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Abstract 

We provide an introduction to optimal fiscal and monetary policy using the primal 
approach to optimal taxation. We use this approach to address how fiscal and monetary 
policy should be set over the long run and over the business cycle. 

We find four substantive lessons for policymaking: Capital income taxes should be 
high initially and then roughly zero; tax rates on labor and consumption should be 
roughly constant; state-contingent taxes on assets should be used to provide insurance 
against adverse shocks; and monetary policy should be conducted so as to keep 
nominal interest rates close to zero. 

We begin by studying optimal taxation in a static context. We then develop a general 
framework to analyze optimal fiscal policy. Finally, we analyze optimal monetary 
policy in three commonly used models of money: a cash--credit economy, a money- 
in-the-utility-function economy, and a shopping-time economy. 

Keywords 

primal approach, Ramsey problems, capital income taxation, Friedman rule, tax 
smoothing 

J E L  classification: E5, E6, E52, E62, H3, H21 
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I n t r o d u c t i o n  

A fundamental question in macroeconomics is, How should fiscal and monetary policy 
be set over the long run and over the business cycle? Answering this question requires 
integrating tools from public finance into macroeconomics. The purpose of this chapter 
is to lay out and extend recent developments in the attempts to do that within a 
framework which combines two distinguished traditions in economics: the public 
finance tradition and the general equilibrium tradition in macroeconomics. The public 
finance tradition we follow in this chapter stems from the work of Ramsey (1927), 
who considers the problem of choosing an optimal tax structure in an economy with a 
representative agent when only distorting taxes are available. The general equilibrium 
tradition stems from the work of Cass (1965), Koopmans (1965), Kydland and Prescott 
(1982), and Lucas and Stokey (1983). 

Within the public finance tradition, our framework builds on the primal approach to 
optimal taxation. [See, for example, Atkinson and Stiglitz (1980), Lucas and Stokey 
(1983), and Chari et al. (1991).] This approach characterizes the set of allocations 
that can be implemented as a competitive equilibrium with distorting taxes by two 
simple conditions: a resource constraint and an implementability constraint. The 
implementability constraint is the consumer budget constraint in which the consumer 
and the firm first-order conditions are used to substitute out for prices and policies. 
Thus both constraints depend only on allocations. This characterization implies that 
optimal allocations are solutions to a simple programming problem. We refer to this 
optimal tax problem as the Ramsey problem and to the solutions and the associated 
policies as the Ramsey allocations and the Ramsey plan. 

We study optimal fiscal and monetary policy in variants of neoclassical growth 
models. This analysis leads to four substantive lessons for policymaking: 
• Capital income taxes should be high initially and then roughly zero. 
• Tax rates on labor and consumption should be roughly constant. 
• State-contingent taxes on assets should be used to provide insurance against adverse 

shocks. 
• Monetary policy should be conducted so as to keep nominal interest rates close to 

zero. 
The basic logic behind these policymaking lessons is that Ramsey policies smooth 
distortions over time and states of nature. Smoothing tax distortions over time implies 
that capital tax rates should be roughly zero and labor and consumption taxes should be 
roughly constant [Lucas and Stokey (1983) and Chari et al. (1994)]. Ramsey policies 
also imply that heavily taxing inelastically supplied inputs is optimal. Thus Ramsey 
policies involve taxing capital income at initially high rates, but then dropping these 
rates, to zero in the long run. [See Judd (1985) and Chamley (1986).] 

Since keeping capital, labor, and consumption taxes roughly constant is optimal, the 
government needs some source of revenue to ensure that taxes need not be sharply 
changed when the economy is hit by shocks. One way to provide such revenue 
insurance is to have explicitly state-contingent debt, in the sense that the rate of  return 
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on the debt varies with the shocks. Another way is to have non-state-contingent debt 
with taxes on interest income which vary with the shocks. Revenue insurance can also 
be provided by having taxes on capital income that vary with the shocks while still 
being roughly zero on average. 

In terms of monetary policy, Friedman (1969) advocates a simple rule: set nominal 
interest rates to zero. In the models we consider, the Friedman rule is optimal if the 
consumption elasticity of  money demand is one. We think that this rule deserves 
attention because the weight of  the empirical evidence is that the consumption elasticity 
of  money demand is indeed one. [See Stock and Watson (1993).] 

