RELATIVISTIC QUANTUM MECHANICS

1. Lorentz group (classical/quentum) \& Poincare group
2. Unitary representations on particles
3. Relativistic wave eqs.
4. Quantum relativistic fields
5. Quantum electrodynamics

Part 1 - The Lorentz group (classical)

1. Notation and properties

Lorentz tr. $\quad x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}$
defined to leave the interval $s^{2} \equiv x^{\mu} x_{\mu}$ invariant.
Remembering

$$
x^{\prime \mu} x_{\mu}^{\prime}=g_{\mu \nu} x^{\prime \mu} x^{\nu \nu}=g_{\mu \nu} \lambda_{\alpha}^{\mu} x^{\alpha} \Lambda_{\beta}^{\nu} x^{\beta} \stackrel{!}{=} g_{\alpha \beta} x^{\alpha} x^{\beta}
$$

we conclude that

$$
g_{\alpha \beta}=\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} g_{\mu \nu}
$$

Attention: I will use the "west coast" metric

$$
g_{\alpha \beta}=\left[\begin{array}{llll}
+1 & & & \\
& -1 & & \\
& & -1 & \\
& & & \\
&
\end{array}\right.
$$

and not the "East Coast" metric $g_{\alpha \beta}=\left[\begin{array}{ll}-1 & \\ & +1 \\ & \\ \end{array}\right]$.
The defining relation can be written in matrix form calling

$$
\begin{aligned}
& \left\{\Lambda_{\nu}^{\mu}\right\} \equiv \Lambda ;\left\{g_{\mu v}\right\}=g \\
\Rightarrow & g_{\alpha \beta}=\Lambda_{\alpha}^{\mu} \Lambda^{v}{ }_{\beta} g_{\mu \nu}
\end{aligned}
$$

We define the LORENTZ GROUP SO $(1,3) \equiv\left\{\Lambda / g=\Lambda^{\top} g \Lambda\right\}$

This definition is the analog of $O^{\top} O=\mathbb{1}$ for $O(N)$.
Properties of λ :
(1) $\operatorname{det} g=\operatorname{det} \Lambda^{\top} \operatorname{det} g \operatorname{det} \Lambda=\operatorname{det} g(\operatorname{det} \Lambda)^{2}$

$$
\Rightarrow \operatorname{det} \Lambda= \pm 1
$$

(2) From $g_{\alpha \beta}=\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} g_{\mu \nu}$, taking $\alpha=0=\beta$:

$$
\begin{aligned}
& +1=\Lambda_{0}^{\mu} \Lambda_{0}^{\nu} g_{\mu \nu}=\left(\Lambda_{0}^{0}\right)^{2}-\sum_{i=1}^{3}\left(\Lambda_{0}^{i}\right)^{2} \\
& \Rightarrow\left(\Lambda_{0}^{0}\right)^{2}=1+\sum_{i=1}^{3}\left(\Lambda_{0}^{i}\right)^{2} \geqslant 1
\end{aligned}
$$

We can use these properties to classify different "sections" of $S O(1,3)$:

	Set $\Lambda=+1$	$\operatorname{det} \Lambda=-1$
$\Lambda_{0}^{0} \geqslant 1$	PROPER ORTHCRONOUS LORENTZ GROUP SO(13$)_{+}$	Space inversions
$\Lambda_{0}^{0} \leqslant-1$	Time invers.	Time invers.

Transformations belonging to $\mathrm{SO}(1,3)_{+}$can be close to $\mathbb{1}$
\Rightarrow it is a Lie group
2. Algebra of $\operatorname{SO}(1,3)_{+}$

As all Lie groups, SO(1,3$)_{+}$'s properties are determined (locally) by its Lie algebra.
We take Λ close to the identity:

$$
\Lambda \simeq \mathbb{1}+i \widehat{\omega}
$$

The Lorentz condition implies

$$
\begin{aligned}
g_{\alpha \beta} & =\left(\delta_{\alpha}^{\mu}+i \hat{w}_{\alpha}^{\mu}\right)\left(\delta_{\beta}^{\nu}+i \hat{w}_{\beta}^{\nu}\right) g_{\mu \nu} \\
& =g_{\alpha \beta}+i \underbrace{\left(\hat{w}_{\beta \alpha}+\hat{w}_{\alpha \beta}\right)}_{0}
\end{aligned}
$$

We must thus have: (i) antisymmetry $\hat{\omega}_{\beta \alpha}=-\hat{\omega}_{\alpha \beta}$
(ii) from Λ real $\Rightarrow \Lambda^{*}=11-i \hat{\omega}^{*}$

$$
\mathbb{1}+i \hat{\omega}
$$

$\Rightarrow \hat{\omega}^{*}=-\hat{\omega} \Rightarrow \hat{\omega}$ purely imaginary
The most general matrix satisfying these conditions is

$$
\left\{\hat{\omega}_{\alpha \beta}\right\}=\left[\begin{array}{cccc}
0 & i \omega_{01} & i \omega_{02} & i \omega_{03} \\
-i \omega_{01} & 0 & i \omega_{12} & i \omega_{13} \\
-i \omega_{02} & -i \omega_{12} & 0 & i \omega_{23} \\
-i \omega_{03} & -i \omega_{13} & -i \omega_{23} & 0
\end{array}\right]
$$

with 6 independent parameters \Rightarrow SO $(1,3)$ + has 6 generators

From special relativity we know that the interval is left invariant by $\begin{cases}3-\operatorname{dim} \\ \text { boosts } & \text { (3 parameters) } \\ \text { (3 parameters) }\end{cases}$
We can identify the generators as follows:
(a) we write ω using the usual matrix notation ω_{β}^{α} :

$$
\hat{\omega}_{\beta}^{\alpha}=g^{\alpha \mu} \hat{\omega}_{\mu \beta}=\left[\begin{array}{cccc}
0 & i \omega_{01} & i \omega_{02} & i \omega_{03} \\
i \omega_{01} & 0 & -i \omega_{12} & -i \omega_{13} \\
i \omega_{02} & i \omega_{12} & 0 & -i \omega_{23} \\
i \omega_{03} & i \omega_{13} & i \omega_{23} & 0
\end{array}\right]
$$

(b) the antisymmetric ones generate the SO(3) subgroup:

$$
\begin{aligned}
& \left(J_{1}\right)_{\beta}^{\alpha}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{array}\right] ;\left(J_{2}\right)_{\beta}^{\alpha}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & i \\
0 & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{array}\right] \\
& \left(J_{3}\right)_{\beta}^{\alpha}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

satisfying $\left[J_{i}, J_{k}\right]=i \epsilon_{i k m} J_{m}$
(c) Boosts act on a 4 -vector X^{μ} as ($c=1$)

$$
x^{0^{\prime}}=X^{0}+v^{i} X^{i} ; \quad X^{i \prime}=X^{i}+v^{i} X^{0}
$$

which can be summarized into

$$
X^{\mu \prime}=\left(\delta_{\alpha}^{\mu}-i(\vec{v} \cdot \vec{k})_{\alpha}^{\mu}\right) X^{\alpha}
$$

$$
\begin{aligned}
& \text { with } \\
& \left(K_{i}\right)_{\beta}^{\alpha}=\left[\begin{array}{llll}
0 & & i & i \\
i & 0 & 0 & 0 \\
i & 0 & 0 & 0 \\
& 0 & 0 & 0
\end{array}\right], ~
\end{aligned}
$$

(entry equal to i in the $i^{\text {th }}$ position)

The structure constants of $\mathrm{SO}(1,3)_{+}$can be found from direct computation:

$$
\begin{aligned}
& {\left[J_{i}, J_{k}\right]=i \epsilon_{i k m} J_{m}} \\
& {\left[J_{i}, K_{m}\right]=i \epsilon_{i m n} K_{n}} \\
& {\left[K_{i}, K_{j}\right]=-i \epsilon_{i j m} J_{m}}
\end{aligned}
$$

The Lie algebra becomes simpler complexifying and defining

$$
\begin{aligned}
& J_{i}^{ \pm}=\frac{J_{i} \pm i K_{i}}{2} \Rightarrow {\left[J_{i}^{ \pm}, J_{j}^{ \pm}\right]=i \epsilon_{i j k} J_{k}^{ \pm} } \\
& {\left[J_{i}^{ \pm}, J_{j}^{-}\right]=0 }
\end{aligned}
$$

the Lie algebra of SO $(1,3)_{+}$ is equivalent to two independent SU(2) algebras
any representation of $\mathrm{SO}(1,3)_{+}$can be univocally determined assigning two semi-integer numbers (that completely determine the SU(2) representation)

Since $\vec{J}=\vec{J}^{+}+\vec{J}^{-}$, the two semi-integers immediately determine the spin content of the representation using the usual angular momentum sum rules:
given $\left(m_{+}, m_{-}\right) \leftrightarrow$ spin content is

$$
\left|m_{+}-m_{-}\right|, \ldots, m_{+}+m_{-}
$$

2 inequivalent spin- $\frac{1}{2}$
must be spin-1
(LH RH spinors)
in 2-dim, the SU(2) Lie algebra is given by

$$
\vec{J}^{ \pm}=\frac{\vec{\sigma}}{2}
$$

LH spinor: $\left(\frac{1}{2}, 0\right) \leftrightarrow \vec{J}^{+}=\frac{\vec{\sigma}}{2} ; \vec{J}^{-}=0$

$$
\Rightarrow \vec{J}=\frac{\vec{\sigma}}{2}, \vec{k}=-\frac{i \vec{\sigma}}{2}
$$

RH spiner: $\left(0, \frac{1}{2}\right) \leftrightarrow \vec{J}^{+}=0 ; \vec{J}^{-}=\frac{\vec{\sigma}}{2}$

$$
\Rightarrow \vec{J}=\frac{\vec{\sigma}}{2}, \vec{K}=i \frac{\vec{\sigma}}{2}
$$

3. The Poincare group (and a better notation for the Lorentz generators)

The Poincare group consists of
Lorentz TR \oplus SPACE-TIME TRANSLATIONs

$$
x^{1 \alpha}=\Lambda_{\beta}^{\alpha} x^{\alpha}+b^{\alpha}
$$

This is a group because:
(-) Combination :

$$
x \xrightarrow{(\Lambda, a)} \Lambda x+a \xrightarrow{\left(\Lambda^{\prime}, a^{\prime}\right)} \Lambda^{\prime}(\Lambda x+a)+a^{\prime}=\Lambda^{\prime} \Lambda x+\Lambda^{\prime} a+a^{\prime}
$$

is still a Poincare transformation
(o) Inverse:

$$
x \stackrel{(\Lambda, a)}{\mapsto} \Lambda x+a \xrightarrow{(\Lambda, a)^{-1}=\left(\Lambda^{\prime}, a^{\prime}\right)}
$$

if $\Lambda^{\prime}=\Lambda^{-1}$ and $a^{\prime}=-\Lambda^{-1} a$ we obtain the inverse.
But this is still a Poincare transformation
$\Rightarrow P=\left\{(\Lambda, a) / \Lambda \in S O(1,3) \& a \in M^{4}\right\}$ is a group
Restricted to $S O(1,3)_{+}$we detain a Lie group.
There is a more convenient notation for the 6 generators of SO(1,3$)_{\text {t }}$. We write $\Lambda \simeq \mathbb{1}+i \hat{\omega}$
with

$$
\begin{aligned}
\hat{w}_{\alpha \beta}=\frac{1}{2}\left(w_{\mu \nu} M^{\mu \nu}\right)_{\alpha \beta} \quad \text { with } \quad \begin{array}{l}
w_{\mu \nu}
\end{array}=-w_{\nu \mu} \\
M^{\mu \nu}=-M^{\nu \mu}
\end{aligned}
$$

(the entisymmetry guarantees the correct \# of generators)

There is a compact way to write the generators:

$$
\left(M^{\mu \nu}\right)_{\alpha \beta}=i\left(\delta_{\alpha}^{\mu} \delta_{\beta}^{\nu}-\delta_{\beta}^{\mu} \delta_{\alpha}^{\nu}\right)
$$

We have the following mapping with the usual notation:

$$
\underbrace{\vec{k}=\left\{M^{01}, M^{02}, M^{03}\right\}}_{k^{i}=M^{0 i}} ; \underbrace{\vec{J}=\left\{M^{23}, M^{31}, M^{12}\right\}}_{J^{i}=\epsilon^{i j k} M^{j k}}
$$

4. The Poincare group in Quantum Mechanics We now must seek for a unitary operator

$$
U(\mathbb{1}+i \hat{\omega}, \epsilon) \simeq \mathbb{1}+i \epsilon_{\mu} p^{\mu}+\frac{i}{2} \omega_{\mu \nu} J^{\mu \nu}
$$

acting on the Hilbert space. The (quantum) generators of the Lorentz group ore denoted by $J^{\mu \nu}$; the (quantum) generator of 4-dim translations are the components of the 4-momeutum P ${ }^{\mu}$. The computation of the commutation relations is very tedious (see Weinberg -QFT1) and here we just show the results:

$$
\left\{\begin{array}{l}
i\left[J^{\alpha \beta}, J^{\mu \nu}\right]=g^{\beta \mu} J^{\alpha \nu}+g^{\alpha \nu} J^{\mu \beta}-g^{\alpha \mu} J^{\beta \nu}-g^{\beta \nu} J^{\mu \alpha} \\
i\left[p^{\alpha}, J^{\mu \nu}\right]=g^{\alpha \mu} p^{\nu}-g^{\alpha \nu} p^{\mu} \\
{\left[p^{\mu}, p^{\nu}\right]=0}
\end{array}\right.
$$

