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Part 1 The Lorentz group classical

1 Notation and properties

Lorentz tr XM AM x
defined to leave the interval 5 x xp invariant

Remembering

x x'n gu x x yr Ix xp I XP

we conclude that

gap Ma Npgyu defining relation of Lorentzgr

Attention I will use the west coast metric

gap ft i
e

and not the East Coast metric gap
t
it

The defining relation can be written in matrix form calling

Nv N i gyu g

gap Ma Npgyu

dig
We define the LORENTZ Group 5011,37 4 g Nga



This definition is the analog of Oto I for OCN

Properties of A
s detg detat detg deta detg beta

data Is

2 From gap AMaNpgyu taking a O p

a No No gyu No E Not
No at Eiao 71

We can use these properties to classify different sections

of 5011,3

beta a deth 1

PROPER Space inversions
No71 ORTHOCRONOUS

LORENTZ
GROUP 509,34

No f 1 Time invers Time invers

Transformations belonging to 5011,34 can be closeto 1
it is a lie group
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2 Algebra of 5011 3

As all Lie groups 5011,34 s properties are determined locally

by its Lie algebra
We take A close to the identity

A I tia

The Lorentz condition implies

gap Tatiana Dp ti Wp g
I
gap
tilwpatial

We must thus have i anti symmetry Ipa Wap
ii from a real A A it

It in
at I a purely imaginary

The mostgeneral matrix satisfying these conditions is

Nap M
iwa iWor iwas

two O Wiz W

IWoz IWiz 0 IW23

iWo3 IWiz IW23 O

with 6 independentparameters 5011,34 has 6 generators
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From special relativity we know that the interval is left
invariant by 3 dim rotations 3 parameters

boosts 13 parameters
We can identify the generators as follows
a we write w using the usual matrix notation wdp

543 gal yup
O Wo iWoz i was

Iwo O IWiz IWiz
iWoz IWiz O I V23

1 o

b the antisymmetric ones generate the 5013 subgroup

O O O OHit f in I
O O O O

1537 1o i

satisfying Ji Jk i EitemJm

c Boosts act on a 4 vector X as El

Xo Xo wiXi Xi Xi vixo

which can be summarized into

XM Sma i G F a A



I 15with i

Ki p 8 8 8 entry equal to i in the ith

0 0 0 positionL

The structure constants of Soll 3 can be found from direct

computation

Ji Jk iEirmJm

Ji Km i Eimnten

Ki Kj i EijmJm

The Lie algebra becomes simpler complexifying and defining

It Jizi JI JI i EijkJI

IEI.es
grefso1li3lt

is equivalent to two independent

SU 2 algebras

any representation of Soll 3 can be univocelly
determined assigning two semi integer
numbers that completely determine the 5012

representation



Since 5 5 5 the two semi integers immediately
determine the spin contentof the representation using the usual

angular momentum sum rules

given mt m a spin content is

I m m l Mtt m

5011,34 10,0 E O Ot Est
5013 0 I 0 1

E mustbe spin 12 inequivalent spin E
LH RH spinors

in 2dim the 5012 Lie algebra is given by

É
LA spinor I o a J E 5 0

J E I if
RHspinor 0 t 570 FE

J E I if



3 The Poincare group and a betternotation for the Lorentz generator

The Poincare group consists of
LORENTZ TR SPACETIME TRANSLATIONS

x'd Np x t b

This is a group because

Combination

X 1 9 Ax a te a ax ta ta A A x t d at a

is still a Poincaré

transformation
o Inverse

X 19 ax a Eg Cala

if A A and a A a we obtain the inverse

But this is still a Poincaré transformation

P na he 509,3 at Mh is a group

Restricted to 5011,3 It we obtain a lie group

There is a more convenient notation for the 6 generators of 5011,3
We write A A tin
with

Jap 12 w MMlap with win wry
MMU Muy

the antisymmetry guarantees the correct of generators
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There is a compact way to write the generators