Throughout the chaptm, we emphasize that the primal approach, in essence, involves 
finding optimal wedges between marginal rates of  substitution and marginal rates of 
transformation. Typically, many tax systems can decentralize the Ramsey allocations. 
Thus optimal tax theory yields results on optimal wedges, and thus the prescriptions 
for optimal taxes depend on the details of  the particular tax system. For example, in the 
one-sector growth model, a tax system which includes any two of consumption, labor, 
and capital income taxes can decentralize the Ramsey allocations, in such a model, 
it is optimal to set intertemporal marginal rates of  substitution equal to intertemporal 
marginal rates of transformation in the long run. With a tax system that consists of 
capital and labor taxes, this is accomplished by setting capital income taxes equal 
to zero. With a tax system that consists of  consumption and labor taxes, this is 
accomplished by making consumption taxes constant. Thus the Ramsey allocations can 
be implemented either with zero capital income taxes or with constant consumption 
taxes. 

Throughout this chapter, we focus on economies in which the government effectively 
has access to a commitment technology. As is well known, without such a technology, 
there are time inconsistency problems, so the equilibrium outcomes with commitment 
are not necessarily sustainable without commitment. Economies with commitment 
technologies can be interpreted in two ways. One is that the government can simply 
commit to its future actions by, say, restrictions in its constitution. The other, and the 
way we prefer, is that the government has no access to a commitment technology, 
but the commitment outcomes are sustained by reputational mechanisms. [See, for 
example, Chari et al. (1989), Chari and Kehoe (1990, 1993), and Stokey (199l) for 
analyses of  optimal policy in environments without commitment.] Throughout this 
chapter we also restrict attention to proportional tax systems. 

The results we develop all come from environments with an infinite number of  
periods and include some combination of uncertainty, capital, debt, and money. 
Many of the basic principles, however, can be developed in a simple static context 
in which the ideas are easiest to digest. In Section l, in a static context, we 
develop two of the three main results in public finance which show up repeatedly 
in macroeconomic models. First, under appropriate separability and homotheticity 
conditions on preferences, it is optimal to tax goods at a uniform_ rate. Second, if  
all consumption goods, types of labor income, and pure profits can be taxed, then it 
is optimal not to tax intermediate goods. The uniform commodity tax result shows up 
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repeatedly in analyses of  fiscal policy, and this result and the intermediate-goods result 
show up repeatedly in analyses of monetary policy. We defer to the next section the 
development of  the third main result, that it is optimal to set taxes on capital income 
equal to zero in the long run. 

In Section 2, we lay out a stochastic neoclassical growth model to analyze fiscal 
policy. We begin with a deterministic version of this model to highlight the long-run 
properties of  optimal fiscal policy. In this version, we develop the results of Chamley 
(1980, 1986) on the optimality of  zero capital-income taxation in a steady state, the 
generalizations by Judd (1985) to environments with heterogeneous agents, and some 
qualifications by Stiglitz (1987) when there are restrictions on the tax system. Next, 
we show that for a commonly used class of  utility functions, optimal capital taxes are 
zero not only in a steady state, but also after the first period. 

Next, we consider a stochastic model without capital to highlight how optimal fiscal 
policy should respond to shocks. We illustrate how, by using debt as a shock absorber, 
taxes on labor income are optimally smoothed in response to shocks to government 
consumption and technology [as in Lucas and Stokey (1983) and Chari et al. (1991)]. 
We then contrast these results with the assertions in Barro (1979) about tax-smoothing 
in a reduced-form model. We argue that the work of Marcet et al. (1996) on taxation 
with incomplete markets partially affimas Barro's assertions. We also consider the 
quantitative features of  optimal fiscal policy in a standard real business cycle model 
[as in Chari et al. (1994)]. 

We go on to discuss how the results developed in a closed economy with infinitely 
lived agents and only exogenous growth extend to other environments. We first show 
that in an endogenous growth framework along a balanced growth path, all taxes are 
zero. [See Bull (1992) and Jones et al. (1997).] Essentially, in this framework, capital 
income taxes distort physical capital accumulation, and labor income taxes distort 
human capital accumulation. Hence it is optimal to front-load both taxes. We then 
consider an open economy and show that under both source-based and residence- 
based taxation, optimal capital income taxation is identically zero. The intuition for 
these results is that with capital mobility, each country faces a perfectly elastic supply 
of capital and therefore optimally chooses to set capital income tax rates to zero. 
[See Atkeson et al. (1999) and Garriga (1999).] Finally, we consider an overlapping 
generations model and show that only under special conditions is the tax rate on 
capital income zero in a steady state. The conditions are that certain homotheticity 
and separability conditions hold. [See Atkeson et al. (1999) and Garriga (1999).] 