\Rightarrow FUNDAMENTAL RESULT: the components of the 4 -momentum operator form a compatible set of operators

Observe that the Hamiltonian $P^{0}=H$ does not commute with the Lorentz generators, $U(\Lambda, 0) H U^{-1}(\Lambda, 0) \neq H$.
How can the Poincare group be a quantum symmetry? When we say that ρ is a symmetry we mean that $U(\Lambda)$ must commute with the S-matrix:

$$
u(\Lambda) s u^{-1}(\Lambda)=s \quad \Rightarrow[u(1), s]=0
$$

2 - unitary representations on particle states
To describe a particle state we choose to diagonalize the momentum operator $\hat{\mathrm{p}}^{\mu}$:

$$
\hat{p}^{\mu}|p, \sigma\rangle=p^{\mu}|p, \sigma\rangle \quad \sigma=\text { additional quantum numbers }
$$

Furthermore, we assume the eigenvalue is either time like ($p^{2}>0$) or null $\left(p^{2}=0\right)$. The only other lorentz invariant that can be constructed using p^{μ} is sign $\left(p^{0}\right)$. We will assume

$$
\operatorname{sign}\left(p^{0}\right)=1 \text { on physical states. }
$$

It is important to notice that any two momenta with the same values of p^{2} and $\operatorname{sign}\left(p^{0}\right)$ are related by a lorentz tr. Λ.
Let us analyze more in detail the representations of the translation operator

$$
\underbrace{e^{-i a \cdot p}}_{U(a)}|p, \sigma\rangle=e^{-i a \cdot p}|p, \sigma\rangle .
$$

We now show that if a representation contains $e^{-i P a}$ then it will also contain $e^{-i P^{\prime} \cdot a}$ with $p^{\prime}=\Lambda p$.
We expect

$$
U(a) U(\Lambda)|p, \sigma\rangle=e^{-i \Lambda p \cdot a} U(\Lambda)|p, \sigma\rangle
$$

ie. that $U(\Lambda)|p, \sigma\rangle$ is a state with momentum Λp. This claim is true, as can be shown observing that

In terms of operators, this is $U(\Lambda) U\left(\Pi^{\prime} a\right)=U(a) U(\Lambda)$
Applying on $|p, \sigma\rangle$, we detain

$$
\begin{aligned}
& U(a) U(\Lambda)|p, \sigma\rangle=U(\Lambda) U\left(\Lambda^{-1} a\right)|p, \sigma\rangle \\
&=e^{-i p \cdot \Lambda^{-1} a} U(\Lambda)|p, \sigma\rangle=e^{-i \Lambda_{p} \cdot a} U(\Lambda)|p, \sigma\rangle \\
& \longrightarrow p \cdot\left(\Lambda^{-1} a\right)=(\Lambda p) \cdot a
\end{aligned}
$$

Lorentz invariant
which is the result we wanted to establish.
Thus, if a representation contains vectors $|p, \sigma\rangle$, it also contains vectors with any momentum $1 p$. The vector $U(1)|p, \sigma\rangle$ is one such vector. Now, since we are assuming $\{|p, \sigma\rangle\}_{\sigma}=$ complete set of states, we
conclude that

$$
u(\Lambda)|p, \sigma\rangle=\sum_{\eta} c(p, \sigma, \eta)|\Lambda p, \eta\rangle
$$

As we can see, states that share the Lorentz invariants $p^{2} \& \operatorname{sign}\left(\rho^{\circ}\right)$ are all connected. We will thus select one such state ("reference momentum") for which computations become simple: $k^{\mu} \leftrightarrow|k, \sigma\rangle$. We then define

$$
\begin{aligned}
& p^{\mu}=L_{p v}^{\mu} k^{v} \quad \begin{array}{l}
L_{p}= \\
\downarrow \downarrow \\
|p, \sigma\rangle=N_{p} u\left(L_{p}\right)|k, \sigma\rangle \quad \\
k \text { to } \\
\mid \text { 4-momentum } p
\end{array} \\
& \begin{array}{l}
\text { (**) }
\end{array}
\end{aligned}
$$

where N_{p} is a normalization factor.
Once this choice is made, we still do not have any information about the σ^{\prime} s. Looking at \circledast, we see that information about how the σ^{\prime} s are connected can be obtained if we can eliminate the information about the momenta, i.e. specializing to those transformations W such that $W_{p}=p$. These transformations form the LITTLE GROUP.
Let us see how we con write $\left(*_{*}\right)$ in terms of little group to. The first step is to doserve that, given K and L, we have

$$
\Delta L_{p}=L_{\Lambda_{p}} \quad=L_{\Lambda_{p}} \underbrace{\left(L_{\Lambda_{p}}^{-1} \Lambda L_{p}\right)}_{W \in \begin{array}{l}
\text { little group } \\
\text { of } k
\end{array}}
$$

and thus

$$
\begin{aligned}
& U(\Lambda)|p, \sigma\rangle=N_{p} U(\Lambda) U\left(L_{p}\right)|K, \sigma\rangle \\
& \stackrel{1}{ } N_{p} u\left(\Lambda L_{p}\right)|k, \sigma\rangle \\
& \begin{array}{l}
\underline{=} N_{p} U\left(L_{\Lambda_{p}}\right) \underbrace{\|^{\Downarrow} U\left(L_{\Lambda p}^{-1} \wedge L_{p}\right)|K, \sigma\rangle}_{\text {apply }{ }^{\downarrow} \circledast} \\
N_{p} u\left(L_{\Lambda_{p}}\right) \sum_{\eta} C(k)_{\sigma_{\eta}}|k, \eta\rangle
\end{array} \\
& =N_{p} \sum_{\eta} C(k)_{\sigma \eta}\left|\Lambda_{p}, \eta\right\rangle
\end{aligned}
$$

once these coefficients are known, the unitary representation of the Lorentz group is Completely determined.
But, as we mentioned earlier, the coefficients c are determined specializing \circledast to We little group:

$$
u(w)|k, \sigma\rangle=\sum_{\eta} c(k)_{\sigma \eta}|k, \eta\rangle
$$

matrix representation of the little group transformation
The little group depends on whether the particle is massive or massless, as we are now going to see.
2.1 - CASIMIR operators of the poincarè group

Algebra of Poincare \rightarrow see pg. 8
Explicit computation shows that

$$
\begin{aligned}
& P^{2}=P_{\mu} P^{\mu} \quad \text { IS A CASIMIR OPERATOR } \\
\Rightarrow & P^{2}|p, \sigma\rangle=p^{2}|p, \sigma\rangle=m^{2}|p, \sigma\rangle
\end{aligned}
$$

\Rightarrow any irreducible repr. of Poincare has fixed mass (which makes sense, since a Poincare tr. does not change the mass of a particle)

There is a second Casimir \rightarrow obtained from the little group

$$
\begin{aligned}
& W K=k \quad \Rightarrow\left(\delta_{\beta}^{\alpha}+i \hat{\omega}_{\beta}^{\alpha}\right) k^{\beta}=k^{\alpha} \\
& k^{\alpha}+i \hat{\omega}^{\alpha} k^{\beta}=k^{\alpha} \Rightarrow \hat{\omega}^{\alpha}{ }_{\beta} k^{\beta}=0 \\
& \text { but } \hat{\omega}_{\alpha \beta}=\frac{1}{2}\left(\omega_{\mu \nu} M^{\mu \nu}\right)_{\alpha \beta} \\
& \left(M^{\mu \nu}\right)_{\alpha \beta}=i\left(\delta_{\alpha}^{\mu} \delta_{\beta}^{\nu}-\delta_{\beta}^{\mu} \delta_{\alpha}^{\nu}\right) \\
& \omega_{\mu \nu}\left(\delta_{\alpha}^{\mu} \delta_{\beta}^{\nu}-\delta_{\beta}^{\mu} \delta_{\alpha}^{\nu}\right) k^{\beta}=0 \\
& \omega_{\alpha \beta} k^{\beta} \stackrel{\Downarrow}{=}
\end{aligned}
$$

\rightarrow solved by $\omega_{\alpha \beta}=\epsilon_{\alpha \beta \mu \nu} K^{\mu} h^{\nu}$ \longrightarrow arbitrary

At the quantum level:

$$
\begin{aligned}
& u(w)=e^{\frac{i}{2} w_{\mu v} J^{\mu v}}=e^{\frac{i}{2} \epsilon_{\mu v \alpha \beta} k^{\alpha} h^{\beta} J^{\mu v}} \\
& \| W_{\beta}=\text { PAULi-LUBANSKi vector }
\end{aligned}
$$

Properties of W_{α} :
(1) $\left[W^{\alpha}, P^{\beta}\right]=0 \quad \forall \alpha, \beta$
(2) $W^{2} \equiv W_{\alpha} W^{\alpha}$ commutes with all generators of Poincare \downarrow
W^{2} is the second Casimir
we'll see its physical meaning in the next two sections
2.1 - massive particles

For massive particles we can choose $K^{\mu}=\binom{m}{\overrightarrow{0}}$ [rest frame] in such a way that
little group $=$ SO (3)
Representations of SO(3) \rightarrow determined by semi-integer S, dimension $2 s+1$

Index σ in $|k, \sigma\rangle \Rightarrow$ takes values $-s \leqslant \sigma \leqslant s$
and $C_{\sigma \eta}=D_{\sigma \eta}^{(2 s+1)}=(2 s+1)$-dim representation of $\operatorname{SO}(3)$, computed as used (see SYMMETRIES)

Under a lorentz tr. we thus have

$$
\begin{aligned}
& U(\Lambda)|p, \sigma\rangle=N_{p} \sum_{\eta} D_{\sigma \eta}^{(2 s+1)}|\Lambda p, \eta\rangle \\
&{ }_{\rightarrow}(2 s+1) \text {-dim matrix }
\end{aligned}
$$

Pauli-Lubenski:

$$
\begin{aligned}
& W_{\alpha}=\frac{1}{2} \epsilon_{\mu \nu \beta \alpha} K^{\beta} J^{\mu \nu}=\frac{m}{2} \epsilon_{\mu \nu 0 \alpha} J^{\mu \nu} \\
& m \delta^{\downarrow 0} \left\lvert\, \begin{array}{l}
\downarrow \\
\text { indices } \mu, v, \alpha \\
\\
\end{array}\right. \\
& =\frac{m}{2} \epsilon_{i j 0 k} J^{i j} \\
& I-\frac{m}{2} \underbrace{\epsilon_{i j k 0}} J^{i j}=-m S_{k} \quad S_{k}=s p i n \\
& \text { behaves like } \epsilon_{i j k}
\end{aligned}
$$

\Rightarrow Casimir $W^{2}=m^{2} \vec{S}^{2}$
\Rightarrow we need mass + spin to classify massive particles
2.2 - MASSLESS PARTicles

Things are more complicated.
Since there is no rest frame \rightarrow choose $K^{\mu}=\left(\begin{array}{l}E \\ 0 \\ 0 \\ E\end{array}\right)$
Generators little group \rightarrow from explicit computation

$$
\left.\left.\begin{array}{l}
A=\left[\begin{array}{cc|c}
0 & 1 & 0 \\
1 & 0 & 0 \\
\hline 0 & 0 & 0
\end{array}\right] \\
0 \\
0
\end{array} \right\rvert\, \begin{array}{ll|l}
0 & 0 \\
0
\end{array}\right]
$$

with algebra

$$
\left.\begin{array}{l}
{[A, B]=0} \\
{\left[J_{3}, A\right]=i B} \\
{\left[J_{3}, B\right]=i A}
\end{array}\right\} \text { Euclidien group in } d=2
$$

A, B compatible \rightarrow common eigenvectors $|a, b\rangle$

$$
\left\{\begin{array}{l}
A|a, b\rangle=a|a, b\rangle \\
B|a, b\rangle=b|a, b\rangle
\end{array}\right.
$$

Important relations:

$$
U(\theta) A U^{-1}(\theta)=\left(1+i \theta J_{3}-\frac{\theta^{2}}{2} J_{3}^{2}+\ldots\right) A\left(1-i \theta J_{3}-\frac{\theta^{2}}{2} J_{3}^{2}+\ldots\right)
$$

= explicit computation using the algebra

$$
\underline{I} \cos \theta A-\sin \theta B
$$

$$
U(\theta) B U^{-1}(\theta)=\sin \theta A+\cos \theta B
$$

\Rightarrow for arbitrary θ, we can define

$$
|a, b\rangle_{\theta} \equiv u^{-1}(\theta)|a, b\rangle
$$

so that

$$
\left\{\begin{array}{l}
A|a, b\rangle_{\theta}=(a \cos \theta-b \sin \theta)|a, b\rangle_{\theta} \\
B|a, b\rangle_{\theta}=(a \sin \theta+b \cos \theta)|a, b\rangle_{\theta}
\end{array}\right.
$$

Physical interpretation: if $a, b \neq 0$ we have a
continuum of states $|a, b\rangle_{\theta}$
\Rightarrow we should observe a continuum quantum number for the photon (only known massless particle)