MM ap i I 8ps op D

We have the following mapping with the usual notation

K Mo Mo Mo I Ma Ma M

Time team
4 The Poincaré group in Quantum Mechanics

We now must seek for a unitary operator

U It in E A ti EnPM ti w JM

acting on the Hilbert space The quantum generatorsof the
Lorentz group are denoted by JM the quantum generator

of 4 dint translations are the components of the 4 momentumPM
The computation of the commutation relations is very tedious
see Weinberg q Fts and here we just show the results

i JB JM 9PMJ t gaJMP gamJB gpugrid

i Pa JM gap gavpie

PM Pu 0

FUNDAMENTAL RESULT the components of the 4 momentum

operator form a compatible set of operators
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Observe that the Hamiltonian PE H doesnt commute with
the Lorentz generators UH O H W la o H

How can the Poincaré group be a quantum symmetry When

we say that P is a symmetry we mean that UA must commute

with the S matrix

Ua s U'a s un s 0

2 UNITARY REPRESENTATIONS ON PARTICLE STATES

To describe a particle state we choose to diagonalize the momentum

operator PM

PMIp o pulp o r additional quantum numbers

Furthermore we assume the eigenvalue is either timelike p o

or null p2 o The only other Lorentz invariant that can be

constructed using p is sign po We will assume

sign po l on physical States

It is important to notice that any two momenta withthe same
values of p and sign po are relatedby a Lorentz tr A

Let us analyze more in detail the representations of the translation
operator

eggftp.rs
e
ia
plp.rs



We now show that if a representation contains é
ith
then it will

also contain e
it with p Ap

We expect

Matula p o e
P a Ucasppr

ie that UA p o is a state with momentum Ap This claim is
true as can be shown observing that

Apt a

potato
In terms of operators this is UCAUCAa U a Usa

Applying on Ip o we obtain

U a UG p r UCAUCA'a p o

I éip na na p o e
idea

recallp r

p a a Ap a

Lorentz
invariant

which is the result we wanted to establish

Thus if a representation contains vectors Ip o it also contains vectors

with any momentum Ap The vector Uca p r is one suchvector

Now since we are assuming Ip o complete setof states we
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conclude that

Ula p r E C pion Ap 4

As we can see states that share the Lorentz invariants p2 signs
are all connected We will thus select one such state reference

momentum for which computations become simple me 115,07
We then define

pm Ipu K LFLorentz tr that connects

Pit INp Ucp k o
k to 4 momentum p

where Np is a normalization factor
Once this choice is made we still do not have any information
about the t's Looking at we see that information about

how the r's are connected can be obtained if we can eliminate
the information about the momenta i.e specializing to those

transformations W such that Wp p These transformations

form the LITTLE GROUP
Let us see how we can write in terms of little group tr
The first step is to observe that given K and L we have

p A Lp Lap

K p I lapCliffside
group

of K
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and thus

Ula p r Np UK U Lp 1190
I Np U Alp I k o
I Np uclap U

hÉgg
k

Np U Lap In CCK on IK yI Np I colon lap n
p

once these coefficients are known the unitary
representation of the Lorentz group is completely
determined

But as we mentioned earlier the coefficients c are determined

specializing to We little group

U W K D E Caton IK y
matrix representation of the little group
transformation

The little group depends on whether the particle is massive or

massless as we are now going to see



2 1 CASIMIR OPERATORS OF THE POINCARÉ GROUP
3

Algebra of Poincaré seepg 8

Explicit computation shows that

In RM is A CASIMIR OPERATOR

Ilp o palp o mi p 7

any irreducible repr of Poincaré has fixed mass
which makes sense since e Poincaré tr does