In Section 3, we lay out a general framework for the analysis of  monetary policy. 
We consider three commonly used models of money: a cash-credit monetary economy, 
a money-in-the-utility-function monetary economy, and a shopping-time monetary 
economy. For each model, we provide sufficient conditions for the optimality of the 
Friedman rule. These conditions for the cash-credit economy and the money-in-the- 
utility-function economy are analyzed by Chari et al. (1996), while conditions for the 
shopping-time economy are analyzed by Kimbrough (1986), Faig (1988), Woodford 
(1990), Guidotti and V6gh (1993), and Correia and Teles (1996), as well as by 
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Chaff et al. (1996). The common features of  the requirements for optimality are 
simple homotheticity and separability conditions similar to those in the public finance 
literature on optimal uniform commodity taxation. 

There have been conjectures in the literature - by Kimbrough (1986) and Woodford 
(1990), among others - about the connection between the optimality of the Friedman 
rule and the intermediate-goods results. For all three monetary economies, we show 
that when the homotheticity and separability conditions hold, the optimality of  the 
Friedman rule follows from the intermediate-goods result. 

Finally, we report results for a quantitative monetary business cycle model. We 
find that if debt has nominal non-state-contingent returns, so that asset markets are 
incomplete, inflation can be used to make real returns contingent, so that debt can 
serve as a shock absorber. 

1. The primal approach to optimal taxation 

The general approach to characterizing competitive equilibria with distorting taxes 
described in this section is known in the public finance literature as the primal  
approach to taxation. [See Atkinson and Stiglitz (1980).] The basic idea is to recast 
the problem of choosing optimal taxes as a problem of choosing allocations subject 
to constraints which capture the restrictions on the type of allocations that can be 
supported as a competitive equilibrium for some choice of taxes. In this section, we 
lay out the primal approach and use it to establish some basic principles of  optimal 
taxation, together with the results on uniform commodity taxation and intermediate- 
goods taxation. 

The rest of this chapter applies these basic principles of  optimal taxation to a 
variety of  environments of  interest to macroeconomists. These environments all have 
an infinite number of  periods and include some combination of uncertainty, capital, 
debt, and money. As such, the derivations of  the results look more complicated than 
the derivations here, but the basic ideas are quite similar. 

1.1. The Ramsey allocation problem 

Consider a model economy in which n types of  consumption goods are produced with 
labor. The resource constraint is given by 

F(c l  + gl . . . .  , c,, + g~, l) = 0, (1.1) 

where ci and gi denote private and government consumption of good i, I denotes 
labor, and F denotes a production process that satisfies constant returns to scale. The 
consumer's problem is to maximize utility: 

max U(cl . . . .  , c,,, l) (1.2) 

subject to Z p i ( l  + r,.)ci = 1, (1.3) 
i 
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where p~ is the price of  good i and vi is the ad valorem tax rate on good i. Thus there 
are n linear commodity taxes. We normalize the wage to 1. 

A representative firm operates the constant returns technology F and solves 

m a x  Z p i x i  - l (1.4) 
(x,/) 

i 

subject to F(xl . . . .  ,x,,  l) = 0, (1.5) 

where xi denotes output of  good i .  The government budget constraint is 

fff2pigi = Z p i ~ . C  i. 
i i 

Market clearing requires that 

(1.6) 

c i + g i  = X i  f o r  i = 1, . . .  ,n. (1.7) 

Throughout this chapter, we take government expenditures as given. A competitive 
equilibrium is a policy Jr = (r/)7=l; allocations c, l, and x; and a price system p 
that satisfy the following: (i) tile allocations c and l maximize Equation (1.2) subject 
to (1.3), (ii) the allocations x and l solve Equation (1.4), (iii) the government budget 
constraint (1.6) holds, and (iv) the allocations c and x satisfy condition (1.7). 