Since no continuum quantum number observed
\Rightarrow we need to admit $a=0=b$
$J_{3}=$ only relevant generator
\Downarrow
the "physical" little group is SO(2)
[generated by J_{3}]
But SO (2) CSO(3) C SO $(1,3)_{+} \Rightarrow$ eigenvalues quantized

$$
\frac{n}{2}, n \in \mathbb{Z}
$$

What is the Pauli-Lubanski?

$$
\begin{aligned}
W_{\alpha} & =\frac{1}{2} \epsilon_{\mu \nu \beta \alpha} k^{\beta} J^{\mu \nu} \\
& =-\epsilon_{12 \beta \alpha} k^{\beta} J^{3}=\left[\begin{array}{c}
-E J^{3} \\
0 \\
0 \\
E J^{3}
\end{array}\right]
\end{aligned}
$$

Since $k=\left[\begin{array}{l}E \\ 0 \\ 0 \\ E\end{array}\right]$
$\Rightarrow W_{\alpha}=\left[\begin{array}{c}-\vec{k} \cdot \vec{J} \\ 0 \\ \vec{k} \cdot \vec{J}\end{array}\right]$
\Longrightarrow Little group selects as useful quantum number the projection of angular momentum along \vec{k}

Consequences:

$$
\underbrace{k^{2}=0 ; k w=0 ; w^{2}=0}_{\Downarrow}
$$

necessarily $\quad W^{\alpha}=h k^{\alpha}$
for some h. Which one?

$$
W^{\alpha}=\left[\begin{array}{c}
-\vec{k} \cdot \vec{J} \\
0 \\
-\vec{k} \cdot \vec{J}
\end{array}\right]=-\frac{\vec{k} \cdot \vec{J}}{|\vec{k}|}\left[\begin{array}{c}
|\vec{k}| \\
0 \\
0 \\
|\vec{k}|
\end{array}\right]=\underbrace{\underbrace{-\frac{\vec{k} \cdot \vec{J}}{|\vec{k}|}} k^{\alpha}}_{h=\text { HELICITY }}
$$

Since $\left[W^{\alpha}, p^{\beta}\right]=0 \quad$ Compatible observables
\Longrightarrow we label the states as $|k, h\rangle$
with

$$
\left\{\begin{array}{l}
P^{\mu}|k, h\rangle=k^{\mu}|k, h\rangle \\
w^{\mu}|k, h\rangle=h k^{\mu}|k, h\rangle
\end{array}\right.
$$

Part 3 : relativistic wave equations

We now use Wigner's classification:
to describe particles of mess m \& spin s we will combine representations of the Lorentz group that contain the chosen spin.

How? Since we seek for wave equations, we will allow
(1) for the operator $P_{\mu}=i \partial_{\mu}=\binom{i \partial_{t}}{i \vec{\nabla}}$ to appear
(2) we will demand for Lorentz Covariance (i.e. all observers agree on the form of the eq.)
(3) we will allow for a maximum of 2 time derivatives (= at most 2 operators P_{μ} can appear in the wave eq.) to avoid Ostrogradsky instability (energy is unbounded from below if more than 2 time derivatives appear)
3.1 - Spin 0

Contained in scalar $\phi(x) \leftrightarrow(0,0)$
vector $\phi^{\mu}(x) \leftrightarrow\left(\frac{1}{2}, \frac{1}{2}\right) \quad\left[\phi^{0}(x)=\right.$ scalar $]$
tensor $\phi^{\mu \nu}(x) \leftrightarrow(1,0)$ or $(0,1) \quad\left[\phi^{00}(x)=\right.$ scelor $]$
\rightarrow to satisfy point (3) above, we consider only

$$
\phi(x) \& \phi^{\mu}(x)
$$

Only Covariant terms that can be formed:

$$
\left\{\begin{array}{l}
p^{\mu} \phi=m \phi \\
p^{\mu} \phi=m \phi^{\mu}
\end{array}\right.
$$

[the two constants can always be taken equal with wave functions redefinition

$$
\begin{aligned}
& \Rightarrow P P_{\mu} \phi=m P_{\mu} \phi^{\mu}=m^{2} \phi \\
& \Downarrow \\
& \left(P^{2}-m^{2}\right) \phi(x)=0 \\
& \Uparrow \\
& \left(\Pi+m^{2}\right) \phi(x)=0 \quad \text { KLEIN-GORDON EQ. }
\end{aligned}
$$

Once $\phi(x)$ is known, we use

$$
\phi^{\mu}=\frac{1}{m} P^{\mu} \phi=\frac{i \partial^{\mu} \phi}{m} \text { to compute } \phi^{\mu}(x)
$$

$\Longrightarrow \phi^{\mu}$ not independent from ϕ

SOLutions to the klein-Gordon EQ.
Since $K G=$ wave eq. \Rightarrow plane waves = complete set of solutions
\forall 3-momentum \vec{k} we can write

$$
\phi_{k}(t, \vec{x}) \equiv e^{+i \vec{k} \cdot \vec{x}} u_{k}(t)
$$

$$
\begin{aligned}
& \text { Using this in } k G \rightarrow\left(\partial_{t}^{2}-\vec{\nabla}^{2}+m^{2}\right) \phi_{k}(t, \vec{x})=0 \\
& e^{i \vec{k} \cdot \vec{x}} u_{k}^{\prime \prime}(t)+e^{i \vec{k} \cdot \vec{x}} \vec{k}^{2} u_{k}(t)+m^{2} e^{i \vec{k} \cdot \vec{x}} u_{k}(t)=0 \\
& \Downarrow \\
& u_{k}^{\prime \prime}(t)+\underbrace{\left(\vec{k}^{2}+m^{2}\right)}_{\text {relativistic energy } E^{2}} u_{k}(t)=0
\end{aligned}
$$

Solutions: $U_{k}(t)=e^{ \pm i E t}$

$$
\begin{gathered}
\Downarrow \\
\phi_{k}^{ \pm}(t, \vec{x})=e^{ \pm i E t+i \vec{k} \cdot \vec{x}}
\end{gathered}
$$

Physical interpretation: Hamiltonian is $H=P^{0}=i \partial_{t}$

$$
\Rightarrow H \phi_{k}^{ \pm}=i \partial_{t} \phi_{k}^{ \pm}=\mp E \phi_{k}^{ \pm}
$$

$\Rightarrow \phi^{-}$has positive energy, ϕ^{+}has negative energy

We will discuss later the meaning of this.

Most general solution of the $K G e q$.

$$
\left.\begin{array}{rl}
\phi(t, \vec{x}) & =\int d^{3} k\left[\varphi_{k}^{+} e^{+i(E t+\vec{k} \cdot \vec{x})}+\varphi_{k}^{-} e^{-i(E t-\vec{k} \cdot \vec{x})}\right] \\
\text { change } \vec{k} \rightarrow-\vec{k}
\end{array}\right] \quad \int d^{3} k\left[\varphi_{k}^{+} e^{i(E t-\vec{k} \cdot \vec{x})}+\varphi_{k}^{-} e^{-i(E t-\vec{k} \cdot \vec{x})}\right] \quad \text { with } k^{\mu}=\binom{E}{\vec{k}} ; x^{\mu}=\binom{t}{\vec{x}} .
$$

We'll see later that all this does not make sense interpreting $\phi(x)$ as (relativistic) wave function.
3.2 - spin $1 / 2$

According to Wigner, $S=\frac{1}{2}$ contained in

$$
\left(\frac{1}{2}, 0\right) \quad \& \quad\left(0, \frac{1}{2}\right)
$$

To distinguish between the two spinorial representations, we use indices

$$
\begin{array}{lll}
\left(\frac{1}{2}, 0\right) \leftrightarrow \xi^{a} & a=1,2 \\
\left(0, \frac{1}{2}\right) \leftrightarrow \bar{x}^{\dot{a}} & \dot{a}=1,2
\end{array}
$$

How can P^{μ} contract spinorial indices?
Detour: from spinors to 4 -vectors [Borut]
Studying rotations we saw that $\vec{k} \leftrightarrow \hat{k}=\vec{k} \cdot \vec{\sigma}$ Rotation implemented as $\hat{k} \rightarrow U(R) \hat{k} U^{+}(R)$
with $U(R) \in \operatorname{SU}(2)$
Here we do something similar:

$$
\begin{aligned}
V^{\mu} \rightarrow \hat{V} & =V^{\mu} \sigma_{\mu} \\
& \sigma_{\mu}=(\mathbb{1}, \vec{\sigma}) \\
& =\left(\begin{array}{ll}
V_{0}+V_{z} & V_{x}-i V_{y} \\
V_{x}+i V_{y} & V_{0}-V_{z}
\end{array}\right)
\end{aligned}
$$

Properties :
(1) \widehat{V} hermitian
(2) $\operatorname{det} \hat{V}=V^{D^{2}}-\vec{V}^{2}=V^{2}$

If we apply $\hat{V} \rightarrow M \vee M^{+}$
(1) automatically satisfied
(2) $\operatorname{det}\left(M \hat{V} M^{+}\right)=\operatorname{det} M \operatorname{det} M^{\top} \operatorname{det} \hat{V}$
\rightarrow requiring $\operatorname{det} M=1=\operatorname{det} M^{+}$
allows to identify $\hat{V} \rightarrow M \widehat{V} M^{\top}$ as a Lorentz transf.

A matrix M such that bet $M=1$ is a unimodular matrix $M \in S L(2, \mathbb{C})$

Explicitly

$$
\begin{aligned}
\hat{V}^{\prime}=V^{\prime \mu} \sigma_{\mu} & =\left\{\begin{array}{l}
\Lambda_{\nu}^{\mu} V^{\nu} \sigma_{\mu} \\
V^{v} M \sigma_{v} M^{\top}
\end{array}\right. \\
& \Longrightarrow M \sigma_{v} M^{\top}=\Lambda^{\mu} \nu \sigma_{\mu}
\end{aligned}
$$

As for $\operatorname{SO}(3) \leftrightarrow \operatorname{SU}(2)$, the correspondence is $2: 1$

$$
\Lambda \in \operatorname{So}(1,3) \rightarrow \pm M \in \operatorname{SL}(2, \mathbb{C})
$$

Since M is $2 \times 2 \rightarrow$ must be one of the spinorial representations.
But which are between $\left(\frac{1}{2}, 0\right) \&\left(0, \frac{1}{2}\right)^{7}$.
Remembering that
LH spinor: $\left(\frac{1}{2}, 0\right) \leftrightarrow \vec{J}^{+}=\frac{\vec{\sigma}}{2} ; \vec{J}^{-}=0$

$$
\Rightarrow \vec{J}=\frac{\vec{\sigma}}{2}, \vec{k}=-\frac{i \vec{\sigma}}{2}
$$

RH spinet: $\left(0, \frac{1}{2}\right) \leftrightarrow \vec{J}^{+}=0 ; \vec{J}^{-}=\frac{\vec{\sigma}}{2}$

$$
\Rightarrow \vec{J}=\frac{\vec{\sigma}}{2}, \vec{K}=i \frac{\vec{\sigma}}{2}
$$

we have

$$
\begin{aligned}
\psi_{L} \rightarrow \exp \left[i(\vec{\alpha}-\vec{\beta}) \frac{\vec{\sigma}}{2}\right] \psi_{L} & \equiv M \Psi_{L} \\
\psi_{R} \rightarrow \exp \left[i(\vec{\alpha}+i \vec{\beta}) \frac{\vec{\sigma}}{2}\right] \psi_{R} & =\sigma_{2} M^{*} \sigma_{2} \Psi_{R} \\
\Downarrow & \\
\sigma_{2} \psi_{R} & \rightarrow M^{*} \sigma_{2} \Psi_{R}
\end{aligned}
$$

We can always identify
$L H$ spinor $\psi_{L} \equiv \xi_{a}, \quad \xi_{a} \rightarrow M_{a}^{b} \xi_{b}$
RH spinor $\quad \sigma_{2} \psi_{R} \equiv \bar{x}_{\dot{a}}, \quad \bar{x}_{\dot{a}} \rightarrow M_{\dot{a}}^{*} \dot{b} \bar{\chi}_{\dot{b}}$

But then

$$
\begin{gathered}
M \sigma_{v} M^{+}=\Lambda^{\mu} \nu \sigma_{\mu} \\
\Downarrow \\
\Lambda_{\alpha}^{\mu}\left(\sigma_{\mu}\right)_{a \dot{a}}=M_{a}^{b} M_{\dot{a}}^{*} \dot{b}\left(\sigma_{v}\right)_{b \dot{b}}
\end{gathered}
$$

this is indeed $\left(\frac{1}{2}, \frac{1}{2}\right)$ because it corries one undotted \& one dotted index

Observe now that, defining $\left\{\begin{array}{l}\epsilon^{a b}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)^{a b} \\ \epsilon^{\dot{a} \dot{b}}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)^{\dot{a} \dot{b}}\end{array}\right.$
we have $\epsilon^{a b} \xi_{a} \xi_{b}^{\prime} \rightarrow \underbrace{\epsilon^{a b} M_{a}{ }^{c} M_{b}^{d}}_{\operatorname{det} M \epsilon^{c d}} \xi_{c} \xi_{d}^{\prime}=\epsilon^{c d} \xi_{c} \xi_{d}^{\prime}$

+ same for dotted indices
$\Rightarrow \in$ works like a metric tensor

$$
\text { [analogy with } \left.g_{\mu \nu} x^{\mu} x^{\nu}=\text { invariant }\right]
$$

\Rightarrow con be used to raise/lower indices!