not change the mass of a particle

There is a second Casimir obtained from the little group

W K K 8ft ing KB K

K't iwdpkP led wrapKP o

but at
p

MMap i thorp dupery

Wmu EYE OF E KB o

Waples I
Solved by Wap Expurkh

arbitrary



At the quantum level

MW E
H eIExaptihad

Wp PAULI LUBANski vector

Properties of Wa

i W IB o ta p

2 WE Wa W commutes with all generators of Poincaré

µ
W is the second Casimir

we'll see its physical meaning
in the next two sections



2.1 MASSIVE PARTICLES

For massive particles we can choose K f rest frame
in such a way that

little group 5013

Representations of 5013 determined by semi integer s

dimension 25 1

index o in 1k r takesvalues serfs

and Con In 25 1 dim representation of 5013
computed as usual see SYMMETRIES

Under a Lorentz tr we thus have

Uca p r Np E Dien lapin
25 1 dim matrix

Pauli Lubenski

Wa I EpupaKBJM Mz Envoy JM
II gro f indicesmu x mustbe spatial

I Eijo Jij

I I get
it Msk Ste spin

behaves like Eiji



Casimir W Meg

We need mass spin to classify massive

particles

2.2 MASSLESS PARTICLES

Things are more complicated

Since there is no rest frame choose Kk Ee

Generators little group from explicit computation

t

H
I
1

with algebra

A B 0

33 A IB

Js B ja

Endidien group in ok 2

AB compatible common eigenvectors la b



Ala b a la b
Bla b b la b

Important relations

V10 AUTO I i 0 I E It A I i073 ETS t

I
explicit computation using the algebra

I costA sinO B

4101B U 10 sin0 A cost B

for arbitrary 0 we can define

la b o 4 O a b

so that

A la b o a cost bsino a b o

Bla b o a si not boost a b o

Physical interpretation if a b 0 we have a

continuum of states a b o

we should observe a continuum

quantum number for the photon
only known massless particle



Since no continuum quantum number observed

we need to admit a o b

I only relevant generator

µ
the physical little group is so z

generated by Js

But So 2 C So 3 C 50 1 3 eigenvalues quantized
ne z

what is the Pauli Lubanski

Wa I Grupa KP JM

l empatts I
since k É

Wa III little group selects as useful

quantum number the projection

of angular momentum along I



Consequences

Koikwyoin
necessarily WELK

for some h Which one

wat I I EE
in
h HELICITY

Since Wt PB 0 COMPATIBLE OBSERVABLES

We label the states as K D

with

Mlk h Kalish

Wilk h h km h h



PART 3 RELATIVISTICWAVE EQUATIONS

We now use Wigner's classification

to describe particles of mess m spins we will

combine representations of the Lorentz group that
contain the chosen spin

How Since we seek for wave equations we will allow

for the operator Pu i2n if to appear
We will demand for Lorentz covariance
i.e all observers agree on the form of the eg
we will allow for a maximum of 2 time derivatives at mos

2 operators Pu cen appear in the wave eg to avoid

Ostrogradsky instability energy is unbounded from below

if more then 2 time derivatives appear

3 I SPIN O

Contained in saber 4G o o

vector oral izz look saber

tensor Myx 1,0 or lo 1 0 7 scaler

to satisfy point above we consider only

4G VA



only covariant terms that can be formed

Pudu M

pry m gu

the two constants can always be taken

equal with wave functions redefinition

Pupa m Pudu my

µ
P m2 da o

I
Dtm x 0 KLEIN GORDON EQ

Once x is known we use

que tmPup info to compute MG

41 not independentfrom

SOLUTIONS TO THE KLEIN GORDON EQ

Since Ka wave eg phone waves complete set of
solutions



A 3 momentum I we can write

loftF et ith u t

Using this in KG E m2 fact I o

e nichteik time t Me't'tHe E

Uct Rtm Uk 0

Fettivistic energy E

d
solutions UK E et

iet

µ
Ect F et iet if I

Physical interpretation Hamiltonian is H P ist

HE ist FEE
4 has positive energy ofthas negative energy



We will discuss hater the meaning of this

Most general solution of the KG g

Ct I folk qt eti
lettin pie ift

ti

change I I

Joke pt et
let Rt pp e

i let Kt

K
Et Ki K x with Kk E my

folk fate
k
of e

ilex

We'll see later that all this does not make sense interpreting
x as relativistic wave function



