parallelogram is the base times the height. Taking 7 as
the base, then basic trigonometry (Figure 6.19) shows that the height is [ 7] sin
whese 0 is the angle between # and @, Thus the area is (@ T|sinf, and

(7 ® T =7 sind.

6.19: The area of a parallelogram.

T the argument vectors % and 2" are unit-Jength, the cross product’s length is
the sine of the angle between % and . 1f the vectors are mutually perpendic-
ular, then the parallelogram is a square with unit-length sides and area 1. The
cross product vector thus has a length of 1. Frames having mutually orthogonal
and unit length vectors are called orthonormal. If the vectors form a basis for
the space they occupy, they are collectively an orthonormal basis for the space.
Orthonormal bases have several nice mathematical properties (such as the scalar
product of any arbitrary vector % with a basis vector being the length of the
projection of the vector 57 onto the basis vector) that make them the main
form for representing vector bases.

6.20: An orthonormal basis. Each axis is perpendicular to the others and is of unit length.
The area of the parallelogram defined by the x- and y-axes is 1.

In terms of the components of # and ¥, the cross product B=TeTis
given by the formulae

— oy
'w;\-"uy'uz_ulv)’
oy —y —p
B, =TT ©.6)
ey e b oy
wz"‘uxruy-—u?'v"
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6.21: The length of the cross
product of two unit vectors i
sine of the angle between the
% ® F| = sind. Inthis|
both % and ¥ are located ¢
circle of unit radius.




CHAPTER 6. GEOMETRY

The cross product and plane equations

Thfz cross product of the two vectors defining a plane is normal to the plane.
This gives a way to compute the implicit plane equation from a point and two
vectors (or from three points on the plane). Given a point p on the plane and
two non-collinear vectors % and @ in the plane, the implicit equation of the
plane is as follows. Given

— =

B=" QT 6.7)
then the implicit equation is

— = . . ; .

Gt WP+ TP, (T p A T by + T ) =0

and the plane operator is

—
(@ @ @

7, T, (@b +T,5,+F,5) ] ©38)

Using the cross product

It is extremely common to need a frame somewhere when defining a model. If
the model is to be reused, or moved without restriction in space, such a fran:xe
§houldv l?e internal to the model. If it is external, then the modellan depend on
its position, and sometimes in surprising ways. Whenever a model has three
non-collinear points, or a single plane in parametric form, it is easy to construct
such a frame. Vector bases (and therefore frames) are best when orthonormal -
remember the discussion on page 109.

Tl;y;grocess above produces a result equivalent to what is called the Gram-~

:§i .i orthOﬁ?rmalzzatzon process. Given three linearly independent vectors

% , % and @, the orthonormal frame with vectors X, and Z' is computed
as follows: ’

-
_J_C_,_ "
|
m:?—-(v s )X
—
— ypre
ad
= e (B eT)T (T T)T
.
—_— Zpre
e
Iz
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6.5.2 Representing frames

Up until now, we have treated objects as if they are located in some universal
space. While all geometry can be represented this way, modeling, mathematics
and programming quickly become cumbersome and tedious. Frames provide an
essential practical tool for organizing objects in space.

There are several modeling tasks that all require the ability to represent objects
locally and to relate local representations to each other.

o We want to refer to things in differing frames of reference. A bicycle
wheel is most easily described if we thinls of it as being located at the
origin of some frame with the centreline of its axle coincident with
one of the primary axes.

« We want to move things around. Positioning the bicycle wheel with
respect to its frame can be achieved more easily by moving its frame
than by moving all of its points. Rotating the bicycle wheel is simply
done by rotating its frame.

o We want to be able to draw images of three-dimensional objects on a
cwo-dimensional screen, This involves creating a sequence of frames:
the world, the camera and the screen.

To represent frames is to go from the geometric idea of a frame as three vectors
(a basis) and a point to a notation for representing vectors and vector bases as
matrices. Representation of and operations on frames are largely a matter of
structuring information to apply vector operations in appropriate ways. It is
usually a very good idea to understand everything about frames by constructing
representations from vectors on up. In other words, do not treat operations and

transformations as black boxes - understand the ideas.

The first structuring step is to use a matrix to represent the vectors of a frame -
its vector basis. Given that every vector basis over vectors of n elements has 7
vectors there exists a natural representation of a vector basis as an 7 X 7 matrix
a5 shown for the two-dimensional case in Equation 6.9.

o] e ]

By convention, the columns of the matrix are the basis vectors. Representing a
basis as a matrix is thus simple: take each basis vector as the column of a matrix.
For two dimensions the array is 2 x 2; for three dimensions itis 3% 3.
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The well-known identity matrix from linear algebra represents the natural bass.

1 0 0 100
[® 7 7= 0 1 =010
0 0 1 00 1

Using the interpretation of the column vectors being the basis vectors simply
read off the natural basis vectors.

The three vectors that represent a space give us everything but the location of
the vector basis. Remember? A frame is three vectors and a point - its location.
The location gets added as a fourth column in the matrix. A frame matrix thus
has two components. The first records the vector basis of the frame, the second
the point of origin. Using the 7", 0" and Z” notation for the frame vectors (so
the x, y and z coordinates do not get mixed up with the vectors), this gives

—t — — .
n.\f Ox 4X p!
—r 3 3 . P —3 — s
[ [ I p]: n, 0, 4a,| p
— — — -
nl OZ aZ PZ

where 7 represents the x coordinate of the # basis vector of the frame and p_
represents the x coordinate of the point of origin of the frame.

This matrix is not square, and square matrices are “nice” in the sense that they
enter into algebraic formulae with less dimension checking, have determinants
(a very useful number that describes matrix properties) and potentially inverses.

To recover the useful property of squareness, we add a row to the bottom of the
matrix.

‘We now distinguish vectors and points by augmenting their representation with

. . T
a single number: 0 for vectors and 1 for points. Vectors become [ x ¥ z 0 J

and points become[ x y z 1 ]T.

The non-square matrix suffers this augmentation to become

ey — — :
ny ny n, px
— B — :
[ g, o, Py
— — — :
oy ﬂ}, a . Pz

0 o 0 1

The first three columns can be read off as vectors (signaled by the fourth row
being 0) and the fourth column is a point Gignaled by its fourth row being

1). The vectors and poirts actually mean something. In fact, they mean three
things. A matrix holding them can be seen as either a representation, a mapping
operator berween frames, or a transformation operator that changes objects.
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6.5.3 Matrices as representations

The first interpretation is that a matrix specifies a frame in terms of another
frame. In this interpretation, the first three column vectors of a matrix are the
vectors of its corresponding basis, written in terms of the vectors of some other
frame. The fourth vector is the location of the frame, again written in terms of
the other frame. This idea can be represented with perfect correspondence as
both drawing and matrix.

1f you have a drawing (or physical model) you can make a matrix representing
2 frame. The vectors of the frame are columns in the upper left block of the
matrix. The frame location is the upper right block. If you have a matrix you
can make a drawing of the corresponding frame. Simply use the columns of
the upper left block matrix as the x-, y- and 2- coordinates of the vectors in the
drawing, Use the column in the upper right block as the frame location.

The relation between matrix and drawing is one of the very rare perfect corre-
spondences berween mathematics and diagrams. Usually drawings both remove
information (they abstract) and introduce extraneous information. In this case
even the fiction that the vectors are bound to @ point has significance. Projecting
a vector from the frame origin to a point p onto the frame vectors and dividing
by the length of the frame vectors yields coordinates in the frame.

Frame:

[ -03 -03 09 ]

e

1

|

o

o

o

0

o

s
| S—

Matrix:

08 ~—0.6 —-03
0.6 0.8 ~03
0.1 0.1 0.9

0
0
0

6.22: The correspondence between a frame drawing and its matrix is perfect and literal.
The dashed frame is the reference in which the frame is drawn and in which the matrix is
defined. (Careful reading of this frame shows that it is not perfectly orthonormal - here
accuracy is sacrificed to gain short numbers.)
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6.5.4 Matrices as mappings

Representing frames as matrices suggests matrix multiplication mighe be useful.
Remember that points and vectors are column matrices so must appear after

the matrix in any matrix multiplication (the basic rule of matrix multiplication
conformality is a matrix of dimension 7 x 7 can only be multiplied by a matrix
of dimension 7 x p).

I T is a matrix representation of a frame, then
.
T =T7

.. .
means that some new vector T is produced by the expression T5.

A useful interpretation is that 7 represents a vector in a reference frarme A, that
0" represents the same vector in a represented frame B and that T represents the
represented frame in terms of the reference frame. A notation that makes this
clear can really help. Write 4T to denote the represention of frame B in terms
of the frame A and A7 to denote the representation of vector & in terms

of frame A. To complete the picture write 27 as the representation of 7 in
terms of the frame B.

" =TT (6.10)

Figure 6.23 shows that both 7" and 8%’ represent the same geometric vector
T ~ they differ numerically because they are representations of this vector in
their respective frames.

oo = 097 026 o]
/ L A?:[o.n 0.71 01

T
w, > 3
A A
@

h,

)

6.23: The equation 2% = QTB @ maps the geometric vector @ from its representation
as 8% in frame B o its representation as A %" in frame A. In (a) the two frames share an
origin and differ by a z-axis rotation. In (b) the two frames also differ by a translation.
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Geometrically this means thar every point repx:esemed within‘a frame B has at
teast rwo sets of coordinates: those in frame B 1tself an‘d those in the}frame A‘
that “holds” B. This explains the usual representation in a parametric modeling
system in which a point has X, Y and Z properties as weu as X'L?cal, .‘{Local.
and ZLocal properties ' Of course, every point has an implicit representation
in tersms of every frame specified in a model. Usually a system computes these

only if needed.

A frame B that holds another frame C might itself be held in a third frame A,

N

The frame notation above conveys an advantage in reading chains of mappings.
For example, the following chain

A—> _ Agp B CyrDyETFGT
»u__BTCTDTETFTGT 7]

can be checked for consistency by “canceling” any mapping that' representsa
frame G if it is to the left of another mapping whose representation is written in

terms of G.

Of course, the canceling is a notational trick with no mathematical significance
in and of itself. Tt does allow us to check if a chain is well-formed. ¥ cancellation
does not work, we cannot multiply the matrices and expect a seasible result.

Equation 6.10 gives a second meaning to the matrix representation of a vector
frame: as a mapping between frames. We use matrices as both a representation

of frames and as a mapping between them.

The conventions on these names vary widely. For instance, global and local names might.mpeo
tively be X:XLocal, ¥G1obal: X, XGlobal:XLocal, X:XTranslation or use another convention, You
: s :

have to get used ro the system you use.
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: ; i iti re rotation,
6.5.5 Matrices as transformations location of A, The simple frames involved int such compositions a X

scaling, shearing and translation.

There is yet a third meaning to the matrix representation of a frame. This is

as an operation that produces a new vector in the same frame as the original
vector. We say that the new vector is a transformation of the old. The operation
differs not in mathematical form, but in interpretation.

The three primitive rotations are about the x-, y- and z-axes. Composm}:m of
‘otation about a single axis is commutaive. Composition of rotations about

multiple axes is not commutative.

: / PR Rotation about the x-axis
Write @ = T'% to denote that both vectors are defined within a single frame. Rot

Figure 6.24 shows vectors @ and @ as being on the xy-plane of a reference

Frame: Matrix:
frame and ¥ being rotated about the z-axis by 30° from 7. The matrix gives N
just this 30° rotation about the z-axis. : K
' g i 0 Q 0
A 0 cosf —sinf | O
i , Rot,(f) = 0 sinf  cosf 0
cos30  —sin30 0 0 - ) e | —
sin30  cos30 0 0 0 0 0 1
0 o] 1 0 T,
0 0 o 1 .
Rotation about the y-axis
Frame: Matrix:
cosd 0 sinf 0
—pt 0 1 0 0
T .
Rot (§)=| —sinf 0 cosf 0
— 4
7] [
“ 0 0 0 1
6.24: Vecror T is the result of rotating vector ¥ around the z-axis with both vectors
represented in the same frame.
Figure 6.25 shows a mental trick that helps in understanding transformation. T Rotation about the z-axis
Think about the mapping equation * 7 = AT and then move frame B to e .
_— . e 2, Lo ‘ Frame: Matrix:
coincide with frame A, bringing the vector @ along with it. When the frames :
coincide, that is B becomes A, the vector @ will have moved into the correct
o position. In essence, transformation is the same as mapping, except that the cosd —sinf 0 0
v original vector is assigned to frame A from the outset, not frame B. sinf  cosd 0 0
. 7 Rot,(6) = ° o 110
“, 6.6 Geometrically significant vector bases o s ol 1
A
.25 When £ R ) Typically, a frame is composed by expressing it as a sequence of more simple
e en frame © rotates, it f . - . .
brings is representation of the rames. For example, a rotation afound the z-axis of a translated gra:me Ain Whe s rotation about the y-axis differeat in form from rotation about the x-or
| vectae with . When it coincides space can be thought of a translation that takes A to the global origin, then a y is rotati N omagine looking down the respective axes. The
. with frame A, its vector coincides rotation about the global origin and finally a translation back to the original z-axis? Look at the figures and imag
with vector 7 of the equation
| 7 =T 6 : 117
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y-axis rotation presents a different geometry than the other two - the x- and
z-axes are comparatively in a different order than the other cases.

Uniform scaling

TJmform scaling increases the “size” of a frame. Composition of uniform scaling
is commutative.

Frame: Matrix:
) ) H 0 Q
[ o
é’}: e 0 S o] Q
L “\ Scale,pm(@®=] 0 0 0
N [ U E—
0 0 0 1

6;6: Uniform scaling of a frame B about the origin of another frame A. Note that the
reference {rame and the represented frame are not coincident in the drawing — visual
coincidence would be confusing. No translation is implied.

Scaling along one axis
Scaling along one axis is also known as non-uniform scaling. Such scaling on all
three axes can be combined in a single matrix. Each of the axes is scaled by the

corresponding factor. Composition of non-uniform scaling is commutative.

Composition of scaling in general is commutative.

Sy 0 0 0

o] 5y 9] 0

Scale,  ,(5,+5,,5,)= 0 0 s, 0

0 0 0 1

Frame: Matrix:
N H o] o ¢
L o 1 of o
BT K Scale () = 0 0 1 0
EN ——

¢ 0 0 1

;.12'2': icaling of a frame B about the origin and along the x-axis of another frame A. Note
ha tl e {efe'rence frame and the represented frame are not coincident in the drawing ~
visual coincidence would be confusing. No translation is implied.
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Shear

The shearing factor gives the amount of shear along the shearing coordinate
per unit of distance from the origin along the sheared coordinate. This is the
definition of the tangent of the angle between the old and new sheared axes.

Frame: Matrix:

? 1 0 0 0
: 0 1 tana o]
! o Shear, ()= 0 0 1 0
' P . e PR
)
0 ¢} 0 1

6.28: Shearing of the z-axis along the y-axis of a frame B. The original z-axis is said 1o be
the sheared coordinate and the original y-axis the shearing coordinate. The shearing factor is
the tangent of the angle between the old and new z-axes.

There are six possible primitive shears, corresponding to the six zero values off
the diagonal of the basis identity matrix.

1 Shy, Sh.| ©
Sh,, Sh, | ©
Sh, Sh, 1| 0

To model a primitive shear only one of these may be non-zero. To compose
shears combine primitive shears with matrix multiplication. In general, the
composition of primitive shears is not the simple setting of two valuesina
single shear matrix. Equation 6.11 (showing just the basis components of the
frames) shows that the composition of a 45° zx shear with a 45° xz shear yields
2 matrix with non-unit values on the diagonal.

In general, composition of shears is not commutative.

0 2 0 1 '
ol=10 10 (6.11)
1 10 1

DO e
O o O
e
R~ R
O o O

However, two axes can be sheared parallel to the thivd axis, and this combina-
tion is straightforward.
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Frame: Matrix:

A

g 10 ol o

. tana 1 wnf 0

: Shear (a, B) = 0 0 1 )

b e
0 0 0 1

R o
N

6.29: Shearing of the x- and z-axes along the y-axis of 2 frame B. The original x- and z-
axes are said to be the sheared coordinates and the original y-axis the shearing coordinate.
The shearing factors are the tangent of the angle berween the old and new x- and z-axes.

Translation

Translation represents the position of one coordinate system with respect to
another, by distances along the x-, y- and z-axes. Composing translations is
commutative.

Frame: Matrix:
0
o 1 0 0 x
é P 0 1 o
N " Trans(x,y,z) = ¢ 0 1 z
0 0 0 1
6.7 Composing vector bases

All of the primitive geometrically significant vector bases can be composed to
model more complex geometry and there is a general mental technique for
doing this. First, imagine that the geometry is located in a universal, global
frame. Second, use a sequence of geometric operations to bring the geometry
into alignment with the global frame. Third, model the appropriate geometry.
Fourth, use the inverse of the sequence of geometric operations from the second
step to restore the geometry to its original location with the modeled change.

Matrices representing vector bases compose from RIGHT to LEFT. Why is this
so? Consider a series of matrices each implementing an operation on vectors as
follows:

R,R,...R, | R,
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Any vector @ that is operated on by this sequence is placed at the end of the
sequence. Thus,

At ped 7

Since matrix multiplication is associative, this can be rewritten as

T =(R (R (R, (R, 7))

Each successive operation, reading from right to left, produces another vector
that has been transformed with respect to the global frame that is implied by
the operator view of matrix representation of vector bases. Thus, reading from
right to left, apply operator R, then R, _, ... then Ry then finally R,

Matrices representing vector bases compose from RIGHT to LEFT. Reading
from the right, each successive transformation changes the relationship between
irself and the frame to its left. Thinking about matrices as operations this has
the effect of moving the frame and everything to its right. As you add bases on
the left, each effects a movement with respect to the global origin.

6.7.1 Which comes first? Translation or rotation?

Frames combine three vectors and a point. Consider these two parts as motions;
then a frame might combine, say, a rotation and a translation. Which comes
first? The answer reveals itself in both geometric and matrix views.

First geometry. As in frame representation, a matrix is a direct representation
of the frame it implements. So Figure 6.30 represents the frame given by the
matrix

cos30 -sin30 0| 2

sin30  cos30 O | 2
¢ 0 1 1
0 6 0 1

Remember that successive matrix operations taken right-to-left model motions
with respect to the global origin. Thus, if we want to think of the rotation and
the translation acting separately, the frame must be generated by first a rotation
of 30° about the z-axis, followed by a translation of [ 2 2 1 ]T . The vector
component acts first in a frame representation!
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Frame:
! R
:
' L
[l P
H L
O, ..
P &,&
Matrix:
cos30 ~sin30 0 2
sin30 cos 30 ¢ 2
Trans,, (6) = 0 0 1 1
¢} o} o] 1

6.30: The Tframe represesenting a rotation of 30° about the z-axis followed by a translation
of [221]".

A second view using matrix multiplication confirms this geometric insight.

1 0 0} 2 cos30 —sin30 0| O cos30 -—-sin30 O] 2
01 04} 2 sin30  cos30 0| O | _ | sin30 cos30 0| 2
0 0 1 __1_ 0 0 1 o1 0 0 1 1
00 0|1 0 0 o| 1 0 0 ot
whereas
cos 30 —sin30 04 0 1 0 0} 2 cos30 —sin30 0 | 2(cos30—sin30)
sin30  cos30 O | O 0 1 0 2| | sin30 cos30 0| 2sin30+cos30)
a 0 1 __(2__ 0 0 1 O o] o] 1 1
0 0 ol 1t 00 01 0 0 o 1
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6.8 Intersections

The intersection of geometric primitives is a fundamental construct in many
computer graphics and modeling applications. lis most simple form involves the
linear elements points (ID), lines (2D) and planes (3D). In general, two elements
may intersect (or not) as elements of equal or one Jesser dimension than the
lowest dimension of the elements involved. Thus two planes may intersect at

a plane or a line (but not at a point), lines may intersect at a line ora point, and
points may intersect at a point (this is point identity). With mixed elements, a
line may intersect a plane at either a line or a point.

The number of intersection conditions is large, and the mathematics is, in cases,
complex. Most parametric modeling systems provide a large set of intersection
operators. Most of the time, these suffice. Note the phrase “most of the time”.
The rest of the time it helps to be able to reason through intersection problems.
This section presents a small suite of intersection problems and their solutions.
The intent is to demonstrate approaches to framing and solving some simple
problems. In more complex cases it really helps to have a good text at hand, for
example, Schneider and Eberly (2003).

Recall the available three-dimensional representations for points, lines and planes.
Geometrically, a point is a point. A line is defined parametrically as a point and
avector (or alternatively two points). A plane has many definitions occurring in
two families, one related to the normal vector (implicit, plane operator) and the
other parametric to a point and two linearly independent vectors (point—vector
and three-point).

There are several kinds of intersection-related questions.

& Determine if two objects intersect, without actually generating the
intersection.

« Generate an object (point, line, plane) that lies on another object.
» Determine the object of intersection of two other objects, if it exists.

e Determine the kind of intersection (point, line or plane) at which two
obijects intersect.

e Determine the object that most closely joins two objects, for example,
the line between a point and a line or the line between two lines.

All require similar thinking and similar mathematics to solve. The previous
secions cover the needed mathematical basics. This section presents problems
and discussion of how to go about solving each one. It takes a constructive
approach, that is, it presents a solution as a series of steps, each geometric and
visual. Such solutions are seldom the most efficient and often have cases in
which they may not be as stable as possible. Indeed, when intersections (and
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other problems) are professionally programmed in CAD systems, developers go
to great lengths to ensure the code is robust, accurate and efficient. Amateur
programmers do not and generally cannot program this way. They usually
work by imagining a series of steps, each using simple constructs, that solve the
immediate geometric problem.

6.8.1 Do two objects intersect?

Point on line = point collinearity

Are three points p, ¢ and 7 collinear?

Are p(5,2,4), ¢(2,—4,1) and 7(4,0,3) collinear?

Are p(5,2,4), 4(2,~4,1) and #(3,~1,2) collinear?

Discussion. Three points are collinear if the triangle they form has zero area.
'1:_13:: cross product is twice the area of the triangle defined by two vecrors. If
|pg® p7|=0, p, § and # are collinear. In English, if the cross product produces

the zero vector, the points are collinear.

Using Equation 6.6 on page 109

T OTR e e T —y T
r T —
pq@pr-—[ T, -, T, WY, W, U, _v"x]

z

For #(4,03), W=ps=[3 6 3|, T=pr=[1 2 1]

Pa®pr=[ 61-32 31-31 32-61 ] =[0 0 o]”

The points p, ¢ and # are collinear.

For i(3,-12, W=pg=[3 6 3], T=pr=[2 3 2]

peepr=[ 62-33 32-32 3%-62] =[3 0 -3 1

The points p, § and # are not collinear.
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Point in plane
Does the plane 2x — 3y +z = 11 contain the point p1,-2,3)
The point ¢{5, 6,0

Discussion. This is easily solved if the plane is represented in any form related
to the implicit, as it is here. Simply plug the point values into the equation.

For p(1,~2,3),2-1-3+(=2)+3=11,50 pison the plane.

For ¢(5,—6,0),2-5~3- (—6)+0 = 28,50 g isnot on the plane.
Computationally, a result “close enough” 10 zero means that the point is on the
plane. We gloss over what “close enough” means. Geometry uses real numbers,

swhich are only approximately represented in computers. A simple threshold &,
where —& < a < & ==>a =0, suffices for most design applications.

Line in plane

Determine if a line lies in a plane.

Line through p,,,,(1,3,1)

“ . . i 2
with direction vector 4 =| 3
1

1

Plane through §(0, 1,0) with normal vector 7 =| —1

1

Discussion. It suffices here to check each of the end points of the line. These
are p,,,. (1,3, 1) and p,,,4(3,6,2). I they are both in the plane then the line is in
the plane. A point is in a plane if its product with the plane’s operator is zero.

Tbeplaneoperatorisy:)i 77 | d ]:[1 -1 1 d].SinceQis

in the plane yQ = 0, therefore,
[ o
1
[1 -1 1 d] 0 =0=d=1
L 1
For porare
[ 1
{ 1 -1 11 :l i =0==> p,,,,, 15 in the plane
1
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For po.a

=0== p, . isin the plane

[+ =11 1]

i SR V]

Therefore the line is in the plane.

Line in plane

Determine if a line lies in a plane,

X 1 3
Line | y | =(~2)| 3 |+2] 6
z 1 2

Planex~y+z+1=0

Discussion. The only difference with the previous problem is that the line is
expressed in parametric form and the plane in implicit form. The start and end
points can be read directly from the line equation. The plane operator is simply
the coefficients of the plane equation, that is, [ 1 -1 1 1

Intersecting lines
Determine if the lines L and & intersect.

2 -4
LineK(s)=| 1 |+s 4
7 -8
3 6
LineZ{t)=| 5 [ +s| -3
2 -3

Discussion. Infinite lines intersect if the lines are not parallel and their four
defining points are co-planar.

Instead of the cross product, use the scalar product to test for parallelism, If the
vectors of the two lines are parallel so are the lines. The angle between parallel
vectoss is 0° or 180°, and the cosine of the angle is 1 or —1. Thus for parallel
vectors

e T = W[V |coser
=77
Squaring both sides removes the effect of 2 180° rotaion.

(@ o P =[P FP
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Expanded this is

2 —] re )
ey iy oy B e N B = RV e ] 72 2
(W T A4+7, 7, +%, 7, (z1x+uy+uz)("ux+ o 2)

In this case

and
[RPITE = ((—4) + 4 + (=87 )67 + (=3 +(-3)")
=(16+ 16+ 6436 +9+9)
= (96)(54)
=5184

The example lines are not parallel,
With non-parallelism established, use both points of one line and the start point

of the other to determine a plane. Use Equation 6.6 on page 109 to determine if
the three points are collinear - all three components of the cross product must

be equal to zero. If so, the lines intersect.

Collinearity of K., K pg 20d L,

E—;:?’—‘[ —4 4 -8 ]T

KstarcLsmrt:—:d_}):[ -5 4 =5 ]
?:7@'{5’
T
=[ #-5)— (=8¢ (=85~ (—4)=5) (~)4~4(-5) ]
=[12 20 4 ]T

The cross product vector is not zero, so the points are not collinear. The cross
product 7 is normal to the plane formed by the three points.

With non-collinearity now known, use Equation 6.8 on page 110, the normal

vector 7 and any of the three points, say, K ,,.,, to determine a plane operator.
Test the end point of the second line with the plane operator.
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The plane operator):[ 7|4 ]:[ 12 20 4 72 ]

d = —~(122 4201+ 47)
= —(244-20+ 28)
=-72

Test L,,; against A.

[12 20 4 ~7z] _ | =wta0—4-72=0

Since all four points are co-planar and the two lines are not parallel, the lines
intersect,

Since the lines are in parametric form, they define both infinite lines and line
segments. These segments intersect if the infinite lines intersect and the point
of intersection has parameter values s and £ on each line between zero and one,
0<s <1and0 <t < 1. This latter test requires that the actual parameters and
therefore point of intersection be computed. See Section 6.8.3 below.

6.8.2 Generate an object lying on another object

Plane through point
Find the equation of a plane A through #2(2,~1,5) and parallel to the plane y
through the points 4(3,—7,1), 5(2,0,~1), &(1,3,0).

Discussion. The plane y is expressed as three points. Use Equation 6.7 on
page 110 to determine a vector normal and a d value for the plane.

Find the plane normal using the cross product on vectors between pairs of points.

?:;Z@zg
=[ 10(-2)= (=17 (~1)(-1)=(-2)(-2) (-27-10(-1) |7
=[1 5 }T
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Use this normal and the given point 72 in the plane operator of Equation 6.5 on
page 104 yielding an equation in the single unknown d. Solve ford.

d = ~(132 4 5(—1)+(—4)5)
= —(26—5—20)
=-1

Theplanelisthen[‘r? { d]:[ B35 —-4 -1 ]

Plane through point
Find the equation of the plane A through ¢(6,1,0) and perpendicular to the line

x 5 8
I =| 5 {+s] -2
z 5 0

T
Discussion. The line’s direction vector is # :[ § ~2 0 } .

The plane Ais then
AT e(p—d)=0

For the given points the equation is

8
-2 |elp—| 1 =0
0 Q
6.8.3 Intersect two objects

Line and plane

— —

Consider the line L given by point p and vector d .
. —
pey=p+td.