Important to remember that

$$
\epsilon_{a b} \epsilon^{b c}=\delta_{a}^{c} \Rightarrow \epsilon_{a b}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)_{a b}
$$

t analogous for dotted indices

Message: we can apply p^{μ} on spinors contracting in two ways:

$$
\begin{aligned}
& p^{\mu} \rightarrow \hat{P}_{\dot{a} \dot{a}}=p^{\mu}\left(\sigma_{\mu}\right) a \dot{a} \dot{a} \\
& p^{\mu} \rightarrow \hat{p}^{\dot{a} a}=p^{\mu} \underbrace{\epsilon^{\dot{a} \dot{b}} \epsilon^{a b}\left(\sigma_{\mu}\right)_{b \dot{b}}} \\
& \underbrace{}_{\quad\left(\bar{\sigma}_{\mu}\right)^{\dot{a} a}=(\mathbb{1},-\vec{\sigma})}
\end{aligned}
$$

But then the covariant equations are

$$
\left\{\begin{array}{l}
\hat{p}_{a \dot{a}} \bar{\chi}^{\dot{\alpha}}=m \xi_{a} \\
\hat{p}^{\dot{a} a} \xi_{a}=m \bar{\chi}^{\dot{\alpha}}
\end{array}\right.
$$

Using one in the other:

$$
\hat{P}_{a \dot{a}}\left(\frac{\hat{P}^{\dot{a} b} \xi_{b}}{m}\right)=m \xi_{a} \quad \Rightarrow \hat{P}_{a \dot{a}} \hat{P}^{\dot{a} b} \xi_{b}=m^{2} \xi_{a}
$$

Use now

$$
\begin{aligned}
& \left\{\begin{array}{l}
\hat{P}_{a \dot{a}}=P^{\mu}\left(\sigma_{\mu}\right)_{a \dot{a}}=\left[\begin{array}{cc}
P^{0}+P^{3} & P^{1}-i P^{2} \\
P^{1}+i P^{2} & P^{0}-P^{3}
\end{array}\right] \\
\hat{P}^{\dot{a} a}=P^{\mu}\left(\bar{\sigma}_{\mu}\right)^{\dot{a} a}=\left[\begin{array}{ll}
P^{0}-P^{3} & -P^{1}+i P^{2} \\
-P^{1}-i P^{2} & P^{0}+P^{3}
\end{array}\right] \\
\Rightarrow \hat{P}_{a \dot{a} \dot{P}} \hat{P}^{\dot{a} b}=P^{2} \delta_{a}^{b}
\end{array}\right. \\
& \text { Analogously } \rightarrow \hat{P}^{\dot{a} a} \hat{P}_{a \dot{b}}=P^{2} \delta_{\dot{a} \dot{b}}
\end{aligned}
$$

Then

$$
\left(P^{2}-m^{2}\right) \xi_{a}=0 \quad+\quad\left(P^{2}-m^{2}\right) \bar{\chi}^{\dot{\alpha}}=0
$$

both spinors satisfy the $K G$ equation

DIRAC equation
Equivalent and more compact Way to present the Same physics:

$$
\Psi \equiv\left[\begin{array}{l}
\xi_{a} \\
\bar{\chi}^{\bar{\alpha}}
\end{array}\right] \quad \text { Dirac spinor (or 4-spinor) }
$$

by construction in the $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$

Then

$$
\begin{aligned}
& {\left[\begin{array}{l|c}
-m & i \sigma^{\mu} \partial_{\mu} \\
\hline i \bar{\sigma}^{\mu} \partial_{\mu} & -m
\end{array}\right] \Psi=0} \\
& \left\{\left[\begin{array}{c|c}
0 & \sigma^{\mu} \\
\hline \bar{\sigma}^{\mu} & 0
\end{array}\right] i \partial \mu-m\right\} \psi=0 \\
& \gamma^{\mu} \text { ("gamma matrices"), Feynman "Slash" notation: } \\
& \Downarrow \\
& (i \lambda-m) \Psi=0 \quad \text { dirac equation } \\
& \alpha=a_{\mu} \gamma^{\mu}=a^{\mu} \gamma_{\mu}
\end{aligned}
$$

PROPERTIES OF GAMMA MATRICES
(1) $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$ [CLIFFORD ALGEBRA]
(2) $\mu=0=v \quad \Rightarrow \quad\left(\gamma^{0}\right)^{2}=\mathbb{1}$
(3) $\mu=i=v \quad \Rightarrow \quad\left(\gamma^{i}\right)^{2}=-\mathbb{1}$
(4) Hamiltonian form of the Dirac eq.

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \quad \rightarrow\left(i \gamma^{0} \partial_{t}+i \vec{\gamma} \cdot \vec{\nabla}-m\right) \psi=0
$$

$$
\rightarrow i \gamma^{0} \partial_{t} \psi=(-i \vec{\gamma} \cdot \vec{\nabla}+m) \psi
$$

\rightarrow multiply by γ^{0} on the left:

$$
i \partial_{t} \Psi=\underbrace{\left(-i \gamma^{0} \vec{\gamma} \cdot \vec{\nabla}\right.}_{\text {III }}+\underbrace{\gamma^{0} m}_{\text {III }}) \Psi
$$

$\vec{\alpha} \cdot \vec{p} \quad \beta$
(historical notation)

$$
\Rightarrow \quad H=\vec{\alpha} \cdot \vec{p}+\beta
$$

Is this hermitian? (.) From $\gamma^{0^{t}}=\gamma^{0} \rightarrow \beta^{+}=\beta$
(.) From $\gamma^{0} \vec{\gamma}^{+} \gamma^{0}=\vec{\gamma} \rightarrow \vec{\alpha}^{+}=\vec{\alpha}$
\Downarrow
$\mathrm{H}^{+}=\mathrm{H}$ as wanted
(5) Notice that $(i \gamma+m)(i \gamma-m) \Psi=\left(-\gamma^{\mu} \gamma^{\nu} \partial_{\mu} \partial_{\nu}-m^{2}\right) \Psi$

$$
\begin{aligned}
& \frac{1}{=}-\left(\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \partial_{\mu} \partial_{\nu}+m^{2}\right) \Psi \\
& =-\left(\square+m^{2}\right) \Psi=0
\end{aligned}
$$

\Rightarrow we recover that solutions of the Dirac eq. satisfy the KG eq.
(6) Helicity \& chirality: returning to the $\Psi=\binom{\bar{\chi}}{\bar{\chi}}$ notation, in momentum space we have

$$
\sigma^{\mu} p_{\mu} \bar{\chi}=(E-\vec{\sigma} \cdot \vec{p}) \bar{x}=m \xi, \bar{\sigma}^{\mu} p_{\mu} \xi=(E+\vec{\sigma} \cdot \vec{p}) \xi=m \bar{x}
$$

Obs 1: for $m \neq 0$ we need both $\xi \& \bar{x}$ to describe a $S=1 / 2$ particle \Rightarrow we need both chiralities

Obs 2: for $m=0, E=|\vec{p}|$ and

$$
\frac{\stackrel{\rightharpoonup}{\sigma} \cdot \stackrel{\rightharpoonup}{p}}{|\vec{p}|} \bar{x}=\bar{x}, \frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|} \xi=-\xi
$$

\Longrightarrow in terms of helicity $h=\frac{\vec{S} \cdot \vec{p}}{|\vec{p}|}=\frac{1}{2} \frac{\vec{\rightharpoonup} \cdot \vec{p}}{|\vec{F}|}$

$$
h \bar{x}=\frac{1}{2} \bar{x} ; h \xi=-\frac{1}{2} \xi
$$

[We confirm that in the massless limit the gad quantum number is the helicity]

Solutions of the dirac equation
Since 4 satisfies the KG eq., we will have both positive \& negative energy solutions:

$$
\psi_{p}^{+}=u_{p} e^{-i p x} \quad \psi_{p}^{-}=v_{p} e^{1 p x}
$$

$$
\begin{aligned}
&(i y-m) \psi_{p}^{+}=0 \\
& \mathbb{1} \\
&(p-m) u_{p}=0
\end{aligned}
$$

$$
(i \partial-m) \psi_{p}^{-}=0
$$

$$
\mathbb{\sharp}
$$

$$
(p+m) v_{p}=0
$$

\Downarrow

$$
\Downarrow
$$

$$
\left[\begin{array}{c|c}
-m & \sigma \cdot p \\
\hline \bar{\sigma} \cdot p & -m
\end{array}\right] u_{p}=0 \quad\left[\begin{array}{c|c}
m & \sigma \cdot p \\
\hline \bar{\sigma} \cdot p & m
\end{array}\right] v_{p}=0
$$

To find solutions, go to the rest frame $p^{\mu}=(m, \overrightarrow{0})$:

$$
\left[\begin{array}{c|c}
-m & m \\
\hline m & -m
\end{array}\right] u_{p}=0 \quad\left[\begin{array}{l|l}
m & m \\
\hline m & m
\end{array}\right] v_{p}=0
$$

Solutions are constant and of the form

$$
u_{p}=\left[\begin{array}{l}
a \\
a
\end{array}\right] \quad v_{p}=\left[\begin{array}{c}
b \\
-b
\end{array}\right]
$$

with $a, b=$ any constant 2 -component spinor.
Convenient choice to have linearly independent spinors:

$$
\begin{array}{ll}
u_{\uparrow}=\left(\begin{array}{c}
1 \\
0 \\
1 \\
0
\end{array}\right), u_{\downarrow}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
1
\end{array}\right) & \text { with } a_{\uparrow}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=-b_{\uparrow} \\
v_{\uparrow}=\left(\begin{array}{c}
-1 \\
0 \\
+1 \\
0
\end{array}\right) ; v_{\downarrow}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right) & a_{\downarrow}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=b_{\downarrow}
\end{array}
$$

will be denoted with

$$
\begin{gathered}
u_{s}(p), v_{s}(p) \\
s=\uparrow, \downarrow
\end{gathered}
$$

To derive a more general expression, solve now for $p^{\mu}=\left(E, 0,0, P_{B}\right)$. Observe that $m^{2}=E^{2}-p_{z}^{2}=\underbrace{\left(E+p_{z}\right)}_{\beta^{2}} \underbrace{\left(E-p_{z}\right)}_{\alpha^{2}}$

$$
\left.\begin{array}{rl}
\Rightarrow & p \cdot \sigma
\end{array} \begin{array}{rl}
\hline-p_{z} & 0 \\
0 & E+p_{z}
\end{array}\right]=\left[\begin{array}{cc}
\alpha^{2} & 0 \\
0 & \beta^{2}
\end{array}\right], ~\left[\begin{array}{cc}
E+p_{z} & 0 \\
0 & E-p z
\end{array}\right]=\left[\begin{array}{cc}
\beta^{2} & 0 \\
0 & \alpha^{2}
\end{array}\right] .
$$

and the equations we have to solve are

$$
\left[\begin{array}{cc|cc}
-\alpha \beta & 0 & \alpha^{2} & 0 \\
0 & -\alpha \beta & 0 & \beta^{2} \\
\hline \beta^{2} & 0 & -\alpha \beta & 0 \\
0 & \alpha^{2} & 0 & -\alpha \beta
\end{array}\right] u_{p}=0
$$

\Rightarrow solution: $u_{s}(p)=\left[\begin{array}{l}\alpha \xi_{1} \\ \beta \xi_{2} \\ \beta \xi_{1} \\ \alpha \xi_{2}\end{array}\right]=\left[\begin{array}{cc}{\left[\begin{array}{cc}E-p z & 0 \\ 0 & \sqrt{E+p z}\end{array}\right] a_{s}} \\ {\left[\begin{array}{cc}\sqrt{E+p z} & 0 \\ 0 & \sqrt{E-p z}\end{array}\right] a_{s}}\end{array}\right]=\left[\begin{array}{l}\sqrt{p \cdot \sigma} a_{s} \\ \sqrt{p \cdot \bar{\sigma}} a_{s}\end{array}\right]$
In the same way we obtein

$$
v_{s}(p)=\left[\begin{array}{c}
\sqrt{p \cdot \sigma} b \\
-\sqrt{p \cdot \bar{\sigma}} b
\end{array}\right]
$$

IMPORTANT OBSERVATION
We have found $\gamma^{\mu}=\left[\begin{array}{cc}0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0\end{array}\right]$, but ANY matrix satisfying the clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$ is a possible gamma matrix.
$\gamma^{\mu}=\left[\begin{array}{cc}0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0\end{array}\right] \quad$ "Weyl representation"
$\gamma^{0}=\left[\begin{array}{cc}\mathbb{1} & 0 \\ 0 & -\mathbb{1}\end{array}\right], \quad \vec{\gamma}=\left[\begin{array}{cc}0 & \vec{\sigma} \\ -\vec{\sigma} & 0\end{array}\right] \quad$ "Dirac representation"
3.3 - what goes wrong with the relativistic wave equations FOR $S=0$ \& $S=1 / 2$?