Throughout this chapter, we assume that first-order conditions are necessary and 
sufficient and that all allocations are interior. The sufficiency of  the first-order 
conditions for firms and consumers holds under appropriate concavity assumptions, 
and interiority can be assured with appropriate monotonicity and Inada conditions. 

Proposi t ion 1. The allocations in a competitive equilibrium satisfy 

F(cl + gt . . . . .  cn + g~,, l) -- 0 (1.s) 

and the implementability constraint 

Z Uici + U/1 = O. (1.9) 
i 

Furthermore, given allocations which satisfy Equations (1.8) and (1.9), we can 
construct policies and prices which, together with the given allocations, constitute 
a competitive equilibrium. 

R e m a r k :  The literature usually refers to Equation (1.9) as the implemenlability 
constraint because it is a constraint on the set o f  allocations that can be implemented 
as a competitive equilibrium with distorting taxes. This constraint can be thought of  
as the consumer budget constraint with both the taxes and the prices substituted out 
by using first-order conditions. 
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Proof: We first prove that the allocations in a competitive equilibrium must satisfy 
Equations (1.8) and (1.9). Condition (1.8) follows from substituting the market-clearing 
condition (1.7) into (1.5). To derive Equation (1.9), notice that the consumer's first- 
order conditions are 

Ui = api(1 + zi) for 

- g l  = 0~ 

Zpi(1 + Ti)ci -- [, 
i 

i =  1 , . . . ,n ,  (1.10) 
(1.11) 

(1.12) 

where a is the Lagrange nmltiplier on the budget constraint. Substituting Equations 
(1.10) and (1.11) into (1.12) gives (1.9). Next, we prove that i f c  and l satisfy (1.8) and 
(1.9), then a price systemp, a policy Jr, and an allocation x, together with the given 
allocations, constitute a competitive equilibrium. We use the first-order conditions for 
the firm, which are 

Pi =--Fi/Ft for i = 1, . . . ,n .  (1.13) 

We construct x, p, and zc as follows: xi - ci + gi, Pi is from (1.13), and s~- is from 

UiFI 
l + r i -  

UIFi"  

Given our assumptions on the utility function, the first-order conditions are necessary 
and sufficient for consumer and firm maximization. With x, p, and ¢c so defined, 
(c, l ,x ,p ,  zc) clearly satisfies firm maximization. When a = -Ul, conditions (1.10) and 
(1.11) clearly are also satisfied. Substituting for Ui and Ul in Equation (1.9), we have 

Z ciaPi(1  + ri) al O. 
i 

Dividing by a and rearranging gives Equation (1.12). The government budget 
constraint is satisfied by Walras' law. D 

We can now define a type of optimal tax equilibrium in which the government 
objective is to maximize the utility of consumers. We think of the government as first 
choosing policies and of private agents as then choosing their actions. Let H denote 
the set of policies for which a competitive equilibrium exists. A Ramsey equilibrium 
is a policy Jr = (ri)i~_l i n / / ;  allocation rules c(.), l(.), and x(.); and a price function 
p(.) that satisfy the following: (i) the policy Jr solves 

max g(c(sr'),  l(jr')) 

subject to Z p i ( j r ' ) g i  Zpi(~') r~ci(jr') (1.14) 
i i 

and (ii) for every Jr', the allocations c(jr'), l ( S ) ,  x(jr'), the price system p ( S ) ,  and 
the policy Jr' constitute a competitive equilibrium. 
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Notice that we require optimality by consumers and firms for all policies that 
the government might choose. This requirement is analogous to the requirement of 
subgame perfection in a game. To see why this requirement is important, suppose we 
had not imposed it. That is, suppose we required optimality by consumers and firms 
only at the equilibrium policies, but allowed allocation and price rules to be arbitrary 
elsewhere. Then the set of  equilibria is much larger. For example, allocation rules that 
prescribe zero labor supply for all policies other than some particular policy would 
satisfy all the equilibrium conditions. Since the government's budget constraint is then 
satisfied only at the particular policy, the government optimally chooses that policy. 
We think that such equilibria do not make sense. That is, we think the requirement 
that consumers and firms behave optimally for all policies is the sensible way to solve 
the government's problem of forecasting private behavior. 