3 2 SPIN 112

According to Wigner s I contained in

10

To distinguish between the two spinorial representations
we use indices

I o a 39 9 1,2

O t to a 1,2

How an Pr contract spinorial indices

Detour from spinors to 4 vectors Borut

Studying rotations we saw that I K K F
Rotation implemented as K UCR tutor

with UCR ESU Cz

Here we do something similar

VM F Ma G H F

VotVz Vx Ny
Vxtilly Vo Vz



Properties A V hermitian
2 dett V02 T v2

If we apply T Munt

1 automatically satisfied

2 det MGMT detM detmtdett

requiring detM I detMt

allows to identify t MTMt as
a Lorentz transf

A matrix M such that det M l

is a unimodular matrix ME SL 2,0

Explicitly Mr Von
J Va urMgmt

Ma Mt Mug

As for 5013 e sua the correspondence is 2 1

ME 506,3 IM E SLC Q



Since M is 2 2 must be one of the spinorial
representations
But which one between 2,0 Oct

Remembering that

LH spinor I o a J E 5 0

J E I if
RHspinor 0 t JIO FE

J E I if
we have det l

yidentify
with

4 expfi I if E 4 MY

Yr exp fi Ttip E Hr 2MEUR
A

EUR M EHR

We can always identify

LH spinor 4 Ba Ba MabSb
RH spinor 24k Ta Ta MI Ii



But then

M q Mt Mu on
I

AM a a
MabMab a bb

this is indeed I I because it carries one

undotted one dotted index

Observe now that defining E 9 f
b

e
5
19

we have E a5b

Iggy
23 d E se d

same for dotted indices

E works like a metric tensor

analogy with gyu x'x invariant

can be used to raise lower indices



Important to remember that

EabEbc da Gab Y f ab
analogous for dotted indices

Message we can apply Pt on spinors contracting
in two ways

PM Pag Prasad
pm para PM cabcab a bi

g
0

14 5

But then the covariant equations are

PaaXd M Ja

piasa Mtd

Using one in the other

Paa patsy m sa PaaRab Jb Misa



Use now

P ip2
Faa PMGja

PotP
P'tip pipsIaa

prayjoin
Po p

Pippa
Phi pi
pl p3

PaaRab p fab

Analogously Pdapay Psa

Then

P ni 5 o P ni ti o

both spinors satisfy the
KG equation

DIRACEQUATION

Equivalent and more compact way to present the same physics

4 EE Dirac spinor or 4 spinor
t

by construction in the I o 0 Oct



Then
m

firmLitman
m

4 0

I is m u o

8M gamma matrices Feynman slash notation

ox out any
I

if m 4 0 DIRAC EQUATION

PROPERTIES OF GAMMA MATRICES

1 8 8 241 CLIFFORD ALGEBRA

2 p o v 807 11

3 M i v ji A

4 Hamiltonian form of the Dirac eg

it a m 4 0 it 2 if F m 4 0



i 824 i F Ft m u

multiply by80 on the left

I 2 4 it F It 8m H

T T
FP B historical notation

H F Ftp
Is this hermitian 6 From 80180 pt p

o From JFK F LIT

A
Ht H as wanted

5 Notice that iAtm id m 4 8822 W 4

I 4818322 MY4

I Dtm 4 0

We recover that solutions of the Dirac eq
satisfy the KG G

6 Helicity chirality returning to the 4 E notation in

momentum space we have

up I E FF I m Imp E Fp 5 me



Obs 1 for m 0 we need both 5 I to describe a

5 112 particle we need both chiralities

obs 2 for M O E pl and

FF I I F 5 5

in termsof helicity h 51 Ft
h I It h 5 13

we confirm that in the massless limit the good

quantum member is the helicity

SOLUTIONS OF THE DIRAC EQUATION

Since 4 satisfies the Kat eg we will have both positive negative

energy solutions

Hf up e
P y up e't

t t
id m 4,5 0 i m 45 0