Also, consider a plane A determined by a point ¢ and a normal vector 7.
Determine the intersection of the line and the plane.
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Discussion. Convert the plane description to the plane apertor form, that is,
o = — ey
A= [ w, A, #, d ]

where

d:—?cq‘

Test each of the line’s endpoints against the plane operator.
Ler ﬁsf{l?’f :ﬁ
. . —
Penda =P + d
AS!KT{ = A'pstart

Aena = A® Pyars
¥ A, =0and A, =0, the line is on the plane, else
I A, ..: = Acpg» the line is parallel to the plane, else
Ifsign(d,,,,,) =sign(4,,,), the segment is on one side of the plane, else
Hsign(d,,,,,) # sign(4,,,,), the segment intersects the plane.
The actual intersection occurs at the point with parameter

=2

start

Amd ~2

start

Figure 6.31 shows why this is so.

—
7
A T
. i
ot = sears
/ p( ), Aend=Aseare

ﬁxtart
A

start

/\Eﬂd

/\eud - ’ln‘,m*l

Astm’t

<0

6.31: Computing the parameter value for the intersection point of a plane and a line. The
plane is viewed “on edge®, that is, the plane’s normal vector is perpendicular to the view
vector. The values A,,,,, and A,,; are proportional measures of the signed distance of
their respective points to the plane (they are actually scaled by the length of the normal
vector). The ratic of A,,,,; t0 (Aesg = Aspar:) is the parameter value sought. This occurs
because the domain A,,,,, to A,z maps linearly onto the range Oto 1.
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Plane and plane

Consider two planes, A and y defined in normal-point form.
A7 e (b —42)=0
rFy e (p—d,)=0

The locus of points § defines either a plane, a line or is null. Determine the
intersection of the two planes.

Discussion. If 7, ® ﬁ;’ =0 the planes are parallel and the intersection is either
null or the planes are the same.

Tf the planes are parallel and the point of one plane is on the other, the planes
are coincident and the intersection can be specified simply as cither plane.

Py . .

7y 0(d, ~ 40 =0
Otherwise the planes intersect on the line 1. A normalized direction vector of
the line is the normalized cross product of the two plane vectors.

s W87,

W e

4 r

A point on the two planes completes a point-vector equation for the line. Clearly,
there is an infinity of such points. A suitable one is the point on the line that is

closest to the origin. This point is found as the solution of the following three
linear equations (6 is the origin).

ATy e(p—gq;)=0 pisoni
y 7 e (p—d,)=0 pisony
- -2, . -
dir;esp=0 6 is perpendicular to L
Plane and plane

Determine the intersection of the following two planes.

A 12x—3y+45z =2
y 3x—3y+z =4

Discussion. This problem is the same as the prior problem, except that the first
two equations are in implicit form ~ the respective plane vectors are simply the
coefficients of the x, y and z terms in the equations.
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Like the previous example, finding the point needed to define the result line
requires three equations. The first two are the implicit plane equations. The
third results from taking the cross product of the normal vectors to the planes.

2 3 2
-3 1@} -1 |=]13
5 1 7

The three needed equations are thus as follows:

2%~ 3y +5z=2 pison i
Ix—y+z=4 pisony
2
— —. . -
OPe| 13 | =0 OPis perpendicular to L
7

6.8.4 Closest fitting object

Line between two lines

Given two lines in space, determine the shortest fine segment joining the two
lines. If the lines are parallel there is an infinity of shortest lines, all themselves
mutually parallel. Tf the lines intersect, the line has zero length but still exists.
1f the lines do not intersect and are not parallel, they are said to be skew. Many
CAD systems provide this function, either separately or as a special condition
of intersection. It can also be computed efficiently. The point of including it
here is to demonstrate how simple geometric constructions can produce needed
answers. Sometimes direct geometric reasoning is faster; certainly it is more
designerly than equation solving.

Discussion. The solution combines a cross product, two vector projections, a
converse vector projection and a few miscellaneous operations such as point-
vector sums. Each can be visualized as a step in a geometric construction.

Geometrically, when the two lines are parallel, the solution is indeterminate as
there is an infinity of lines perpendicular to both and of identical length. In this
case the cross product of the two lines is the zero vector.

When the cross product is not the zero vector, the two lines either intersect
directly or are skew. In this case, the cross product produces a vector partially
defining the line. What remains is to find a point on the line and to scale the
vector so that its length is equal to the shortest distance between the two lines.
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y MmN
()

6.32: (a) Two skew lines 7 and 7 and the shortest line berween them.
(b) Compute the cross product of the vectors of 7 and 7 and place at the end of line 7.
This vector defines the direction of the shortest line between the two lines 777 and 7.

P
- 4q
© @

6.33: () Project a point from line 7 onto the cross product vector. Since the cross prod-
wct vector is located, this produces a point p. The length of the vector % between the end
point of the line 7 and this point is the length of the shortest line.

(d) Project point p back onto line 7. This gives a point 4 and a vector p-t; perpendicular

to .
(&) )

6.34: () Conversely project ;z; onto the vector of 7. Add the resulting vector to point p
on the cross product. This produces the point # as one end of the shortest line.

(f) Project point # onto the line 7. Alternatively, subtract the vector 7 from the point 7
just found,
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6.9 Curves

Lines and planes are convenient. They are simple to represent and objects based
on them are simple to construct. Look around you though. Unless you are on
a wilderness survival trip, you are most likely surrounded by artifacts - things
people have created, manufactured or built. When practical, for example, in
paper sizes and window glass, straight lines and flat surfaces dominate. Most
artifacts though have curved outlines and surfaces. Look carefully at a few of
the artifacts around you and ask yourself the question “What determined the
curve used in this design?” In a physically constrained environment, function
typically dominates. For example,  sailing dinghy operates in the boundary
between water and wind. Its form is deeply constrained by the complex forces
acting upon it. Hull, centreboard, rudder and sails are all designed to convert
force efficiently into forward motion and take whatever form is needed to meet
that end. In an environment constrained by fabrication, the tools used impose
geometry on the design. For example, in building construction, the relative
lower cost of straight elements puts a premium on straight lines, flat surfaces
and curves that can directly develop from them. In less constrained situations,
representational tools impose geometry. As I write, I am sitting at a desk with
a compuiter, a digital camera, a printer, an MP3 player, a telephone, a mobile
telephone, a calculator and a set of speakers in my immediate view. Each has
circular curves in its design that seem neither functional, nor constructional in
origin. I would guess that they arise simply because it is easy for a designer to
make a circle in a drawing or model. Function, fabrication and representational
convenience all seem to influence the forms we make. CAD systems introduce
computation as a fourth determinant. Especially with curves and surfaces, the
tools CAD systems provide are formed more by computational tractability than
functionality, constructional affordances or representational appropriateness.
Indeed, the history of curves and surfaces in CAD systems can be well-read as
the progressive development of representations guaranteeing increasing levels
of computational capability. There is amazingly litcle in this literature about
intended function or constructional constraint!

This section introduces curves, especially the so-called free-form curves, paying
particular attention to the computational properties that they provide. This
book is about parametric modeling, not mathematics, so why go into depth
here? One answer is that curves are exemplary parametric objects. They can be
defined clearly and elegantly using simple parametric structures. Understanding
how this is done may well help in making your own structures. Another answer
is that the architectural literature contains much nonsense about how curves
and surfaces relate to architecture (I could cite some of the guilty parties here,
but this would not be fair - there are too many to name them all). By showing
the mathematics of curves in a largely qualitative (and hopefully readable) form,
perhaps I can remove some of the mystery around these very common design
objects and help writers avoid future embarassment.
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Designers describe curves by specifying a small set of objects (often points) that
form an abstract representation of the curve. An algorithm then computes the
curve from these objects. For example,  circle can be described as a centre, 2
radius and a plane to which the circle is parallel.

6.9.1 Conic sections

The conic sections curves are the circle, parabola, hyperbola and ellipse. Each is
described by an equation with a maximum exponent of two. Each is relatively
simple to draw and physically construct. Designers, being sensible and frugal,
use these curves frequently. The key issue is connecting them smoothly. For
joining circle segments, the French curves of manual drawing are a mature and
stable technology. Repeating use of conic sections through a design can aid
visual composition. Conic sections do present problems. While they can be
joined without obvious kinks (this is called first-order continuity), they cannot
achieve any higher smoothness.

In contemporary CAD, both conventional and parametric, designers use these
curves less than they might. The so-called fiee-form curves are easy to use and
give the immediate appearance of fluid control.

6.9.2 When conic sections are not enough

Sometimes conic sections are truly not sufficient for design. Figure 6.37 shows
a boat hull (the International Finn Dinghy). Trs design is influenced, nay driven,
by narrow considerations of stability, speed and volume and by the designer’s
eye for afair and sleek form. In its constrained world, conics hinder rather than
help. Other domains feel similar forces, for instance, airplanes, automobiles and
hand-held tools. In the 1990’s and 2000’s there was certainly grear interest in
non-comic sections in architectural design. Whatever the specific motivation, it
was seldom comparable to the necessity experienced in other domains.

In CAD, freeform curves have come to dominate the toolbox, most likely due
to the wide range of forms they encompass and their relative ease of editing.
Some parametric modelers do not even support the full range of conic sections!
Mathematically, freeform curves are hardly free. Rather, they are a constrained
and specific means of expressing parametric polynomial curves. A palynomial
is 2 sum of non-negative integer powers of one or more variables. Each variable
may be multiplied by a real coefficient. A polynomial of one variable (called

a univariate polynomial) has the general form «,x” + 4, X" dayx .
The equation 3.1x — 2x is a polynomial, while 4x22 4 7x ~ 4 is not, as it has

a real-valued power. Free-form curves were initially motivated by the process
of laying out complex forms using physical splines ona lofting floor and by the
reality of World War II. Mathematics could be copied and thus was much less
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6.35: The four conic section
curves and how they are deriy
from a cone. The circle’s plan
is perpendicular to the cone a
The parabola’s is parallel to a
side. The hyperbola’s is paral’
1o the cone axis. All other pls
produce an ellipse.



6.36: Finn dimensions persist, but
technology advances. The wooden
boats of the 1950s had wooden
masts and cotton sails. Current
fibreglass boats have carbon fibre
rnasts and Mylar sails.

Source: International Finn Association
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Source: International Finn Association

Source: Gilbert Lamboley
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6.37: The‘ lines for the Internatial Finn Class sailboat (designed by Rickard Sarby), which
has been in the Olympics since 1952. (1) A drawing of unknown provenance, but believed
to be that sent to competing countries as they prepared for the 1952 Helsinki Olympic
Gamt_:s, (b) A digital model of the Finn hull. The history of measurement records for

the Il:mn Class demonstrates the practical need for accurate mathematical representation.
Until 1964, the International Finn Association had only tables of offsets sourced from the
Scafxdmavmn Yacht Racing Union. The drawings from which those offsets were issued are
believed to have disappeared in a fire. Charles Currey (at Fairey Marine) carved a physical
temp%at_e of full size Finn lines (together with transverse template lines) onto sheets of
a!urr}mxun} alloy in 1964. These sheets were treated to neutralize residual stress and so

be_ dxmensxgnally stable. The template was made according to the earlier offsets, obvious
mistakes bemg ignored. Mylar copies taken from the aluminium templates were later
found to be dimensionally unstable. Aluminum transverse section templates fabricated for
field use themselves deformed over time by being dropped or otherwise impacted. In turn
the orignal template sheets were lost in the late 1990s. In 2003, working from the spotry '

historical record, Gilbert Lamboley reconstructed the tables of
St P Y ructed the tables of offsets and prepared the
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likely to be bombed out of existence than was a factory floor. The boat hull in
Figure 6.37 provides an actual case of such need as the original drawings were
lost in a fire! Prior to having these mathematical and ultimately computer-based
representations, the principal design media were drawings and half-models of
the hull lines in four orthogonal projections (see Figure 6.37 (2)). Building a
boat started by consturcting stations along a strongbacks. The lines were then
faired by physical splines through the stations. In abstracting to mathematics,
the constraints of physical splines largely disappeared, leaving only metaphors
such as poles and the word "spline” itself in the new toolbox. Freeform curves
have their own logic, divorced from their physical origins and largely aimed at
achieving mathematically and computationally well-behaved curves that can
be used in design. In turn, CAD developers and designers have adopted and
adapted these curves into their modeling toolboxes. In this process of cultural
co-evolution, mathematics enables design, but is constrained by the possible,
and design poses new questions o mathematicians based on the realities of the
design profession and its marketplace.

The following sections provide an introduction to curves, applicable in both
cwo and three dimensions. They form the mathematically most involved part
of this book. Why spend so many pages on such detail? The answer is simple.
Curves are exemplary parametric objects. Understanding how they work gives
insight into both the form-making possibilities of curves and into parametric
modeling in general. With few exceptions, everything learned about curves
translates to surfaces, so the chapter on surfaces is brief, introducing only key
new concepts needed for effective modeling and design.

6.9.3 Interpolation versus approximation

Figure 6.38 shows that some curve algorithms interpolate: they compute curves
that go through the input points. Others approximate: they place curves that
are, in some sense, “near” the input points. We call the input points the control
points and the (possibly open) polygon they define the curve’s control polygon.

o

@ b

6.38: (a) An interpolating curve and (b) an approximating curve.
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In most design systems, the dominant mode is approximation. This may seem
surprising: having a curve go through known locations seems a useful idea. The
reason s that approximating curves tend to be geometrically more predictable
and “well-behaved”, and are mathematically more simple.

6.9.4 Linear interpolation = tweening

The fundamental constructor for many kinds of curves employs the concept
of linear interpolation or rweening. Informally, interpolation moves a value
“within” a set of other values. Linear interpolation moves it smoothly and in
constant proportion. You have seen this concept before in the mathematics of
the parametric line and plane equations. Parametric curves result from linearly
interpolating a parameter in an equation to generate the points on the curve. In
2 parametric line, the point and the parameter have a direct relationship: equal
increments between parameter values produce corresponding equal increments
between points on the line. In curves, this relation becomes indirect. Identical
parameter changes can yield unequal spacing between points - the implications
deeply affect the form-making process.

Figure 6.39 shows a useful diagram, called a systolic army, for representing a
parametric line equation, that is, the relationship berween p(¢), py, p, and ¢.
The coordinate values from p, and p, flow into p(z) where they combine in
the equation p(2) = py + t(p; — po)-

6.39: This systolic array comprises three points where the lower point is determined by the
upper points and the systolic array parameter t. It is the basic (primitive) structure from
which systolic arrays representing curves can be constructed.

6.9.5 Parametric curve representations

Like parametric lines, parametric curves are defined by a point that moves with
a parameter ¢.

Unlike lines, the movement is not linear; the distance along a curve between

1?(2) and p(t + 81t) is not necessarily the sume as that between p(¢ + &¢) and
p(t+2+8¢), where 81 isa number expressing a very slight change relative to ¢.
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Points can be placed at uniform increments by distance along the curve ~ except
that the last point may not be at the given distance from the end of the curve.
Points can also be placed at uniform spacing given a specified number of points.

@ ) ©

6.40: Points can be distributed along a parametric curve in several ways: (a) shows points at equal parameter intervals of 0.1, that
is ¢ = {0,0.1,0.2,...,1}. Note that the distance along the curve between points varies. (b) shows equal spacing at a given distanc
Note that the rightmost point is not at the end of the curve, leaving a gap less than the chosen distance between it and the curve
end. {c) shows equal spacing given a specified number of points on the line.

The very big lesson here is that parametric and geometric space are different.
It is easy to work in parametric space, but designs are built in geometric space.
The difference between the two bedevils much work.

6.9.6 Relating objects to curves

In design, curves relate to other objects and complex relationships are built
from simple ones. Two basic relationships involve vectors: tangent and normal.

Tangent vector

Every (well, almost every) point p(t) on a curve has a family of vectors tangent
10 it. The sole exceptions occur when the first derivative (from calculus) is not
defined or is the zero vector.

Of the infinitely many vectors tangent at a parametric point p(2), only one is
the tangent vector. The reason is that the length of the tangent vector captures
the rate at which #(¢) moves along the curve as ¢ changes. In calculus terms,
the tangent vector is the first derivative of the parametric curve at point f(t).
The tangent vectors vary in length along the curve. When all are bound to one
point, it is easy to see that their lengths differ. Figure 6.41 shows points along
the curve at equal parameter spacing. The relative geometric distance between
points approximates the relative tangent vector lengths. When successive points
are close together, the tangent vectors are commensurately short. Normalizing
the tangent vector gives the unit tangent vector, which is useful, for example,
when constructing coordinate systemns on curves. See Figure 6.42.
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®)

6.41: i
() The tangent vectors at example points along a curve. (b) A set of vectors each of the length of its corresponding tangent

vector but sharing the same direction. i variati i s depends on the specific equation re; resenting the
. Notice that the variation in length Thi P P i q i P:

- . ' i
curve. In partlcular the tangent vector 18 the first derivative of the curve.

®)

6.42: 6.4(a) Unit tangent vectors
arrayed along a curve.

(b) Corresponding vectors, of
identical direction and each of
length of of the respective unit
tangent vector shows that all such
vectors share the same length.

Normal vector

Ir.x the_case of a two-dimensional curve there is {in almost every case) a unique
dxrect{on vector normal to the curve. Of the two such vectors, one pointing to
each side of the curve, by convention, we choose the one that points “into the
curve”. Of course, it lies in the plane of the curve.

6.43: Almost every point on a two-dimensional curve has a unique unit normal vector.

Fog ?hree-chmenswnal curves, things are more complex. A point on the curve
and its tangent vector define a plane normal to the curve at that point. Every
vector in this plane is normal to the curve.
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6.44: A sample from the infinite family of co-planar unit vectors normal to the tangent
vector at three points on a curve.

However, there is a distinguished vector in that plane. It is called the normal
vector of the curve at p(t). The normal vector is of unit length and lies in what
is called the osculating plane of the curve at p(¢). Its direction is approximated
by the second derivative. This is the plane that most closely approximates the
curve at p(z). Lying in this plane is the osculating circle, which is the circle that
is both tangent to and has the same curvature as the curve at p(¢). The centre
points of the osculating circles at each point along the curve define another
curve called the evoluze.

Binormal vector

The binormal vector is the cross product of the unit tangent vector and the
normal vector.

The unit tangent, normal and binormal vectors can be combined into a structure
that, with a few exceptions, provides a sensible coordinate system at every point

on the curve. This is the Frenet frame.

Frenet frames
The Frenet frame is an orthonormal frame defined at (almost) every point on a
3D curve. It comprises the unit tangent, normal and binormal vectors as the

x-, y- and z-axes of the frame.

Frenet frames have some problems as design tools. At singular and inflection

points they are not defined. When a point crosses an inflection point, the Frenet

frame seems to invert or “flip”, that is, it instantaneously rotates 180° around
the tangent vector. This is not a good thing if, for instance, you are using a
Frenet frame to orient windows on a curved fagade and the frame inverts twice
at each inward curve of the fagade. Geometrically the osculating circle has an
infinite radius at an inflection point.

When a curve is confined to a plane, such inflection points are frequent, indeed
they are to be expected. Figure 6.47 shows one such curve.

Frenet frames are not defined on straight lines. A straight line is essentially an
infinite inflection point.
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6.45: The unit tangent vector;
the normal vector; the osculating
circle for three points on 2 3D
curve; and the curve evolute, the
collection of all osculating circle
centres.

S /‘e-

N ﬁ /

6.46: A collection of 50 osculat:
circles distributed uniformly al
a curve. The circle centres trace
the curve evolute.
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6.47: Frenet frames on a curve that has an inflection point. Note that the Frenet frame
inverts on each side of the inflection point. At the inflection point itself, the frame is not
defined.

Inflection points seldom occur in 3D curves. In their place comes something
worse: high torsion. Even though a curve may appear to contain an inflection
point, it usually avoids inflection narrowly by, in effect, twisting around the
point. This results in the Frenet frame rotating nearly or exactly 180° within a
short parametric range.

6.48: A curve that comes close to an inflection condition results in its Frenet frame
rapidly rotating around the curve, This makes it difficult to orient objects along the curve,

A common remedy for these situations is to adopt a reference direction that
does not depend on the local context of the point p(t) on the curve. Then place
a frame on the curve with its x vector set to be the x vector of the Frenet frame
and its z vector at right angles to the x vector and co-planar with the x vector
and the reference vector. The frame will be on the curve and its x vector will
have the same direction as the curve tangent vector. There are many ways to
make the choice, for example, the z vector of the global coordinate system. But
such a frame is not a Frenet frame; it no longer holds information on curvature
or torsion. Its y vector will not always point towards the centre of curvature.
The choice of a reference direction external to the curve will sometimes result
in a strange orientation for the new frame. A better choice is to compute a local
reference based on three non-collinear points in the curve control polygon or,
better, on the average plane of the curve control polygon. This approach will
fail less frequently, for example, when the curve is a straight line.
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6.49: This is the same curve as in Figure 6.48. The coordinate system on the curve hasits
x vector tangent to the curve and its z vector approximating a reference vector.

Almost any point...

Several times above, I have stated that a property exists at “almost any point” on
a parametric curve. The four exceptions occur where first or second derivatives
are either undefined or zero. In practice, curves almost always have defined first
derivatives, so this case is rare. Unfortunately, the other three cases are quite
common, or at least comrzon enough to cause trouble. Actually, Ilied; they are
really common. For instance, 2 line is a curve, but has a constant first derivative
and a zero second derivative everywhere, so the Frenet frame is not defined at
any point on a line.

@ ®) ©

6.50: ‘The (red) tangent vectors at example points along a curve, (a) placed on the curve and (b) collected at a single point into
hodograph and thus displaying the first derivative of the curve. (¢) The hodograph of the hodograph collects t.he (blue) rangen
vectoss of the first derivative and locates them at the origin. This is the second derivative of the omgmal‘ function. In this and
the following two figures, the second derivative vectors are scaled to 20% of thfir actuzfl length, ot}}erwxse the figures become
too large. In all three cases the second derivative is a straight line. Foreshadowing Section 6.9.9, this occurs because the examp
curves are of order 4 and degree 3.
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Locating the tangent vectors of a curve at the origin produces the hodograph, a
curve ?Ieﬁned by the ends of the vectors and a good device for illustrating wf;en
exceptional points arise. The hodograph is the first derivative of the curve. The
hf)dograph of the hodograph is the second derivative. Using the curve from
Figure 6.41 above, Figure 6.50 shows the first and second hodographs.

An exceptional point on the curve occurs when either hodograph goes through
zero or the two become locally collinear. The first hodograph goes through
zero at a cusp and the two hodographs align at inflection points. For example
see the curves in Figures 6.51 and 6.52 below. ’

6.9.7 Continuity: when curves join

\)({xth parametric functions, continuity is trick as it comes in two flavours, one
with respect to parametric space and one with respect to geometric space. These
are called C and G continuity respectively.

@ ®) ©

ha curve is connected, it has G, continuity. If its first derivative is continuous,
the original curve has C, continuity. If the »** derivative is continuous, the

original curve has C, continuity. The curves in Figures 6.50, 6.51 and 6.52 are
all C, continuous.

6.52: The hodograph (b) of a cusped curve (a) goes through zero, thus the Frenet frame is
undefined at the cusp.

However, C continuity does not mean that a curve is geometrically smooth.
For example, the cusped curve in Figure 6.52 above has a geometric kink, but is
parametrically smooth. This is because C continuity is measured in parameter
space not geometric space.

The notion of G continuity captures geometric smoothness.

If a curve is C, continuous, it is G, continuous. It is connected and this means
the same thing in both parameter and geometric space.

I a curve is G, continuous and its tangent direction varies continuously, the
curve is G, continuous. An example of a curve with C; continuity but not G,
continuity is any curve whose hodograph goes through the origin, as shown
in Figure 6.52 above. Coming into the origin, the tangent has one direction -
leaving the origin, the tangent jumps to a different direction. Mathematically,
G, continuity exists if the normalized tangent vector of a curve is continuous.

Most parametric modelers implement C continuity and leave control of
G continuity to the user.

@ ) © The next sections move from generic properties that apply to all curves to
representation of specific curve types.

6.51: The two hodographs of an inflected curve are colli i i i
The e collinear at the infl
resulting in an undefined Frenet frame. o eeeen porth
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6.9.8 Bézier curves - the most simple kind of free-form curve

The most simple free-form curve is the Bézier curve, which is named after its
inventor, Pierre Bézier. The cubic form (more on the cubic label later) of the
Bézier curve is recussively defined on a control polygon of four points.

1'70

6.53: Bézier curve control points. In the notation p;’ , / stands for the /¥ control point

and 0 stands for the i*# Jevel of the control polygon. This is the outer or 07 level.

Then a parametric point is placed on each line. Each of the lines in the control
polygon holds a parametric point with a given parametric value, say, ¢t = 0.5.
These are the control points of the level 1 control polygon, which joins the level
1 control points in order.

L 50 i L 40
o B8 &Py

6.54: The level 1 control points jyo‘, p;, p; Each has the same parameter ¢, in this case,
t = 0.5. The level 1 control polygon joins these points.

Par.amctric points with the same ¢ = 0.5 value form the level 2 control points,
which define the level 2 control polygon comprising a single line.

146

CHAPTER 6. GEOMETRY

2y
,«” (’.}/
[ /52
1 z’/ 2 »
Iy :
/ 4
/ !
/
o !
Py \

6.55: The level 2 control points pZ, p7. Again, each has the same ¢ = 0.5 parameter.
The level 2 control polygon is a single line.

The level 3 control point p(t)= p] is on the Bézier curve at parameter ¢ = 0.5.
Figure 6.57 show that, as £ varies from 0 to 1, p(¢) traces out the Bézier curve.

6.56: The level 3 control point jZ. This is the defining point of the Bézier curve.

A Bézer curve can be represented symbolically by combining primitive systolic
arrays (Figure 6.58) into a composite systolic array (or just  systolic array), shown
in (Figure 6.59) that defines the entire Bézier curve. The systolic array suggests
a clear convention for labeling the intermediate points of the array. In the point
¥ ]‘ , i refers to the level in the systolic array (starting with the zeroth level) and 7
refers to the index of the point (the point’s place in a sequence) at its particular
level. In the systolic array data flows downwards along arcs from higher nodes
to lower nodes. The top nodes in the systolic array receive no data; they are the
inputs to the system. The internal nodes of the array receive inputs from those
above and connected to them. The arcs denote data flow from an upstream to

a downstream node. The nodes in this particular systolic array combine the
inputs by a parametric line equation. {An expression could be added 1o each
node to determine how inputs are handled, but that is not necessary here as all
nodes use the same simple operation: 2 sum of 2 point and a vector scaled by ¢.)
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6.57: As ¢ varies between 0 and
1, p(t) travels along, indeed it
defines, the curve.
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6.58: A primitive systolic array records the parametric line equation with the line end-
points as the upstream nodes and the parametric point as the sole downstream node.

6.59: This systolic array combines six primitive systolic arrays (the first is shown in bhue),
each representing a line, 1o define the parametric point p(t) = .

The definition of each point {other than the control points) in the systolic array

is simply a parametric line equation using the two points above the point being
computed.

The systolic array is used to define what is called the deCasteljau algorithm for
computing a point () on a Bézier curve for a given value of ¢. In essence, the
algorithm can be stated as:

Start with a set of control points p? and a parameter ¢,
Create the systolic array

Compute the values of any nodes for which you have the values of
the upstream nodes,

Stop when you cannot compute anything more.

Geometrically, the algorithm steps down through levels in the geometric structure,
finding points with the same parameter values at every level.
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6.9.9 Order and degree

Bézier curves belong to a very useful class of curves made from polynomials.
A polynomial is a sum of monomials. A monomial is a product of constants
and variables raised to exponents that are positive integers. For instance, 3x7
is a monomial and 4x* — 2x + 1 is a polynomial.

Monomials and polynomials have two descriptors: order » and degree d, with
n = d + 1. The term degree refers to the maximum exponent in the polynomial.
Order equals d + 1. So 4x? +2x + 1 has degree d =2 and order 7 =3.

Bézier curves take their order (and thus degree) from the number of vertices in
the control polygon. An order 4 Bézier curve has a four-point control polygon,
an order 3 curve a three-point control polygon and an order 2 curve a two-point
control polygon. Figure 6.60 shows that the two-point case defines a straight
line segment. The simple parametric line equation is, in fact, a trivial Bézier
curve.

6.60: Order 4, 3 and 2 Bézier curves (in black) and their control polygons (in grey).

6.9.10 Bézier curve properties

Bézier curves have several useful properties that help us to understand the curves
and to write algorithms that use them.

Convex hull. Intuitively, the convex hull of a set of points can be described by
thinking of a rubber band stretched around the points. Some of the points will
form vertices of a convex polygon; others will be on the interior of the polygon.
Such a polygon is called the convex hull. It a useful approximation of the region
occupied by the points. Algorithms over convex hulls can use the property of
convexity. For example, testing if a point lies in a convex hull is a simple matter
of checking that the point is on the same side of each hull line (or plane if 3D).
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A Bézier curve is entirely contained in the convex hull of its control polygon.