I f  the competitive equilibrium associated with each policy is unique, clearly the 
Ramsey equilibrium is also unique. I f  there are multiple competitive equilibria 
associated with some policies, our definition of a Ramsey equilibrium requires that 
a selection be made from the set of competitive equilibria. In this case, there may be 
many Ramsey equilibria, depending on the particular selection made. In this chapter, 
we focus on the Ramsey equilibrium that yields the highest utility for the government. 
In such a Ramsey equilibrium, a particular allocation and price system are realized, 
namely, c, l, and p. We call these the Ramsey allocations and prices'. We then have 
the following proposition as an immediate corollary of  Proposition 1. 

Proposition 2. The Ramsey allocations solve the Ramsey problem, which is to choose 
c and 1 to maximize U(c,l)  subject to conditions (1.8) and (1.9). 

We have studied an economy in which the government uses consumption-goods 
taxes to raise revenues and have shown how the problem of solving for the Ramsey 
equilibrium reduces to the simpler problem of solving for the Ramsey allocations. 
Other tax systems lead to the same Ramsey problem. For example, consider a tax 
system that includes taxes on the n consumption goods as well as taxes on labor 
income. It can be shown that the Ramsey allocations can be supported by a tax system 
that uses any n of the n + 1 instruments. For example, the Ramsey allocations can be 
supported by taxes on consumption goods 2 through n and labor income or by taxes on 
consumption goods alone. The fact that the Ramsey allocations can be decentralized 
in many ways implies that it is more useful to think about optimal taxation in terms 
of the implied wedges between marginal rates of  substitution and marginal rates of 
transformation rather than in terms of  the particular tax system used to decentralize 
the Ramsey allocations. 

The form of the Ramsey allocation problem depends on the assumption that the 
tax system contains at least n independent instruments. We call such a tax system 
complete. An example of  an incomplete tax system is one in which taxes on the first 
consumption good and labor are constrained to be zero. For such an incomplete tax 
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system, the analog of Proposition 1 is that a set of allocations is part of a competitive 
equilibrium if and only if the set satisfies conditions (1.8) and (1.9), together with 

U~ F1 
U/ F t  

Intuitively, this constraint captures the fact that the government has no tax instruments 
that drive a wedge between the marginal rate of substitution of the first consumption 
good and labor and the marginal rate of transformation of the same commodities. The 
reader will find proving this analog useful in part, because the proof illustrates that 
condition (1.9) must hold regardless of the nature of the tax system. That is, when the 
tax system is incomplete, the implementability constraint is unchanged, and the new 
constraints that reflect this incompleteness must be added to the Ramsey problem. 

1.2. Elasticities and commodity taxation 

We can use the Ramsey allocation problem to derive some simple results on optimal 
commodity taxes. We show that with additively separable preferences, tax rates depend 
on income elasticities, with necessities being taxed more than luxuries. The discussion 
here closely follows Atkinson and Stiglitz (1980, chap. 12). 

Consider the first-order conditions for the Ramsey problem: 

(1 + ~) Ui - 3.UiHi = y~., (1.15) 

(1 + 3.) U~ - ~UzHt = -yFz,  (1.16) 

where ~ and 7 are the Lagrange multipliers on the implementability constraint 
and the resource constraint, respectively; Hi =-- - ( ~ i  Uj.icj + UiiI)/Ui; and Hi 
- ( ~ j  Uiicj + Uid)/Uz. Using Equations (1.10), (1.l l) ,  and (1.13) in (1.15) and (1.16) 
and simplifying gives 

T,- ,~(~. -H I )  

1 + ~  1 +)L-,~H~' 

Rearranging shows that the relative tax rates for two goods i andj  are determined by 

r#(1 + Ti) Hi - H t  
(1.17) 

~/(1 + Tj) ~ - H i  

Now, Equation (1.17) is not an explicit formula for optimal tax rates, since tile //i, 
Hi, and Hr terms depend on endogenous variables. Nevertheless, (1.17) shows that if 
Hi > Hi, then vi > rj. Suppose next that the utility function is additively separable. 
Then 

Uii ci 
- (1.18) ui 

Let c(p, m), l(p, m) denote the solution to the problem of rnaximizing utility subject 
to ~ p i c i  = l + m, where m is nonlabor income, so that ci(p, m) is the demand function 
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for good i. Letting a denote the Lagrange multiplier on the budget constraint, we can 
differentiate the first-order condition Ui(c(p,  m)) = a ( p ,  m)p i  with respect to nonlabor 
income m to obtain 

Oc~ Oa Ui Oa 
U"om = P * ~ -  a Om 

o r  

10ci 10a 
H, - (1.19) 

C i 017/1 17 (31"tl 

so that 

Hi _ t b 

/qj t/i' 
(1.20) 

where t/i is the income elasticity of demand for good i. Thus necessities should be 
taxed more than luxuries. 