I 1
pm up o MtmUp 0

I N



If it up 0 tip it rp o

To find solutions go to the rest frame ph mo

mm Im up 0 mm mm up 0

Solutions are constant and of the form

up up 1
with a b any constant 2 component spinor

Convenient choice to have linearly independent spinors

art un f
ri fi w 1

with an 1 b

at 9 by

Tbedenotedwith.us
p Us p
s Pd



To derive a more general expression solve now for pk Ego p
Observe that ME É PE

Eye teg
p g

E Pz o

o Etpz 8 pl

p F
Etpz o

0 E pz f g
and the equations we have to solve are

Xp O N o

o xp o pl
Up O

p O

g

lo
p lap

X Ept o

Solution Us p 1332 o rep
as F as

P Fpz O Tpf as
X52 0 Fpz

In the same way we obtain

Ucp
pig
Feb



IMPORTANT OBSERVATION

We have found 8M gu but Any matrix

satisfying the Clifford algebra 8 8 2nm is a

possible gemme matrix

8M Em Weyl representation

80
A o

o y Eff Dirac representation



3.3 WHAT GOES WRONG WITH THE RELATIVISTIC WAVE EQUATIONS

FOR 5 0 5 712

Dtm 4G 0 id m 441 0

Do not make sense as single particle relativistic equations

Why

a KLEIN GORDON

a what to make of negative energies

b For Schrodinger we can construct a conserved probability
current

it 3 EIN
Fitz EEN

it 4 34 it 24 4 4 5 4 try

EFF V VEN

it 4 4
2

TN TN y

4 4 zit F 4 54 54 4

of the form If 5 5 0



For Klein Gordon things are not so smooth

BE To nip
d

0 34 2494 to ni Tat ga
t F It I d

Eats
what to make of the LHS

4 2 7 4 2,4 34 YE4
cannotbe a probability density
because it is not positive

definite prob cannotbe

negative

o Dirac

a what to make of negative energies

b What about the probability current

From iMay my

i 24 80pure mut
i 24 808M mutyo



define 4 4 80 I2nF A ME

But then

it V24 iputV4 MEU MEU o

i 2584 0

conserved current is JETTY

f Jo 4804 4 884 4TH

positive definite

Message for spin 112 we can have a positive definite probability

density while for spin 0 apparently we cannot

In both cases we don't know what to make

of the negative energies

To understand how to move on let's discuss a gedenteen

experiment by Niels Bohr

Particle in a box with moveable top
T

When I push down the top I localize
better and better the particle

but Ap L 21 natural units



When L nt we have Ap am AE am

and there is sufficient energy to create pairs of particles

THE ONLY WAY TO MARRY OM WITH RELATIVITY IS TO

ADMIT THAT THE THEORY MUST DESCRIBE THE CREATION

OF PARTICLES WE NEED QUANTUM FIELDS



4 RELATIVISTIC QFT

Idea introduce quantum fields as we did in NROM

An x Jeff Unfp o apr é

i n
spin component

some appropriate

Lorentz index

with Ana satisfyind the wave egs we have derived

as the Schrodinger field satisfies Schrodinger eg

Expression is however WRING

Why

1 We still did not use the negative energy solution

2 We saw that relativistic invariance Ua 5 0

But S É CII fat dtntfu.lt Va tn

ing
LIE ftp.t ol4xi d4xnTfHcxi 21 xn



Sufficient conditions for S UCA 0

i HA is a Lorentz salon U A HA U A HAN

ii HA H y O F X YRO MICROCAUSALITY

CONDITION

1
necessary to ensure the invariance of time ordering
since different observers can disagree on the ordering
in time of spacelike separated events if they are