$$
\left(\square+m^{2}\right) \phi(x)=0 \quad(i \not-m) \psi(x)=0
$$

Do not make sense as single-particle relativistic equations.
Why?
(0) KLEIN - GORDON
(a) what to make of negative energies?
(b) For Schrödinger, we can construct a conserved probability current :

$$
\begin{aligned}
& \left\{\begin{array}{c}
i \hbar \frac{\partial \Psi}{\partial t}=\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+V\right) \Psi \\
-i \hbar \frac{\partial \Psi^{*}}{\partial t}=\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+V\right) \Psi^{*}
\end{array}\right. \\
& \Rightarrow i \hbar \psi^{*} \frac{\partial \Psi}{\partial t}+i \hbar \frac{\partial \Psi^{*}}{\partial t} \Psi=\Psi^{*}\left(-\frac{\hbar^{2} \nabla^{2}}{2 m} \Psi\right)+V \Psi^{*} \Psi \\
& +\left(\frac{\hbar^{2} \nabla^{2}}{2 m} \Psi^{*}\right) \Psi-V \mu^{*} \Psi \\
& i \hbar \frac{\partial}{\partial t}\left(\Psi^{*} \psi\right)=-\frac{\hbar^{2}}{2 m}\left(\Psi^{*} \nabla^{2} \Psi-\nabla^{*} \Psi^{*} \Psi\right) \\
& \frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=\frac{i \hbar}{2 m} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\vec{\nabla} \psi^{*} \psi\right)
\end{aligned}
$$

\Longrightarrow of the form $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{J}=0$

For Klein-Gordon things are not so smooth:

$$
\begin{aligned}
& \frac{\partial^{2} \phi}{\partial t^{2}}=\nabla^{2} \phi+m^{2} \phi \\
& \begin{aligned}
\phi^{*} \frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi^{*}}{\partial t^{2}} \phi & =\phi^{*} \nabla^{2} \phi+m^{2} \phi^{*} \phi-\nabla^{2} \phi^{*} \phi-m^{2} \phi^{*} \phi \\
& \mid \vec{\nabla} \cdot\left(\phi^{*} \vec{\nabla} \phi-\vec{\nabla} \phi^{*} \phi\right)
\end{aligned}
\end{aligned}
$$

we obtained $\vec{\nabla} \cdot \vec{J}$
what to make of the LHS?

$$
\phi^{*} \frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi^{*}}{\partial t^{2}} \phi=\frac{\partial}{\partial t}\left(\phi^{*} \frac{\partial \phi}{\partial t}-\frac{\partial \phi^{*}}{\partial t} \phi\right)
$$

Cannot be a probability density because it is not positive definite (prob. cannot be negative)
(•) Dirac:
(a) what to make of negative energies?
(b) What about the probability current?

$$
\begin{aligned}
\text { From } & i \gamma^{\mu} \partial_{\mu} \psi=m \psi \\
\Rightarrow & -i \partial_{\mu} \psi^{+} \gamma^{0} \gamma^{\mu} \gamma^{0}=m \psi^{+} \\
& i \partial_{\mu} \psi^{+} \gamma^{0} \gamma^{\mu}=-m \psi^{+} \gamma^{0}
\end{aligned}
$$

$$
\text { define } \bar{\psi} \equiv \psi^{+} \gamma^{0} \Rightarrow i \partial_{\mu} \bar{\Psi} \gamma^{\mu}=-m \bar{\psi}
$$

But then

$$
\begin{aligned}
& i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \psi+i \partial_{\mu} \bar{\psi} \gamma^{\mu} \psi=m \bar{\psi} \psi-m \bar{\psi} \psi=0 \\
& i \partial_{\mu} \bar{\psi} \gamma^{\mu} \psi=0
\end{aligned}
$$

\Rightarrow conserved current is $J^{\mu} \equiv \bar{\psi} \gamma^{\mu} \psi$

$$
\Rightarrow \rho=J^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{+} \gamma^{0} \gamma^{0} \psi=\psi_{\pi}^{+} \psi
$$

positive definite!

Message: for spin $1 / 2$ we can have a (positive definite) probability density, while for spin 0 apparently we cannot. In both cases, we don't know what to make of the negative energies.
To understand how to move on, let's discuss a "gedanken" experiment by Niels Bohr.

Particle in a box with moveable top.
When I push down the top I localize better and better the particle
\Rightarrow but $\Delta p L \gtrsim 1 \quad$ (natural units)

When $L \sim \frac{1}{m}$, we have $\Delta p \gtrsim m \Rightarrow \Delta E \gtrsim m$ and there is sufficient energy to create pairs of particles
\Longrightarrow THE only way to marry qM with relativity is to admit that the theory must describe the creation of particles \Rightarrow We need quantum fields
4. relativistic eft

Idea: introduce quantum fields as we did in NRQM

$$
\begin{aligned}
& A_{n}(x)=\int \frac{d^{3} p}{(2 \pi)^{3 / 2}} u_{n}(p, \sigma) a_{p \sigma} e^{-i p x} \\
& \uparrow \\
& \uparrow \uparrow \\
& \text { spin component } \\
& \text { some appropriate }
\end{aligned}
$$

Lorentz index
with $A_{n}(x)$ satisfying the wave eqs. we have derived (as the Schrödinger field satisfies Schrödinger eq.)

Expression \circledast is, however, WRONG.
Why?
(1) We still did not use the negative energy solution;
(2) We saw that relativistic invariance $\Leftrightarrow[U(1), S]=0$

$$
\begin{array}{ll}
\text { But } S=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int d t_{1} \ldots d t_{n} T\left[\begin{array}{llll}
V_{I}\left(t_{1}\right) & \ldots & \left.V_{I}\left(t_{n}\right)\right]
\end{array}\right. \\
\begin{array}{llllll}
\text { in } a \\
\text { AFT }
\end{array} & \\
=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int d^{4} x_{1} & \ldots
\end{array} d^{4} x_{n} T\left[H\left(x_{1}\right) \cdots \cdots\left(x_{n}\right)\right]
$$

Sufficient Conditions for $[S, U(1)]=0$:
(i) $\mathcal{H}(x)$ is a Lorentz scaler: $U(\Lambda) \mathcal{H}(x) \mathcal{U}^{-1}(\Lambda)=\mathcal{H}(\Lambda x)$
(ii) $[\mathcal{H}(x), H(y)]=0 \quad \forall(x-y)^{2}<0 \quad \frac{\text { Microcausality }}{\text { Condition }}$

Condition
necessary to ensure the invariance of time-ondering: since different observers con disagree on the ordering in time of spacelike separated events, if they are to agree on $T[H(x) H(y)]$ we must demand that for spacetime separation the revering of the $H(x)$'s is irrelevant.

At the level of fields, microcouselity implies

$$
\left[A_{n}(x), A_{m}(y)\right]_{ \pm}=0=\left[A_{n}(x), A_{m}^{\top}(y)\right]_{ \pm} \quad \forall(x-y)^{2}<0
$$

automatically the if the fields satisfy the same $[\because,-]_{ \pm}$as the particles they describe
will give non-trivial consequences

Take the case of a spinless particle:

$$
A(x)=\int \frac{d^{3} p}{(2 \pi)^{3 / 2} \sqrt{2 E(p)}} a_{p} e^{i p x}
$$

¿ convenient normalization
V

$$
\begin{aligned}
& \begin{aligned}
{\left[A(x), A^{+}(y)\right]_{\mp} } & =\frac{1}{(2 \pi)^{3}} \int \frac{d^{3} p}{\sqrt{2 E(p)}} \frac{d^{3} p^{\prime}}{\sqrt{2 E\left(p^{\prime}\right)}} \underbrace{\left[a_{p}, a_{p^{\prime}}^{+}\right]_{\mp}}_{\delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right)} e^{i p x-i p^{\prime} y} \\
& =\frac{1}{(2 \pi)^{3}} \int \frac{d^{3} p}{2 E(p)} e^{i p(x-y)} \\
& =\Delta_{+}(x-y)
\end{aligned} \\
& =\text { (explicit Computation) } \\
& \stackrel{ \begin{cases}\frac{m}{4 \pi \sqrt{\left|(x-y)^{2}\right|}} K_{1}\left(m \sqrt{\left|(x-y)^{2}\right|}\right) & (x-y)^{2}<0 \\
\frac{m}{8 \pi \sqrt{\left|(x-y)^{2}\right|}}\left[N _ { 1 } \left(m \sqrt{\left|(x-y)^{2}\right|}+\right.\right. & \operatorname{sign}\left(x^{0}-y^{0}\right) \\
& \left.i J_{1}\left(m \sqrt{\left|(x-y)^{2}\right|}\right)\right]\end{cases} }{\$} \\
& (x-y)^{2}>0
\end{aligned}
$$

Importont : $\Delta_{+}(x-y) \neq 0$ for $(x-y)^{2}<0$!
\Longrightarrow we loose Lorentz invariance!
But $k_{1}(z)=k_{1}(-z)$ for $z^{2}<0$

Way out \rightarrow use the negative energy solutions!
In addition to $A(x)$, consider also

$$
B(x)=\int \frac{d^{3} p}{(2 \pi)^{3 / 2} \sqrt{2 E(p)}} b_{p} e^{i p x}
$$

and the combination

$$
\begin{aligned}
\phi(x)=A(x) & +\alpha B^{+}(x) \quad \text { for some } \alpha \in \mathbb{C} \\
\Rightarrow\left[\phi(x), \phi^{+}(y)\right]_{\mp} & =\left[A(x)+\alpha B^{+}(x), A^{+}(y)+\alpha^{*} B(y)\right]_{\bar{F}} \\
& =\left[A(x), A^{+}(y)\right]_{\mp} \mp|\alpha|^{2}\left[B(y), B^{+}(x)\right]_{\bar{F}} \\
& \mid \\
& =\Delta_{+}(x-y) \mp|\alpha|^{2} \Delta_{+}(y-x)
\end{aligned}
$$

\Rightarrow choosing $|\alpha|=1 \oplus$ commutation relations we have

$$
\left[\phi(x), \phi^{+}(y)\right]=\Delta_{+}(x-y)-\Delta_{+}(y-x) \equiv \Delta(x-y)
$$

by construction (because

$$
\begin{aligned}
& \left.k_{1}(z)=k_{1}(-z) \quad \text { for } z^{2}<0\right) \\
& \Delta(x-y)=0 \quad \forall(x-y)^{2}<0
\end{aligned}
$$

exactly what we wanted!

Messages:
(1) Causality demands that every particle (a) has a partner (b) with the same spin \& the same mass (otherwise we cannot construct $\Delta(x-y)$)
(2) Causality \& Lorentz invariance force a spin O particle to be a BOSON

The result can be generalized for any spin.
Write

$$
\varphi_{n}(x)=\int \frac{d^{3} p}{(2 \pi)^{3 / 2}} \frac{1}{\sqrt{2 E(p)}}\left[u_{n}(\vec{p}, \sigma) a_{p \sigma} e^{-i p x}+v_{n}(\vec{p}, \sigma) b_{p \sigma}^{+} e^{-i p x}\right]
$$

and compute $\left[\varphi_{n}(x), \varphi_{m}^{+}(y)\right]$ for $(x-y)^{2}<0$
The explicit computation (see S. Weinberg "Feynman rules for any spin") gives

$$
\left[\varphi_{n}(x), \varphi_{m}^{+}(y)\right]_{ \pm} \propto \int_{\left(\frac{d^{3} p}{(2 \pi)^{3} 2 E(p)}\right.} \Pi_{m m}(\vec{p})\left[e^{i p(x-y)} \pm e^{-i p(x-y)}\right]
$$

some combination of $u \& v$
point important for us: $\Pi_{n m}(p)=(-1)^{2 j} t_{n m}{ }^{\mu_{1} \ldots \mu_{2 j}} p_{\mu_{1}} \cdots p_{\mu_{2} j}$.

$$
j=\text { Spin }
$$

But then

$$
\begin{aligned}
{\left[\varphi_{n}(x), \varphi_{m}^{+}(y)\right]_{ \pm} } & \propto t_{n m}^{\mu_{1} \ldots \mu_{2 j}} \int \frac{d^{3} p}{2 E(p)} p_{\mu_{1} \cdots p_{\mu_{2} j}}\left[e^{i p(x-y)} \pm e^{-i p(x-y)}\right] \\
& \propto t_{n m}{ }^{\mu_{1} \ldots \mu_{2 j}} \partial_{\mu_{1}} \cdots \partial_{\mu_{2 j}} \int \frac{d^{3} p}{2 E(p)}\left[e^{i p(x-y)} \pm(-1)^{2 j} e^{-i p(x-y)}\right]
\end{aligned}
$$

we already know that this integral Vanish outside the light cone only if $\pm(-1)^{2 j}=-1$

$$
\begin{aligned}
& (+)=(F) \Rightarrow 2 j \text { odd } \Rightarrow j=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, . . \\
& (-)=(B) \Rightarrow 2 j \text { even } \Rightarrow j=0,1,2,3, \ldots
\end{aligned}
$$

Spin-statistic connections:

$$
\begin{array}{ll}
j=0,1,2, \ldots & \text { BOSONS } \\
j=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots & \text { FERMIONS }
\end{array}
$$

Conclusions: microcausality implies
(•) antiparticles must exist (correct interpretation of negative energies)
(0) Spin-statistic connection
5. quantization electromagnetic field

Now that we know in which sense we need to interpret relativistic Wave equations, we construct the QFT of the EM field, for which we already know the form from classical EM.
5.1 - Review of EM

Electric \& Magnetic fields $\vec{E}, \vec{B} \rightarrow 6$ d.o.f, not independent.
Is there a more efficient way to represent a EM field with less redundancy?