The standard partial equilibrium result is that goods with low price elasticities 
of demand should be taxed more heavily than goods with high price elasticities. In 
general equilibrium, this result does not necessarily hold. It does hold if preferences 
are additively separable and there are no income effects. That is, utility is quasi-linear 
and is given by 

V i ( c i )  - 1. (1.21) 
i 

For such a utility function, Equation (1.20) is not helpful because the income 
elasticities for all the consumption goods are zero. It is easy to show that for a utility 
function of the form (1.21), Hi = 1/ei, where e/= -(Oci/Opi)Pi/C i is the price elasticity 
of demand. To see this, differentiate the first-order condition with respect to Pi, 

U,.(c(p, m), lq_,, m)) = api, (1.22) 

to obtain 

OCi 
Uii ,~-- = a, (1.23) 

opi 

where a is constant because of quasi-linearity. Substituting Equations (1.22) and (1.23) 
into (1.18) gives Hi - 1/ei. Since ri > r/ when Hi >/-/.1, consumption goods which 
are relatively more price inelastic (have low e,.) should be taxed relatively heavily. 

To summarize, with additive separability, the general result is that tax rates depend 
on income elasticities, with necessities taxed more than luxuries. Moreover, the familiar 
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intuition from partial equilibrium that goods with low price elasticities should be taxed 
heavily does not necessarily apply in a general equilibrium setting. 

1.3. Uniform commodity taxation 

Here we set up and prove the classic result on uniform commodity taxation. This result 
specifies a set o f  conditions under which taxing all goods at the same rate is optimal. 
[See Atkinson and Stiglitz (1972).] 

Consider a utility function of  the form 

U(c, l) - W(G(c), l) (1.24) 

where c = ( c i , . . . ,  cn) and G is homothetic. 

Proposi t ion 3. I f  utility satisfies' condition (1.24) that is', utility is weakly separable 
across consumption goods and is homothetic in consumption then Ui/Uj = Fi/Fj 

for  i = 1 . . . .  , n. That is, optimal commodity taxation is uniform in the sense that the 
Ramsey taxes satisfy "ci = ~- for i = 1 , . . . ,  n. 

Proof: Substituting the firm's first-order conditions (1.13) into the consumer's first- 
order condition, we have that 

u ~  
l + r i -  

U1Fi  

Thus ~ - rj if  and only if ~ / F / -  Uj/~.  
Note that a utility function which satisfies condition (1.24) satisfies 

cj cj 
' ~  - '~  for all i, k. 

J J 

(1.25) 

To see this, notice that from homotheticity, it follows that 

Ui(ac, l) Ui(c, l) 
Uk(ac, l) gk(c, l) 

o r  

[ Ui(c, 1) ] 
Ui(ac, l) = [ Uk(c,l)J Ul,(ac, l). (1.26) 

Differentiating Equation (1.26) with respect to c~ and evaluating it at a = 1 
gives (1.25). 
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Consider next the first-order condition for ci from the Ramsey problem, namely, 

where, again, ~ is the multiplier on the implementability constraint and 7 is the 
multiplier on the resource constraint. From Equation (1.25), we have that there is some 
constant A such that ~ / c / U / j  = A ~  for all i. Using this fact and the form of  utility 
function, we can rewrite Equation (1.27) as 

(1 + 3") WL Gi + ,~ [AWl Gi + lW12Gi] ~ ~Fi. (1.28) 

Since Equation (1.28) holds for all i and j ,  Gi/Fi ~ Gj/Fj for all i a n d j  and 

Ui _ WL G i _  W1 Gi _ Uj 

[] 

Note that the Ramsey allocations can be decentralized in many ways. For example, 
taxes on goods can all be set to an arbitrary constant, including zero, and remaining 
revenues raised by taxing labor income. 