to agree on T HA 21411 we must demand that

for spacetime separation the ordering of the HH's
is irrelevant

At the level of fields microcausality implies

AnAl Am y O AnAl AntCyD f x y ko

p
automatically true if the fields
satisfy the same E It as

pug my yean

will give non trivial consequences



Take the case of a spineless particle

Ah Jeffrey ape
I convenient normalization

I
Ah AMEpts ftp 1 fap atpifeipxipyTpp

Cats YEH e PA y

At x y

I explicit computation
Atx Klm Fat x yico

Maggy N mix sign x yo
i Ji MFF

x yi o

Impotent At x y to for xg co

We loose Lorentz invariance

But K z k f z for Eco



Way out use the negative energy solutions

In addition to Atx consider also

BA Jaffa bp e
P

and the combination

x AA a BTA for some XE e

OA y A Alta Btw Atty Bly

I AH AttyDE KR Beyl BTN
1st x y lat At Cy x

choosing 41 1 to commutation relations we have

OH dry At x y Atty X sexy

by construction because

K z Kitz for Eco

six y o t A YEO

exactly what we wanted



Messages

1 Causality demands that every particle a has a

partner b with the same spin the same mess

otherwise we cannot construct six y

2 Causality Lorentz invariance force a spin O particle
to be a Bosa

The result can be generalized for any spin
Write

In x Jeff g una apr e
P tvn p o btp e

it

and compute Un x UntCy for x yico
The explicit computation see S Weinberg Feynman rules foranyspin

gives

4nA Atty Jeffrey Mmmp e Pa e
iplay

some combination of u v

point important for us Mum p 1 tum pm pug

j spin



But then

4nA 4tmlylfxtnmm.im gIg pm ppg.feiPA
Yl e iplxyl

thn 2 Jug off e P pie ipayy

we already know that this integral
vanish outside the light cone
only if I FIFI I

I
4 F 2j odd j L
H B 2jeven j9143_
spin statistic connections

j O 1,2 BOSONS

j E E E FERMIONS

Conclusions microcausality implies

a antiparticles must exist correct interpretation

of negative energies

o spin statistic connection



5 QUANTIZATION ELECTROMAGNETIC FIELD

Now that we know in which sense we need to interpret relativistic

Wave equations we construct the QFT of the EM field for
which we already know the form from classical EM