Symmetry. For a Bézier curve it does not matter whether we label the control
POLDTS Po,...; Py OF pgs.-- Py The curves corresponding to the two orderings
look the same, they only differ by their direction of parametric traversal.

ARA A A A

t=00 =02 =04 t=06 =08 t=1.0

ARAAA A

t=10 =08 =06 t=04 =02 =00

Endpoi.nt interpolation. A Bézier curve of degree d passes through Poand py.
In a design situation, having control over the starting and ending points of a
curve is very important.

This can be seen directly from the systolic array by labeling each of the arcs
with the factor that each source point contributes the result point. Remember
Fhat a parametric line equation is written as p(t) = (1 — t)p,+ ¢ #1- Encoded
into a primitive systolic array (as in Figure 6.61), the left arc carries the factor
1—1t and the right arc ¢. The equation in each internal node of the systolic array
takes the sum of the upstream points, weighted by the arc factors.
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6.61: A primitive systolic array with arcs labeled with the scale factors defined in the
parametric line equation.

Labeling the entire systolic array (Figure 6.62) shows that, when r =0, all right
branches of the systolic array contribute nothing, meaning that pJ is the sole
contributor to the final point p7. Thus $(0) = 2. When 1 = 1, 7 is the sole
contributor to £2. Thus p(1) = p?.

6.62: An entire systolic array labeled with scale factors for the parametric line equation.

Affine invariance. Bézier curves are invariant under affine maps. This means
that the following two processes yield the same result: (1) first calculate p(z)
and then apply an affine map to it; (2) first apply an affine map to the control
polygon and then evaluate the image at ¢.

Affine invariance comes in handy when, say, we want to plot a rotated cubic
curve p(t) by evaluating it at 100 points. Instead of rotating each of the 100
computed points and then plotting them, we can rotate the four control points,
then evaluate 100 times and plot. Instead of 100 matrix multiplications we can
do only four.
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A big disadvantage of Bézier curves is that they are not projectively invariant,
that is, they change in perspective. Of course, all CAD systems use perspective.
Section 6.9.13 outlines Non-Uniform Rational B-Splines (NURBs), the main
purpose of which is to ensure projective invariance.

Invariance under affine parameter transformations. We usually consider
Bézier curves defined on the interval [0, 1]. However, we can also think of a
Bézier curve as being defined on any interval [p, ] with parameter s since by
taking t = ;—:%, ? <5 < g, we convert the interval [p, 4] into [0,1]. In essence
this means that any interval on the real number line can be used to control the
parameter t. It just takes a little work.

AVAYAYAYS

4 10 4 10 4 10 4 10 4 10

Linear precision. When the Bézier control poiits are collinear, the Bézier
curve is a straight line.

AArs )
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Variation diminishing. Any line intersects the control polygon of a Bézier
curve at least as many times as it intersects the Bézier curve.

AR
A A AR

Pseudo-local control. The principle of local control means that moving any
control point should move only the part of the curve “near” the control point.
Local control is good ~ as counterpoint, think about editing a single point at the
corner of a stadium roof and having the entire roof change as a consequence.
Bézier curves fail to meet this principle, as all points (except for the endpoints)
are affected by the movement of any given control point. They do implement
local control in a partial sense: the “closer” to a control point that part of the
curve lies, the more it is affected by movement of the control point. The quotes
around the words “near” and “closer” signal their mathematical informality.

6.63: Moving an internal point on the control polygon moves all points except for the
endpoints. Points parametrically closer to the control point move more than points
further away, demonstrating the informal notion of pseudo-local control.

6.64: Moving an endpoint of the control polygon similarly moves all points on the curve,
except the other endpoint.
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6.9.11 Joining Bézier curves

A'spl;ne is a composite curve in which the parts connect. Bézier curves can be
joined together to make splines. Doing so reveals why Bézier curves are not
normally used in applications where splines are required.

We are interested in joining together curves with various levels of continuity
2r9 sm?otbness, which two terms we treat qualitatively here. Recall that Section
-9.7 introduces some of the basic ideas of continuity and smoothness.

. . .
]oul;mg together two Bézier curves can be done in sequence of methods, with
each member of the sequence increasing the smoothness of the result.

I.f two curves share the last and first control points respectively, they will join,
since Bézier curves interpolate their endpoints, two connected control polygc:ns
WLU produce curves sharing endpoints, but there may be a “kink” where th
join. Such splines have both C, and G, continuity. i

7 4
#
. 20
. K
P =4
4!

6.65: In (, continuity the control pol ézi i
: o contin e polygons of two Bézier curves share a single control
point. Points 47, ¢ and 49 (shown in eopdRed) can be freely moved. #

If curves share the last and first control points and if the next control point on
eac}} c_ontrol polygon and the joined point are collinear and equidistant from
‘thAe joint, the Bézier spline will be C, continuous. It will be smooth across the
join, bur the distance between equal parametric points may suddenly change.
A consequence is that, if you are joining one curve to another, two point
pre-determined. , pomREE

In addition to th i inui inui i

addtion ! e constraints 0{;w C“1 continuity, C, continuity requires that the

second erivatives of the two Bézier curves be the same at the joining point. For
¢ Bézier curves we have used so fat, this condition has a surprising geometric

result, as shown in Figure 6.67.
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6.66: C, continuity constrains two points on each control polygon. Two points 45 and 4
{in red) remain free.

o ;0

j’ (] q3

30 ey

=4 — 8=0++(55)
o104 iGIb

qg“P3+P2P3

6.67: To join two curves p(t) and 4(£) with C, continuity, the second derivative of their
endpoints and startpoints must be equal. That is, £"(1.0) = g"(0.0). This determines 40
and §J. Three of the four pointsona degree 3 Bézier curve are determined when splining
to C, comtinuiry, leaving only 43 free (in red).

6.9.12 B-Spline curves

Bézier curves are geometrically and mathematically simple, but they have deep
(and related) problems: control is only pseudo-local, and the order of a Bézier
curve is the number of points in the control polygon. Pseudo-local control
means that all points in a curve change when any control point is changed: it
would be good to adjust the bow of a boat hull without affecting the stern. The
link between order and control points means that a complex design must be
done with high-order curves and this creates problems in interactive editing:

it is easy to introduce local bumps and hard to make a curve visually fair. The
curve also may lie far from the control polygon, making it hard to predict how
an editing action might affect the curve. All of these problems can be remedied
by connecting a series of curves into a composite curve, that is, a spline curve.
Unfortunately, Bézier curves do not spline gracefully.
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B-Spline curves address all of these problems. Like Bézier curves, B-Splines are
defined on a control polygon. Unlike Bézier curves, they can be easily splined.
In fact, splining is so natural that often no distinction is ruade between a curve
{one spline segment) and a spline {multiple segements). The only constraint
on the order of the curve is that it must be less than or equal to the number of
points in the control polygon.

There are beautiful mathematical and computational ways to describe B-Splines
(Rockwood and Chambers, 1996; Piegl and Tiller, 1997; Rogers, 2000; Farin,
2002) that provide great insight on how and why the curves work. But using
B-Splines is the important thing here, and B-Splines provide two new modeling
controls to the control points of Bézier curves: choice of &nots and independent
specification of order. The following explanation expands on the treatment of
Bézier curves above to demonstrate B-Splines and their controls.

In essence, B-Spline curves are 2 framework for constructing Bézier curves ~ the
B-Spline control polygon is just a new way ta specify a Bézier control polygon
that, in turn, defines the intended curve. This has profound implications for
design - B-Splines and Béziers can model exactly the same possibilities; they just
do it differently; see Figure 6.68.

6.68: A B-Spline control polygon (in grey), the derived Bézier control polgyon (in red)
and the resulting B-Spline (and Bézier) curve,

The data needed for an order » B-Spline curve are the same as those for a Bézier
curve, with the addition of a knot vector comprising a non-decreasing sequence
of real values. The knot vector not only determines the parameter values over
which the curve is defined, but also affects the shape of the curve, Depending on
the specific mathematical explanation, a knot vecror of length k for an order »
curve with p control points has either & = ptnork =p-+n—2elements.
The technique shown here uses the shorter knot vector, that is, having length
k= p+n—2;see Rogers (2000) for the fonger form.

We demonstrate the B-Spline construction method (the deBoor algorithm) for
an order 4 curve with four control points. This yields a single B-Spline curve
segment.

In essence, B-Splines generalize the deCasteljau algorithm to produce both the
new Bézier control points and the curve from these new points, The first of two
key ideas, shown in Figure 6.69, s that the parameter used at each level in the
algorithm can be different. Instead of 2 single £, use a collection #, #,, z,. Thus, a
point produced by the algorithm has not one parameter, but three: p(t,, 1,,1,).
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L

6.69: The first step in generalizing the deCasteljau algorithm defines a different parameter ¢; at each level of the systolic array.
69: The
Clearly, the point produced by the algorithm is freer than before.

he t-values are called the blossom values of thfz point ptgt;,t,)
Zna::‘: :Vg;:il:;,:g {tg tys 1,). Thus the input to the a%gorithm isa blo;lsonz valruet )
{t5s £1» 1,) and the output is a blossom point with the input blossom v: uce1 to,s él’.‘ez .
Strangely, the order of the blossom values does‘ not matter: {0, f,;) pr:k u(fteeas
same output as {2,0,1), or any other permutation of the values.ako make 1 .Caly
to distinguish blossom values producing different r.esults, we makea ca.n;)n: -
notation by sorting blossom values in non-decreasing order (numeric orde

rumbers and alphabetic order for variables).

<~05,0512> @
<0,1,1>

<0,0,1>

e ® < 0.5,05,2.0>
<0.5,05,05>

<~10,04,05> @

<0,0,0> PERRES

® <1.0,1.0,1.3>
< —0.2,~0.2,~02> @

i i values given to 4, b and ¢.
: f blossom points {2, 5,¢) depends on the >
gl‘,;cs.s;)rni:‘: tgcgtg;n (%, o, ;J), 0, 11,)1) and {1,1,1) correspond to the control points.
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If two points share all but one blossom value in common, they can be combined
to form a new point. Two points with blossom values p {4, b, ¢} and § {&,c,d)
produce a third point # (b, ¢, ) through a parametric line equation with an
affine parameter transformation, as shown below.

. . e—a d—e e—a
F{b,c,e) m Pt e { B — ) 2= e D A e
(e} =pt ——(p—4) Tt o—d

The point 7 lies on the line berween p and @.

plab,c)

7{b,c,e)

@ ®

6.71: Computing a point from blossoms that share two common values. (2) The labels on
the nodes are blqssom values. The labels on the arcs give the coefficients for each input
laasén; in computing the resulting point. (b) The resulting point lies on the line berween
The second key idea generalizes the algorithm one step further by assigning
each of the points in the systolic array its own blossom value, and using those
blossom values to determine how linear interpolation works between points.
Here is where the main new control of the B-Spline comes into the picture. The
knot vector is a non-decreasing sequence of real values, the most simple being
{0,1,2,3,4,5). Such a uniform knot vector has identical increments berween
each successive knot.

To.use a knot vector, distribute three of its successive elements over each control
poiat. To control point p? assign knot vector elements (0,1,2); to control point
] assign elements (1,2,3}, and so on. In the general case, using knot vector &,
assign (k;, ;. 1,4,y ) to control point 32, These are the blossom values of the
control points. Note well that each pair of adjacent control points share two
blossom values ~ they can be combined using the above logic, and their result will
share vwo blossom walues with the original points as welll
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6.72: The blossom values {, b, ¢} enter the algorithm, one at each level as the parameter in an affine parameter transformation
using the unsharede blossom values as the bounds of the transformation. The blossoms, in turn, are defined by the knot vector.

At each layer in the graph, the algorithm uses the corresponding element from
the input blossom value to compute the points and their blossom values at the
next step. The algorithm is completed by building this equation into every
primitive element of the systolic array. The output of the algorithm is a point
with blossom value (ty, £, %,) given parameters &y, ¢, and t,.

The middle two elements (2,3} of the knot vector (0,1,2,3,4,5) determine
the parametric interval over which the implied Bézier curve will be defined.
The Bézier control points are the blossom points with values (2,2,2), (2,2,3},
(2,3,3) and (3,3,3).

Using the control points and their respective blossoms, the deBoor algorithm
computes points on the curve by equating its three input arguments. That is,
p(2) = deBoor(t, t,£),2 <= t <= 3. Of course, using a knot vector other
than {0,1,2,3,4,5) will change these bounds. For a single B-Spline segment the
order is given by the number of control points, so the length of the knot vector
is twice the curve degree k = 2d or twice the curve order minus two, that is,

b = 2n—2. The n** and (n + 1)** elements of the knot vector determine the
lower and upper curve parameters respectively.

Any point j(t) on the derived Bézier curve can be computed with either the
deCasteljau algorithm over the derived comntrol polygon or by using the deBoor
algorithm with uniform knots: the result is the same. In turn, the deCasteljau
algorithm over the derived control polygon is a special and simple case of the
deBoor algorithm over these same points with blossom values (2,2,2), (2,2,3),
(2,3,3) and (3,3,3) and bounds (2,3).
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<2,3,4>
<1,2,3>

0,1,2
<HLe> <3,4,5>

6.73: A B-Spline control polygon labeled with blossom values. This is the 0%# level of the
deBoor algorithm.

<2,2,3> <2,3,3>

<2,3,4>

<1,2,3>

<1,2,2> <33,4>

6.74: The level 1 control points for {2,2,2) (on the left) and (3,3,3) (on the right). Each
has its respective blossom values as computed by the first level of the deBoor algorithm.

f <2,2,2 3,3,3>

/

o

6.75: The level 2 control points for {2,2,2) (on the left) and (3, 3,3) (on the right). Each
has its respective blossom values as computed by the second level of the deBoor algo-
rithm. The level 3 points are already computed at this stage as one of the level 2 control
points.

<2,2,3> <233>

<LL;77”<:§513>

6.76: A B-Spline control polygon, curve and the derived Bézier control polgyon.

A look at the above figures and the deBoor algorithm shows more worlk being
done than is strictly necessary to compute the internal Bézier control points.
For instance, with inputs (2,2,2), £12,2,3) is computed at the first level of the
algorithm, and (2,2,2) at the second level. The algorithm though is general:
it works 1o compute all control points, any blossom value and any point on the
B-Spline curve.
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An elegant shorthand for determining the Bézier control poin‘ts and thus the B-
Spline curve segment for the standard knot vector uses coefﬁcxents of the affine
parameter transformation at each level of the deBoor algorithm. (The standard
knot vector is {0,1,2,3} for order 3, and (0,1,2,3,4,5) for order 4 curve seg-
ments.) For example, when computing the point p (2,2,2) for an order 4 curve,
the deBoor algorithm uses fractions £ and £ at the first level, and { at the sec-
ond level, as shown in Figure 6.77 below.

6.77: Computing the Bézier control points $(2,2,2), (2,2,3), p(2,3,3) and £(3,3,3) v&fith knoF vector (0,1,2,3,4,5)
produces simple fractions at each level of the deBoor algorithm. Shown here is computation for 4 (2,2,2).

The Bézier control points can be directly drawn using these fractions as follows.

6.78: The Bézier control points for order 3 and order 4 B-Spline curve segments, drawn
using fractional proportions from the deBoor algorithm.
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<0,1,2,3,4,5>

D

<0,01,2,3,3 >

B

<0,0,0,1,1,1>

D

<0,0,0,1,2,3 >

6.79: Repeating knots at the end
of a knot vector pulls the curve to-
wards the endpoints of the control

polygon.

D

<0,1,2,5,6,7>

D)

<0,1,2,8,9,10>

i

<0,2,4,5,7,9>

A

<0,4,8,9,13,17 >

6.80: Increasing the relative spread
berween central knot values pulls
the curve towards the control
points.
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The knot vector itself provides a control for B-Splines. Using it, B-Splines can
be forced to interpolate their control polygon endpoints, moved and changed
within the control polygon and joined with different degrees of continuity.

When values are repeated at the ends of a knot vector, as in Figure 6.79, the
curve is “pulled towards™ the ends of the control polygon. For a single curve
segment (the number of control polygon vertices £ and the curve order 7 are
the same), when the knot vector repeats 7 — 1 values at both beginning and end,
a B-Spline becomes a Bézier curve. In the contemporary curve literature such
curves are described as being clamped. A very confusing historical fact is that
they were called open curves by Rogers (2000) but now oper generally means the
opposite of clamped! Repeating values at one end and not the other leaves the
other endpoint of the curve unchanged.

Figure 6.80 shows that “spreading” knot vector values in the centre of the vector
moves the curve towards the bottom of the control polygon (and vice versa).

At first glance, B-Splines seem a rather awkward way to compute the Bézier
curves of which they are composed. After all, Bézier curves interpolate their
endpoints, the first and last control polygon segments directly give the endpoint
tangents, and the curve is closer to the control polygon than for the B-Spline.
The benefit becomes clear when curves spline together. B-Splines connect easily
and maintain continuity through the connection. They join curve pieces into
an entire spline with the control points being shared by adjacent curves. This is
more easily drawn than written.

6.81: A B-Spline control polygon; its Bézier structures; and the B-Spline curve.

The order (and thus degree) of the curve simply determines how many points of
the control polygon to use for each segment. For example, an order 4 B-Spline
uses four control points per piecewise curve. Each of the points contributes to
the location of every point on each curve segment in which it participates, but
has no effect on segments in which it does not participate. Figure 6.83 shows
successive B-Spline segments for a multi-segment curve. Of course, the curve is
affected by the choice of arder. With decreasing order the curve moves closer

to the control polygon. When order equals 2, the curve is the control polygon:
each piece of the curve is given by a simple parametric line equation.
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1 polygon. An order 2 curve is the
6.82: Order 2, 3 and 4 curves from the same control polygs

control polygon. As the order increases from order 3 (black) to order 4 (red), the curve
fmoves away from the control polygon and generally varies less.

B-Splines inherit all of the properties of Bézier curves and strengthen two. First,
Figure 6.84 shows that the convex hull condition is much stronger. Wf}eré;}s a
Bézier curve lies within the convex hull of its control polygon, a B-Spline lies
piecewise within the convex hull of its implied Bézier control polygons.

6.84: B-Spline curve segments lie within the convex hull of t‘heir irnp.lied Bézier control
polygons. This allows for rapid approximate tests for likely intersections between the
curve and other objects.

A

Second, B-Splines demonstrate true local control. Figure 6.85 demonstrates that
moving a vertex of the control polygon for an order 7 curve affects at most t.he
7 curve segments whose control polygons use that vertex. When the vertex is
close to the end of the control polygon even fewer segments are affected.

6.83: A B-Spline control polygo
implied Bézier control polygon
and curve segment for each of
the piecewise components of a

B-Spline curve.
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6.85: When 2 single control point (in eopdRed) of an order 4 B-Spline curve moves, only

the four parts of the curve using that control point are affected. B-Splines implement true
local control,

As described above, B-Splines introduce knots as a new control. Figure 6.86

shows that repeating knots internal to a B-Spline reduces the continuity at the
affected vertex.
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C, continuity

(b) Non-uniform knot vector, with two duplicare internal knots
P
{0,1,2,3,4,4,5,6,7,8,9, 10)

Py C, continuity

(c) Non-uniform knot vector with three duplicate internal knots
0,1,2,3,4,4,4,5,6,7, 8,9

6.86: (4) In this order 4 B-Spline, non-duplicate knots guarantee C, continuiry. (b) This
non-uniform knot vector duplicates the fifth and sixth knots. This changes the blossom
values at control polygon vertices 57 (blossom (3,4,4)) and 25 (blossom (4,4,5)) and
reduces continuity between the Bézier curve segments 2 and 4. Bézier curve segment 3 has
four identical control points, so essentially disappears. (c) A third duplicate knot spreads
the change in blossom value to a third vertex: now p{, ] and p7 have blossoms {3,4,4),
(4,4,4) and (4,4, 5) respectively. This reduces continuity to Cy between Bézier curve
segments 2 and 5; and makes curve segments 3 and 4 have all identical vertices.

165




s

6.88: Increasing the z-coordinate
of a BSpline control point in
three-dimensional space moves the
two-dimensional NURB curve
towards the two-dimensional pro-
jection of the control point. The
z-coordinate of a control point of
three-dimensional B-Spline is the
weight of its corresponding point
in the two-dimensional NURB.
When weights are equal as, in the
second from bottom curve, the
two-dimensional projection of the
B-Spline and the two-dimensional
NURB are the same.
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6.9.13 Non-uniform rational B-Spline curves

Curves have one more control: weights, which are introduced in the step from
B-Splines to Non-Uniform Rational B-Splines (NURBs). CAD system interfaces
and marketing literature feature the word “NURB” as if it were some kind of
magic. Some design literature goes even further, attributing high meaning to
the term “non-rational”. Reality is both more plebian and essentially below
design. NURBs exist so that curves control polygons can be taken through a
perspective projection and the curve computed afterwards. To do this, NURBs
define weights. Mathematically NURBs are specified in a space one dimension
higher than the geometric space in which they are embedded. The weights are
the highest dimension coordinates of the control points in that space. In design
terms, weights manifest as controls that draw a curve closer to a control point as
the weight on that point is increased. Many CAD systems do not even provide
access to either weights or knots. Such systems may claim NURB capability
and be based on NURBs underneath the interface, but they essentially provide
only B-Splines. NURBs do have one geometrically important feature. With the
correct choice of weights, they can represent conic sections, a task B-Splines
cannot do. For CAD systems this means that only the NURBs representation is
needed. From a design perspective this matters much less.

6.87: NURBs in two-dimensional space are B-Splines in three-dimensional space. The
two-dimensional NURB (rendered in red), with control points Py, Py, Py, P, and P,
corresponds to 2 three-dimensional B-Spline (rendered in grey) with control points
P, Py, P}, P} and P} when the z-coordinates of the B-Spline control points are equal.
Otherwise, as is the case shown here, the NURB varies from the B-Spline.

Weights complete the lexicon of curve properties and controls. Béziers, B-Splines

and NURBs form a sequence, each building on its predecessor. Here is how
they compare.
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Property Bézier B-Spline NURB
convex hull yes yes yes
symmetry yes yes yes
endpoint interpolation yes optional  optional
affine invariance ves yes yes
affine parameter invariance yes yes yes
variation diminishing yes yes yes
local control pseudo yes yes
splining with continuity hard to do ves yes
order control 1o yes yes
knots no yes yes
projective invariance no no yes
conic sections no no yes
weights 1o no yes

From a design perspective, what is most striking with all of these properties is
their relative irrelevance. Yes, we rely on each of these properties sometimes.

For instance, affine invariance is important. As we move contral points around
as a group the generated curve does not change with respect to the control points.
But the generic curve concepts are what count. That parametric and geometric
distances differ, that the Frenet frame is (almost) always defined and that we

want to control continuity are more important to design. Béziers, B-Splines and
INURBs are the (not so simple) mathematical devices we need to get there.

6.9.14 The rule of four and five

How many control points are actually needed? What is a good choice for order?
These are separate questions, but with linked answers. There are good reasons
to keep each number small, and it turns out that just five control points and
order 4 is sufficient for many, many modeling tasks. Five control poiats means
that a curve can have a “dip” in it. Order 4 means that curves can join smoothly,
without obvious joints, even under light reflection. Having a small number of
control points makes it easier to predict how a model will change. The lower
the order, the closer the curve is to the control polygon, and this also helps in
understanding a model’s behaviour.

@ <]

6.89: An order 4 curve with five points on its control polygon allows a single “dip”. This
simple and computationally light description is sufficient for many design situations.
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6.10 Parametric surfaces

Parametric surfaces and curves share mathematical structure. Surfaces are more
complex than curves so, naturally, their representation must be more involved.
Rather than describe how surfaces work mathematically and parametrically, this
section describes their behaviour from a modeling perspective.

Parametric surfaces comprise a point p{(#, v) that moves along the surface as
the parameters # and v change. (See Figure 6.90.) By convention curves have a
parameter ¢, so surfaces get the next two letters of the alphabet.

6.90: A wv point on a surface p(u,v).

Like curves, movement is not linear. (See Figure 6.90.) Unlike curves, there is
no general way to make spacing uniform. This leads to many hard problems in
subdividing surfaces.

6.9%: An array o{ parametrically equally spaced v points on a surface. It is easy to see
that the geometric spacing varies between pairs of points,
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With exceptions similar (but more complex) to those for curves, Figure 6.92
shows that every point on a surface has a unique unit surface normal.

6.92: The unit surface normals at the #v points on the surface from Figure 6.90.

Lines in # and v parameter space map to curves on the surface. When either
# or v is held constant, the line in parameter space is parallel to the parameter
axes. The square #v parameter space is mapped to the surface, stretching like
a rubber sheet in the process. The curve in geometry space stretches with the
sheet, so lies on the surface in rough proportion to its position in parameter
space. Such curves, where one of # or v is held constant, are called isocurves.
Figure 6.93 shows four such curves.

6.93; Isocurves with # = 0.2, # = 0.3, v =0.5 and v = 0.8 on the surface from Figure 6.90.

At almost every point on a surface there is a coordinate system comprising the
surface normal (z-axis), a vector in the local #-direction (x-axis) and a vector in
the local v-direction (y-axis). Such a system is called a #v-coordinate system.
Figure 6.94 renders an array of such systems at equal parametric intervals.
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6.94: An array of uv-coordinate systems on a surface.

There is another coordinate system as well, shown in Figure 6.95. This points
not along the #v isocurves bur along the lines of principal curvatuve. At almost

every point on a surface (excepting oddities like the sphere and the plane), there

exist two planes at right angles to both the plane of the surface normal and 1o
each other. Both planes intersect the surface. One holds the curve of maximum
curvature; the other the curve of minimum curvature. The directions of these
planes are called the principal directions of the surface at the point.

6.95: An array of principal direction coordinate systems on a surface.
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Geometric gestures

Architect: Kohn Pederson Fox Associates (KPF)
by Onur Yiice Giin

Parametric modeling enables designers to build complex designs with precise
control. Through connecting discrete parts with hierarchical relationships,
designs can be driven, updated and modified via the use of numerical, textual
and logical values: parameters. The design model is no longer a fixed entity. It
becomes malleable, granting us the opportunity to explore, test and evaluate
design variations.

One of the greatest benefits of parametric modeling over conventional CAD
modeling is the propagation graph, which enables simultaneous manipulation
of parts across a design. This encourages the designer to think across 2 range of
interconnected design ideas and enables discovering or establishing relational
rules within design parts. One single action triggers a chain of reactions within
the built system. When the logic of parametric modeling systems is combined
with contemporary free-from modeling, form-finding and design exploration
are vastly enhanced.

Unbounded and playful exploration in design is how we discover new ideas.
More computational power and fewer geometric limitations simply mean a
larger ground for innovation. However, the realities of design-construction
practice eventually require more geometric and cost control. Once set into a
parametric model, geometrical relationships, connections and limitations can
be harnessed towards these practical ends.

When geometry is incorporated early into the design process, the well-known
strategy of post-design rationalization becomes pre-rationalization: geometry
and structure become form-making ideas in their own right. Through using
such tools, designers gain insight and clarity.
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7.1 Geometrical fluidity: White Magnolia Tower

Kohn Pedersen Fox Associates’ 68-storey White Magnolia Tower was designed
in 2003 as the landmark building of the Luwan district of Shanghai. The digital
model of the tower was built in Rhinoceros® 3.0, using non-uniform rational
B-Spline (NURB) modeling techniques. The initial design was an exercise in
sculpture using neither pre-rationalization nor parametric modeling rechniques.

The original model of the tower comprised three identical surfaces that were
extended in a slightly different fashion at the top of the building (Figure 7.1). A
similar approach applied to the canopy development at the tower base.

7.1: 3D print of the tower. 7.2: Surface curvature properties before (left)
Soutce; Robert Whitlock and KPF, and after (right) geometrical rationalization.
Source: Onur Yiice Giin and KPF.

Driven mainly by form-making considerations, the designers made no attempt
to control the surface curvature in the original digital model. The complex
result had varying and irregular curvature values across the surface. Practical
curtain wall design rewards regularities of almost any kind: curvature, planar
faceting or common edge lengths (Figure 7.2). Smooth variation in curvature
enables a more regular and cost-effective panelization. Flat panels still retain
their historical advantages over warped panels, including production time and
cost, durability and maintenance.

The design development studies of the White Magnolia Tower centred on the
idea of generation and use of parametrically controlled torus patches. A torus,
or a rectilinear torus patch, which is a cutout from the surface of a torus, can be
subdivided into flat quadrilaterals. These quadrilaterals can be interpreted as flat
panels for curtain-wall construction (Figure 7.1).
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7.3: A torus surface can be panelized with flat panels. The panels common to a horizontal
row are the same size.
Source: (€)2010 Onur Yiice Giin.