$$
\text { Maxwell eggs: }\left\{\begin{array}{l}
\vec{\nabla} \cdot \vec{E}=\rho \tag{1}\\
\vec{\nabla} \cdot \vec{B}=0 \\
\vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0 \\
\vec{\nabla} \times \vec{B}=\vec{J}+\frac{\partial \vec{E}}{\partial t}
\end{array}\right.
$$

Computing $\frac{\partial}{\partial t}(1)+\vec{\nabla} \cdot(L) \Rightarrow \frac{\partial P}{\partial t}+\vec{\nabla} \cdot \vec{J}=0 \quad$ CONTINUITY EQ.
From (2): $\vec{\nabla} \cdot \vec{B}=0 \quad \Rightarrow \vec{B}=\vec{\nabla} \times \vec{A}$
From (3): $\vec{\nabla} \times \vec{E}+\frac{\partial}{\partial t} \vec{\nabla} \times \vec{A}=0 \Rightarrow \vec{\nabla} \times\left(\vec{E}+\frac{\partial \vec{A}}{\partial t}\right)=0$ \Downarrow

$$
\vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t}
$$

\Longrightarrow from \vec{E}, \vec{B} (6 dof) we have reduced to ϕ, \vec{A} (4 dof)
\Rightarrow less redundant description but still redundant.
How do we see this?
$\vec{A} \rightarrow \vec{A}+\vec{\nabla} \omega \quad$ keeps $\quad \vec{B}=\vec{\nabla} \times \vec{A}$ unchanged
but changes \vec{E} :

$$
\vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t} \rightarrow-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t}-\vec{\nabla} \frac{\partial \omega}{\partial t}
$$

\Rightarrow changing at the same time

$$
\phi \rightarrow \phi-\frac{\partial w}{\partial t}
$$

Keeps also \vec{E} unchanged

$$
\Rightarrow\left\{\begin{array}{l}
\phi \rightarrow \phi-\frac{\partial \omega}{\partial t} \\
\vec{A} \rightarrow \vec{A}+\vec{\nabla} \omega
\end{array}\right.
$$

is a redundancy of our description that con be used to fix some condition (gauge condition):

$$
\begin{aligned}
& \phi=0 \\
& A_{z}=0 \\
& \vec{\nabla} \cdot \vec{A}=0 \\
& \vec{\nabla} \cdot \vec{A}+\frac{\partial \phi}{\partial t}=0
\end{aligned}
$$

(temporal)
(axial)
(Coulomb or radiation)
(Lorentz)

Let's take Coulomb gauge, since it will be useful for the rest of the computation.

To make the physics even clearer, we introduce transverse and bugitudinal fields as follows:

$$
\begin{aligned}
& V(x)=V_{\perp}(x)+V_{11}(x) \quad \text { with } \\
& \text { transverse }
\end{aligned} \quad \text { longitudinal }_{\nabla \times V_{/ /}=0}^{\nabla \cdot V_{\perp}=0}
$$

The decomposition is unique (Helmholtz theorem).

Why are they called transverse/longitudinal? In Fourier space

$$
\begin{aligned}
& \text { vier space } \\
& V(x)=\int \frac{d^{3} k}{(2 \pi)^{3 / 2}} \hat{V}(k) e^{i k \cdot x} \Rightarrow\left\{\begin{array}{l}
k x \hat{V}_{\|}=0 \\
k \cdot \hat{V}_{\perp}=0
\end{array}\right.
\end{aligned}
$$

$\Rightarrow V_{1}$ is transverse to momentum while $V_{I I}$ is parallel.
In momentum space is easy to derive explicit expressions:

$$
\hat{V}_{\|}=\frac{k \cdot \hat{V}}{|k|} \frac{k}{|k|} \quad \hat{V}_{1}=\hat{V}-\hat{V}_{\|}=\left(\mathbb{1}-\frac{k k}{|k|^{2}}\right) \hat{V}
$$

\Downarrow
in components

$$
\left(\hat{V}_{\perp}\right)_{i}=\left(\delta_{i j}-\frac{k_{i} k_{j}}{\mid k^{2}}\right) \hat{V}_{j}
$$

From Maxwell eggs

$$
\left\{\begin{array}{l}
B=B_{\perp} \quad \rightarrow B_{\perp}=\nabla \times\left(A_{/ /}+A_{\perp}\right)=\nabla \times A_{\perp} \\
E=E_{\perp}+E_{l} \quad \rightarrow \text { to understand how to compute } E_{\perp}, E_{1 \prime}, \text { we }
\end{array}\right.
$$ go to momentum space:

$$
\begin{aligned}
E=-\nabla \phi-\frac{\partial A}{\partial t} \rightarrow \hat{E} & =-i k \hat{\phi}-\frac{\partial \hat{A}}{\partial t} \\
& =-i k \hat{\phi}-\frac{k}{|k|} \frac{\partial \hat{A}}{\partial t}-\frac{\partial A_{1}}{\partial t}
\end{aligned}
$$

\Rightarrow all that is proportional to k is longitudinal, the rest is transverse:

$$
\left\{\begin{array}{l}
E_{\perp}=-\frac{\partial A_{1}}{\partial t} \\
E_{/}=-\nabla \phi-\frac{\partial A_{/ \prime}}{\partial t}
\end{array}\right.
$$

All this is completely general.
With transverse/longitudinal fields we also get a new perspective on gauge transformations:
$A \rightarrow A+\nabla \omega \rightarrow$ momentum space $\rightarrow \hat{A} \rightarrow \hat{A}+i k \omega$
$\Rightarrow A_{/ /}+A_{\perp} \rightarrow\left(A_{/ 1}+i k \omega\right)+A_{\perp} \quad \Longrightarrow$ only $A_{/}$is affected
\Rightarrow different gauge choices correspond to different values for A_{11} In Coulomb gauge, $\nabla \cdot A=0 \Rightarrow k \cdot \hat{A}=0$

$$
\begin{aligned}
& k \cdot\left(\hat{A}_{/ /}+\hat{A}_{\perp}\right)=0 \\
& \text { but } k \cdot A_{\perp}=0 \\
& \Downarrow \\
& k \cdot \hat{A}_{/ /}=0 \Rightarrow \hat{A}_{/ /}=0
\end{aligned}
$$

Then $\left\{\begin{array}{l}E_{/ 1}=-\nabla \phi \\ E_{\perp}=-\frac{\partial A_{1}}{\partial t}\end{array} \quad \Rightarrow\right.$ complete separation between $\phi \& A_{\perp}$
From Maxwell eggs in Coulomb gauge:

$$
\nabla \cdot E=-\nabla^{2} \phi-\frac{\partial}{\partial t} \nabla \cdot A=-\nabla^{2} \phi=\rho
$$

$\Rightarrow \phi$ is completely determined,

$$
\phi(x, t)=\frac{1}{4 \pi} \int d^{3} y \frac{\rho(y, t)}{|x-y|}
$$

How many dou?

$$
\begin{array}{ccc}
\phi, & A_{/ \prime}, & A_{\perp} \\
4 & \uparrow & \uparrow \\
1 & 1 & 2
\end{array}
$$

but ϕ not inolependent, $A_{\mathbb{I}}=0 \Rightarrow$ we are left with A_{\perp}

$$
(2 d o f)
$$

[see appendix for the counting in Lorentz gauge]

What are the eqs. of motion of A_{\perp} ?
\rightarrow we start from $\frac{\partial^{2} A}{\partial t^{2}}-\nabla^{2} A+\nabla\left(\nabla \cdot A+\frac{\partial \phi}{\partial t}\right)=J$
momentum space

$$
\frac{\partial^{2} \hat{A}}{\partial t^{2}}+k^{2} \hat{A}+i k\left(i k \cdot \hat{A}+\frac{\partial \hat{\phi}}{\partial t}\right)=J
$$

apply $\delta_{i j}-\frac{k_{i k j}}{|k|^{2}}$ to project on \hat{A}_{1} :

$$
\begin{gathered}
\frac{\partial^{2} \hat{A}_{\perp i}}{\partial t^{2}}+k^{2} \hat{A}_{\perp i}+\underbrace{i\left(\delta_{i j}-\frac{k_{i} k j}{|k|^{2}}\right) k_{j}}_{\|}\left(i k \cdot \hat{A}+\frac{\partial \hat{\phi}}{\partial t}\right)=0 \\
\downarrow \\
0 \\
\frac{\partial^{2} A_{\perp}}{\partial t^{2}}-\nabla^{2} A_{\perp}=J_{\perp}
\end{gathered}
$$

Solution: $\quad A_{\perp}(x, t)=A_{\perp}^{\text {how }}(x, t)+A_{\perp}^{P}(x, t)$
solution homogeneous eq any particular solution

$$
\square A_{\perp}(x, t)=0
$$

Radiation field $A_{\perp}(x, t)=\sum_{\lambda= \pm} \int \frac{d^{3} k}{(2 \pi)^{32}}\left[\begin{array}{l}\alpha_{k \lambda} \\ 4\end{array} \epsilon_{k \lambda} e^{-i\left(\omega_{k} t-k \cdot x\right)}+\right.$ h.c. $]$ the 2 dot normalization

In Coulomb gauge is simple to compute the energy of the EM field:

$$
\begin{array}{r}
H=\frac{1}{2} \int d^{3} x\left(E^{2}+B^{2}\right)=\frac{1}{2} \int d^{3} x\left[\left|E_{/ \prime}+E_{\perp}\right|^{2}+\left|B_{\perp}\right|^{2}\right] \\
\text { but } E_{I \prime} \cdot E_{\perp}=0 .
\end{array}
$$

To prove this:

$$
\begin{aligned}
& \int d^{3} x E_{/ \prime}^{*} \cdot E_{\perp}=\int d^{3} x \int_{(2 \pi)^{3 / 2}(2 \pi)^{3 / 2}}^{d^{3} k} d^{3} q \\
&\left.\hat{E}_{l}^{*}(k) \cdot \hat{E}_{\perp}(q)\right)
\end{aligned} e^{i(-k+q) \cdot x}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int d^{3} x\left(\left|E_{/ /}\right|^{2}+\left|E_{\perp}\right|^{2}+\left|B_{\perp}\right|^{2}\right) \\
& =H_{\text {radiation }}+\underbrace{}_{\quad H_{\text {coul }}=\frac{1}{2} \int d^{3} x\left|E_{I I}\right|^{2}=\frac{1}{2} \int d^{3} x\left|E_{/ \prime}\right|^{2}} \int d^{3} k\left|\hat{E}_{/ /}\right|^{2}
\end{aligned}
$$

this can be computed as follows:

$$
\begin{aligned}
& =\frac{1}{2} \int d^{3} k \hat{\rho}^{*}(k) \frac{|k|^{2}}{|k|^{4}} \rho(k) \\
& =\frac{1}{2} \int d^{3} k \rho^{*}(k) \rho(k) \frac{1}{|k|^{2}} \\
& =\frac{1}{8 \pi} \int d^{3} x \int d^{3} y \frac{\rho(x) \rho(y)}{|x-y|}
\end{aligned}
$$

5.2 - QUANTUM ELECTRODYNAMICS

What is the quantum version of this story?
We know how to write a relativistic quantum field:

$$
\begin{aligned}
& \qquad \begin{array}{l}
A_{1}(x)=\sum_{\lambda= \pm} \sum_{k} \frac{1}{\sqrt{2 E_{k} V}} \epsilon_{\lambda}(k) a_{\lambda}(k) e^{-i k x}+c . c . \\
\text { quantum field } \\
\text { satisfies }\left[a_{\lambda}(k), a_{\lambda^{\prime}}^{+}\left(k^{\prime}\right)\right]=\delta^{3}\left(k^{\prime}-k^{\prime}\right) \delta \lambda^{\prime}
\end{array}
\end{aligned}
$$

What is the Hamiltonian that describe the EM and its interactions with matter?