5.1 Review of EM

Electric Magnetic fields É I 6 d of not independent

Is there a more efficient way to represent a EM field with less
redundancy

s

Maxwell egg

I É f
F 5 0 2

xÉ 2252 0 3

FAB Jt FE 4

Computing 1 5 4 24 575 0 CONTINUITY Eq

From 2 F5 0 B TIE

From 3 Tx É ZETA O Tx Etp O

É Ed JE



from E B 6 dof we have reduced to d 4dof

less redundant description butstill redundant

How do we see this

A At Fw Keeps B FA unchanged

but changes É

É to JI Ed JE THE

changing at the same time

d Ft
keeps also É unchanged

It is a redundancy of our description
I I Fw that can be used to fix some

condition gauge condition

4 0 temporal

Az 0 axial

I 5 0 Coulomb or radiation

FA 34 0 Lorentz



Let's take Coulomb gouge since it will be useful for the
rest of the computation

To make the physics even clearer we introduce transverse

and longitudinal fields as follows

x VIA Vy x with TxVy 0

transverse longitudinal D V1 0

The decomposition is unique Helmholtz theorem

Why are they called transverse longitudinal
In Fourier space K xTy 0

Vix f gyp Tale k f o

I is transverse to momentum while Vy is parallel

In momentum space is easy to derive explicit expressions

Ty KITE I V Ti I KE t
I

in components

Nili Sii KI I



From Maxwell egs

B B1 BI DX Ay At THAI

E E Ey to understand how to compute Et Ex we

go to momentum space

E Dd If É iKE IE
I
I ird It

all that is proportional to k is longitudinal
the rest is transverse

Ed YE
Ex to FAI

All this is completely general

With transverse longitudinal fields we also get a new perspective

on gauge transformations

A At Tw momentum space A At ik w

Ax Ad Antikw At only Ax is affected



different gauge choices correspond to different values for Ax

In Coulomb gauge RA O KA O

N

K AT Ad 0

but K A1 O

N
K A 0 AT 0

Then Ex M
complete separation between At

Ed FAI

From Maxwell as in Coulomb gauge

R E to ZEDA to f

is completely determined

dat Joey E

How many dot 4 Ax AL
T T T
1 I 2

but not independent Ay 0 we are left with Ad
2 olof

see appendix for the counting in Lorentz gauge



What are the egs of motion of At

we start from 2 PA R RA 34 J

d
momentum space

d

III K'At ik i K At 24 3

I
apply bij tgif to project on At

2Ettitensit iqggfkjfik.tt
EE o

d

Ift TAI L

Solution AIA t A1 x t AIN t

solution homogeneouseg anyparticular solution

DATAH O

µ
Radiation field Atext ÉJ g Ge é

t
th c

the 2 olof normalization



In Coulomb gauge is simple to compute the energy of the EM field

H DX ETB I fax text Et BI

p
but Ex Et 0

To prove this

for Et Et Jax gypgyp Enter Eg e
it

Ifax IF ÉYÉ
0

I f of x Exit FIBA
I Hradiation t t folk I Eat

Hcout I fax let I folk left

this can be computed as

follows



I folk fae EffCk

I got k f CK f k Ep

JaxJoly fix flyIx yl



5 2 QUANTUM ELECTRODYNAMICS

What is the quantum version of this story

We know how to write a relativistic quantum field

Af IF I q
Exile axle é t c c

yquantum field

satisfies faxCiel atCK'D 83Gt fax

What is the Hamiltonian that describe the EM and its interactions

with matter

We start with a Lagrangian

L I Maf Igotx IEP
11312 I a VaAka ga Aal

Defining lxH I qa KxxaCtllJCx.t
I gaVa E x XaH

we obtain

L I MEI Ifor IER 11312 fax JA AA page

TxLwitFFÉ A get



Going to momentum space using reality FCK Ftr

fox L fork ICIER IBP J A 5 4

I fork IER IBF j At J A 5 4 got

We now use IEP IE Ft IER

To prove this

for Et Et Jax gypgyp EEG Eg eit

Ifor IF ÉTel É 0
an

O

Ex to Ex IKE
Remembering

Ed AI Et AI

From Maxwell egs I E f i k É f
N

Ey if Fp
µ

É I
1h12



g
IIF glBit

Joe L t folk It AI CkxAI K xAI

If 5 1 5 AI 2,9

I folk At At K xAI K x A1

Ff I At J At

Joygy f
t t fax A aan

for J At

What is then the Hamiltonian

H E Vapa fax AI Th L

Tricks th



Conjugate momenta from folk J At

pa ft Marat EAaa VE poiEA

Te FEI At EL

H Pa 9 As fax AI I AI THAN How
2Ma

II Pa goat I fax Att THAI Haul
2 me

EEE

what happens substituting the quantum field

There is a problem of ordering in passing from the

classical to the quantum expression
we use

AB ABIA symmetric prescription

H t folkE Er aka anat akaaka

I ate alex 836



I t 836 folkEk I'folk Eleathalex
vacuum energy Eo

I
let's study this



5.3 CASIMIR ENERGY VACUUM ENERGY OF THE EM FIELD

We have found

Eo 83 o folk Ek
can be written

as Et 3

what we can actually compute is the vacuum energy density

fo E 5434392

this diverges
d

to make sense of
this integral we need to

regularize it

Since fo is an energy density for sure it will have a

gravitational effect Can we measure it in the Lab however

Imagine we have conducting plates

É Ex 0



Now take
K L y

we require

A x y o t 0 F xy L t

Z

We cannot use the expression for I found earlier because now we

have boundary conditions

We can always write the mode functions as

e
int
u x y Z

and take phone waves in the Xy directions

Uw X y z elk Uw z

K tex ext Kyey

The wave eq becomes

Wnw I Uw t d 0

Uwe z A e Pt B e
it

p we



To satisfy the boundary conditions we need

Uw o 0 Uw z A sin pz

Uwe L 0 ph HI 4 1,23

The vector potential is thus

ATX EI EiJiffyfe Chile annexe
what it'sin pre

c c

Wh Kitty't II

and the Hamiltonian results in

H Eo Ei ÉforkWhk athlex annex
1
Eo L It II fork why 86

272
V2 Volume in the

Xy directions

The physical quantity is thus



F EE IFfolk Whk

To regularize the integral we use the identity
D

gods SP é I P Tap

with X Wnt

Whk A him
p z ttp Jds

sP e
wines

makes the integral over
ok converge

Then

p Iz II SEF typ Jds sp e
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Ip
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expf IIs SEE et's
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3 Zp Riemann Zeta function