A parametrically controlled set-out generated the floor slab perimeters for each
floor of the building. A set of circles with tangential dependencies defined a
series of co-tangential arcs forming in to a composed curve (Figure 7.4). At

each floor, the composite curve representing the slab perimeter lines was then
trimmed from both ends with trimming lines. These lines rotate a small amount
(0.44°) in successive floors, yielding 30° of twist overall across the 68 storeys
(Figure 7.5). Regardless of the twisted cut on the edges of the overall surface, the
shape of the surface remains the same.

7.4: An underlying diagram of tangential circles create a continuous arc compaosite with
smooth transitions.
Source: Onur Yiice Giin and KPF,
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7.5: The.composite base curve (in Figure 7.4) is trimmed by trimming lines (in orange) as
it is carried upward 10 generate all floor slab perimeters. Note the twisting effect created
by rotating the trimming lines.

Source: Onur Yiice Giin and KPF,

The composite slab perimeter curve scales as it moves along a vertical arc. The
manipulation of both the vertical arc and the composite slab perimeter curve
defines the overall form of the building, controlling the amount of tapering
and the maximum width in the middle of the building. When swept along one
of the base arcs, the vertical arc creates a torus patch. Since the base comprises
three co-tangential arcs, the resulting geometry is a compound surface of three
torus patches. However, the transitions between these patches are smooth since
the composite curve arcs have tangential continuity.

The parametric model of the White Magnolia Tower was developed in Bentley’s
GenerativeComponents®. This model can be driven by both global variables,
and by editing associative dependencies berween the underlying geometries,
which dynamically update in connection to any change in a geometric part.
Once running, designers used the parametric model to generate variations of the
tower for further evaluation (Figure 7.6).

7.6: Various towers as a product of the parametric model.
Sources Onur Yiice Giin and KPR,

During design studies the generated geometries were evaluated on both the ease
and cost of construction and the proximity of the final form to the initial one.
The visual shape of the tower also remained as one of the main considerations

during the design studies (Figure 7.7).
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In the next phase of the study, a script developed in McNeel's Rhinoceros®
helped auromate the tower panelization. The panel placement works as follows,
The start point of the slab perimeter line is the centre of a circle, whose radius
is equal to desired panel width. This circle intersects the slab perimeter line at

a point, which determines the second base point for the panel. The next panel
uses this second point of the first panel. The second point becomes the centre of
the second intersecting circle, which determines the second point of the second
panel. And the routine keeps creating the panels until it reaches the end of the
slab floor perimeter line, and then the next floor is processed (Figure 7.9).

7.7: Preliminary renderings of tower variations. Note the differences regarding the gap

berween surfaces, and the varying viswal sharpness created by different curvature values.
Source: Onur Yiice Giin and KPF.

Three-dimensional prints were used to compare and contrast the visual qualities

of alternatives (Fi
(Figure 7.8). 7.9: Each panel is created in reference to the previous one and to local geometrical guides.

Source: Onur Yiice Giin and KPE.

Once all the panels were created, they were grouped by their size and colour
coded for a quick visualization of the number of panel types. A curtain wall
construction tolerance of 10mm determined the boundaries between groups of

i . . X ! Lo 7.10: Panels grouped and colour
like panels. With this technique, the tower can be panclized with six different coded with a 10mm tolerance in

panel types (Figure 7.10). size.
Source: Onur Yiice Giin and KPF.

Computational design methodologies developed for the White Magnolia Tower
influenced KPF’s ongoing studies for numerous towers, which, at the time of
writing, were either under construction or confirmed for construction around
the world. For example, geometrical models and construction documentation
of the CSCEC Tower in Pudong, Shanghai and F3-F5 Towers in Songdo, South
Korea, each extend the studies done for the White Magnolia Tower.

Design studies of the White Magnolia Tower kept the overall form appealing
and interesting while achieving practical curtain wall construction. As the KPF
(New York) Computational Geometry Group, we exhibited in several events
and exhibitions, including the SIGGRAPH 2008 Design Computation Gallery
in Los Angeles. During the preparation of this exhibit, we explored additional
experimental structural fagade patterns (Figure 7.11).

7.8: 3D priats help the designers understand the qualities of the tower form.
Source: Onur Yiice Giin and KPF,
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7.11: Fiber-fagade: An interpretation by the KPF (NY) Computational Geometry Group
as shown in the SIGGRAPH 2008 Design Computation Gallery.
Source: Onur Yiice Giin and KPF.

7.2 Designing with bits: Nanjing South Station

Kohn Pedersen Fox New York entered a competition for the Nanjing South
Station, which was planned as part of China’s high-speed and regular service
railroad system. The station is sited in a shallow valley and is bisected through
its centre by a “green corridor” connecting the area’s major parks. Inside the
station the green corridor takes the form of an intermodal hall, around which
the arrival hall is located, and on top of which runs the station’s platforms and
departure lounges. Above the elevated departure lounges, a large sweeping roof
protects passengers from rain, sun and wind (Figure 7.12).

The conceptual non-parametric CAD model, prepared as the first 3D model of
the station, reveals the initial design intentions around massing and geometric
organization (Figure 7.13). Large canopies cover 500m-long platforms lying
between the 15 train-tracks aligned on an east~west axis. However, the tracks
themselves are not covered in order to admit sunlight onto the platforms. The
canopies transform into arced stripes to define the intermodal hall in the middle
of the building. Additional canopies connected to the middle of the station on
the north and on the south accentuate the entrances.
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7.12: Section drawings prepared by the design team revealing the intentions about the
performance of the sweeping roof. Note the scale of the roof surfaces in comparison to
the trains and human figures.

Sources Nicholas J. Wallin and KPF.

7.13: ‘The first non-parametric digital model of Nanjing South Station prepared by the
design team, showing the sweeping roof on the left and the train tracks on the right,
Source: David Malotr and KPF.

The team intended an organic and fluid form. Conventional non-parametric
modeling requires that the very properties to be explored must be decided at the
outset. Parametric modeling allows such decisions to be deferred to the end.
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7.14: A parametric model enables the design team to generate and discuss various formal
configurations.
Source: Onur Yiice Giin, Stelios Dritsas and KPF.

With references from the non-parametric CAD model, a basic parametric model
was built in GenerativeComponents® to explore more formal organizations
(Figure 7.14). In this model a global perimeter surface hosts all individual canopy
surfaces as continuous forms. Simple parameters update the width and height of
these surfaces enabling quick exploration. At this stage, the specific parametric
relationships were less important than the overall form. Precise control came
later.

In this more advanced modeling phase, a generative S-shaped section plays the
main role in defining the characteristics of the surfaces. Although individually
simple, under composition and parametric control the S-curve creates a range of
different formal conditions (Figure 7.15). These include the steepness and depth
of surface, and the amount of projection towards the side. A splitting function
divides the S<curve at the higher portion of the roof, tearing an extra operting
for more sun exposure where necessary (Figure 7.16). The split basically occurs
right in the middle of the S-curve: while one half is elevated, the other remains
in its place. The split ends are then tied with a vertical connector. The ends of

the S-curves connect to the main structural elements below in 2 similar fashion,

The connection angles are manipulated in reference to the underlying structural
elements.

Various configurations, deformations and transformations of simple S-curves,
driven by global rule sets and internal parameters for local adaptations, define
the characteristics of the surfaces. While driving and determining the design
form, these curves remain invisible. The resulting design form affects reflection
from and penetration to the station of direct sunlight, as well as water drainage.
Solar insolation in each season is affected in a similar manner (Figure 7.17). The
final design configuration is a result of these rule-sets imposed on the S-curve
system, rather than being a “hand-crafted” geometry.
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7.16: A split function creates a gap
right in the middle of the S-curve,
which is then connected with a
7.15: Simple S-curves and their power of generating variations. linear member.
Source: Onur Yiice Giin and KPP, Source: Onur Yiice Giin and KPF.

While the flexibility and freedom in the exploration phase helps discovery of
different formal organizations (Figure 7.18), the limitations and constraints
defined in the parametric system help develop precision and higher control
over the geometry in later phases.

7.17: Solar insolation simulations done for spring, summer and fall give ideas about
overall solar exposure of the roof surface.
Source; Onur Yiice Giin, Stelios Dritsas, Mirco Becker and KPE,
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7.18: Variations derived from the source parametric model.
Source: Onur Yiice Giin and KPF,

The behaviours defined over the S-curves imposed constraints on geometric
outcomes. This way, the model could be called pre-rationalized. With some
anthropomorphic license, we can claim existence of a certain awareness in the
model; it does not violate boundaries, either stopping or failing as it does. Most
?f thei time it warns the user of impending failure. Thus there is some sort of
intelligence, or at least part of the designers’ intelligence, embedded in .

These efforts require custom tool-making, as the generic tools provided by
-CAD ?latforms are insufficient to resolve all the geometric requirements and
intentions of even moderately complex building models (Figure 7.19). In this
case, the GCScript language was used to construct arrays of nodes for references
and generating geometric forms.

7.19: The Nanjing South Station model including data in various ranges, from the column
layout to roof panelization,
Source: Onur Yiice Giin and KPF,

The parametric model helped generate the structural scheme via the creation
of geometric placeholders - points, lines and curves. Files of these placeholders
were passed to the structural consultant for analysis. The feedback from the
consultants helped update the form towards greater structural efficiency.
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The final form reveals the team’s discovery of “gestural” form, especially when
compared to the initial CAD model (Figure 7.20). Instead of a rapid fluctuation
in geometry, the canopies now rise and break apart in the middle to celebrate
the intermodal hall. The entrances on the north and south are highlighted by
projections. The train station represents a unified form, enabled by relating
parts through common geometry and logic. Any manipulation on the global
form dynanically updates the form of each canopy-

7.20: The Nanjing South Station entry became one of the two competition finalists.
Source: KPF.

A 1/400 scale model, approximately two meters long, was built in China using
the digital documentation. This was a rehearsal of actual construction since all
the structural members and surface pieces were prototyped. The model, when
complete, gave ideas about the configuration of the ribs supporting the canopies
and the qualities of the double curved surfaces comprising the overall form.

73 Alternative design thinking

The two distinct projects shown here have much in common. The designs for
the White Magnolia Tower and the Nanjing Train Station cover a wide range
of concerns. Their studies are neither purely technical nor purely aestheric. On
the contrary, the tools developed for each design empower form-finding under
technical constraint. Designs today require so many inputs that they no longer
are, or can be, one “master’s sketch”. Likewise, they cannot be a technician’s
product. The competitive profession of design demands that a irm’s whole
knowledge be used. Successful design is a complex process done in teams.

Parametric models can carry the needed design complexity. They can embed
multifaceted design concerns into a relational digital model. In contemporary
practice, the design model is a flexible entity that can be generated, manipulated
and re-organized to produce elegant wholes comprising highly customizable
and controllable interconnected parts.
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Chapter 8

Patterns for parametric design

Abstraction is the hardest new skill for designers. Why? It involves thinking
more like a computer scientist than a designer. But does it? Designers employ
abstraction all the time as they organize projects and drawing sets. Removing
unneeded derail helps keep focus on the issues to hand. Abstract representation
enables progress on concrete issues such as circulation, light and structure.

Just as a designer would never specify a building (beyond a doghouse, of course)
completely in a single drawing, a parametric modeler should never work in a
single model. A complex model is made of (mostly reusable) parts.

Reusable, abstract parts are a keystone for professional practice. Over several
years, my research group at Simon Fraser University has used design patterns

to understand, explain and express the practice and craft of parametric design.
In addition to the the patterns themselves, group members have written theses
{Qian, 2004; Marques, 2007; Sheikholeslami, 2009; Qian, 2009) and publications
(Qian and Woodbury, 2004; Woodbury et al., 2007; Qian et al., 2007, 2008).
Ours is a shared enterprise; throughout this chapter, Tuse the first person plural
to describe what we did together.

A pattern is a generic solution to a well-described problem. It includes both
problem and solution, as well as other contextual information. Patterns have
become a common device in explaining systems and design situations (Week,
2002; Tidwell, 2005; Evitts, 2000; van Duyne et al., 2002; Gamma et al,, 1995).
Authors express patterns in various ways. Here we adapt Tidwell’s (2005) direct
and self-explanatory style comprising Title, What, Use When, Why, How and
Examples. The Title should be a brief and memorable name for the pattern.
What uses an imperative voice describing how to put the pattern into action.
Use When provides the context needed to recognize when the pattern mighe be
applied. Why motivates the pattern and outlines the benefits that accrue to its
use. How explains the pattern’s mechanics. For us, a distinguishing fearure of a
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pattern is that it explains its mechanism, that is, all instances of the pattern have
similar symbolic structure. Examples, which we call Samples, provide concrete
instances of the necessarily abstract pattern descriptions.

Patterns use the imperative voice. They are normative, describing what should
or might be done. They have ancient precursors. Throughout Western history
at least, authors have codified practice through text. Vitruvius's The Ten Books
on Architecture (Pollio, 1914) is the sole architectural text surviving whole from
Roman times. From the Renaissarice comes Palladio’s (1742) The Four Books of
Architecture. In the 19th Century, Ruskin’s (1844) Seven Lamps of Architecture
looked largely to long past works as the basis for practice. In the 20th Century,
Alexander (1979) gave the common “pattern” a specific meaning as a “Pattern” -
a formal, rhetorical device expressing design intent. To a computer scientist or
linguist, it seems obvious that Alexander was influenced by the computational
thinking of the time, particularly by Noam Chomsky’s grammars. Alexander
built a philosophy of architecture around his patterns. He used phrases such

as 2 “Timeless Way of Building”, “a process necessary for good” and “a quality
without a name” to prescribe how people should use patterns in the world.

In the late 20th Century, software engineering discovered Alexander’s work. In
software, patterns became 2 too! to explain informal mid-level compositional
ideas in computer programming (Gamma et al,, 1995). The software engineers
dropped all of the philosophy, leaving only the device itself. Their justification
came from the world; they saw patterns as effective devices for achieving design
goals. They grounded specific patterns in shared expertise within a group of
authors and reviewers. Each design pattern systematically names, explains, and
evaluates an important and recurring design in object-oriented systems. They
intended patterns to help users choose design alternatives that make a system
reusable and avoid alternatives that compromise reusability. The publication of
Gamma et al.’s (1995) book tipped the concept of design patterns to worldwide
popularity in the domain of software engineering and other fields.

‘We now understand that patterns are useful because they foster communication.
Rather than having to explain a complex idea from scratch, a group of designers
can just mention a pattern by name. Everyone will know, at least roughly, what
is meant. Through such sharing patterns have become a popular vehicle for the
collection and dissemination of practices and semi-formal ideas.

Our patterns aim to help designers learn and use propagation-based parametric
modeling systems. We have largely focused on the GenerativeComponents®
system as this allows us to access a large group of designers who are currently

learning both the system and the computational concepts underlying propagation-
based systems. While we expect that our results could generalize to other systems,
at the time of writing we have done limited trials in CATIA® and SolidWorks®.

Tsung-Hsien Wang and Ramesh Krishnamurti (2010) have implerented all of
our patterns in Rhinoceros®,
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We intend that our patterns capture these acts of authorship, above nodes but
below designs. Patterns can aid learning, We have taught parametric modeling
to several hundred professionals and graduate students. Over time we noticed
that our instruction has increasingly focused on this tactical level. We now use
patterns as explicit elements in teaching and learning.

This chapter presents 13 patterns for parametric design, explaining each in the
abstract and through several samples. Complexity increases throughout - the
earlier patterns are simple, the later ones more involved. They group into five
categories. The first pattern isin 2 class of its own; it calls for CLEAR NAMES
throughout a2 model. CONTROLLER, JIG, INCREMENT and REACTOR outline
basic model structuring techniques. Paired together, POINT COLLECTION and
PLACE HOLDER convey a key method for specifying and locating compound
objects. PROJECTION, REPORTER and SELECTOR present ways to abstract
information from a model. The final three patterns, MAPPING, RECURSION
and GOAL SEEKER, comprise the inevitable residual category of useful (and
somewhat complex) ideas.

8.1 The structure of design patterns

Alexander (1979) defines a pattern as a three-part construct: context, problem
and solution. His patterns have a common format: 2 picture (demonstrating a
typical example), an introductory paragraph (to set context), a headline (essence
of the problem), a long section (body of the problem), a paragraph explaining
the solution, and a diagram of the solution. Gamma et al. {1995) use a graphical
notation to describe design patterns and provide multiple concrete examples.
Tidwell's user interface (UT) patterns (Tidwell, 2005) have a clear and strong
structure: narne, diagram (usually made by example screenshots), what, use
when, why, how and examples. Patterns can be presented both in a formal
structure and as a set of flexible ideas. We build largely on software patterns
(Gamma et al., 1995) and Ul patterns (Tidwell, 2005) to develop a structure for
parametric modeling design patterns as follows:

o Name is a noun phrase describing the pattern briefly and vividly.

« Diagram is a graphic representation of the pattern.

o What states a one-sentence description of the goal behind the partern.
e When describes a scenario comprising a problem and a context.

¢ Why states the reasons to use this pattern.

-

How explains how to adopr the pattern to solve the given problem.
o Samples illustrate the patterns with working code.

¢ Related Patterns show the connections among different patterns.
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Of the eight pattern elements, samples are distinctive in our work in that they
provide concrete, working code as pattern instances. We downplay the language
aspects of patterns. Although many pattern authors aim for a complete pattern
language that models a design’s functional hierarchy, such comprehensiveness
and authority proves itself elusive. In counterpoint, Week’s (2002) short book
of informally defined workplace patterns and Tidwell’s (2005) extensive user
interface pattern collection use simple categories of patterns and have achieved
wide recognition with users and other experts.

8.2 Learning parametric modeling with patterns

Almost all computer manuals are example- and procedure-based. They take you
through a series of worked examples, describing keystroke-by-keystroke what
you must do to model the example. Some people learn well this way. I you do
not, patterns may help. Through teaching parametric modeling to hundreds of
people, we have developed a simple and effective three-step process. The first
step is learning a minimal set of mechanical steps. You need to learn the basic
interaction conventions of the modeler, a few modeling commands and succeed
in making a very simple model. The second step is to make a model useful to
you in your current work. Start with a sketch in any medium you wish; just
make it quickly. Divide it into logical parts, so that each part can be modeled
easily. We have found that good outside advice can really help you here. An
experienced hand can clarify both the model and its division into parts. The
third step is to model the parts and combine them into a whole. Here is where
patterns shine. You will likely find that many of the parts resemble patterns (we
derived the patterns largely from observing and interacting with designers as
they worked). Copy and modify the pattern samples you think may be useful,
combining each pattern sample into your model. The patterns will not make
up the whole of your model, but the parts they do compose should be clear and
clearly separate. This process helps you learn a powerful strategy you already
know but in the new context of parametric modeling, Divide-and-conquer isa
near-universal strategy in problem solving and design. It appears differently in
each medium. In parametric modeling, patterns are one good manifestation:

8.3 Working with design patterns

We developed the design patterns in this book by working with and observing
designers learning and using parametric modeling. Chapter 3 distills some of
what we discovered into 14 classes of designer action. It would be no surprise
if we argued that patterns may help in many of these, but such arguments are
currently circular; we commit the post boc ergo proper hoc fallacy when we use
the same data to both form and verify theory. In the place of firm conclusions,
I hypothesize that patterns can help design work and present several arguments
supporting this hypothesis. In the rest of this section, T use the definite voice,
presenting hypotheses as if they are established claims. The truth is that these
are propositions to be tested by future research.
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Four salient attributes of patterns is that they are explicit, partial (above nodes
and below designs), problem-focused (shared problems) and abstract (generic).

Explicitness aids reflection. The acts of writing and reading patterns demands a
mode of thought different from the flow of design. Like Schén’s (1983) reflection-
in-action, patterns provide 2 tool for advancing design skill. To write 2 pattern

is to commit it to definite media for others to read in your absence. Patterns are
a good tool for groups to build up a shared library of low-level modeling and
design ideas. Though explicit, the samples in patterns are intended as throw-
away code to be copied and modified at will. Since exact digital copies are freely
available, samples cannot be ruined. Minimal work is lost in trying them out.
Multiple samples for each pattern provide different roots from which to start.
Pattern names are explicit handles for communication in design work.

That patterns are partial means they must be composed into designs. They
provide parts with which to solve the “conquer” aspect of the divide-and-conquer
strategy. By providing separate solutions to problem parts, they can help clarify
the data flow through a model. Properly written, they are informal devices by
which modules can be expressed in principle.

Patterns focus on solving problems. When well-written they state a problem
and provide several clear solutions to it. They aid sketching by accelerating the
creation of approximate models. They often combine geometric, mathematical
and algorithmic insight. They demonstrate how to fuse these important and
complementary skills.

Lastly patterns are abstract. To use them well evidences mastery of the “divide”
part of divide-and-conquer. Using them at all helps develop the special form of
divide-and-conquer demanded by parametric modeling.

8.4 Writing design patterns

Our research shows that writing your own design patterns may aid reflection
on and reuse of design ideas. Patterns take time and effort to write, and return
clarity and simplicity later. They can amplify your professional skill. To write
a pattern is to listen to yourself and your colleagues. Are you doing the same
thing again and again in variations? Can you describe it in 2 phrase? Do you
have sample code that you reuse? If you answer “yes” to each of these questions,
think about writing a pattern. Stick to the eight pattern descriptors. As you
start, focus mostly on Name, What, When and How. Collect a set of Sample
files. Look at these together to discover what they share, Refactor the code in
each to be consistent. At this point, you may have the beginnings of 2 useful
pattern. In the slow periods of your work, reflect on the pattern. Refine it for
clarity and simplicity. Use it in your work. If it is useful, refine it again. Make
it public within your group. Make it easy to find: online is best. Others may be
interested in what you have done. Share it widely if you possibly can.
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Some likely good names
MainBeam3
RoofPanel
Southfacade
DesignSurface
PlaceHolder
Truss8
Purling_3
Foundation
RoseWindow
Pane3 7
ColumnA_7
Hypotenuse

Some usually bad names
Point02
BSplineA
foobar
aardvark
here

there

angle6
parabola
thingarmabob
lansPiane
abc

AfDraAp

Source for tag cloud:
www.wordle.net
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8.5 CLEAR NAMES
Related Pattern ¢ ALL OTHER PATTERNS
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‘What. Use clear, meaningful, short and memorable names for objects.
‘When. Always, except for work you intend to throw away.

‘Why. Objects have names. You use these to remember how you have organized
a model, to refer to parts as you create and edit links, and to communicate to
others. Clear, meaningful, short and memorable names are a prerequisite for
making a model useful beyond its immediate creation.

How. Good names are clear; they convey what you intend. They carry design
meaning; usually they relate to form, function or location. They are as short as
they need to be (and no shorter). A good and useful convention for concision
is CamelCasing, putring words together with no spacing or linking punctuation
and capitalizing each word (separate numbers with punctuation). Memorable
names explain design concepts.

Bad names are easier to invent than good ones. Perhaps the worst naming scheme
is by object type. "Point01," "vector03" and "coordinateSystem06" provide no
new information; the type of an object is one of its properties.

Naming is active. If you watch an experienced parametric designer, you witness
a process of naming, reflection and renaming. As model complexity increases,
this expensive refactoring returns a benefit. In its absence, modeling stalls in
confusion and error, Be warned. Unless you are smarter than any parametric
modeler I have ever seen, you need to atrend carefully to the names of model
parts. It takes time and effort, but returns capability and reliabiliry.
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8.6 CONTROLLER

Related Pattern e JiG ¢ POINT COLLECTION  REACTOR @ REPORTER &
SELECTOR © MAPPING
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i
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What. Control (a part of) a model through a simple separate model.

When. The essence of parametric modeling is the parameter - a variable that
influences other parts of the design. Understanding how parameters affect a
design is a crucial part of the modeling process. Use this pattern when you want
to interact with your model in a clear and simple way, OR you want to convey
1o others how you intend a model 1o be changed. Remenber, in the future you
may well be such another person if you have forgotten the model structure!

Why. Isolating manipulations to a smnple place away from the complex detail

of 2 mode! means that you can change the model more easily, Using a logic for
control that is different from the way the model is defined means that you can
use the most appropriate interaction metaphor. Changing a collection of objects
through a single interface simplifies the interaction task.
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As models grow, so does the need for carefully considered CONTROLLERS.

In particularly complex models, you may well design and implement a separate
control panel that collects all of the CONTROLLERS into a single place in the
interface.

How. A CONTROLLER can do either or both of the following: it can abstract
an aspect of a model into a clear and simple device or it can transform an aspect
of a model into a different form.

The key concept in a CONTROLLER is separation. You build a separate model
whose outputs link to the inputs of your main model. The separate model is
the CONTROLLER. It should express, simply and clearly, the way you intend to
change the model.

CONTROLLERS can abstract or transform and they can do both at the same
time. An abstracting CONTROLLER is a simple version of the main model that
suppresses unneeded detail. Parameters on lines and curves are very simple cases
of a CONTROLLER: they abstract a location on a curve into a single number.
The layout of controls on a properly designed stovetop directly abstracts the
layout of the burners. In contrast, the vast majority of stovetop controls fail to

do this well.

A transforming CONTROLLER changes the way you interact with a model.
For example, polar coordinates transform Cartesian coordinates into a different
set of inputs. A rotating knob on 2 stovetop transforms the amount of energy
delivered into an angle.

As one property changes in your model, one or more parts change; you can
connect these changing properties to your model through a CONTROLLER.
Then, you can simply change the CONTROLLER and see the result in your
model. CONTROLLERS are thus independent ~ they have minimal connection
to the model they control and are easily connected and disconnected as needed.
This clear separation is the hallmark of 2 CONTROLLER: every well-designed
CONTROLLER will have a symbolic model that shows only one or a scant few
tinks between it and the model it controls.
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CONTROLLER Samples

Vertical Line
When. Control the position of a vertical line on a curve with 2 CONTROLLER.

How. Curves and surfaces are complex objects. Their parametric structure is
typically hidden from the interface - a point may move quickly in one part

of a curve and slowly in another as its parameter changes. Further, curves and
surfaces are usnally part of a design. There may be many other objects around
them that make it difficult to directly interact with their parametric points.
Controlling a point on a curve through a parametric point on a line addresses
both of these issues. You can see the relative parameterization of a curve point
by examining its controlling point. Further, the controlling point can be in any
position, near to or far from the model.

In this model, a single vertical line takes its position from a parametric point
on the curve pOnCro. The CONTROLLER is a line and a parametric point on
it. Making the parameter of the point pOrCrv dependent on the point in the
CONTROLLER transfers control from the curve to a straight line.

This is a very simple sample, but it demonstrates the essential idea of separation
of control and model.

cP1 cP2

8.1: The CONTROLLER on the left joins to the main model on the right through only a
single link. Such sparsity of connection is a hallmark of s CONTROLLER.
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8.2: A simple CONTROLLER.
The point on the line controls
the point on the curve, which, &
turn, is the base for a vertical lin



o

012345678910

0123456789 10

012345678910

012345678910

8.4: Control the number of circles
in a model with a point on a line.

CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN

Line Length
When. Change the length of a vertical line with a slider.

How. This is a very simple sample of the CONTROLLER, but one that trans-
forms a length in one direction to a length in another. Start with a vertical line
and a horizontal CONTROLLER line. Connect the length of the vertical line to
the parameter of the point on the CONTROLLER line. Moving the point in the
CONTROLLER alters the length of the vertical line.

| l !

R e S—

8.3: The previous sample maps the CONTROLLER’S motion along a line 1o the controlled
points motion along a curve. This CONTROLLER is less direct: it maps location along a
fine to the height of the controlled line.

Multiple Circles
‘When. Change the number of concentric circles with a slider.

How. The quantities controlled can be continuous (a real number) or discrete
(an integer or member of a sequence or set). In this sample, a slider controls

the numbers of concentric circles. The parametic point on the slider connects
to the creation method of the circle. In this sample, the number of the circles

is determined by the parameter of the point on the slider. As the parameter of
the point changes from 0 to 1, the number of circles will change from 7 (in

this case 7 = 0) to a predetermined number 7. This CONTROLLER requires

a mapping between 0 ~ 1 and 1 — 7. The actual math is simple: the number of
circles for a given parameter ¢ is Floor(z /(n —m)). This idea of mapping though
is so general that it has its own pattern: the MAPPING pattern.

Controlling a discrete result with a continuous slider creates visual dissonance:

the slider seems smooth yet the result changes in steps. A typical solution is to
mark the slider at the locations at which the number of discrete objects changes.
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Cone Radii
When. Change the radii of a cone with a pair of concentric circles.