We start with a Lagrangian:

$$
L=\sum_{a} \frac{m_{a} V_{a}^{2}}{2}+\frac{1}{2} \int d^{3} x\left(|E|^{2}-|B|^{2}\right)+\sum_{a}\left[\phi_{a} V_{a} A\left(x_{a}\right)-\phi_{a} \phi\left(x_{a}\right)\right]
$$

Defining $\left\{\begin{array}{l}\rho(x, t)=\sum_{a} q_{a} \delta^{3}\left(x-x_{a}(t)\right) \\ J(x, t)=\sum_{a} q_{a} v_{a} \delta^{3}\left(x-x_{a}(t)\right)\end{array}\right.$
we obtain

$$
L=\sum_{a} \frac{m_{a} v_{a}^{2}}{2}+\underbrace{\mathcal{L}=\frac{1}{2}\left(|E|^{2}-|B|^{2}\right)+J \cdot A-\rho \bar{\Phi}}_{\int d^{3} x \mathcal{L} \quad \frac{1}{2} \quad \int d^{3} x\left(|E|^{2}-|B|^{2}\right)+\int d^{3} x[J(x) \cdot A(x)-\rho(x) \Phi(x)]}
$$

Going to momentum space [using reality: $\left.\hat{f}(-k)=\hat{f}^{*}(k)\right]$

$$
\begin{aligned}
\int d^{3} x \mathcal{L} & =\int d^{3} k\left\{\frac{1}{2}\left(|\hat{E}|^{2}-|\hat{B}|^{2}\right)+J^{*} \cdot A-\rho^{*} \Phi\right\} \\
& =\frac{1}{2} \int d^{3} k\left\{|\hat{E}|^{2}-|\hat{B}|^{2}+J^{*} \cdot A+J \cdot A^{*}-\rho^{*} \phi-\rho \phi^{*}\right\}
\end{aligned}
$$

We now use $|\hat{E}|^{2}=\left|\hat{E}_{I \prime}\right|^{2}+\left|\hat{E}_{\perp}\right|^{2}$
To prove this:

$$
\begin{aligned}
\int d^{3} x E_{/ /}^{*} \cdot E_{\perp} & =\int d^{3} x \int_{\left(\frac{d^{3} k}{(2 \pi)^{3 / 2}} \frac{d^{3} q}{(2 \pi)^{3 / 2}} \hat{E}_{I \prime}^{*}(k) \cdot \hat{E}_{1}(q)\right)} e^{i(k+q) \cdot x} \\
& =\int d^{3} x \int \frac{d^{3} k}{(2 \pi)^{3 / 2}} \underbrace{\hat{E}_{/ \prime}^{*}(k) \cdot \hat{E}_{1}(k)}_{\|}=0 \mathrm{~mm}
\end{aligned}
$$

Remembering $\begin{cases}E_{/ /}=-\nabla \phi & \Rightarrow \hat{E}_{/ /}=-i k \hat{\phi} \\ E_{\perp}=-\dot{A}_{\perp} & \Rightarrow \hat{E}_{\perp}=-\dot{\hat{A}}_{\perp}\end{cases}$

From Maxwell eqs: $\nabla \cdot E=\rho \Rightarrow i k \cdot \hat{E}_{/ \prime}=\hat{\rho}$
\Downarrow

$$
\begin{aligned}
& \hat{E}_{I I}=-i \hat{\rho} \frac{k}{|k|^{2}} \\
& \hat{\Phi}=\frac{\hat{\rho}}{|k|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \int d^{3} x \mathcal{L}=\frac{1}{2} \int d^{3} k\left\{\dot{\hat{A}}_{\perp}^{*} \cdot \dot{\hat{A}}_{\perp}-\left(k \times\left.\hat{E}_{\perp}\right|^{2}\right)^{\left|\hat{B}_{\perp}\right|^{2}} \cdot\left(k \times \hat{A}_{\perp}\right)\right. \\
& \left.+\frac{\rho^{*} \rho}{|k|^{2}}+\hat{J}^{*} \cdot \hat{A}_{\perp}+\hat{J} \cdot \hat{A}_{\perp}^{*}-2 \frac{\rho^{*} \rho}{|k|^{2}}\right\} \\
& =\frac{1}{2} \int d^{3} k\left\{\dot{A}_{\perp}^{*} \cdot \dot{A}_{\perp}-\left(k \times A_{\perp}^{*}\right) \cdot\left(k \times A_{\perp}\right)\right. \\
& \begin{aligned}
&\left.-\frac{\rho^{*} \rho}{|k|^{2}}+J^{*} \cdot A_{\perp}+J \cdot A_{\perp}^{*}\right\} \\
&=\underbrace{-\frac{1}{8 \pi} \int d^{3} x d^{3} y \frac{\rho(x) \rho(y)}{|x-y|}}_{H_{\text {could }}}+\frac{1}{2} \int d^{3} x\left[\dot{A}_{\perp}^{2}-\left(\nabla \times A_{\perp}\right)^{2}\right] \\
&+\int d^{3} x J \cdot A_{\perp}
\end{aligned}
\end{aligned}
$$

What is, then, the Hemiltonian?

$$
H=\underbrace{\sum_{a} v_{a} \cdot p_{a}}_{\text {particles }}+\underbrace{\int d^{3} x \dot{A}_{\perp} \cdot \Pi_{\perp}}_{\text {field }}-L
$$

Conjugate momenta:
from $\int d d^{3} x J \cdot A_{\perp}$

$$
\left\{\begin{array}{l}
p_{a}=\frac{\partial L}{\partial v_{a}}=m_{a} v_{a}+\frac{9}{C} A_{\perp}\left(x_{a}\right) \Rightarrow v_{a}=\frac{1}{m_{a}}\left(p_{a}-\frac{q}{C} A_{1}\right) \\
\Pi_{\perp}=\frac{\partial \mathscr{L}}{\partial \dot{A}_{\perp}}=\dot{A}_{\perp}=-E_{\perp}
\end{array}\right.
$$

$$
\begin{aligned}
\Rightarrow H & =\sum_{a} \frac{\left(p_{a}-q_{a} A_{\perp}\right)^{2}}{2 m_{a}}+\int d^{3} x\left[\dot{A}_{\perp}^{2}-\frac{1}{2} \dot{A}_{\perp}^{2}+\frac{1}{2}\left(\nabla \times A_{\perp}\right)^{2}\right]+H_{\text {cowl }} \\
& =\sum_{a} \frac{\left(p_{a}-q_{a} A_{\perp}\right)^{2}}{2 m_{a}}+\frac{1}{2} \int d^{3} x \underbrace{\left[\dot{A}_{\perp}^{2}\right.}_{E_{\perp}^{2}+\dot{A}_{\perp}^{2}}
\end{aligned}
$$

what happens substituting the quantum field?
There is a problem of ordering in passing from the classical to the quantum expression:
we use

$$
\begin{array}{r}
A B \longrightarrow \frac{A B+B A}{2} \quad \text { (symmetric prescription) } \\
\Longrightarrow H=\frac{1}{2} \int d^{3} k \sum_{\lambda} E_{k}\left(a_{k \lambda}^{+} a_{k \lambda}+a_{k \lambda \lambda} a_{k \lambda}^{+}\right) \\
a_{k \lambda}^{+} a_{k \lambda}+\delta^{3}(0)
\end{array}
$$

$$
=\frac{1}{2} \delta^{3}(0) \sum_{\lambda} \int d^{3} k E_{k}+\sum_{\lambda} \int d^{3} k E_{k} a_{k \lambda}^{+} a_{k \lambda}
$$

Vacuum energy ED

let's study this
5.3 - casimir energy (= vacuum energy of the em field)

We have found

$$
E_{0}=\delta^{3}(0) \int d^{3} k E_{k}
$$

can be written

$$
\text { as } \frac{V}{(2 \pi \hbar)^{3}}
$$

\Rightarrow what we can actually compute is the vacuum energy density

$$
\rho_{0} \equiv \frac{E_{0}}{V}=\underbrace{\int \frac{d^{3} k}{(2 \pi)^{3}} E_{k}}
$$

this diverges
to make sense of
this integral, we need to regularize it

Since ρ_{0} is an energy density, for sure it will have a gravitational effect. Con we measure it in the Lab, however?

Imagine we have conducting plates:

Now take

we require

$$
\vec{A}(x, y, 0, t)=0=\vec{A}(x, y, L, t)
$$

We cannot use the expression for \vec{A} found earlier because now we have boundary conditions.
We can always write the mode functions as

$$
e^{-i \omega t} u(x, y, z)
$$

and take plane waves in the $x-y$ directions:

$$
\begin{aligned}
u_{\omega}(x, y, z)=e^{i \vec{k} \cdot \vec{x}} & u_{\omega k}(z) \\
& \vec{k}=k_{x} \hat{e}_{x}+k_{y} \hat{e}_{y}
\end{aligned}
$$

The wave eq. becomes

$$
\begin{aligned}
& \omega^{2} u_{\omega_{k}}-\vec{k}^{2} u_{\omega_{k}}+\frac{d^{2} u_{\omega_{k}}}{d z}=0 \\
& \quad \Longrightarrow u_{\omega_{k}}(z)=A e^{i p z}+B e^{-i p z} \quad p^{2}=\omega^{2}-\vec{k}^{2}
\end{aligned}
$$

To satisfy the boundary conditions we need

$$
\begin{array}{lll}
u_{\omega_{k}}(0)=0 & \Rightarrow & u_{\omega_{k}}(z)=A \sin (p z) \\
u_{\omega_{k}}(L)=0 & \Rightarrow & p_{h}=\frac{n \pi}{L}, n=1,2,3, \ldots
\end{array}
$$

The vector potential is thus

$$
\begin{aligned}
& \vec{A}(x)=\sum_{\lambda= \pm} \sum_{n=1}^{\infty} \int \frac{d^{3} k}{\sqrt{(2 \pi)^{3} 2 \omega L}}\left[\epsilon_{\lambda}(n, k) a_{n k \lambda} e^{-i \omega_{n k} t+i \vec{k} \cdot \vec{x}} \sin \left(p_{n} z\right)\right. \\
&+c \cdot c \cdot]
\end{aligned}
$$

and the Hamiltonian results in

$$
H=E_{0}+\sum_{\lambda= \pm} \sum_{n=1}^{\infty} \int d^{2} k \omega_{n k} a_{n k \lambda}^{+} a_{n k \lambda}
$$

$$
E_{0}=\frac{1}{2} \sum_{\lambda= \pm} \sum_{n=1}^{\infty} \int d^{2} k \omega_{n k} \delta^{2}(0)
$$

$$
\begin{array}{r}
\frac{V_{2}}{(2 \pi)^{2}} \quad V_{2}= \\
\quad \text { volume in the } \\
x-y \text { directions }
\end{array}
$$

The physical quantity is thus

$$
\sigma_{0} \equiv \frac{E_{0}}{V_{2}}=\sum_{n=1}^{\infty} \int d^{2} k \omega_{n k}
$$

To regularize the integral, we use the identity

$$
\int_{0}^{\infty} d s s^{p} e^{-\lambda s}=\lambda^{-1-p} \Gamma(1+p)
$$

with $\lambda=\omega_{n k}^{2}$:

$$
\omega_{n k}=\sqrt{\lambda}=\lim _{p \rightarrow-\frac{3}{2}} \frac{1}{\Gamma(1+p)} \int_{0}^{\infty} d s s p e^{-\omega_{n k}^{2} s}
$$

makes the integral over $d^{2} k$ Converge

Then

$$
\begin{aligned}
& \sigma_{0}=\lim _{p \rightarrow-\frac{3}{2}} \sum_{n=1}^{\infty} \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{\Gamma(1+p)} \int_{0}^{\infty} d s s^{p} e^{-\omega_{n k}^{2} s} \\
& \quad \lim _{p \rightarrow-\frac{3}{2}} \sum_{n=1}^{\infty} \int_{0}^{\infty} d s s^{p} \frac{1}{\Gamma(1+p)} \int_{L^{p}}^{\int_{0}^{\infty} \frac{d^{2} k}{(2 \pi)^{2}} \exp \left[-\left(\vec{k}^{2}+\left(\frac{n \pi}{L}\right)^{2}\right) s\right]} \\
& \underset{\underbrace{\exp \left[-\frac{n^{2} \pi^{2}}{L^{2}} s\right] \underbrace{\int \frac{d^{2} k}{(2 \pi)^{2}} e^{-k^{2} s}}_{L^{2}}}_{\left(\frac{1}{2 \pi} \sqrt{\frac{\pi}{s}}\right)^{2}}}{ }
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{p \rightarrow-\frac{3}{2}} \frac{1}{4 \pi \Gamma(1+p)} \sum_{n=1}^{\infty} \underbrace{\int_{0}^{\infty} d s s^{p-1} e^{-\frac{n^{2} \pi^{2}}{L^{2}} s}}_{\Gamma(p)\left(\frac{n^{2} \pi^{2}}{L^{2}}\right)^{-p}} \\
& \underline{1} \text { use } z \Gamma(z)=\Gamma(z+1) \\
& =\lim _{p \rightarrow-\frac{3}{2}} \frac{1}{4 \pi p}\left(\frac{L}{\pi}\right)^{2 p} \underbrace{\sum_{n=1}^{\sum_{n=1}^{\infty} \frac{1}{n^{2 p}}}}_{S(2 p)} \text { [Riemann zeta function] } \\
& =-\frac{\pi^{2}}{6 L^{3}} \underbrace{S(-3)}_{1 / 120}=-\frac{\pi^{2}}{720 L^{3}}
\end{aligned}
$$

Vacuum evergy is negative.
Force on the plates (measurable):

$$
P_{z}=\frac{F_{z}}{V_{2}}=-\frac{\partial \sigma_{0}}{\partial L}=-\frac{\pi^{2}}{240 L^{4}}
$$

measured and found in accorblance with the prediction!
\Rightarrow Vacuum energy is real

Historically: effect predicted in 1948 (Hendrik Cosimir)

- measured for the $1^{\text {st }}$ time in 1997 (Lamoreux) within 5\% of the prediction with I flat plate \& I. plate which is a sphere with large curvature
- measured between 2 parallel plates in zool (Bressi, Carugno, Onofrio, Russo)
5.4- Interactions with matter

We saw that, in classical EM,

$$
H=\sum_{Q} \frac{\left(p_{Q}-q_{Q} A_{\perp}\right)^{2}}{2 m_{Q}}+H_{E_{M}}+H_{\text {Col }}
$$

\uparrow
Contains interactions with matter
Formally obtained applying the "minimal substitution"

$$
p \rightarrow p-q A_{\perp}
$$

In QM, we interpret this as $\quad-i \nabla \rightarrow-i \nabla-q A_{\perp}$
\Downarrow

$$
\nabla \rightarrow \nabla-i q A_{\perp}
$$

For the interaction with a Schrödinger field $U(x)$ we write

$$
H_{\text {matter }}=\int d^{3} x \psi^{+}(x)\left[-\frac{\left(\nabla-i q A_{\perp}\right)^{2}}{2 m}+V(x)\right] \psi(x)
$$