3
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4 IoT
A

Vacuum energy is negative

Force on the plates measurable

pz FE 24 21 14

measured and found
in accordance with the

prediction
Vacuum energy is reel



Historically effect predicted in 1948 Hendrik Casimir

measured for the 1st time in 1997 Lamoreaux

within 5 of the prediction
with I flat plate I plate which is a

sphere with large curvature

measured between 2 parallel plates in
201 Bressi Caringno Onofrio Russo



5 4 Interactions with matter

We saw that in classical EM

H I Pa goat Hem Haul
a 2nd

p
contains interactions with matter

Formally obtained applying the minimal substitution

p p gAs

In am we interpret this as it in q At

N
p D igAd

For the interaction with a Schrodinger field 4A we write

Hmatter okx 4th f Right VAIKA2m

Notice that H is gauge invariant provided

A At Tw

y e'away



The whole construction could be justified in terms of symmetries
but we are not going to discuss this here See any book on

QFT

It is customary to define a covariant derivative

BY T iqF U

Explicitly we write

Hmatter Hy HUA HYAA

Hy fax 4th f Ent VA 4G

Hua fol x As Em 4th Duty

Huta Ax Elm 4TH Aja

where AL relativistic quantum field

Let's have a look at Hula in terms of creation annihilation
operators
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zig I E Im Igg Inmate
t
akabtn but hic

these interactions are precisely

of the type that give rise
to coherent states

Phenomenology

1 Hua governs emission absorption of a single photon

2 Huta governs emission absorption of 2 photons and more

importantly photon scattering off the system Jan Jan



5.5 Worked example the dipole approximation

Suppose we went to compute the rate for Cn 81k D Cnl

Matrix element

rata Gil Hua Cn
Fz

ETA Inn

If Cn atom in state n we can simplify the computation

Typical mode functions an in atoms concentrated for

regB Ime
Bohrradius

This means that mostof the contribution in Inn f
comes from Ipl fed me
Now the energy of the photon let that enters Inn ft
is by energy conservation

IF I En En name n x ame k ata

It
wavelenght of photons emitted absorbed is much larger
than the size of the atom
we an approximate elk ta 1



Inn t Inn Co zitfax uh Fun Tantun
I

by parts if Jax u TTun

I
Imfol x chipun
I
ImPhn
t matrix element of

momentum op

Now remember that

FEI VE an En un

and from an explicit computation

i H I 21mEP I if Ip F PE

But then

In nilEm In i ch l HI THI n

I i Cen En

METIwith g qt electricdipole
moment



But then Inn o 9Png ilEn En thin

and

ACK X Cnl Hua Cn 1 EICH Inn o

Fiat

I En En Ext R Thin

Twi

I tell

NTzI
EYCK Thin

Thsstructureappeers
in IE E

KICK D Ect07103 Inn

the matrix element of Hua amounts to the matrix
element of the dipole interaction I É



5.6 COMMUTATION RELATIONS

What are the commutation relations of the quantum field At

According to canonical quantization we have

Ati A H MICyH i bij S x y

This can also be obtained from an explicit computation with ax at

We can rewrite this in terms of Ai Ait MjCy t remembering

that

Ali k bij HI AjCle Atik t bij 2,5 AjAit

Then calling Pij x bij i

ityjg
PimA Pin y Amex t Maly 4

Inversion can be done remembering that P is a projector

AmA H MnCy t i PmiAl Pnj y di d x y
I
I Pmi x Pni y 83 x y

I i Pmn x 83 x y i Smn Impf d xy



APPENDIX I COUNTING DEGREES OF FREEDOM IN LORENTZ GAUGE

In Lorentz gauge 24 DA 0

From G F É to F F p

from 141 5 5
541111,55 ETH ZE

Y

IE FA TCFFtz J

N Lorentz gauge

BI FA J

Counting I 4 dof 34 55 0 I constraint

3 olof left

But we still have some freedom left

34 5 1 0 34 5 Fw If

if 0 Lorentz

gauge is preserved

I use this residual gauge freedom to set 4 0



EM field completely described by A with T.to
2 dof of the original 6