How. A single CONTROLLER can control multiple aspects of a design. Of
course, this alone poses a design problem. The CONTROLLER must visually
cohere with the object being controlled. In this sample, the aim is to control
the top and bottom radii of 4 cone. The CONTROLLER maps from concentric,
coplanar circles to the cone’s top and bottom surfaces. Its circles are controlled
by points on their boundary. Two links, one the radius property of each of the
CONTROLLER’S circles to the cone radii connect the CONTROLLER to the
model. The CONTROLLER circles provide a visual reminder of the real objects
being controlled: the top and bottom of the cone.

Most of the time, the relative size of the circles when compared with the cone
suffices to distinguish the link berween aspects of the CONTROLLER and model.
Such geometric coincidence may fail to satisfy, for example, when viewing in
perspective or when the two radii are very close. Other codes, such as colour
{careful here!), text, line weight or graphic labels, might be useful.
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8.5: The CONTROLLER’S
cireles visually map to thetop a
bottom of the cone.
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0 1
B D 2 3 Equalizer
B B When. Adjust the height of multiple cylinders with an equalizer.

4

g How. In this sample, the CONTROLLER takes advantage of a roughly linear
arrangement of objects in the model by using the well-known design for a sound
equalizer. The equalizer is a row of sliders, each interactively independent of the
others. This design puts the controlled dimensions into visual proximity and
thus reveals their relative sizes, which might well be obscured in the model due
to location, size and perspective effects.

o 1 . . . .
2 This CONT?\OLLEI‘K misses an important aspect of the design of a physical

SOUf’ld equalizer. With such a device an operator can use his or her entire hand
D to simultaneously control several dimensions and to achieve a smooth curve

4 across dimensions. The computer mouse, with its relentless one-thing-at-a-time
D design impoverishes the potential interactivity of the CONTROLLER. Some of
this could be recovered by using a REACTOR or SELECTOR pattern as part of
i ¢:. Lol the CONTROLLER itself.
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8.6: This CONTROLLER works
like the familiar equalizer in
sound systems.
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Parallel Lines
When. Adjust the length and position of a line parallel to a reference line.

How. In this sample, a single CONTROLLER affects multiple parameters. It is

the converse of the samples above, in which multiple independent controls form

the CONTROLLER. A reference line establishes the direction and maximum

length of the result line. The CONTROLLER comprises a single line carrying a

parametric point. The line’s direction and length determines the direction and ok 1
length of a guide line that originates at one end of the reference line. A point on
the guide line gets its parameter from the CONTROLLER and is the start point
for the result. The result gets its direction from the reference and its length from
the CONTROLLER.

If you move the CONTROLLER’S parametric point, both the result’s length and
its distance from the reference change. If you move the CONTROLLER line, the
guideline moves to remain parallel,

This CONTROLLER combines several of its properties (line length, direction
and parametric distance) to control multiple aspects of its result (distance, length __“-_1 *****
and radial position). It does this by combining controls, for example, both
length and distance of the result line are a function of parametric distance along
the CONTROLLER. Sometimes, such interdependence is both intentional and
beneficial. More often though, it can confuse: the result of the CONTROLLER
becomes opaque with increasing complexity in its relation to the model. Most
usability experts, for example, Don Norman (1988), are highly critical of such
linked controls.

Be warned: good CONTROLLERS can be hard to write. l

8.7: The point on the control I
controls both distance between
the two lines and length of the
controlled line.
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8.8: Controlling two angles fully
determines a triangle if its base is

known.

CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN

Right Triangle

When. Create different right triangles with the same base.

How. The righe triangle is a fascinating and useful geometric object. Some of its
instances have Pythagorean triples as dimensions; its hypoteneuse is the diame-
ter of its circumscribed circle; it combines to form rectangles; and the sum of its
two non-right angles is 90°. Each of these could be the base for 2 CONTROLLER
design.

This CONTROLLER uses the last of the above features, by using a half-circle to
express the 180° triangle angle sum. The half-circle’s base gives the direction
and length of the resulting triangle base. Rays between the circle centre and rwo
points on the circle represent the direction of the sides of the triangle. If these
two points can move freely on the half-circle, they specify an arbitrary triangle.
Presume that the half-circle has a 0 ~ 1 parameter domain. If the parameter ¢ of
one of these points is constrained to the domain 0.0 — 0.5 and the other to the
domain 7 4 0.5, the generated triangle will always be right-angled. Further, all
right-angled triangles can be reached.

This CONTROLLER reveals that right-angled triangles are but two-parameter
objects: the hypoteneuse length and one angle suffice to uniquely determine
the triangle up to a rigid body motion. It does visually invert both the angle
and side when compared with the result. In reading across both CONTROLLER
and model, you encounter the angles and lengths in reverse order. Some visual
coherence has been traded for geometric insight.
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Hyperboloid of One Sheet
When. Abstract the geometry of a hyperboloid of one sheet to a plane,

How. A hyperboloid of one sheet is a ruled surface, that is, it can be formed from
a sequence of straight lines. Further, it is doubly ruled: two such sequences can
combine into a lattice, giving potential for structurally efficiency. Conceptually,
a hyperboloid can be defined by twisting two parallel circles whose centres
share 2 common line normal to the circles.

The hyperboloid's independent parameters are the radii of the two circles and
the twist of one circle relative to the other. Starting with the CONTROLLER

from the sample, add a twist control to one circle.

Of course, this CONTROLLER has limits. These range from —180° to 180°
exclusive. A twist of 180° turns the hyperboloid into a cone. Two surfaces with
twist parameter 4 and —a are geometrically the same but logically distinc?. The
difference is that the two sets of generating lines transpose. If one set carries
information distinct from the other, the resulting design will differ as well. (

8.9: A single point on a circle
maps directly to the degree of
twist in a hyperboloid of one

sheet.
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8.10: A complex CONTROLLER
comprising separate controls for
azimuth and alticude.

CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN

Azimuth Altitude
When. Control a direction by its azimuth and altitude.

How. The azimuih of a point with respect to a reference is the horizontal angle
from a reference direction. The altitude is the vertical angle from the horizontal
plane. As controls, azimuth and altitude are independent: they specify clearly
separate changes to a point. Of course, azimuth and altitude relate to rwo of the
dunfenslons of a spherical coordinate system (azimuth, zenith and radius), with
zenith =90 — altitude . ,

An azimuth-altitude CONTROLLER comprises two concentric circles with
equal radil: one horizontal and one vertical. A point on the horizontal circle
detern‘fines both azimuth (where azimuth = t * 360°) and the vertical plane
on which the altitude circle lies. A point on the altitude circle gives the altitude.
The CONTROLLER is easily programmed to report the angles it produces.

In this sample, the model is simple: a pyramid with apex controlled by a line of
fixed length and direction given by the CONTROLLER. Four points make the
base of th? pyramid. The start point of the controlling line is the intersection of
the base c!mgonals. The direction is that of the azimuth-altitude CONTROLLER
and the distance from start toend is 2 predetermined value, set outside of the
CONTROLLER, in the model at large.
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8.7 jitel

PATTERN ALIAS o Strut © Reference

Related Pattern ¢ CONTROLLER @ POINT COLLECTION e PLACE HOLDER
 MAPPING

Source: Amy Taylor

What. Build simple abstract frameworks to isolate structure and location from

geometric detail.

When. Designers sketch, Carpenters build jigs. Parametric modelers make

JiGs. These acts share intent; they abstract away inessential derail, leaving only

a simple framework that can be easily changed. Design sketches express structure
and form. Carpenters’ jigs fix locations and tool paths in space. A parametric
J1G mixes both of these traditions. Use this pattern when you want to quickly
make and modify a simple version of your design and develop detail later.

Why. Most models contain many elements and a few controls. A JIG reduces
the number of elements. It is an abstract model that reveals design structure and
control behaviour without the distracting detail and slow interaction implied
by a larger model. A JIG can be changed easily compared to a more complex
model. Once developed, a JIG can be reused in other contexts, but only if it

can be isolated from the rest of the model. JIGS are like abstracting controllers,
but they are more specialized (they abstract a particular design). Further, J1Gs
typically describe the whole design and are embedded within the design rather
than being separated from it. The design is built directly on top of the JIG.
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How. A J1G should appear and behave as a simplified version of your intended
design. A physical example is the strongback and stations used to build a small
boat. The stations locate and support the hull when it is being constructed.
Fairing, the process of making the hull smooth and continuous, can be done
much more simply with 2 jig of stations than with a complete hull. JIGS are like
construction lines in that they help locate elements. They are unlike such lines
in that they are linked to the controls that enliven the parametric model.

JIGS typically connect to the model they control more richly than controllers,
but still with a limited number of links. Most of these links should come from
sink nodes. This is not a necessity - it is good programming style. Non-sink
nodes capture the internal logic of the JiG. Connections from other than sink
nodes run the risk of becoming invalidated when the J1G is refactored, In face, if
asink node of a JIG is not used in the model it serves, it probably should not be
there and can be deleted.

To make 2 JI1G, you need to understand the parametric bebaviour you want and
how the JiG will be used to define the complete model. A good JIG typically has
relatively few geometric inputs (for example, points, lines, planes, coordinate
systems) and each of these is carefully named. The small number of geometric
inputs allows you to easily locate the JIG. The names are the primary means by

which you will understand the JiG when you (or someone else) reuse the JIG in
the future.

Use the internal structure of the JIG to capture intended logical behaviour. For

example, i the depth of a truss is proportional to its span, a JIG might comprise
a line and a variable whose value is proportional to the length of the line.
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JIG Samples

Controlled Surface Variation

‘When. Make variations starting from a surface with 2 parabolic cross-section.
Use 2 JIG to model these variations in a controlled way.

How. Low-order curves and surfaces are easy to model and often display visual
regularity that is difficult to achieve with higher orders. An order 3 curve can be
represented by a higher-order curve by locating the control points of the higher-
order curve in precise relation to those of the lower-order curve. In the curve
literature this is called degree elevation.

A symmetric JIG comprising an upright and a crossbar provides a simple set of
parameters that support controlled surface variations starting from a parabolic
curve (see (a) below). To generate the control points of an identical order 4
curve from those of an order 3 curve (see (b)), divide the two sides of the order
3 control polygon in the ratio of 2 : 1 and 1: 2 respectively. The order 5 control
polygon divides the three sides of the 4 in the ratios 3:1,2: 2and 1: 3. Initially
locate and size the crossbar to give these ratios. Varying the ratios (d) produces
symmetric curves that are visually close to the parabola. Restoring the crossbar
settings to the above defaults restores the initial parabolic surface section. This
allows the designer to vary the surface cross-section in comparison to a known,

simple and potentially fabricatable form.
®)
@

8.11: Two parameters give the
overall height and width, Three
meore control variation away from
the default parabola form: the
proportional heights of the central
points of the order 4 and 5 control
polygons and the proportional
width of the central points of the
order 4 control polygon.

203



CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN
Tube

%en. .Use the local properties of a curve to determine the local radius and
orientation of circular JIGS. Use the circles to define a tube. In turn use a curve
as another JIG to apply a global form to the tube as a whole.

How. Start with a curve as the central path of the tube. See (a) below. It can be
spftciﬁed by four points with almost arbitrary x-, y- and z-coordinates. Along
this curve, place a sequence of circles perpendicular to a global axis, here the
y-axis. Evenly distribute the circles in parameter space, making the geometric
spacing between circles vary along the curve. Each circle takes its radius from a
property of its centrepoint, in this case the height above some external datum.
In this s.ample, the radius is the absolute value of the centrepoint’s z-value plus
a small increment (to avoid the possibility of a zero or negative radius). Since
these circles are the elements that construct the tube, they comprise a JIG.

?Iow ®) ]IG. t%)e J1G. Make a simple curve using a low-order B-Spline. Substitute
it for the existing curve used to define the JIG. The tube now reflects the simple,

strong geometry of the curve.

Make (c) arcs comprising those parts of the circle JIGs above the xy-plane.

Lastly (d), change the planes on which the circle JIGS lie to be perpendicular

;o the defining curve, resulting in a subtle, but significant change to the tube’s
orm.
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Sheet
When. Simplify controls for a surface by relating them to 2 quadrilateral.
How. Standard surface controls can provide too much freedom. This sample

reduces the control available to model a surface by ensuring corner tangency
conditions. It still provides a wide range of visually logical variation.

The JiG is hierarchical - it comprises JIGS built on JIGS, as shown below. The
first JIG (a) is a quadrilateral, which may be planar or not. The second JIG {b)
has two parts. The first comprises struts at each vertex, each perpendicular to
the local plane of the quadrilateral (defined by the vertex and its predecessor and
successor vertices). The second adds frames at the end of each strut, such that
the x-axis of the frame aligns with the successor vertex and the y-axis with the
predecessor vertex, but in the apposite direction {the quadrilateral has right-
hand rule ofientation, so the frame's y-axis has the same direction as the vector
from the predecessor vertex to the vertex itself). The third JIG {c) comprises
curves with end tangents defined by the x-and y-directions of the frames. The
result (d) is the surface itself with the curves asits defining boundary.

The controls for this JIG comprise the quadrilateral jtself and the four strut
lengths. Each enters the system at a different level of the JIG.

8.12: The control polygon for
the JIG curve comprises three
points only. In this sequence the
middle point of the control poly-

8.13: Four lengths, one for each

gon moves in all of the x-, y- and © @ of the corner struts, are sufficier
z-directions. to access a wide range of surface
geometry.
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8.14: Developed initially from the
constant angle subtended from a
chord on a circle, the JIG for this
design opens a space of related
designs.
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Scallop

When. Use the shape of a scallop asa point of departure in a search for form.
The actual surface will be analogous to, but not a copy of, a scaltop.

How. In plan, the geometry of a scallop is approximately that of a circular arc,
TI"AC base of the scallop is a chord of the arc. Any point on the edge of the circle
will subtend a constant angle with the base.

The.idea is to “open” up the base of the scallop - to turn it from a line into a
vertical rectangle. This JIG comprises a sequence of triangles on horizontal
plax'les ;iu*rayed vertically from the base line. The apex of each triangle is the
projection of a point on the circle onto the plane of the triangle. This JIG has
three parameters: the angle subtended on the circle, the spacing of base points
on the circle and the vertical spacing of the JIG elements. CONTROLLERS could
be put on each of these to open a design space for the surface.

The generating triangles are actually modeled as order 2 B-Spline curves. This
and the order of the surface itself give two additional controls. The resulting
forms are far from the original scallop point of departure.
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8.8 INCREMENT
Related Pattern ¢ POINT COLLECTION e MAPPING

‘What. Drive change through a series of closely related values.

When. Parts may be similar in structure but vary in their inputs. Very often,
input variations are gradual from part to part and parts in sequences or other
arrangements are similar to their neighbours. Use this pattern when you are
making collections of related parts.

Why. Being able to relate and edit parts through gradually changing inputs
lends surety and control. As a form-making strategy, gradual change provides
a background against which a strong figure can play.

How. Gradual change occurs in two forms. The first is the integers, stepping in
units of one from low to high,

. =1,0,1,2,3,...

The second is the reals, varying continuously (infinicely divisible). Taken by
themselves, the integers and reals can express only limited kinds of change.
Punctions transform sequences of integers and sampled reals into new sequences
that may be dramatically different from the originals.

In turn, an INCREMENT uses the output of a function to drive change in any of
a variety of ways, limited only by imagination. Length, size, angle, orientation,
distance, colour, transparency and surface texture can all be changed in orderly
(and disorderly) ways through incrementing along sequerices of integers or reals.
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The samples in this pattern develop increasingly complex curves traced by a
single point moving through space. Fach successive sample increases both the
number of parameters on which an increment applies and the complexity of the
incrementing functions. Throughout each sample, the structure of the model
remains constant; only the values of the parameters change.

Even a single point can demonstrate the basic structure of an increment. Start
with a point in space, located as it must be with respect to a coordinate system.

L.

"The point can be thought of having either Cartesian (x,y, z) coordinates or
cylindrical (r, 8, z), where r is the radius, 8 is the azimuth angle and z is the
height of the point. Use cylindrical coordinates and increment the azimuth
angle 8 to make the point trace out an arc. If the azimuth angle increments
from 0° to 360° the arc becomes a circle. Increment the radius to turn the arc
into a spiral.

Incrementing the height of the point turns the arc into a helix and brings us to
the first sample below.
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INCREMENT Samples

Circular Helix
When. Move a point uniformly around a centre and upward in space.

How. As a point moves around the circle, increment its height by a uniform
amount. The result is to trace out a simple circular helix.

§331

Conic Helix
When. Add a reducing radius increment to change a circular to a conic helix.
How. In addition to the two increments (angle and height) for a circular helix,

reducing the radius incrementally from an initial value to 2 minimum value
produces a conic helix, that is, a helix whose points lie on a cone.

g 2
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Tapered Radius Spiral
When. Taper the radius of a conic helix to produce a spiral.

How. Asa point on a conic helix moves upward its radius shrinks. The point
can be imagined to have a parameter that is 1 at the helix base and 0 at the top.
Squaring this parameter will still result in a series that goes from 1 1o 0, but the
series will taper across this interval. Mathematically, the curve changes from a
helix to a spiral.

Tapered Height Spiral

‘When. Taper the height of a conic helix to produce a spiral.

How.. Instead of tapering the radius, taper the height with the same device, by
squaring the parameter. In this case, the parameter is 0 at the helix base and 1

at the top. The helix, now a spiral, appears to have been differentially stretched
from its base to its top.
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Tapered Radius and Height Spiral
‘When. Combining increments yields unpredictable forms.

How. Combining both radius and height tapers can be done independently in
the model. They do not affect each other computationally, but combine in the
geometric result. They produce a spiral that would be hard to conceive of itself,
but naturally emerges from the parameterization.

Elliptical Tapered Radius and Height Spiral
When. Change a circular spiral to an elliptical one.

How. In the prior samples, the radius, angle and height were independent in
the model. In this sample, the radius becomes a function of the angle, by using
a polar equation for the radius of an ellipse. If an ellipse has major axis of r = 1
and minor axis of 5 = 0.5, the radius as a function of 6 is

7s 0.5
Vrcos?G+s%in’0 v cos*@ +0.25sin0

Loid
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8.9 POINT COLLECTION
PATTERN ALIAS e Point Set o Point Grid

Related Pattern « CONTROLLER  JIG  INCREMENT ¢ PLACE HOLDER e
PROJECTION @ RECURSION

What, Organize collections of point-like objects to locate repeating elements.

‘When. Most designed artifacts have repeating elements. These may vary by
both their absolute position and by their spatial relationships with nearby
repeating elements. Use this pattern when you are able to think about the size
and location of repeating elements in terms of a set of defining points.

Why. A collection of points organized to capture intended spatial relationships
can greatly simplify the process of further model development. This saves time
and effort in both modeling and reuse of 2 model in new contexts.

How. Point-like objects may be located in Euclidean space or parametric space,
so a collection can be specified in either space. Euclidean space is the familiar
space of everyday life. It can be represented through Cartesian, cylindrical or
spherical coordinates. Most curves and surfaces (those defined internally by
parametric equations) define a moving frame that gives locations on the curve or
surface. Unlike those of Cartesian space, these parametric formulations may not
preserve constant distance, either geometrically or along the defining object.

Use a collection of point-like objects as the input to define repeating elements.
The logical structure of a collection is important ~ it provides the relationships
through which points can be used to define objects. For instance, a collection
structured as 2D array provides for each point P;; easy access to the surrounding
points, that is, p,;,, where g € {i — 14,3 + andb € {j~ 1,7,/ +1} . In
comparision, a collection structured as a tree provides for each point P, easy
access to parent(P) and children(P).
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The following samples specify POINT COLLECTIONS with functions. A given
patametric system will provide its own particular commands for organizing
collections, for example, replication in GenerativeCompornents. The uniform
and universal function notation here allows comparison among the sarmples.

POINT COLLECTION Samples

Spiral
When. Place a sequence of points along a spiral.

How. A spiral is a curve that turns around an axis at 2 continously varying
distance perpendicular to the axis. Spirals admit many parameterizations: this
sample uses count, heightStep and radius. Count controls the number of points
in the collection. HeightStep is the height increment berween sequential points,
not the entire height of the spiral. Radius decides the outer radius of the spiral:
the distance from the first point of the spiral to the central axis. The function
below generates a spiral.

The update method ByCylindricalCoords, which generates the actual spiral
points, takes four arguments: a coordinate system, the point’s distance from
the origin, the point’s angle of rotation from the x-axis, and the point’s height
above the xy-plane.

function spiral (CoordinateSystem cs,

1
2 int count,
3 double radius,
4 double heightStep)
501
13 Point spiralf = {}:
7 double radiusint = 0.0;
3 for {int 1 = 0; i < count; ++i)
9 {
1© spiratP{il = new Point(};
1 radiusinternal=radiusx({l—Pow(i/count,0.5));
173 spiralP{i]. ByCylindricalCoordinates(cs,
13 radiusinternal,
14 30.0%i,
15 ixheightStep);
16 }
7 return spiralP;
&}
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8.15: Few can predict the form
of the spiral from its parameters
alone, In form-finding, designer:
typically iterate through cycles ¢
coding and parameter play.
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8.16: Several point collections,
each along the positive arc of 2
parabola, each scaled by a real

parameter. As this scale parameter

increases, so does the slope of the
parabola. The model limits the
output range from zero to a set
maximum value, The collections’
input parameters are spaced so
that each has an equal number of
points.

CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN

Parabola
When. Arrange a sequence of points along a parabola.

How. Simple mathematical functions pervade the modeling act. Functions
must be described mathematically to work at all, and it pays to use evocative
names for their variables. For example, the parabola y = kx? scales the most
simple parabola y = x? in the y-direction by the factor k.

Placing count points along the parabola yields both the POINT COLLECTION
and its organization as a linear sequence. Algorithmically, a for-loop steps through
the points, adding each at the end of the sequence in turn. Sampling at count
equal intervals along the domain of the parabola function yields an unequally
spaced collection of count points. Thus the function below generates a POINT
COLLECTION as a sequence along the parabola.

1 function parabola{CoordinateSystem ¢s,
2 int count, double scale)
3 {

4 Point pointOnParabola = {};

5 for {int I=0; | < count+1; ++i){
6 pointOnParabolali]l = new Point{);

7 pointOnParabolall ]. ByCartesianCoards(cs, 1,0.0,scalexi*l};
LI 4

3 return pointOnParabola;

o}

At the risk of repetition, this collection is a sequence - an array. Its members

thus have indexes, that is, integers giving each member’s position in the array.
Members of pointOnParabola can thus be addressed as “pointOnParabolalil”,
where i = 0...count—1.

Designers are often more interested in controlling the output range over which
a function is used rather than its input domain. For example, to place a sequence
of points along the part of a parabola below a given upper limit requires that the
input to the function be scaled as in the following code.

function parabolalnRange(CoordinateSystem cs,
int count,
double scale, double range)

double xStep = Sqrt{range/scale}/count;
double x = 0.0;

1

2

3

4

5 Pgint polntOnParabola = {};
[

7

s for (int i=0; | < count+l; ++i){
9

X = [*xStep;
w0 pointOnParabolali] = new Point();
1t pointOnParabolal i ]. ByCartesianCoords{cs, x, 0.0, scaleskx };
12 }
3 return pointOnParabola;
[N
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Waves
When, Simulate a waveform with a two-dimensional collection of points.

How. POINT COLLECTIONS in the previous two samples are one-dimensional.
A two-dimensional collection can be organized as an two-dimensional array, an
array of arrays. This sample demonstrates how to create such a two-dimensional
collection. The generating function #x,y) is a sum of two sine functions, with
two arguments taken respectively with domains along the x- and y~direct'ions.
The particular parameterization here comprises count the number of points

in each direction (and the dimensions of the array), size the geometric extent

of the collection in the x- and y-directions, ampiitude the height of the wave
function and startAngle the angle at which the sine curves starts.

A pair of nested for-loops makes the algorithm step through the points, row by
row, defining each in turn. The structure of the algorithm maps directly to the
structure of the collection!

1 function wave {CoordinateSystem cs,
2 int count,
3 double size,
4 double amplitude,
5 double angleStart)
s {
7 Point pt = {};
s double anglel = 0.0;
9 double anglej = 0.0;
w double ordinate = 0.0;
1 for {int | = O; l<=count; ++i)
12 {
3 pt{il = {}h
4 anglel = {i/count)}*360 + angleStart;
15 for {int } = Q; j <count; ++j)
i6 {
17 ptliij] = new Point{);
8 angle] = (]/count)*360 + angleStart;
19 ordinate = Sin{anglei} + Sin{anglej)}xamplitude/2;
bl pt{i1{j 1. ByCartesianCoordinates{cs,
2 {j fcountxsize},
2 {i/countxsize),
B ordinate);
4 }
25 }
6 return pi;
v h
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8.17: The collection iterates
through a complete sine curve in
both parametric directions. The
parameter angleStart has the
greatest effect on the resulting
form; it picks the place on the sine
curve where the cycle begins,



8.18: A random sequence likely
has little utilivy in design (but
designers always surprise us). This
sample shows that symbolic and
geometric structures may have
any kind of relation, inclading the
null relation of randomness.
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Point Cloud
When. Create a collection of random points to uniformly fill a volume.

How. The geometric and symbolic structures of collections need not be the
same. Here, the symbolic structure is a sequence and there is no geometric
structure, just randomness. This sample places uniformly-distributed random
points within a rectangular bounding box. Its parameterization gives count,
the number of points; lowerleft, a frame defining the lower-left corner of the
bounding box; and boundX, boundY and boundz, reals that give the location
of the upper-right corner of the bounding box. In this special case, the range of
the function is a rigid body transformation of the domain. This means that the
uniform distribution defined in the domain will persist into the range. Imagine
using a random distribution in spherical coordinates. The points are random,
but not uniformly distributed!

1 function cloud (CoordinateSystem lowerleft,

2 int count,

3 double boundX,

4 double boundY,

5 doubte boundZ}

s {

7 Point randompP = {};

5 for (int I =0; | < count; i}

9 {

10 randomP[i] = new Point();

i randomP{ 1 J. ByCarteslanCoords { lowerleft,

12 Random(0.0,boundX),
13 Random(0. 0, boundY},
14 Random(0.0 . boundZ}};
5 }

1 return randomP;

v}
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Points on a Parametric Curve
When. Position 2 sequence of points along a parametric curve.

How. A parametric curve provides both a curve and a way to place points along
it. A sequence of points along the curve at irtervals of its parameter ¢ yields

a collection of points in which the symbolic successor of a collection point is
the geometric successor of the corresponding curve point. The sequence can be
made either by replication or an explicit function (shown here). Section 4.10
introduces replication as a convention of specifying a collection of values for a
node property. The collection causes the system to generate an object for each
item of the collection in nodes using the replicated property.

function pointOnCurve (Curve curve, int count)

1

2 {

3 Point p = {}:

4+ double tStep = 1/{count—1};

3 for (int § = 0; i < count; i++)
6 {

7 plil=new Point(});

] pl1].ByTParameter(curve, i*tStep);
s}

10 return p;

nok

Points on a Parametric Surface
‘When. Array points on a parametric surface.

How. Analogous to a patametric curve, a parametric surface provides both a
surface and locations on it through the parameters # and v, This gives a natural
organization for the collection as an array of points, with neighbours in the
array corresponding to neighbours on the surface. As with a curve, surface
can be generated by replication or by an explicit function.

1 function pointOnSurface (Surface surface, int uCount, int vCount}
2 {

3 Point p= {}

s+ double uStep = 1/(uCount—1);

s double vStep = 1/{vCount—1);
6

7

8

9

for {int 1 = 0; | < uCount; i++)
{
plil={};
for {int j = ©; j < vCount; }++)
10 {
n pliil jI=new Point(});
2 pli1{]1.ByUvParameters{surface, isxuStep, jrvStep):
13 }
4 }
15 return p;
1w }
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8.19: A collection organized by i
members’ parametric position oi
acurve.

8.20: A collection organized by
members’ parametric positions
a surface.
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8.10 PLACE HOLDER
Related Pattern e JIG ¢ POINT COLLECTION

What. Use proxy objects to organize complex inputs for collections.

When. Designs have parts. A single model may represent many variations of
apart, for example different window designs. An effective modeling strategy
copies the model, one copy for each part, and adjusts the model inputs 1o each
copy. Typically a part has multiple inputs - customizing each one is a lot of
work. Use this pattern when you are able to describe the multiple inputs to a
model through a smaller number (preferably one) of abstract proxy objects.

‘Why. A very common scenario arrays a module across a target surface or along
a set of curves. I this module requires point-like inputs themselves defined on
the target, organizing these inputs is sure to be complex and error prone. If you
can define the inputs to the complex module through a simple construct such
as a polygon, it is often much easier to place the module. An arrangement of
polygons on the goal surface creates proxies on which the module can be later
(and easily) placed.