Notice that H is gauge invariant provided

$$
\left\{\begin{array}{l}
\vec{A} \rightarrow \vec{A}+\vec{\nabla} \omega \\
\psi \rightarrow e^{i q \omega} \psi
\end{array}\right.
$$

The whole construction could be justified in terms of symmetries, but we are not going to discuss this here. See any book on QFT

It is customary to define a "covariant derivative"

$$
\vec{D} \Psi \equiv(\vec{\nabla}-i q \vec{A}) \Psi
$$

Explicitly, we write

$$
H_{\text {matter }}=H_{\Psi}+H_{\Psi_{A}}+H_{\Psi A A}
$$

$$
\left\{\begin{array}{l}
H_{\Psi}=\int d^{3} x \Psi^{+}(x)\left[-\frac{\nabla^{2}}{2 m}+V(x)\right] \Psi(x) \\
H_{\Psi A}=\int d^{3} x A_{\perp}\left\{\frac{i q}{2 m}\left(\Psi^{+} \nabla \Psi-\nabla \Psi^{+} \Psi\right)\right\} \\
H_{\Psi A A}=\int d^{3} x \frac{q^{2}}{2 m} \Psi^{+} \Psi A_{\perp} A_{\perp}
\end{array}\right.
$$

where $A_{\perp}=$ relativistic quantum field

Let's have a look at $H_{\psi A}$ in terms of creation/annihilation operators:

$$
\begin{aligned}
& H_{\psi_{A}}=\frac{i \varphi}{2 m} \int_{V} d^{3} x \sum_{\lambda= \pm} \sum_{k} \frac{1}{\sqrt{V 2 \omega_{k}}}\left[\vec{\epsilon}_{\lambda}(k) a_{k \lambda} e^{-i \omega_{k} t+i \vec{k} \cdot \vec{x}}\right. \\
& \left.+\vec{\epsilon}_{\lambda}^{*}(k) a_{k \lambda}^{+} e^{i \omega_{k} t+i \vec{k} \cdot \vec{x}}\right] x \\
& x \sum_{n, m}\left[u_{n}^{*}(\bar{x}) b_{n}^{+}\left(\vec{\nabla} u_{m}(\bar{x})\right) b_{m}-\left(\vec{\nabla} u_{n}^{*}(\vec{x})\right) b_{n}^{+} u_{m}(\bar{x}) b_{m}\right] \\
& \vec{I}_{n m}(\vec{k}) \\
& =\frac{i q}{2 m} \sum_{\lambda= \pm} \sum_{k} \sum_{n, m}\left[\frac{\vec{\epsilon}_{\lambda}(k)}{\frac{\sqrt{v 2 \omega_{k}}}{k}+\lambda} e^{-i \omega_{k} t}+h \cdot c \cdot \int_{V} d^{3} x e^{i \vec{k} \cdot \vec{x}}\left(u_{n}^{*} \vec{\nabla}_{u_{m}}-\vec{\nabla}_{n}^{*} u_{m}\right)\right. \\
& =\frac{i q}{2 m} \sum_{\lambda} \sum_{k} \sum_{n, m} \frac{\vec{E}_{\lambda}(k)}{\sqrt{V 2 \omega_{k}}} \cdot \vec{I}_{n m}(k) e^{-i \omega_{k} t} a_{k \lambda} b_{n}^{+} b_{m}+h . c .
\end{aligned}
$$

these interactions are precisely of the type that give rise to coherent states!

Phenomenology:
(1) $H_{\text {YA }}$ governs emission/absorption of a single photon
(2) $H_{\text {YA }}$ governs emission/absorption of 2 photons and, more importantly, photon scattering off the system $\left(\gamma C_{n} \rightarrow \gamma^{\prime} C_{m}\right)$
5.5- Worked example: the dipole approximation

Suppose we want to compute the rate for $C_{n} \rightarrow \gamma\left(k^{\prime}, \lambda^{\prime}\right)+C_{n^{\prime}}$.
Matrix element \rightarrow

$$
\left\langle\gamma\left(\vec{R}^{\prime}, \lambda^{\prime}\right) C_{n^{\prime}}\right| H_{\Psi A}\left|C_{n}\right\rangle=\frac{1}{\sqrt{(2 \pi)^{3} 2|\vec{k}|}} \vec{\epsilon}_{\lambda^{\prime}}^{*}\left(\vec{k}^{\prime}\right) \cdot \vec{I}_{n n^{\prime}}(\vec{k})
$$

If $C_{n}=$ atom in state n we can simplify the computation.
Typical mode functions u_{n} in atoms \rightarrow concentrated for

$$
r \leqslant a_{B}=\frac{1}{\alpha m e}
$$

Bohr radius
This means that most of the contribution in $I_{n n^{\prime}}(\vec{P})$ comes from $|\vec{p}| \sim \frac{1}{a_{B}}=\alpha m_{e}$.
Now, the energy of the photon $|\vec{k}|$ that enters $I_{n n^{\prime}}(-\vec{k})$ is, by energy conservation,

$$
\begin{aligned}
&|\vec{k}|=E_{n}-E_{n^{\prime}} \sim \alpha^{2} m_{e} \sim \alpha\left(\alpha m_{e}\right) \ll \frac{1}{a_{B}} \\
& \alpha \simeq \frac{1}{137}
\end{aligned}
$$

\Longrightarrow wavelenght of photons emitted/absorbed is much larger than the size of the atom
\Rightarrow we con approximate $e^{i \vec{k} \cdot \vec{x}} \simeq 1$

$$
\begin{aligned}
& \Rightarrow I_{n n^{\prime}}(\vec{K}) \simeq I_{n n^{\prime}}(0)=\frac{i q}{2 m} \int d^{3} x\left(u_{n^{\prime}}^{*} \vec{\nabla} u_{n}-\vec{\nabla} u_{n^{\prime}}^{*} u_{n}\right) \\
& \text { by parts }\left.\rightarrow\right|^{=} \frac{i q}{m} \int d^{3} x u_{n^{\prime}}^{*} \vec{\nabla} u_{n} \\
&=-\frac{q}{m} \int d^{3} x u_{n^{\prime}}^{*} \stackrel{\rightharpoonup}{P} u_{n} \\
&=-\frac{q}{m} \vec{P}_{n^{\prime} n}
\end{aligned}
$$

\uparrow matrix element of momentum op.

Now, remember that

$$
\left[-\frac{\vec{\nabla}^{2}}{2 m}+V(\bar{x})\right] u_{n}=E_{n} u_{n}
$$

and, from an explicit computation,

$$
i[H, \vec{x}]=\frac{i}{2 m}\left[p^{2}, \vec{x}\right]=\frac{i \vec{p}}{m}[\vec{p}, \vec{x}]=\frac{\vec{p}}{m}
$$

But then

$$
\begin{aligned}
& \frac{\vec{P}_{n^{\prime} n}}{m}=\left\langle n^{\prime}\right| \frac{\vec{p}}{m}|n\rangle=i\left\langle n^{\prime}\right| H \vec{x}-\bar{x} H|n\rangle \\
& \quad=i\left(E_{n^{\prime}}-E_{n}\right) \underbrace{\left\langle n^{\prime}\right| \vec{x}|n\rangle}_{\frac{\vec{d}_{n^{\prime} n}}{q}} \text { with } \vec{d}=q \vec{x}=\text { electric dipole } \\
& \text { moment }
\end{aligned}
$$

But then $\vec{I}_{n^{\prime} n}(0)=-9 \frac{\vec{P}_{n^{\prime} n}}{m}=i\left(E_{n}-E_{n^{\prime}}\right) \vec{d}_{n^{\prime} n}$
and

$$
\begin{aligned}
\left\langle\gamma\left(\vec{k}^{\prime}, \lambda^{\prime}\right) C_{n^{\prime}}\right| H_{\psi A}\left|C_{n}\right\rangle & \simeq \frac{1}{\sqrt{\sqrt{(2 \pi)^{3} 2\left|\vec{k}^{\prime}\right|}} \vec{\epsilon}_{\lambda^{\prime}}^{*}\left(\vec{k}^{\prime}\right) \cdot \vec{I}_{n^{\prime} h}(0)} \\
& =\frac{i\left(E_{n}-E_{n^{\prime}}\right)}{\sqrt{(2 \pi)^{3} 2\left|\vec{k}^{\prime}\right|}} \vec{\epsilon}_{\lambda^{\prime}}^{*}\left(\vec{k}^{\prime}\right) \cdot \vec{d}_{n^{\prime} h} \\
& =\underbrace{\frac{i \mid \overrightarrow{k^{\prime} \mid}}{\sqrt{(2 \pi)^{3} 2\left|\vec{k}^{\prime}\right|}}} \vec{\epsilon}_{\lambda^{\prime}}^{*}\left(\vec{k}^{\prime}\right) \cdot \overrightarrow{d_{n^{\prime} h}}
\end{aligned}
$$

this structure appears

$$
\text { in }-\frac{\partial \vec{A}}{\partial t}=\vec{E}
$$

$$
\underline{I}\left(\left\langle\gamma\left(\vec{k}^{\prime}, \lambda^{\prime}\right)\right| \vec{E}(\vec{x}=0)|0\rangle\right) \cdot \vec{d}_{n^{\prime} n}
$$

\Rightarrow the matrix element of $H_{H A}$ amounts to the matrix element of the dipole interaction $\vec{d} \cdot \vec{E}$
5.6 - commutation relations

What are the commutation relations of the quantum field A_{\perp} ?
According to canonical quantization, we have

$$
\left[A_{\perp i}(x, t), \Pi_{\perp j}^{\top}(y, t)\right]=i \delta_{i j} \delta^{3}(x-y)
$$

This can also be obtained from an explicit computation with $a_{\lambda}, a_{\lambda}^{+}$.
We can rewrite this in terms of $A_{i}(x, t) \& \Pi_{j}(y, t)$ remembering that

$$
\hat{A}_{\perp i}(k)=\left(\delta_{i j}-\frac{k_{i} k_{j}}{|k|^{2}}\right) \hat{A}_{j}(k) \Rightarrow A_{\perp i}(x, t)=\left(\delta_{i j}-\frac{\partial_{i} \partial_{j}}{\nabla^{2}}\right) A_{j}(x, t)
$$

Then, calling $P_{i j}(x)=\delta_{i j}-\frac{\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}}}{\nabla_{x}^{2}}$,

$$
\underbrace{\left[A_{\perp i}(x, t), \Pi_{l j}(y, t)\right]}_{i \delta^{3}(x-y) \delta_{i j}}=P_{i m}(x) P_{j n}(y)\left[A_{m}(x, t), \Pi_{n}(y, t)\right]
$$

Inversion can be done remembering that P is a projector:

$$
\begin{aligned}
{\left[A_{m}(x, t), \Pi_{n}(y, t)\right] } & =i P_{m i}(x) P_{n j}(y) \delta_{i j} \delta^{3}(x-y) \\
& \mid \\
& =i P_{m i}(x) P_{n i}(y) \delta^{3}(x-y) \\
& \mid \\
& =i P_{m n}(x) \delta^{3}(x-y)=i\left(\delta_{m n}-\frac{\partial_{m} \partial_{n}}{\nabla^{2}}\right) \delta^{3}(x-y)
\end{aligned}
$$

Appendix 1: counting degrees of freedom in lorentz gauge
In Lorentz gauge $\frac{\partial \phi}{\partial t}+\nabla \cdot A=0$

$$
\left\{\begin{aligned}
& \text { From (1): } \vec{\nabla} \cdot \vec{E}= \\
& \text { From (4): } \vec{\nabla}^{2} \phi-\frac{\partial}{\partial t} \vec{\nabla} \cdot \vec{A}=\rho \\
& \vec{\nabla} \times \vec{B}= \\
&\stackrel{\rightharpoonup}{\nabla} \times(\vec{\nabla} \times \vec{A})=\vec{J}-\vec{\nabla} \cdot \vec{A})-\vec{\nabla}^{2} \vec{A} \\
& \\
& \\
& \\
& \frac{\partial^{2} \vec{A}}{\partial t^{2}}-\bar{\nabla}^{2} \vec{\nabla} \phi-\frac{\partial^{2} \vec{A}}{\partial t^{2}}
\end{aligned}\right.
$$

\Downarrow Lorentz gouge

$$
\frac{\partial^{2} \vec{A}}{\partial t^{2}}-\vec{\nabla}^{2} \vec{A}=\vec{J}
$$

Counting: $\phi, \vec{A}(4$ dof $)-\frac{\partial \phi}{\partial t}+\vec{\nabla} \cdot \vec{A}=0 \quad$ (1 constraint)

$$
\Rightarrow 3 \text { dof left }
$$

But we still have some freedom left :

$$
\frac{\partial \phi}{\partial t}+\vec{\nabla} \cdot \vec{A}=0 \quad \xrightarrow{\text { gauge }} \frac{\partial \phi}{\partial t}+\vec{\nabla} \cdot \vec{A}+\underbrace{\vec{\nabla}^{2} \omega-\frac{\partial^{2} \omega}{\partial t^{2}}}_{\text {if }=0, \text { Lorentz }}
$$

gouge is preserved
\Rightarrow I use this residual gauge freedom to set $\phi=0$
$\Longrightarrow E M$ field completely described by \vec{A} with $\vec{\nabla} \cdot \vec{A}=0$ $\Rightarrow 2$ dol (of the original 6)