Hov:l. PLACE HOLDERS have two parts. First is the proxy: a simple object that
carries the module inputs. For example, a rectangular module requires four
input points, one for each corner. A foursided polygon can act as a proxy for
these points: each of the vertices of the polygon provides one of the points. The
proxy simplifies the arguments provided to the module: instead of four points,
use only one polygon. The second part relates the proxy object to the model.
For Fﬁmple, a p())lygm} proxy can be placed using a recrangular array of points:
tl;e i polygo.n s vertices are the points éi.i’ 7 72 Pisrjrrand By oy The code
placing a generic object such as a polygon is more simple and reusable than the
code for a specific module.
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PLACE HOLDER Samples

Hedgehog

When. Use a POINT COLLECTION as a PLACE HOLDER to locate and orient
components {spines) that are perpendicular to a surface.

How. Every point on a surface defines a single frame comprising the surface
normal and the vectors of principal curvature. This is sufficient information to
place and size spine-like objects on the surface. The point provides location; the
surface normal provides the direction for the spine; and the vectors of principal
curvature provide information for further adapting the spine to context. Make
2 POINT COLLECTION structured by its » and v point-onrsurface parameters.
Instead of points, use frames - remember they have points inside them! Each
of the frame points will serve as the base of a spine. Define two graph variables
count and beight. The POINT COLLECTION produgces count frames in each
parametric direction. At each of the frames, use the frame’s z-direction and the
parameter height to define a cone.

o

Kunsthaus Graz, Austria, by Peter Cook and Colin Pournier
Source: Anita Martinz
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8.21: This simple PLACE
HOLDER uses frame located
on a surface to hold geometric
information for placing cones.



8.22: A simple representation for
the Firth of Forth bridge comprises
three long and two short lines.
These act as PLACE HOLDERS for
more complex representations of
the bridge segments.
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Truss
When. Use lines as PLACE HOLDERS to locate the members of a truss.

How. Fach member of a truss might carry information such as the member
section, material, moment of inertia and modulus of elasticity. In addition, the
parametric model for truss members may be able to shape its ends depending on
the context in which it is placed. Placing a truss member though requires only
the baseline along which the member lies. First, develop a feature representing

a truss member and requiring only a line as a geometric input. Second (and in

a new modell), create an abstract truss comprising line segments to represent
the truss members. Applying the truss member feature to these baseline PLACE
HOLDERS, places the detailed truss members. Of course, this simplifies a real
truss member PLACE HOLDER in which the truss member parametric model
would need sufficient information to shape its sectional properties and details.
Taking this next step would require that the PLACE HOLDERS become spatially
more sophisticated and that the truss member feature use that new information

to specify its details.

Source: Kenneth Barker
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Paper Folding

When. Use quadrilaterals as PLACE HOLDERS to simulate origami.

Source: Ray Schamp

How. Parametrically modeling folded paper is hard. The problem is physics -

' paper has actual dimensions and folds in it constrain the spatial configurations

it can achieve. These real-world constraints inevitably imply that any model
will require the solution of simultaneous equations, which propagation-based
systems cannot do. (The GOAL SEEKER pattern gives a partial solution to this
problem.) That said, design sketching is approximation and this sample shows
a way to simulate a folded paper system, ceding from reality some dimensional
variation in the individual panels.

In a folded structure, the pattern of folds can be thought of as separate from the
size and location of the folded panels. Further, the folding pattern will belong
to one of the 17 possible symmetry groups on the plane (each group represents
one of the fundamentally different ways of arranging a collection of like motifs
on the plane (Griinbaum and Shephard (1987, pp. 37-45); Weisstein (2009)). In
each such group, there is a repeating module that imposes geometric conditions
on where the paper edge must be to connect to the next module. The modeling
task splits into three parts: the paper folds, ensuring geometric connection at
the joints and arranging the resulting module across a surface.

The choice of module is key to clarity and simplicity. This sample comprises
2 collection of identical parallelograms (for symmetry aficianados, arranged in
Symmetry group prmg in crystallographic notation). It is much simpler though
to combine parts of six parallelograms to form a module needing only simple
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8.23: Some origami folding
patterns.
Source: Ray Schamp
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8.25: An approximation of folded
paper geomerrically artached to 2
surface.
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translational symmetry (symmetry group p1). Using two whole and four half
parallelograms defines a module in which it is easy (or at least, easier) to relate
the geometric boundary conditions to the proxy PLACE HOLDER.

To connect adjacent modules requires coincidence along each edge and at each
vertex at which modules join. Four edge points connect two modules each and
four vertex points connect four modules each. The edge points are easy: they
lie at edge midpoints on the PLACE HOLDER, so are guaranteed to coincide.
Vertex point coincidence requires that, at each vertex, adjacent modules share
a common vector from the vertex to the module point. Here, this vectoris a
global property of the surface. With slightly more work, the PLACE HOLDER
object could hold individual direction vectors at each of its vertices.

A POINT COLLECTION - a rectangular point array by # and v parameters on
a parametric surface - locates 2 collection of quadrilateral polygons. Using these
quadrilaterals as PLACE HOLDERS, the modules cover the surface to look like
origami. They aren’t of course: on a general surface, edge lengths will differ
from the initial paper and polygons will be non-planar. Adding constraints can
allow true folded paper models. For instance, the GOAL SEEKER pattern can be
used to find feasible configurations for folding models of Persian Rasmi domes
from single sheets of paper (Maleki and Woodbury, 2008).

8.24: A dome structure folded from a planar assembly of triangles. Source: Maryam Maleki
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8.11 PROJECTION

Related Pattern e POINT COLLECTION o REPORTER e MAPPING

Source: Alexandre Durer-Lutz. Creative Commons Attribution Share-alike.

What. Produce a transformation of an object in another geometric context.

When. “Here” and “there” pervade design. Eyes, ears, the sun, lights, ducts,
pipes, columns and bearns all relate a “here” to some distant “there”. Often a
geometric line or curve provides the needed link. Use this pattern to construct
coherent, reproducible relationships between “here” and “there”.

Why. Projection is a simple, yet open-ended tool for producing new objects
from old. Its origins lie in the Renaissance and before. For designers, it is most
associated with the field of descriptive geometry, an 18th-Century invention
(Gaspard Monge, 1827) and one which, until recently, was a mandatory part

of design curricula worldwide. Descriptive geometry codified procedures for
deriving two-dimensional drawings of three-dimensional objects by projecting
the three-dimensional objects onto surfaces. Parametric modeling supports a
much richer collection of projective ideas than was practical with older, manual
techniques. With tongue somewhat in cheek, one could argue that parametric
rmodeling is the 21st-Century replacement for descriptive geometry. The idea
of projection has three parts: (1) a source object vo be projected, (2) a projector

or projection method, and (3) a receiver, the object on which the source object’s
projection appears. Its most simple form is orthogonal projection: points are
projected onto a receiving plane such that the projection lines are perpendicular
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to the plane. The projection and intersection tools common in most parametric
modeling systems enable a wide range of projective form-making ideas. The two
main effects of projection are indirection and separation. With it, a model can
be the indirect cause of a sculptaral effect. With it, different object aspects can
be separated into distinct views that may enable special views and inferences on
the object. A very common example is a light (essentially a point source) that
projects through a patterned screen onto a surface.

How. Every PROJECTION has the three above parts: (1) the projected object,
(2) the projection method and (3) the receiving object. The projected object is

4 point or any composite of points: 2 line, ray, line segment, curve, polygon,
surface, or 3D object. The three most common projection methods are parallel
projection in which all projecting rays are parallel; normal projection in which
the projecting rays are normal to the receiving object; and perspective projection
in which all projecting rays pass through a single point. There are a wide range
of other methods. For instance, cartographic projections can be explained as the
mapping of parametric coordinates from one surface to another.

The common receiving objects are planes, polygons, surfaces, lines and curves,
as well as composites of these. While possible, PROJECTIONS to points and 3D
objects seem to be less common in practice.

A wide variety of projections exist (Anderson, 2009). Computing projections
typically involves either mathematical projection or geometric intersection.
Mathematical projection provides direct solutions to relatively simple cases such
as projecting one vector % onto another vector & with result % = T??I? v
More complex situations involve intersecting objects. For example, projecting a
point onto a surface amounts to computing the intersection between the surface
and projecting ray.

For simple cases, a parametric modeler will provide direct tools for computing
projections, for instance, projecting a line onto a plane. It is a fact of life though
that designers will push these bounds. In these more complex situations, using
the PROJECTION pattern involves three steps: (1) sampling key object points,
(2) projecting these points onto the receiver, and (3) reconstructing the object as
projected on the receiver.
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PROJECTION Samples

Surface Sampler
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When. Project a collection of points onto a surface.
. I
How. The mathematics of parametric surfaces ties both the surface shape and
its #w-parameterization to the control polygon. Often, only part of a surface is o
actually needed in a design. Projecting a POINT COLLECTION onto the surface
makes a subset of the surface with its own independent parameterization.

The source object is a point collection. In this sample, the collection lieson a
plane and is a simple array, but other geometric and data arrangements can be
used. The projector is parallel projection, with projecting rays being parallel to
a line from the centroid of the collection to a controlling point in space. As an
alternative, the projector could be a perpendicular line from the source plane
and a control could allow the source to be moved within its plane. The receiver
is the surface.

Shadows
When. Simulate a row of posts casting shadows on the ground.

How. Start from a line (abstracting a post) standing vertically on the xy-plane.
Define a free point as the moving light. The shadow point is the projection of
the free point onto the xy-plane. The shadow is a line between the base of the
post and its shadow point. Replicating the startpoint of the posts gives a row
of posts, each with its own shadow. In this case, the source is the free point, the

8.26: The planar array of points
projects to the surface. The geor

projection is a perspective projection through the source and the receiver is the etry is thar of the surface, the da
xy-plane. organization that of the array.
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8.27: This very simple sample
illustrates the basic idea of proje
ing a spurce to a receiver using 2
method. In this case the methoc

225 simple perspective projection (2
rays pass through a point).



8.28: The point in space controls
the location of a parallel projec-
tion of a circle through the two
surfaces.
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Skylight

Source: Pieter Morlion

When. Create a daylight “lens” that focuses on a circle.

How. Two free-form surfaces represent a roof and a ceiling. The xy-plane is the
floor. A circle on the floor can be daylit by projecting it through the ceiling and
roof surfaces. The direction of daylight is nearly uniform, but the two separated
holes will act as a very fuzzy lens to focus daylight on the circle. Similar to the
Surface Sempler sample, the projection direction is controlled by a free point.

If the direction is constrained to be within the sun’s annual range, for a specific
mode] instance the sun will shine directly on the circle exactly twice a year. If
the direction is chosen to lie on either of the two solstice paths, this reduces to
exactly once per year. Fixed architecture can have difficulty in responding to
moving phenomena.

The projection of a circle onto a surface, or everi an angled plane, is no Jonger a
circle. While some parametric modelers provide curve-onto-surface projection
tools, a good approximation can be had by projecting sampled circle points and
reconstructing the curve from the projected points. The resulting curve will
not exactly coincide with the sarface in which it should lie. Alternatively, if the
modeler has surface trimming tools, trimming the surface with a sweep of the
circle along the projection line will yield a new surface with a hole.

When rotating the model, you can see that three circles perfectly coincide at a
specific viewing angle (in a parallel viewing projection).

A famous example of projection used in form-making is Le Corbusier’s 1953
Monastery of Sainte-Marie de La Tourette in France (shown in the image above).
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Spotlight
When. Model 2 metaphorical spotlight projecting a circle onto several surfaces.

How. This sample is very similar to the previous one. The main difference is
thar all the projecting rays intersect at the light point. Each projecting ray starts
from the light point and goes through the sampled points of the base circle.
While rotating the model in a paralle! projection view, you can see the projected
circles do not coincide at any angle. If you use a perspective view the projected
circles coincide when the camera and light source coincide.
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8.29: Projection through a point
creates a cone of intersection
through the surfaces. Two object:
(1) 2 projection point and

(2) a circular “lens”,

control the projecting cone. In
this case, the circle is parallel o
the xy-plane ~ giving an ellipse as
the result.
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8.30: The boundary of the poly-
gon projects onto the surface. The
red vector controls the direction
of projection. Even when the
polygon has straight sides, the
projection will be curved on the
surface,
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Solar Polygon Shadow
‘When. The shadow of a polygon cast by the sun on a curved surface.

How. The source is a polygon, the receiver a free-form surface. The projector
is the sun, therefore the projecting rays are parallel.

Straight lines project as curves onto a surface. For specific surface types, such
as conic sections, closed-form equations for these curves exist. For freeform
surfaces, approximations must suffice. Even though your favourite parametric
modeler may have a curve projection tool, approximation techniques remain
important tools in a modeler’s kit. The key is sampling. Sample each source
line with a sequence of points. The choice of how many points depends on the
complexity of the receiving surface: high curvature and rapidly changing surface
normals require more samples. Project the sampled points onto the surface and
reconstruct a curve “on” the surface from the sampled points. The word “on”
is advisory - the curve will not lie exactly on the surface. Much representation
is approximation. If the curve and surface must exactly coincide, either sample
very densely or find a modeler that supports exact curve-to-surface projection.

It is clear that the shadow is no longer bounded by four straight lines, but by
four curves. Note tao a further simplifying assumption. Non-planar polygons
can be thought of as defining 2 minimal surface. If the source polygon is non-
planar then its orientation must be such that no part of this minimal surface
projects outside of the projection of the polygon’s edges. Else, the shadow will
not model reality. This may be good enough ~ again, much representation in
design is approximate.
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Pinhole Camera
When. Model a pinhole camera.

How. A pinhole camera replaces a conventional glass lens with a tiny hole.
Such a hole in very thin material can focus light by confining all rays froma
scene through a what is effectively a single point. To produce a reasonably clear
image, the aperture diameter has to be less than about 1/100 of the distance be-

tween the pinhole and the screen.

The principle of a pinhole camera is that light rays from an object pass through
2 small hole to form an image on the screen (shown in image above). To model
this effect, simply place a point (modeling the pinhole) between the source and
receiver and project from the source through the pinhole to the receiver. Use
either direct model reconstruction or the sampling technique from the Solar
Polygon Shadow sample above to reconstruct the source on the receiver.

Note that the image is reflected both top-to-bottom and left-to-right. This is

equivalent to a 180° rotation about the axis normal to the receiving plane and
through the pinhole (providing the receiver is a plane).
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8.31: Putting the projection p
between the source and destiz
tion objects produces a pinho
camera,
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8.12 REACTOR

Related Pattern e CONTROLLER @ GOAL SEEKER

Controller

-

Result

Reference
i 7]

‘What. Make an object respond to the proximity of another object.

‘When. The essence of parametric modeling is expressing object properties in
terms of the properties of upstream objects. A problem arises when the relation
bethzen the object and its upstream precedents is based on proximity. The new
location for the object becomes based on the old location for the object, making
the object definition become circular! Propagation graphs cannot have cycles.

Use this pattern when you want to make an object respond to the presence of
another object,

‘Why. Designers often use the metaphor of response in which one part of a design
dep.ends upon the state of another. Reversing the perspective, is as if partofa
design becomes a tool for shaping the other. This situation is very much like
that encountered in the CONTROLLER pattern, but with a key difference - the
controlling property is proximity.

CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN

How. The essential idea: connect an interactor to a result through a reference.

The trick is to join the interactor and the result through a mediating and usually
fixed object, which we call a reference. The interactor and the reference interact
1o produce the result.

For example (see sample Circle Radii and Point Interactor below), you have a
point and a circle, and you want the circle to get bigger (or smaller or elliptical)
as you move the point closer. This can be done by using the REACTOR pattern.
As you might have guessed, the point is an interactor and the circle is a result
(which can be replicated to give us an array of circles). The circles have to be
somewhere. This somewhere is the reference. The reference is usually hidden in
aREACTOR.

Position is a complex property that can manifest in many ways. Position is any
combination of location and direction, for instance, the length or direction of
lines, parameter or number or position of points, direction of planes, radius of

circles and even additional properties such as colour if they are made to depend
on position.

REACTOR Samples

Circle Radii and Point Interactor

When. Control the size of a set of circles by proximity to a point.

How. Perhaps the simplest definition of a circle requires just its centre and radius.

The centre (s point) is the reference and the radius is the result. The free point is
the interactor. Making the radius a function of the distance between the centre
and the controlling point completes this instance of the REACTOR pattern.

In this case, the function is a direct relationship - its value shrinks as distance
shrinks. As the interactor moves closer to the circle, the circle gets smaller.

Replicating the reference causes all of the circles to react to the movement of

the interactor. Hiding the reference creates an illusion of direct control from
interactor to result.
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8.32: The collection of circles
reacts 1o the prescence of an
interactor point.



CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN

Circle Radii and Curve Interactor

When. Control the size of a set of circles by proximity to a curve,

How.
both,
only

In mm{eling‘terms, this sample hadly differs from the previous one. In
SHHEE dti?; rr:;i: of circles in an array change ‘f/ith proximity to an interactor. The
liiigecsotrdedl: dif es are that the interactor here is a curve and the radii grow with
SN proximity rather than shrink. The distance from 2 reference point to the curve
is the distance between the point and its projection onto the curve ~ this is the
shortest distance berween the point and curve,

Hiding the reference removes each circle’s visual fixed point. The eye focuses
only on the changing displayed part,

Source: NASA Earth Observatory image created by Jesse Allen, using La:dsat
data provided by the University of Maryland’s Global Land Cover Facility.

?.33: In this sample the interacror
is an entire curve, itself controlled
by a set of points.
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Lift
When. Make a line’s length increase as you move a point closer to its start point.

How. Define two points; call one the reference and one the interactor. On the
reference define a vertical line: the result.

The length [ of the result must increase as the distance between the reference
and the interactor shrinks. Choosing a “good” function for [ takes work. In this
sample [ = 1/(distance(interactor, reference) +0.1). The small amount of 0.1 that
is added within the function prevents the line from becoming infinitely long as
the distance between the points approaches zero. The MAPPING pattern gives a
process for reliably using other functions.

Replicate the start point and hide it. Now you have a set of lines that react to
the movement of the interactor. In turn, use the line endpoints to define the
shape of another object using the lines, such as a roof surface.

8.34: With a reactor a single point can replace the 16 points needed for general control of 2
surface. Of course, generality is lost; some surfaces cannot be modeled.

Repeller
When. Make a point move away from a controlling point.

How. Define two points; call one the reference and one the interactor. The
result will lie on the infinite line defined by the reference and the interactor.

The result is the sum of the reference and a vector. The vector’s direction is the
same as the vector between the interactor and the reference. Its length results
from a funcrion of the distance between the interactor and the reference: as the
interactor moves towards the reference, the length increases.

The function in this sample is SD/(distance(interactor, reference) + SD x 0.01),
where SD stands for Standard Distance. As $D grows, so does the distance over
which the pattern has an effect. The small quantity of §D * 0.01 added to the
distance prevents the result from moving infinitely as the interactor approaches
the reference.

Replicate and hide the reference. The result points now appear to respond to
the interactor. In turn, use the result to define other objects, such as a surface.
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8.35: The only effective differen
between this and the previous
sample is that the line on which
the result lies is directly defined |
the interactor and reference.
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Vector Field

When. Rotate a bound vector asa controlling point moves, so that it always has
the same angle to the point. Replicate to define 1 vector field.

How. Define two points: an interactor and a reference. The goal is to define a
vector bound to the reference such that it is right-handedly perpendicular to the
imaginary line that connects the two points. Create a frame on the reference
point by using the interactor point to locate its x-axis. Making the result vector
on the y-axis of this frame ensures thar it will always be perpendicular to the
x-axis and consequently to the connecting line.

A1 :9 % ";:\:i X N?te thfat hthe reference can be more thax? one object. In this case both the start
?:? ??r,? " 4 " [ 3 5 i&* point of the vector andvthe f.rm}w comprise the reference. The frame and start
AR AT point could combine, simplifying back to a single reference. Such reduction is
% R:"xi';\"‘ai;{“i( ¢ a&“ A not always possible.
e
% oji;\s\ Replicate the reference point in one, two or three dimensions and hide it. All
al of the result vectors will react to the position of the interactor and portray a

continuous vector field.

1
b
3 Source: Dayna Mason

8.36: The point appears to directly
control the vector field. Hidden,
as with most REACTORS, is the
reference, in this case, a point and
aframe located ar the point.
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Dimple
When. Make the local shape of a closed curve react to a nearby point.

How. Define a circle and two points on the circle. Call one of these points the
reference and the other the interactor. Draw 2 line from the reference point to
the circle’s centre. Place the result, a parametric point on this line, that moves
toward the center if the interactor gets too close to it. The trick is to assign the
parameter of the result point a higher value (here 0.4) if the distance between
the interactor and the reference (measured by the modular distance between
their parameters) becomes less than a value d (explained later), otherwise set it
to another value (here 0.2). This distance condition can be defined as follows:

1 function modular0iDistance {double t0, double t1)
: {

3 object result = t0—t1;
4+ return

5 result > 0.5 7
6 1 result :

7 result >=0 7

3 result :

9 resuit » —05 ?
10 Abs{result) :
1t result + 1.0;

The parameter 4 here can be a number less than or equal t0 0.5 and greater than
or equal to half of the distance between each two references. The lower limit is
needed so that the test is always true for at least one point. With count equally
distributed references, a minimal value is d = 1/(2 % cosnt).

After replicating the reference, create a closed curve interpolating the result
points. This curve will look like a circle deformed by the interactor.

O 0O O

C

8.37: A simple interaction hides
a complex mediating reference
structure. The point appears to
directly control a dimple on the
circle.
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8.13 REPORTER

Related Pattern o CONTROLLER ¢ PROJECTION o SELECTOR

What. Re-present (abstract or transform) information from a model.

‘When. Models can be complex. Finding and using the relevant parts of a model
can be tedious and error-prone. Further, some “parts” of 2 model may only be
implied - computation may be needed to construct them from primary model
data. Use this pattern when you need 1o use some aspect of 2 model in another
process or another part of the model.

Why. .Models can be complex and hard to understand. They can express far
more information than they directly contain. Such implicit information must
be uncovered through functions applied to the model. Using a REPORTER
allows you to present only the information you need to another part of the
model. This makes your model structure more clear and helps you work with
other people who may use your model,

REPORTERS may abstract (simplify) or transform (re-present). They report

3 design or its parts from a different point of view. In analogy to a relational
atabase, the REPORTER pattern is akin to a view table extracted from a database,
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How. Data from a REPORTER must be conceived, extracted and envisioned,
Deciding what to report requires judgment, for example, when reporting facade
element planarity, the most effective report may, or may not, be the minimal
vertex movement that restores planarity. Extracting the data may demand a
complex algorithm, for example, a convex hull of a set of points. Envisioning
that data so that it makes sense to the person receiving it has been the subject
of entire books (Tufte) (1986; 1990; 1997) - it is likely that a simple, textual list
will not be best. Of course, if the purpose of the REPORTER is to provide data
to another program, a textual or numeric list might be exactly right.

You can use the REPORTER pattern in many different ways.

¢ Displaying properties of an object. For example, a collection of point
coordinates might be displayed numerically in a table, or their minima
and maxima might be instanced as two points,

¢ Defining an element in a different way. For example, a point defined in
one frame can be reported in another.

Conditionally selecting parts from your model. In this use, 2 REPORTER
is very similar to a SELECTOR. For example,  roof surface comprising
polygons might be reported by the degree of non-planarity in each.

o Creating new objects from reported objects. In this case of indirection,
a property of an object is used to define another object. For example, 2
REPORTER on line segments might comprise new segments coincident
with the originals’ central third. Another REPORTER example produces
a dual polygon mesh (the mesh generated by replacing centroids wich
vertices, and edges between vertices with edges between centroids).

e Sampling a model and then reporting this simplified version somewhere
else and with different conditions to create a more complex model.

Copying. Generally, copying is reporting the model as many times as
needed in different places, therefore features such as copy, mirror, clone
and rotate are all kinds of reporting.

The REPORTER pattern typically combines with other patterns. This pattern
feeds information to downstream objects or directly to the designer. In many

ways, it is 2 normal part of parametric modeling in that models are defined in
terms of other models. The difference is that a REPORTER is often not a part

of the design, but rather a view on the design or an intermediary in the model
construction process.

In some sense, the REPORTER pattern is an anti-CONTROLLER pattern. In a
CONTROLLER, information flows from the control to the target - typically
from a simple model to a complex one. In a REPORTER information flows the
other way - it typically is an abstraction of a larger model.
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REPORTER Samples

Subtended Angle
When. Envision information from the model as text.

How. In a circle, any inscribed angle subtended by a chord of a given length is
constant. A good demonstration juxtaposes as text a suite of angles subtended
by a common chord. This model comprises a circle and two pairs of lines that
represent two angles and share a common subtending chord. Showing both of
those angles together demonstrates this simple geometric theorem. Text is the
simplest REPORTER. Sometimes it is actually effective.

@ ==39.01

£ =39.01

a=39.01 a=p A % If AB=CD then a=f
£ =39.01

o == 39.01

B=39.01

)

2 =39.01
B =39.01
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Array Depth
When. Extract properties of a collection of points organized as an array,

How. Collections of point-like objects define many properties, some pertaining
the points themselves and some to their organization in a collection. Examples
include the extremal coordinates of the points, the longest path in the collection
(the array depth) and the number of elements in the collection. In this case, the
REPORTER pattern extracts such data from the model. A function iterates over
each element in a collection, accumulating the desired measures as it proceeds.

eéa
£2 [} (-3
s e & e
®
B DD
eeﬁaﬁge
L2 2
&
Rank = 3

Dimensions = { 5,6 ,2}
BBox, = {0.0,0.0, 0.0}
BBox,, = {4.0,5.0,1.0}

Dimensions = { 4,5 ,3}
BBox, = {0.0,0.0,0.0}
BBox,, = {3.0,4.0,2.0}

Rank = 3

Dimensions = { 3,4 ,4}
BBox, = {0.0,0.0,0.0}
BBox,, = {2.0,3.0,3.0}

8.38: Angles subtended by a
common chord are the same.
Conversely two points subtending
the same angle from a line seg-
ment lie on a common circle for
which the line segment is a chord.

8.39: Arrays are complex objects.
Understanding their structure ca
be hard. This REPORTER puts a
display of array structure directly
in the three-dimensional model.
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Fabrication
When. Transform design data for fabrication.

How. Planes slice a solid into a set of closed curves. A common fabrication
technique is to use such curves to cut stazions out of a sheet material and use the
stations as internal formwork that is covered with other sheet or strip material.
The curves forming the stations can be reported in a variety of ways, in both
/i% H 2D and 3D and through mediating transformations. In this sample, one report
2 is a scaled 3D version and the other is a 2D layout suitable as a draft cutting plan

for sheet material.

8.40: The model reports data for
fabrication. Parametric systems
typically provide such outputs,
The principle though is simple:
transform parts of the model into
a separate view or location.

CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN

Mirror

When. Mirror a curve through an axis.

How. Define a curve based on a point collection, and a line to use as a mirror
axis. In 3D the line would be a plane. Now reflect the curve poles through the
axis to create poles for a new curve. Finally create the new curve from the new

poles; this curve is a mirror of the first curve. In general, mirrored objects are
enantiomorphs, that is, identical except for handedness.

Mirror Axis

Mirrored Curve

Original Curve
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8.41: A mirror can be seen as
either a REPORTER or a PROJEC
TOR.
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Out of Plane Snapper

When. Report the out-of-plane polygons of a surface both by colour and text. When. Report a triangle snapped onto a grid. s

How. Create a curved surface and subdivide it with polygons. Some polygons j How. Parametric “sketches” (yes, a parametric model can be sketch-like!) are

may be non-planar. The amount of non-planarity depends on the local surface. continuous. They may be abstracted into a discrete system, such as a grid. T%ns —
Iterate over the collection, extracting the polygons that exceed a threshold out- : REPORTER maintains the original model and ability to smoothly interact with o
of-plane measure. Visualize the resulting polygons both 7 situ with colour and ; it and reports the model as it would appear were it snapped onto a specified

ina tabular report. . grid. The reporting takes two steps. First, report the original triangle’s vertices

in a new frame. Second, select and report the nearest point on the grid to each

triangle vertex. Construct the reported triangle on these abstracred points.
The out-of-plane polygorns are: & o

R

e
1. polygon01[o3[o] i e ® # ® N R
5 :
2 . polygon01]0][1] e
3 . polygon01[0}{2]
© & «—F
4 . polygonC1[0](8]
C
B ® ® o
5. polygon01[0]{9] ‘ : v
) L L e 2
6. polygon01[1]{0]
7. polygon01[1}1] q
8. polygon01[1}8]
9. polygon01[1](9] q
10 . polygon01[2][0]
11. polygonO1[2]{1] 'Q’
12. polygon01[3]{0]
\
8.42: Understanding and control-
ling anomalies is both enabled and
produced by parametric modeling. :
REPORTING directly in the model e vl sy o s
can provide much more effective | mercion deely
feedback than a table of text. interaction directly into a model,
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Scale: 1.63
Rotation: 15.35°

Scale: 1.3
Rotation: 10.33

Scale: 0.98
Rotatton: 1.91°

%
v.—o

Scale: 0.7
Rotation: 13.89%

%

4 7
s

st o,

Scale: 0.53
Rotation: 44.20°

§.44: This REPORTER separates
local editing (of the triangle) from

its actual location iryspace.

CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN

Triangle
When. Rotate and scale a triangle.

How. This sample separates the shape of an object from the space in which it is
embedded, giving independent control of each. It reports a triangle developed
in one frame (the baseCS) in another system (the reporterCS) and also provides
rotation and scaling controls for that new frame.

Ironically, this REPORTER uses a REPORTER internally. In order to compute
the rotation of the reporterCs system, a point is defined in the baseCs system
at the origin of the reportarCS system, but one unit along the x-axis of the
baseCs system. Reporting this point in the reporterCs system provides the
arguments needed for the function Atan2 to fully compute the rotation angle.
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8.14 SELECTOR

Related Pattern ¢ CONTROLLER e REPORTER
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What. Select members of a collection that have specified properties.

When. Selection is 2 universal in interactive systems. In parametric systems, it
can be part of the model itself. At each update of the propagation graph, objects
can select the arguments to their update methods. Use this pattern when you
want to locally and dynamically restructure a model depending its state.

Why. Creating objects and using objects are different acts. You may specify, say,
a set of points by giving their Cartesian coordinates. When using these points,
you might be interested only in those that are close to a line. The SELECTOR
pattern allows you to separate object creation and later use, and express these
two common operations in the terms most suitable for each.

How. In the SELECTOR pattern, there is always a collection of given objects
and a collection that is the outcome of the SELECTOR’S action. We call the first
list the target and the second list the result. The SELECTOR mediates between
these by determining which elements of the target to include in the result. The
properties that objects must have or conditions they must meet in order to be
selected we call the SELECTOR’S bebaviour.

For example (see the sample Distance between Points below), the target may be

a list of points and the SELECTOR a compound of a point, circle and function.
The point specifies the location of the SELECTOR; the circle the distance within
which selection will occur; and the function how points will be selected and
how selected points will be constructed, that is, the SELECTOR’S behaviour.
The function must select those points whose distance to the SELECTOR point
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is less than (or perhaps greater than or approximately equal to or within some
range of...) the parameter d of the SELECTOR’S behaviour.

The simplest representation of 2 SELECTOR’S behaviour is a function treating
cach of the target points individually. For each target, it computes the behaviour
ax.xd returns a copy of any objects that conform. For instance, with selection by
distance, it compares the distance between the target and the SELECTOR against
the threshold 4. If the target object satisfies the condition, the function creates a
coincident point and returns this point (acting in a sense as a REPORTER). As a
result, the function’s (and SELECTOR’S) output will be a new list of points.

The result is not a subset of the target. Rather, it is 2 new set of points, identical
to the selected points in the targer.

function selectByDistance (Point selector,

1

2 Point target,

3 double distance)

+ A4

5 for (value | = 0; i < target.Count; ++ )

6 {

? if (Distance(selector,target[1]) < distance)
8 {

9 Point result= new Point{this);

10 result. ByCartesianCoordinates (baseCs,

n target]il.X,
12 target{il.y,
13 target{i1.2);
“ ¥

15 }

6}

;\n actual call to the SELECTOR’S behaviour function would rake the following
orm:

selectByDistance(selector, target, distance);

where selector and target are points (or point collections) in the model and
distance is a value held in 2 model variable or object property.
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SELECTOR Samples

Distance between Points
When. Select points based on their distance from a SELECTOR point.

How. First write a function giving a condition for selecting target points. In
this sample example, the distance between the target and the SELECTOR point
must be less than variable d.

Write a behaviour function that iterates over the target points and compares
the distance between each point and the SELECTOR point using the threshold
. For each member of the list, if the condition is met, the behaviour function
creates a copy of the target point.

The behaviour function returns a new list of result points within distance d
of the SELECTOR point. Note that the structure of the target and result may
differ. For instance, the target may be a 2D array and the result a 1D array.
You have to make and remember such choices.
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8.45: Selecting from a collection
based on distance from a target
point is identical to selecting
points within a circle centred on
the target and with radius of the
chosen distance.
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Part of Curve Lines inside Curve

When. Select part of a curve depending on its distance to a point. When. Select all lines that are completely inside a closed curve.

. /ﬁ How. Place 2 collection of parametric points on a curve. Use the SELECTOR
N mechanism from the sample Diistance between Points, that is, a function that

checks each of the points and reports them if they satisfy the distance condition.

How. This SELECTOR has two parts.

First, if a line segment is entirely inside or outside a curve it does not intersect
the curve. In order to check the position of a line against a curve, first compute
the intersection. If the result is null, the line may be either inside or outside.

Placing a curve through the selected points yields an approximate copy of part
of the original curve. Moving the SELECTOR point controls the part of the

curve to be copied. The more points on the original curve, the more accurate
the curve selected,
— \g The original points sample the curve and so will seldom capture the exact point .
0 on the curve that is at the specified distance. Solve this problem by searching
between the last selected point and the first non-selected point for the point .

at which the distance to the SELECTOR is exactly the threshold. However, if
the original points are widely spaced, very small sections of the curve that are
within the threshold migh fail to be detected. Resolve this issue by projecting
the SELECTOR point onto the curve. If the distance to the SELECTOR point is ines i i i

less than the threshold, search on either side of the projected point for the exact ‘ Hines intersect the curve. pres donotiersect e cune
end points of the curve.

; Second, if an endpoint of a non-intersecting line is inside the curve, so is the
/\\\_}/’A k . line. The Jordan Curve Theorem states that a point is inside a closed curve if a
. ' line segment between the point and a point external to the curve intersects the
curve an odd number of times. Use the Jordan Curve Theorem to determine
the position of either end of the line segment against the closed curve. Don’t
count tangencies as crossings! If the number of intersections is odd, the line is

inside the curve.

W\

"’“"1’

Odd number of intersections. Even number of intersections.
— Point is inside the curve. Point is outside the curve.
Write a function that performs both of the above tests in turn. If both succeed

(non-intersection of the segment and odd intersections of a ray from an end
point) copy and return the line.

8.46: It is often easier to conceive

an overall model from which the
intended design component is .
extracted by selection. In this case, §-47;-_ Tdht;J ordafl Curv_e T}llecr;n
the SELECTOR returns a part of ’ PPUEC FIEE, gives & simple an
correct test for lines inside closed
curves.

the curve near the target point.
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8.48: The cross and dot products
combine in a robust point-in-
sector test.
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Points inside Sector
When. Select the points inside 2 2D sector (two vectors bound to a point).

How. The sector comprises a base point and two vectors % and 7 bound to
it. Taken in order, these define an angle between 0° and 360°. Imagine a target
vector @ for each target point connecting from the base point to the target
point. Take the two cross products # ® 7 and @ ® 7. Remember from
Section 6.5.1 that the right-hand rule gives the cross product’s orientation. If the
angle between the vectors % and @ is less than 180°, a target point is between
two SELECTOR vectors if the z-components of both the cross products of its
vector with the SELECTOR vectors are positive. If the angle is greater than 180°,
the target point is in the sector if one or both of the cross products are positive.

g Xt
TeT < Bk 7

e

a

7 @ s
Tew
LRT <=180° LBT <= 180°
_—, .
a is inside the sector. @ is outside the sector.
Both cross products positive. One or both cross products negative.
—
a
TeT
WeT .
7
—

g =z
LET >180° LRT > 180°
7 is inside the sector. Z is outside the sector.
One or both cross products positive. Both cross products negative.

The cross product determines if the sector is greater than 180°. If the sector is
between 0° and 180°, the z-component of %" @ ¥ is positive. If the sector is
between 180° and 360°, @ ® ¥ is negative. When % and " are colinear, the
sector is either 0° (W ¢ T > 0) or 180° (% o 7 <0).

The SELECTOR function iterates over the target points one by one. For each

point, it computes the two cross products # ® @ and @ ® . Using the rules
above it returns each point that lies within the sector.
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Points inside Box
When. Select points that Lie inside a box.

How. Write a behaviour function that checks the position of the target points
against the box. The function reports their position in the coordinate system
of the SELECTOR box one by one and compates their new coordinates to two
opposite corners of the box. The function then reports them in the result List if
they are inside the box.
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Length of Line

When. Select lines based on their length.

How. Given a list of fines, select those whose lengths are between the lengths of

two SELECTOR lines.

Use a function that iterates through the target lines. For each target line, if it has
the desired length, the fanction reports it and puts it in a new list of result lines.

T \n!&lll)mlM\,M At 11\
A \\Muml AR
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8.49: By defining a SELECTOR
boz in its own frame and report-
ing the target points in that frame
the box can have any orientation
in space.

8.50: This SELECTOR contains
2 CONTROLLER. The actual
SELECTOR object comprises the
upper and lower threshold given
by the CONTROLLER'S points.
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8.15 MAPPING

Related Pattern « CONTROLLER e JIG @ INCREMENT o PROJECTION

‘What. Use a function in a new domain and range.

When. A function accepts inputs and produces a value. Geometric funetions
such as f(x) = sin(x), {(x) = cos(x), f(x) = x? and f(x) = 1/x are extremely
comnmon in parametric modeling. In fact, they form an indispensable base for
much modeling work. These functions are all naturally defined over their own
domains and ranges. Use this pattern when you want 10 use a function in the
domain and range specific 1o a model,

The terms domain and range need to be explained. The domain of a function is
the set of input values over which it is defined or used. The range of a function
is the set of output values it generates. For example, we might choose to use a
domain of 0° to 360° for the sin(x) function. This corresponds to its natural
repetitive cycle. The range generated by sin(x) over this domainis —1 to 1.

fx)
- >
x I
; &
#(x) = sin(x) 5

Domain =0 360
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Why. Much form-making comes directly from relatively simple functions, for
many reasons. The repetitive use of simple functions can unify a design across
its parts and across design scales. If the ease and cost of fabrication is a concern,
simple functions can help control complexity and cost (but do not necessarily
do s0). In contrast, the so-called free-form curves and surfaces provide interfaces
to more complex functions, but cede some control of the form-making process
to the underyling algorithms.

Simple functions come with natural domains and ranges. It is much easier to
think about a function in its natural domain and range than in a transformed
version.

To use a function in a model requires reframing it so that it makes sense in the
model. Reframing turns out to be surprisingly difficult and error-prone for
many designers. Yet, there is a universal method of precisely seven parameters
that works for almost all reframing tasks. Further, this method is based on one
simple equation - essentially the same equation that defines a one-dimensional
affine map or, equivalently, an affine function.

The term “affine map” is extremely common in linear algebra and its dependent
fields (computer graphics and geometric modeling). It has a crisp mathematical
meaning, and we use this meaning here - precision of language is important! An
affine map is a linear transformation followed by a translation. In turn, a linear
transformation preserves vector addition and scalar multiplication - you can
add or multiply before or after the transformation and the result is the same. In
one dimension (the real number line), the only linear transformation is scaling.
A 1D affine map changes a function’s scale and moves it along the real number
line. The function f(x) becomes g(x) under the affine map.

(x) w
L\ 1z
s
i
x oyl
] &n
. g3
\/ fx)=sin(x) | & s
z

g(x) = 1.5sin(2(x - 45))

New Domain =45 ; 225‘

Domain=0: 360

The problem for modeling is that determining the new function g(x) is not
easy. If you warch a modeler trying to get such a mapping to *work” you will
see much trial and error. Looking at the function in the figure above, that is,
g(x) = 1.5sin{2(x ~ 45)) gives some indication why the task is so hard.
Which number does what? Why?
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This partern replaces all of the function-specific changes with a uniform structure

and set of parameters. You never have to work with a function in any but its

simplest form. MAPPING separates where the model uses a function from where

the function is defined.

How. Consider two rectangles, called the function and the model respectively.
The function rectangle is given by the domain and range of the function within
it. The model rectangle can be any size and location you choose. The goal is to
place -the original function into the model. The basic idea is to always use the
functfon rectangle when computing the function. To find a point on the model
function, map from the model domain to the function domain (blue arrow 1
below), compute the function (red and green arrows in the function box) and
then map from the result back to the model range (blue arrow 2 below).

L

2)

———

function model

(1}

What follows precisely defines the diagram. Variables relating to a domain start
with or have within a d; those over the range start with or have within an r. In
one dimension, an affine map has a single equation, which we introduce first
over the domain interval O to 1. Imagine a parametric function £(d) over this
interval. An affine map r(d) from the interval 0 to 1 to the interval [71,7,] with
parameter d has the equation ’

fd)=r+d(r, —r) 0<d<1
Reversing the map to go from the range (r) to the domain (d) gives

r—n

d(?’):

ST
7, =7 *

The map has domain d with bounds 0 to 1 and range r with bounds 7, and r,,.

Generalizing, to any domain produces the maps between d and 7 as follows:

_(r=n)d, ~d))

d(r) +d,r<r<y,
7'”—'7'[
d—d)r, -
r(d)=w+rl,d,§dsd”

du —'dl

Mathematically, these are simple equations, but require attention every time
the.y are used. The purpose of this pattern is to abstract these equations so that
designers can freely use generic and simple functions in their models.
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WARNING. When using affine maps to apply a function, there are actually two
maps to consider. One goes between the domain of the model and its domain in
the function. The other goes between the range of the function and its range in
the model.

Since the range of the function is determined by the function itself, this means
that mapping between function and model had exactly seven parameters: the
lower and upper bounds of the function’s domain (f4; and fd, ); the lower and
upper bounds of the model’s domain {(md,; and md,); the lower and upper bounds
of the model’s range (m2r; and mr, ); and the function parameter d itself.

These seven parameters describe every possible situation in which you want to
use a function in a model. Every possible situation! Applying them though takes
some insight. The archetypal problem is this: you have a value in the model and
need to find the corresponding value of the function in the model. Giving more
detail to the diagram above, the solution has three parts: (1) an affine map from
the model to the function; (2) an application of the function; and (3) an affine
map from the result of the function to the result in the model. The diagram
below illustrates this low, showing how the various parameters and bounds
relate.

3) ? mr, ‘g‘ - "/“/‘\\ madel
N
& mr ,/ N\
e | [ I
i ’ i i
mr; e —I ————— P H
PO SE
md,; md md,
: 2 I domairy s
- 1
t 1
function bbb
fa, A A,
- domain >

1

(1)

For example, imagine a roof whose profile is a sine curve. The roof spans from
apoint p in the model to another point 4. A point m(t) with parameter ¢ gives
the location of the roof point along the line between these two points. The
maximurn roof height is given by a parameter height. Between p and ¢ the roof
goes through two complete cycles of the sine function. Then the following are
the six mapping pararmeter settings. The seventh parameter is ¢, which gives the
parametric location of a varying point on the roof.
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f(x) = sin(x)
A, = 00
= 7200
frr = ~—10  (defined by the function - computed automatically)
fr, = 10 (defined by the function ~ computed automatically)
md; = 00 ((t) is parameterized by ¢ over the domain O vo 1)
md, = 10
mr, = 0.0 (the height is added to the z-value of 71(t))
mr, = height (the height is chosen in the model)

In summary, the whole process comprises these three steps:

e Given a model domain value, find the equivalent domain value in the
function.

¢ Apply the function to get a value in the function’s range.

e Find the equivalent model range value.
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MAPPING Samples

Reciprocal
‘When. Feather a curve. Make a curve taper gently.

How. The multiplicative reciprocal is the function f(x) = 1/x. It is seductive
as it provides a simple function that tapers to a non-zero value (is asyraptotic to
the x-axis), making it possible to feather effects on a curve or surface. It traps
the unwary - it increases exponentially as its argument approaches zero and is
undefined at zero. Thus it is important to set the function domain so that zero
and values close to it are not included. In general, using this function produces
poor results. It is included here to demonstrate that sometimes the function
domain choice is erucial.

Here are the parameter settings for a useful mapping. The model point #2(z) is
parametric over the domain 0to 1.

fx) = 1fx
f4, = 025
4, = 1000
o = o001 (defined by the function ~ computed automatically)
f, = 40 (defined by the function ~ computed automatically)
md; = 00 (#7(t) is parameterized by ¢ over the domain O to 1)
md, = 10
mr; = 00 (the height is added to the z-value of 72(z))
mr, = height (heightischosen in the model)
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8.51: Beware the reciprocal.
flx)=1/x

It seems to taper nicely along t

x-axis but goes to infinity alon

the y-axis. Using it usually lea

to anomalies in the model.
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. 8.52: Three cycles of the cosine
function mapped into space at
different scales. Vertical lines

+ from points on a circle use the
y-coordinates of the mapped
points as their length,

CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN

Sine and Cosine
When. Use sine and cosine functions in complete periodic cycles.

How. The basic trigonometric functions sin(x) and cos(x) repeat in periods
of 3607 and span 180° berween function minima and maxica, Both functions
have domains from —co 10 co and ranges from —1to 1, Choosing a finite part
of the domain such thar the function starts and ends at 2 minimum, maximum
or zero-crossing yields clean control over the end-conditions in the model.

Here are sample parameter settings. The model point #2(t) is parametric over
the range Qto 1. In this case, #:2(t) is bound to a circle, and vertical lines from
each instance of 77(¢) have length given by the function result,

f(x) = cos(x)
A, = 00
/4, = 10800 (vields three complete cycles)
o= =10 (defined by the function - computed automatically)
fr, = 10 {defined by the function ~ computed automatically)
md; = 0.0 (3(t ) is parameterized by ¢ over the domain 0 to 1)
md, = 10
mr; = height,.  (the minimum length of the lines on 7(z))
mr, = bheight,  (the maximum length of the lines on ()

When sampling periodic functions and those with minima or mazxima within
the chosen domain, the choice of sampling interval is crucial if the sampled
points will be used to regenerate the mapped function in the model. Samples
must be chosen to coincide with function minima and maxima. Poor sampling
can dramatically affect the shape of the reconstructed curve,

258

CHAPTER 8. PATTERNS FOR PARAMETRIC DESIGN

Function Parts
When. Choosing a small part of a function can yield an intended form.

How. Simple functions can yield surprisingly rich forms. A classic example in
three dimensions is Foster + Partner’s extensive use of parts of the torus as a
generator of form (see Chapter 5).

The function is the sine function: f(x) = sin(x). The trick is that an appropriate
choice of function domain can yield local segments of the sine curve that do not
display the archetypal repetition of the entire curve,

Here are sample parameter settings. The model point m(t) is assumed to be
parametric over the range 0 to 1. In this case, the model range minimum and
maximum would be chosen by the modeler to suit the application to hand. The
figures on the side bar vary only by FD» = 180.0 the upper function domain
bound.

f(x} = sin(x)

a4, = 45.0° (increases in steps of 22.5°)

A, = 1800°

o= -10 (defined by the function - computed automatically)
fr, = 10 (defined by the function - computed automatically)
md, = 00 (#1(t) is parameterized by ¢ over the domain Oto 1)
md, = 10

mr; = beght (minimum height is chosen in the model)

min

mr, = bheght (maximum height is chosen in the model)

max
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8.53: Choosing part of a function
can lead to surprising and useful
results. X the underlying function
has known “nice” properties,
such as maxima or minima at
known inputs, so will the selected
function.
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8.16 RECURsION

Related Pattern o POINT COLLECTION

What. Create a pattern by recursively replicating a motif.

‘When. Hierarchy in design conflates wholes and parts. The parts copy and
transform the whole. This naturally leads to a hierarcheial information structure
of layers, where the properties of 2 layer derive from the layer immediately
supetior to it. Recursive algorithms are natural traversers of such hierarchical
structures. Use this pattern when you are working with hierarchy in design,

Why. Some complex models such as spirals, trees or space-filling curves can be
elegantly represented with a recursive function. In fact, it can be so difficul 1o
represent such structures non-recursively that designers give up and try easier
forms. A recursive function typically takes a motif and a replication rule and
calls itself on the copies of the motif that the rule generates. A word of Warning
-~ recursive algorithms are often hard to understand in the abstract, We humang
struggle 1o envision a pattern from a motif and a replication rule (Carlson and
Woodbury, 1994). Another word of warning. Recursive algorithms as update
methods can be slow. Typically, limiting the depth of the recursion is the only
way to maintain an adequate interactive update rate.

How. RECURSION requires a motif (a geometric object) and a replication rule,
The simplest rule is merely a coordinate system with some combination of
translation, rotation, scale and shear. Other more complex rules are possible,
including ones that change or abstract the morif itself.
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The recursive function uses the replication rule to generate a collection (?f clones
of the motif. It then calls itself on each clone, typically (b\..lt not ne?essarlly)
with the same replication rule. So, in each step, the recursive fur}ctlon ta%&es an
existing motif, replicates it and calls itself. Every recursive function requires a
termination condition to specify when to stop this process.

RECURSION Samples

Square

When. Nest a sequence of squares inside an initial square,

How. Start with a square (actually, any polygon will do). This is the initial
motif - the input to the recursion.

The recursive function must transform the motif as a copy and call itself on
the copy. In this sample, the transformation is specified as a parameter . '?he
new motif’s vertices are parametric points on the original motif’s edges with

parameter t.

In a computer recursions must stop (though this is not true in mathen}atics!).
They either stop by design or by overflow of some c.iata structure, tyl-ncaﬂy- the
recursion stack in the programming language. In this samp%e, the variable depth
controls the recursion and is thus an argument to the funcu'on. Each sut?sequent
call to the function reduces the depth argument by one. Inside the function, a
test for depth returns the motif unchanged if depth is equal to one, else proceeds

with the recursion.

Assigning each of the squares an elevation results in 2 3D “stack” of polygon's.
Using this stack as the arguments for a surface gives a twisted vertical pyramid.

This sample defines one copy of the motif at each recursive call. The result isa
linear list of motifs ~ the structure of the list mirrors the geometric structure of
the result. Defining more than one motif within the function results in a tree.
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8.54: A simple one-dimensional
recursion.,
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Tree

When. Define a rree - both graphically and as a data scructure.

How. In this sample, the morif is o single line. The focus here is more on the
geometric layout and data strucrure and less on the resulting partern.

The motif transformation places two copies of the motif, each starting at the
endpoint of the original motif. The copies are rotated by the parameter rot and
scaled by the parameter scale.

As for any recursive function, you need to make sure that the recursion will

$top. As in the prior sample, the stopping condition is set by the depth of the
recursion,

With the hindsight gained by seeing the recursion in operation, we can form
agood idea of what this particular function will produce as the rot and scale
parameters change. With compound motifs and more complex transformations,
such intuitions completely dissolve (Carlson and Woodbury, 1994).

A tree is a data structure that has branches. Fach branch is either null or itself
atree. The recursive function determines the data structure, The preferred
structure provides a path o each of the motifs that mirrors the geometric structure.
For example, a sensible path might be one that starts with the root of the tree
and that records which branch of the tree is followed to reach the motif, Thus,
for a tree with depth 4 (with the base motif ag depth 0), one path to a node would
be tree[1][2][2] [1]. Interpret this as taking the right branch on a 1 and the left
branch on a 2. The data structure is thus a list where the first item in the list s
the right branch of the tree and the second item in the list is the left branch of
the tree. The motif itself must be stored somewhere and is assigned to the 0%
branch of the data structure. S0 2 path to a motif needs an index of 0 at jts end,
for example, tree[ 2)[23[13{0].
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treeFn function (CoordinateSystem cs,
Line starttine,

i
2
3 int depth, double rotation, double scafe}

i {

5 Line resuitline = {}:
& if (depth < 1){

7 resultline[0] = null;
H resultline[1] = null;
9 3

1o else{

it CoordinateSystem rightCs = new CoordinateSystem{);
2 rightCs. ByQriginRotationAboutCoordinateSystem

13 {startiLine .EndPoint,
14 s,

15 rotation,

i6 AxisQption.Y);

17 CoordinateSystem leftCS = new CoordinateSystem {};
18 leftCS. ByOriginRotationAboutCoordinateSystem

9 {startline.EndPoint,
0 cs,

21 ~rotation,

22 AxisOption.Y};

23 Line rightline = new Line();

24 rightline . ByStartPointDirectionlength
5 {rightCs,

6 rightCs . ZDirectlon,

27 startline.Lengthsscale};
28 Line leftlLine = new Line();

ksl leftLine. ByStartPointDirectionLength
0 (leftCs,

3 leftCS ., ZDirection,

32 startline . Length*scale);

33 resultlinef[0]=treeFn{rightCs,

34 rightLine,

35 depth—1, rotation, scale);
36 resuitline[ll=treefn(leftCs,

37 leftline,

18 depth—1, rotation, scale);
39 }

40 resultline[2]=startLine:

41 return resultline;

2}

Note the internal calls to the treeFn function. The two separate calls ensure that
the right and left branches of the tree are themselves trees. The base case of the
recursion occurs when the depth is less than one and results in a tree with null
branches being returned. At the end of the function, the motif is stored in the
second member of resultLine, completing the data structure, which now stores
both the tree structure and all the motifs.

A word to the wise. Writing recursive functions so that they return useful daca

structures is careful, error-prone work. Doing it well is key to making sense of
the results.
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8.55: The tree recursive function
should produce a data structure
that maps to the tree geometry.
Each of the figures above shares
a common data structure - the
geometric variation is due to
parameter settings alone.
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Circles

When. Nest circles within a circle, changing the nesting direction at each level.

How. The motif is a circle. It replicates twice inside itself, with the two new
circles of half the radius and tangent to both themselves and the original circle.
The line joining their centres is initially horizontal. At each recursive level, the

—3

the parity of recursion depth within the function. As with the prior samples,
§ the recursion is depth-limited.

“In this recursion much of
oding effort is devoted to
ging the orientation of the
& pair at successive recursive
s
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line needs to alternate between horizontal and vertical. This requires a check on -
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Golden Rectangle
When. Subdivide a golden rectangle into a square and anothey golden rectangle.

How. A golden rectangle is a rectangle whose sidcf lengths ge in
L: ¢, that is, approximately 1: 1.618. A distincnffe feature of ¢
when a square section is removed, the remainder is anothey gol
that is, having the same proportions as the original.

the golden ratio
his shape is that
den rectangle,

This sample represents a golden rectangle of length / as a Sequence of rectangles.
If there is only one member of the sequence, it is a golden Tectangle with the
short side of length / and long side of length (1 + +/5)/ 2 I there is more than
one member, each member but the last is a square, starting w,p, side length /
and reducing by 1/¢ at every member. The final member s , golden rect. angle.
Each successive square is located / * ¢ away and rotated 90° from the last.

In this sample, the recursion condition is area. When the areg of
would be less than a threshold minArea, the function prodyceg
rectangle and returns. Such a constraint is more reaﬁsti'c th'an re
in design there may be a minimum feature size for fabricatioy_

the next square
asingle golden
Cursion depth -

The data structure produced is simple: a linked list of rectangles, all byt the last
being a square.

L. R
You can also create golden rectangles from the “inside out by

adding squares to
a seed rectangle.
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57: The golden rectangle is an
fxf:;eg;;palgrecursiw form. At each
level. the rectangle comprises
squa;e and another, smaller golden

rectangle.
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8.58: At each recursive level the
Sierpinski carpet “cuts away”
1/9 of the remaining square and
applies itself to the rest.
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Sierpinski Carpet
When. Define a Sierpinski carper.

The Sierpinski carpet is a plane fracral, that is 2 recursive, self-similar form,

Waclaw Sierpiski discovered je in 1916. Its construcrion begins with a square.
Conceptually, the square is cut into nine congruent subsquares in a 3 x 3 grid,
and the central subsquare is removed. The same procedur
the remaining eight subsquares.

the base levels, it has eight additional carpets arranged around the motif. Both
the recursive function and the data structure should reflect this arrangement.

The number of times 3 recursive function calls itself at 2 single level is called jts
branching fuctor. A level 0 carpet has a single motif. A level 2 carpet has nine
motifs. The number grows very quickly. A level 6 carper has

1484644512 + 4096 + 32768 + 262144 = 299593 motifs.

Clearly, you have to be careful to limit recursion depth when faced with high
branching factors,
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3D Planes

When. Recursively divide space with three perpendicular polygons.
en.

M quare pOl ons. The cruciform
How. The moth COMPrises & 3D cruciform of squar Vg

divides the space it oocuples ito Clgh( cubes ar ld, at each level, the recursive
function places a ScalEd copy of the cruciform into three of these.

his sample dis e ect bt 1 ALTl] les. In fact,
than the prior s

1 P i plays more archit ural real y P

it resembles a recurrent motif in the work of Arthur Enckson, for example, the

i e below shows the Simon Fraser Universit academic quadrangle .

nagy y

‘ . . . .
Academic Quadmngle, Simon Fraser Universit Ys by Arthur Er ickson
Source: Greg Ehlers / Media Design, Simon Fraser University

8.59: Recursion is the compu-
tational implementation of the
design strategy of hierarchy. Of
course, actual designs require )
recursive functions more specific
than this simple sample.
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“QE“E} ’-LQEJ_J Hilbert Curve
575 When. Progressively fill space with a single curve.

S

H(?w‘ ‘The Hilbert curve fills space. At the n*? recursive level it visits every
E point in a‘(2"“) % (2"*) integer dimensioned space. For example, at the 0%
QJ level it visits all points in 2 2 x 2 space.
; At the 0° level, shown in (@) below, the curve comprises three lines, joining
centres of the four quarters of the 2 x 2 space. At the second level, shown in (b),

anew 2x2 space replaces each of the four points. The points of this space define
four new curves. Joining the endpoints of each curve segment {c) with the start

point of the next produces a continuous curve. At each subsequent level (d), a
furthe~r 2 X 2 space replaces each point at the previous level. Successive levels of
the Hilbert curve thus form a progressively elaborating sequence (d).

@ ®

]

=
Ei=

1
L
i

[

L]

S

© @

8.60: As the recursion level
increases, the Hilbert curve
progressively fills the space it
occupies.
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8.17 GOAL SEEKER

\‘Input / Input
/// o~ 8 Input
~

!("

Model /

Related Pattern e REACTOR

Output

‘What. Change an input until a chosen output meets a threshold.

When. Parametric models are acyclic - data flows downstream. In other words,
you need to know parameter values to produce a result, Sometimes though,
knowledge works the other way. You know a goal for a particular variable and
want to discover a set of input values that will achieve it. Use this pattern when
you want to adjust inputs until you reach a goal.

Why. Without values for its independent variables, 2 model is undetermined,
that is, it does not contain sufficient information to give values to its dependent
variables, Typically, 2 model can exist in an indenumerable infinity of states,
depending on the choice of its input values. Sometimes, you know a property
of such a state. You may even be able to adjust input values until the property
is achieved. But accuracy and reproducibility are important. A GOAL SEEKER
can compute the needed input values.

How. A model has inputs and some outputs. A GOAL SEEKER requires a choice
of both: an output that will be evaluated and an input that will be adjusted. The
output is called the result and input the driver. The threshold that the resule
should meet is called the target. The process of calculating the result from the
inputs is the update method.
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jI‘lne GOAL SEEKER script runs the update method then checks the result. If
it meets the target, the job is done and it returns. I not, it goes back, slightly
changes the driver, runs the update method and checks the result again. This
loop continues to run until the desired result is achieved.

A simple way of being systematic is to use a binary search, in which an estimate
of tlrle distance to the target determines changes to the driver. While searching
the 1.ncrementa1 step change of the driver may cause the result to pass the’ targe;t
I thxs'happens, the script reverses and reduces the step size. Then it continues .
changing the driver until it passes the target again. It repeats the search process
until the result meets the target (with adequate precision).

The simple GOAL SEEKERS presented in this pattern require that the model
(or‘at lffast the result) changes smoothly with changes in the driver. If the result
varied in sharp jumps, the strategy of slowly changing the driver to approach

a result would not work. Such situations present complex problems of discrete

search or .constmint satisfaction that are beyond the scope of simple elements of
parametric design.
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GOAL SEEKER Samples

Local Maximum
When. Locate the point on a curve at which the curve is at a maximum.

How. Elementary calculus (or just looking at a curve) tells us that, at maximum
(or minimum) points, the tangent to a curve is horizontal. The angle between
the tangent and a horizontal line is zero. Searching for a fixed value simplifies
the GOAL SEEKER script in comparison to looking for an unknown maximum.
The tangent changes predictably as a point moves across a maximum. Its slope
is greater than zero on one side of the maximum and less than zero on the other
side. This gives a very simple rule for changing the driver: always move towards
zero.

The essential idea is simple. Start at a known point on the curve. Always step
upwards. At each step measure the slope. If it is zero, stop. If it changes sign,
turn around, takes smaller steps and keep going. Not surprisingly, this is called
a hill-climbing strategy. It has some problems. If there is a local hilliop in the
direction you start walking, you will reach it and be trapped, even if you can see
a taller hill nearby. If the hilltop is really small, that is, small in relation to the
steps you are taking, you might miss it altogether.

Key to writing a working GOAL SEEKER is understanding how to build the
desired measure into the system. Understand how the result will change with
changes to the driver. In this case, the tangent measure makes the choice easy.
In other cases code may be needed to check the effect of change of the driver on
the result and to choose the appropriate direction of change.

The code for this GOAL SEEKER is relatively simple. Unfortunately, other
GOAL SEEKERS require significantly more complex code. There are two nested
while loops. The outer loop implements the binary search, the inner one the
“walk” towards the target. The inner loop has a test

driver > driver .RangeMinimum && driver < driver.RangeMaximum

that ensures that the point remains on the parametric curve. If a curve endisa
local maximum, the GOAL SEEKER will approach the end, but never overshoot,
and will finally arrive at it.
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\/ Code for the LOCAL MAXIMUM sample.
Tangent angle =0 t function generalNumericTest {object booleanTest,
Tvalue = 0.468 2 ) N double a. double b}
* { //provides conditional test of two numeric variables
4 /lbased on an input string.
5 switch {booleanTest){
6 case ">="! return a »= b;

7 case "<=" return a <= b:
& case ">" : return a » b;
9 case "< ; return a < b;

- 0 case "=="! retyrn a == b;
\/ 1 default: return trye:

12 }
Tangent angle = 0,63 5o}
Tvalue = 0.467 [t

15 double currentDriver = driver. value;
16 /1driver is a named variable in the model,
7 doubie target = 0.0;
18 double closeEnough = 0.000000001;
1 int givelpWhen = 200;
2 int incrementAdded = 0
2z int incrementSubdivided = 0;
\/ 2 double increment = 0.2;
2 object startingSide gt
2 int incrementSign

Tangent angle = 13.41

T value = 0,45 % if (resultatarget){
27 startingSide = "»";
28 incrementSign = 1;
» }
I else{
n startingSide = "a=";
1 incrementSign = —1;

B}
\/" 3+ while (increment > closeEnough &&
35 incrementSubdivided <« glveUpWhen)
Tangent angle = 27.66 % {
Tvalue = 0.425 ¥ HncrementSubdivided;

] increment = increment/2.0;
39 while (generalNumericTest(startlngside Jresult  target) &&

L) incrementAdded < giveUpWhen &8
41 driver » driver . RangeMinimum &%&
4 driver « driver RangeMaximum)
43 {
44 +HncrementAdded ;
\/ﬁ 4 currentDriver = driver.Value;
46 driver = currentDriver+(intrementSign*increment);
Tangent angle = 41.03 :; }UpdateGraph( v
Tvalue = 0.375 ¥  driver = currentDriver;
50 UpdateGraph();
5t}
8.61: To seek 2 local maximum
move a point “uphill® along the
curve. When the point passes the
maximum, change direction and
divide the size of the move by
two.
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Curve and Point Distance

When. Adjust a curve until it is exactly a given distance to a point at its closest
approach.

How. In this sample the goal is a minimal distance. Every point on a curve is
some distance from a given point. One {or more) of the curve points lie ar the
least distance. Such poinss are projections of a point onto a curve.

Clearly, any of the control points on a curve can be changed. For each of thvese
points, any direction of change could be used. Using a GOAL SEEKER requires
choice of both point and direction of movement. Other choices of point and
direction can yield vastly different curves, but they will be at the goal distance
(if the GOAL SEEKER works).

Once a control point and direction of movement are chosen, 2 GOAL SEEKER
works as described above: walk towards the target until you overshoot; back
up and take smaller steps; and keep doing this until you are as close as you can

discern.
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Current distance = 4

Target distance = 4

Current distance = 3,928
Target distance = 4

Current distance = 2.984
Target distance = 4

Current distance = 2.107
Target distance = 4

8.62: A curve can be moved in an
infinity of ways. In this sample
one of the control points moves
along a chosen line,




(o
(=
(e
(e

8.64: The small circle’s centre
moves in increments along 2 line
until the two circles intersect, The
direction of movement reverses
and the increment size halves.
These two steps repeat until the
two circles touch,
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Area
When. Adjust a control point of a curve until the curve encloses a given area.

How. The goal here is the area of  closed curve. As in the previous sample, any
of the control points of the curve can be moved in any direction. The modeler
must choose, This particular sample moves the chosen control point away from
the centroid of all other control points. This is a useful approximation, but,
with some work, any other direction could be chosen.

The GOAL SEEKER is almost identical to previous GOAL SEEKERS. The details
of the curve, the chosen point and its direction are all factored into the single

variable called driver.
L2
@
Area = 234 Area = 254 Area = 274 Area = 300

8.63: This GOAL SEEKER moves a control point of a curve along a line until the area of
the curve reaches a threshold (im this case 300).

Two Circles

When. Given a circle constrained to move along a line, find the position of its
centre such that it is tangent to another circle,

How. Computing tangency is easy if the circles are free. The two circle centres
form a line. Move one circle along the line until its centre is plus or minus its
ra}dius from the intersection of the line and the other circle, This situation is
d}fferent ~ the centre of one circle is constrained to lie on an arbitrary line. The
circle centre is governed by the parameter £, which the GOAL SEEKER adjusts
until the tangency conditions are met. The GOAL SEEKER must operate twice:
once for each tangency condition.
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Chapter 9

Design space exploration

by Mehdi (Roham) Sheikholeslami

9.1 Introduction

Clearly, exploring multiple alternatives can lead to better designs. Despite this
well-known fact, current computer-aided design systems provide only the most
rudimentary tools for generating, storing and visualizing alternatives. Hysterical
space is a novel approach to discover alternatives in the solution space by using
the interaction history with a parametric model.

Implicit in any parametric model are the states a designer might have reached

by combining variable settings in new ways. Such a model exhibis hysteresis,
that is, path dependence - thus the name hysterical space. Based on my Master’s
thesis (Sheikholeslami, 2009), I present a simple definition of hysterical space

as the Cartesian product of variable settings. It provides orderings of the space
that yield feasible interactive search strategies. In turn, the orderings suggest
interface designs, which I report as working prototypes. Limited user evaluation
supports a claim that hysterical space may be a useful approach to design space
exploration.

Given our limits, we rely utterly on our external memory to achieve complex
tasks (Norman and Dunaeff, 1994). Computation holds out the promise of
making this medium active, that is, being able to perform some of the cognition
externally.

A key limitation, explained largely by short-term memory capacity and latency,
is our ability to create, compare and consider alternatives. Hysterical space isa
new concept and computational device for wresting many alternatives from a
small number of designer interactions with a parametric modeling system.
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ERS SolidWorks® Configuration Manager is 2 way to explore multiple variations of a
single model,

Source: SolidWorks® screenshots reprinted with the permission of SolidWorks.

Current CAD systems focus mainly on single states, with notable exceptions
such as the SolidWorks® Configuration Manager (Figure 9.1) and the Autodesk
Showcase® (Figure 9.2). Predictably, designers find workarounds — they invent
techniques (mostly manual) for design alternatives, such as copying entire files
or copying parts of the model within the same file, often using layer structures.

9.2{ Autodesk Showcase® has a feature for storing alternatives. Different materials and
design are stored as alternatives of a Sports car,
Source: Autodesk screen shots reprinted with the permission of Autodesk.

92.1.1 Design space

Despite the differences in design theories, we can claim that all of them admit
the existence of a space that contains the solutions to a design problem.
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This work mainly uses Woodbury and Burrow’s (2006) definiition of design
space,which, on one hand, describes a general conception of design space and,
on the other, entails specific mathematical concepts describing a limited, but
sound and tractable design space representation. In short, they argue that design
activity is well-modeled by a network structure and the extent of this network
is determined by the strategies and the structure of the designer’s exploration.
They define several terms such as implicit, explicit and hysteresis, which we ex-
plain as follows.

Implicit Design Space: This all-encompassing object comprises every possible
design solution reachable by a symbol system. It is a nerwork depicting
those paths that contain all design solutions, feasible or not, complete or
not, that may or may not be visited by the designer.

Explicit Design Space: Woodbury and Burrow (2006) argue that an explicit
design space comprises those states that have been visited, in the current
or an available past exploration episode. They state "design space paths
are embedded in both implicit and explicit design spaces”. The larter
is a smaller portion of design space. Explicit design space is developed
through the design process. It gains its structure through the exploration
behaviour of designers; especially through choices of strategies reflecting
the limits of either computation, designer knowledge; or both.

Design Hysteresis: Woodbury et al. (2000) coin the term design bysteresis in
the Erasure in Design Space Exploration. In essence, the idea is to use data
from the explicit space states 1o construet (discover) implicit nodes by
erasing and recombining known data. In this definition, design hysteresis
is a part of implicit space of solutions that may not be explicitly visited by
the designer during the design process. In fact, design hysteresis discovers
explicit states in the implicit space without direct designer action.

We coin the terms hysterical state to describe states in design space that
are reached by such recombination, and Aysterical space to describe the
set of states so reached. This work poses the research question, "How
can a parametric modeling system support the recombination of prior
decisions into new states that are meaningful to designers?"

9.1.2 Alternatives and variations

We narrow our research to parametric modeling, specifically, to architecture

and building engineering. The reasons for this choice are that () recently more
architects and engineers are using parametric modeling tools in their design; and
{b) parameters admit model variations, which enables design space exploration.

A parametric model is an adaptive structure based on a set of parameters. The
values of the parameters at any given time define a (usually infinite) space of
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9.3: The explicit space {in orange)
expresses the path(s) taken by a
designer to reach a solution. Irisa
subgraph of the implicit space (in
grey).

implicit

9.4: Graphical representation of
implicit, explicit and hysterical
space.
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model inssances. Therefore, parametric models intrinsicly enable exploring
great numbers of alternatives and variations.

As a heuristic, we define alternatives as structurally different solutions to a
design. In contrast, variations are the design solutions with identical model
structure but having different values assigned to the parameters. Typically in

a parametric modeling system, variations are considered informally, by moving
input points and altering values on an ad hoc basis. Hysterical space expands the
set of instances visited to a larger space of variations. We hypothesize that this
hysterical space could be a novel approach to enhancing the design process by
recombination of prior decisions into new states that are meaningful in design.

9.2 Hysterical space

Defining a hysterical space requires a representation scheme and an interaction
history. The representation scheme describes the symbol structures with which
we compute a design and its consequent hysterical space. The designer interacts
with the representation to create the explicit space ~ the set of designs actually
visited. The interaction history describes what a designer has done and how
()he has done it - hysterical space amplifies these actions into a collection of
representations.

There are many ways to characterize a hysterical space from a parametric model.
y way: 4 P p

This work illustrates only the most obvious - the Cartesian product of visited

parameter values. The interaction history of the independent variables of 2 fixed

parametric model gives the explicit space, that is, a collection of variations of a

parametric model.

To illustrate hysterical space, we developed two design patterns ~ RECORDER
and HYSTERICAL STATE in addition to those in Chapter 8. A RECORDER
stores a designer’s interaction history with the model, and a HYSTERICAL
STATE generates new variations based on the data the RECORDER captures.

9.2.1 Recorder pattern

Currently there is no clear support in the parametric systems for recording
the user interactions. Changes to parameter values and other interactions with
the system simply flow with minimal recording processes. We introduce the
RECORDER pattern that expresses the idea of storing variations of a model
based on explicit user choices. Since the current configuration of a parametric
model is defined entirely by its parameters, restoring a model to an earlier state
requires only reassigning the original values to the parameters (Figure 9.5).

Like the other design patterns in Chapter 8 we define the RECORDER pattern
in the following structure:
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‘What. Store user-defined choices selectively.

‘When. Record some of the explicitly visited variations of a model in order to
revisit them in the future.

Why. Design is an iterative process in which several variations of one alternative
will be visited in the design process. At each phase the designer, the design team
or the clients may choose some of these variations for further development.
Therefore, having a system that provides the possibility of storing the desired
variations seems essential. By using the RECORDER pattern one can restore the
design model to a previously visited state.

How. First, identify the variables that define the desired part of the model.
Second, create an array storing the recorded values of those variables. Third,
restore the model to a desired state by reassigning the corresponding recorded
values in the array.

Recorder

Recalls

! Set2: i~ Creates - Voriation 2. ¢

9.5: A schematic view of the RECORDER pattern. Three assignment sets of variables )
create three different variations of the model, and by recording the second set the designer
can restore the model to the second variation.

Our primary tool to assess these ideas is GenerativeComponents®. Figure 9.6
illustrates the symbolic representation of the RECORDER pattern for a simple
point. The object of interest is the part of the model that the designer desires w©
record. The parameter varsToRecord is the variable or variables from the object
of interest that the designer chooses to record in the system. The designer may
choose to focus on only a subset of the interaction history. The recoArray stores
all these recorded values. The nodes of Figure 9.6 inside the dashed rectangle
show the mechanism of the recording process in GenerativeComponents®.
The recoOnOff is a Boolean variable specifying whether to record the values or
not. If true, the RECORDER will record the values, otherwise not, The function
recoFinc is the core of the recording process that records values whenever it

is triggered. The recoFuncTrigger triggers the recorder function. Which obje.ct
should trigger the function is the decision of the designer. It could be anything
in the file that updates the model. Based on the structure of the software we
may not need this variable, however; we use this variable to cleanly distinguish
the recording process from the model.
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9.7: A point in frame is defined by
x,yand z coordinates.
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9.6: The structure of the RECORDER pattern in GenerativeComponents®,

F?r example, 2 point in a frame is defined by its x-, - and z-coordinates (see
Fzgfn:e 9.7). Therefore, by recording these variables, the system can restore the
position of the point to a desired state (Figure 9.8).

Variation ; : (xy,1,2 )

Variation 3 : (x2,y2,.22) Recorder:{x 1v1.21 },{x 2 ¥2.22} {23,023 }}

Variation ; : (x;,33,23)

9.8: The recording array for storing the variations of the point contains x,y,and z.
9.2.2 Hysterical State pattern

We limit our examples to the simplest version of the hysterical space, that is,
fhe Cartesian product of the recorded values. The HYSTERICAL STATE pattern
illustrates the implementation of the Cartesian product hysterical space.

A parametric model can be restored to an eatlier state entirely or partially,

based on the parameters that are recorded in the system. If we record all the
parameters of the model, we will be able o fully restore it to the recorded state,
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On the other hand, recording just some of the parameters gives us the option to
restore only parts of the model related to those parameters (Figure 9.9).

Preylous varlp;xops Restored variations
(< L=20 ey e =20
Iy Current variation i
Lot0n wat o W=t
w=15 . . Y
. A t - 16
H : 'y .=10%
w=20 w=11 .
i [ L=15 ' | W=t
H . : ¥
o Recorder, “~ ... [eLis
7 - 3
L =20 L W=t
. L=10 ¥
R L=15
Record Recall

9.9: Recording parts of the model results in partial restoration. By recording only the
length of the rectangle, the restored version retains the current width with the stored
lengths.

What. Create new variations of a parametric model by recombining prior
decisions stored as recorded parameters. In our case, this recombination is the
Cartesian product of the recorded values.

When. Explore more variations of a2 model based on what has been explicitly
visited in the previous stages.

Why. The HYSTERICAL STATE pattern uncovers new nodes in the implicit
design space by combining previously recorded parameter values. Visiting the
resulting new mode] variations may lead a designer to explore novel and maybe
meaningful directions.

How. The first step is to record the user interactions with the model with the
RECORDER pattern. The next step is to generate the Cartesian product of the
recorded values. The simplest function iterates through all the recorded values
making all combinations. Recreating a model for each of these combinations
results in all possible variations in the hysterical space (Figure 9.10).
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911 A roof variation for the
Aviation Museum modeled in
GenerativeComponents .

9.12: Two Metaballs distort and
combine based on proximity,
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Hysterical State ‘Cartesian Product’

PEEEEE

9.10: By generating the Cartesian prod i
; product of the recorded values,
several variations of the model, oriedvelue, chesyseem can provide

9.3 Case study

The Aviation Museum was the capstone project for my Master of Architecrure
degree (Sheikcholeslanii, 2006) (Figure 9.11), One part of the museum is used in
this case study of hysterical space. This comprises a single roof corresponding
to the size of the objects underneath it. For example, larger aircraft result in a
lz}rger roof span. Each primary exhibit object in the museum is represented bya
Cfrcle, such that the circle encompasses that object (Figure 9.13). To cover these
circles with a single roof, I used the Metaballs implicit surface representation.
Metaballs are visually organic objects in #-dimensional space (Blinn, 1982).
Tused a two-dimensional Metaballs algorithm for the museum roof plan.

Since »a.ll <:ff the recorded parameters in this example affect the 2D plan of the
roof, in Figure 9.13 we briefly describe the logic relating the plan and roof.

* Create a point grid for the museum base and the Metaballs algorithm.
Pa.mmete}'s control both size and density of the grid. The parameter
gridDensity specifies the density of the point grid and, consequently, the
smoothness of the museum’s roof,

® Position circles on the point grid 1o represent the main exhibits in the

museum, ']E'he radius of each circle (parameter radii) reflects the size of an
aircraft. (Figure 9.14). We refer to each circle by its centrepoint.
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® Apply the Metaballs algorithm to generate the boundary of the roof. The
parameter threshold defines how much a MetaObject’s surface, in our case
acircle, influences other MetaObjects. As the threshold increases, so does 1 °
influence that each MetaObject has on others (Figure 9.14). -

e
e

.. 1.5 oo
PaRadii € 0.5 conees Threshold € 1.0 vene-
08 =— [Ty ZE—

9.14: (a) The effect of 7adii of the points on the museum’s boundary, in this figure radius
of (Pa) changes. (b) The effect of the threshold on the museum’s boundary.
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We record four parameters, three of which are the radii of the circles {r,,7,,7,}
and one is the threshold t (Equation 9.1).

Ei 13500
S
S
A
.

V=iV, vV, V) Q1) cr e
={r,, 15, 7,1t} ' Roof surface

£

We record two variations of the roof with the following values for the recorded 9,13, The steps to create 2 2D pl
parameters: of the aviation museurm.

si= {T:: Tg: Tco, %} (first variation)
={0.5,1.0,0.6,1.0
fos } » 0.2)
Si={rlr, i’} (second variation)
={07,05,03,0.6}

So now we have recorded two values for each of the variables. The Cartesian
product of these values generates 16 different combinations and thus 16 roof

variations (Equation 9.3).

[ =T )T % T T =2x 2x 2x 2= 16 (.3)

Figure 9.15 shows the two recorded variations of the roof in comparison with
all possible combinations of the recorded values. As you can see, some of those
variations are entirely different from what has been explicitly visited,
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r8 y0 I iyl iyl
(first recorded variation) Vartach

(second recorded variation)

11,0 .0 1,1 .0
ror, vt 1 1.1 1,0
a b ¢ ra r rrt ‘fa Tb T[ [2 T: Tbl 7'[1 !

9.15: Sixteen vatiations of the aviation museum, created by the combining the variables of
the two recorded variations.
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9.4 Representing the hysterical space

The number of states in a Cartesian product hysterical space (we contract to
hysterical space when not ambiguous) grows exponentially with the number of
variables.

The simplest hysterical space representation comprises lists of its assignment
sets, that is, the # sets that from which the Cartesian product is defined. Such

a representation is unevaluated, which means it must be further processed 1o
produce explicit representation of its states. A naive evaluated representation is
thus an #-dimensional array with each dimension capturing an assignment set.
In all but the most simple of hysterical spaces, such a representation would be
defeated by sheer size—it would grow exponentially with the number and size
of the assignment sets. We therefore seek representations that compute only
those parts of the hysterical space actually visited in an interaction, reserving
the array representation for those subsets of hysterical space that are rendered in
their entirety. A representation can be conceived as a choice of ordering a subset
of states that are somehow picked, computed or filtered from the hysterical space.
Qur strategy will be to use such orderings to pick out subsets of the hysterical
space that are then generated and displayed in their entirety as an array.

What, then, is the effective maximum size for a subset of hysterical space that
can be represented directly using an array representation? We propose several
methods for representing the hysterical space, for example, order of generation,
range of inputs (Figure 9.16) and interpolation. See Sheikholeslami (2009).

9.16: Representing the hysterical space by a range of inputs. One can filter the hysterical
space by specifying the range of the input variables. In this figure the coloured cylinders
are the ones that are filtered by the user’s choice.

9.5 Visualizing the hysterical space

Since hysterical space is multi-dimensional, visualizing it presents challenges.
Although we implemented several prototypes, in this section we describe the
main one, called the Dialer,. It is implemented in GenerativeComponents®.
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The Dial?r comprises concentric rings. Each ring represents one parameter
and the divisions of a ring correspond to its parameter’s recorded values. The
outmost ring illustrates the members of the hysterical space. Figure 9.17 shows
three variables with three values for each (three division for each of the inner

rmgs)_.As aresult, the 3 x 3 x 3 = 27 divisions on the outmost ring correspond
to the items of the hysterical space.

Hysterical Space

[Iradius
£ height
X colour
Variables [ hysterical space

9.17: The Dialer: each ring re, i i
7  represents one  9.18: The Dialer for the parametric cylinder,
;anzb!e a[.nd the outmost ring shows the three rings represent three variables and the
ysterical space. outmost ring shows the 24 variations of the

cylinder,
Each ring has a slider with adjustable size that selects the values on the ring. The

Cartesian Product of the selected values highlights the corresponding items in
the hysterical space (Figure 9.18).

T%le Dialer in Figure 9.18 shows three parameters ~ radius, height and colour -
W.nh 3,4, and 2 values for parameters respectively. By moving and resizing the
sliders on e?ch ring, a designer can select the desired values, and as a result, the
corresponflxng items will be highlighted in the outmost ring, which represents
the hysterical space. For example, in Figure 9.18, by selecting {2, 3} for radiug
{7,1} for height and {9} for colour, four items in the hysterical space become ’

highlie.

The circular arrangement of the values in the Dialer makes a relatively more
compact visualization than 2 linear arrangement. However, as the number of
values for a parameter increases, the growing number of the divisions in the
corresponding ring may defeat this interaction scheme,
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9.6 Conclusion

In the domain of parametric modeling, in which models are explicitly defined in
terms of a set of parameters, the idea of exploring the designs engendered by the
parameter space is already well-established. For all but trivial designs, the space
is vast indeed. Hysterical space defines a potentially interesting subspace in
which all designs are parametrically close to what has already been found. The
Cartesian product model of hysterical space presents a novel way to access these
implied states, Its structure is both simple and clear. Its near triviality masks a
surprising richness. We were able to quickly envision a variety of ways to order
(and thus search and visualize) states in the hysterical space. We are confident
thar there is much more to discover, in both representation and interaction.

It seems difficult to design visualizations that adequately capture the structure
of variations, yet these are important in conveying the mechanism of a model
(and thus its implied design space). Furthermore, parametric proximity does
not imply geometric similarity of designs. Two models may be very similar in
geometry but considerably different in parameters. Conversely, two very close
values of the parameters may result in quite a distinct model. Further work
would search for algorithms covering a wide range of hysterical space without
overwhelming designers by representing very similar variations.

We simply do not understand the cognitive importance of the explicit states,
which form the basis for hysterical space. Our interfaces provide no place for
these. With the gift of hindsight, we are astonished at our lack of foresight.

We do not know if hysterical space can cause early commitment to a premature
design or idea. The Cartesian product hysterical space generates variations of
the same alternative, which may not be the best solution to the design problem.
The mastermind of the design is still the designer and it is her decisions that lead
in particular hysterical space.

This work provides a basis from which to search for new ideas for structuring
hysterical space and the promise that there may be some fertile ground to cover
in such a search. There may be new discoveries in the generated items that lead
to completely new designs. By looking at the variations of hysterical space in
the case studies, we discover distinct forms and models from the explicit space
that may be worth considering in the design process.

The Cartesian product model 7y be useful in design. This claim gains support
from the reactions of designers to the model and interface prototypes, and from
our initial (and admittedly idiosyncratic) demonstrations of chosen designs.

We informally discussed the idea with a number of designers and applied the
hysterical space to their work. From the feedback that we received, it seems that
it can be beneficial in their design process. However, more studies with users in
real design situations need to be done to determine both positive and negative
effects of the hysterical space on the design process.
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