Consider some generalizations of  this proposition. Suppose that the utility function 
is homothetic and separable over a subgroup of  goods, in the sense that the utility 
function can be written as 

U ( c l , . . . ,  c¢,,~(ck+l . . . . .  c , ) , l )  

with ~b homothetic. Then it is easy to show that the Ramsey taxes Tk+L = . . .  - r~. 
Next, if  there is some untaxed income, then we need to modify Proposition 3. Suppose 
that we add to the model an endowment of  good 1, Yl, which is not taxed. Then the 
implementability constraint becomes 

Z Uici + U1l = Ulyl. 
i 

Then even if  U satisfies U(0(Cl . . . .  , c, 0, l) with 0 homothetic, it is not true that optimal 
taxes are uniform (because of  the extra terms Uljyl from the derivatives of  Utyl). If  we 
add the assumption that U is additively separable across c l , . . . ,  co, then the Ramsey 
taxes for goods 2 through n will be uniform, but not equal to the tax on good 1. 
Next, suppose that the tax system is incomplete in the sense that the government is 
restricted to setting the tax on good 1 to some fixed number, say, TI = 0. Then the 
Ramsey problem now must include the constraint 

U~ _ F1 

in addition to the resource constraint and the implementability constraint. Then even 
if  U satisfies condition (1.24), optimal commodity taxes on goods 2 through n are not 
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necessarily uniform. Finally, in order to connect this result on uniform commodity 
taxation to some of the later results, suppose that the utility function is defined 
over an infinite sequence of consumption and labor goods as U(cl ,  c2 . . . .  ,11,12,...). 
The assumption that the utility is of  the form V(q~(Cl . . . . .  ct . . . .  ) ,11,12,. . .)  with 

homothetic and separable between consumption and all labor goods 11,/2 . . . .  , 
together with the assumption that the utility function is additively separable across 
time with constant discount factor/3, restricts the utility function to the form 

~ C 1 c7 ] 

I 

1.4. Intermediate goods' 

Here we establish the classic intermediate-goods result for a simple example. (This 
example turns out to be useful when we study monetary economies.) Recall the 
standard result in public finance that under a wide variety of  circumstances, an optimal 
tax system maintains aggregate production efficiency. [See Diamond and Mirrlees 
(1971).] In the context of an economy with multiple production sectors, transactions 
between firms can be taxed. Taxing such transactions distorts the relations between the 
marginal rate of transformation in one sector and the marginal rate of transformation 
in another sector and yields aggregate production inefficiency. In such a setup, the 
standard result on aggregate production efficiency immediately implies that taxing 
intermediate goods is not optimal. 

Consider an economy with three final goods .... private consumption x, government 
consumption g, and labor l - and an intermediate good z. The utility function is U(x, l)~ 
The technology set for producing the final consumption good using labor ll and the 
intermediate good is described by 

f ( x , z ,  ll) <~ O, (1.29) 

wheref  is a constant returns to scale production function. There is a technology set for 
producing the intermediate good and government consumption using labor/2 described 
by 

h(z ,g ,  12) <~ O, (1.30) 

where h also is a constant returns to scale production function. The consumer's problem 
is to maximize 

U(x, l~ + 12) 

subject to p(1 4 r ) x  ~. w(l~ + h)~ 
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where p and w are the prices of the consumption good and labor and T is the tax on 
the consumption good. The firm that produces private consumption goods maximizes 
profits 

px - wll - q(1 + t})z 

subject to condition (1.29); q is the price of intermediate goods, and ~7 is the tax 
on intermediate goods. The firm that produces intermediate goods and government 
consumption goods maximizes profits 

qz + rg - wI2, 

where r is the price of government consumption, subject to condition (1.30). 
We can easily show that the Ramsey allocation problem is given by 

max U(x, Ii + 12) 

subject to conditions (1.29), (1.30), and 

xUx + (ll +/2) Ut = 0. (1.3l) 

We then have 

Proposition 4. The solution to the Ramsey allocation problem satisfies production 
efficiency; namely, the marginal rates o f  transformation are equated across 
technologies. Equioalently, setting the tax on intermediate goods tl = 0 is optimal. 

Proof: For this economy, production efficiency is equivalent to 

f~ h~ 
- (1.32) 

Solving the Ramsey allocation problem, we obtain the following first-order conditions 
for z, ll, and 12, respectively: 

vf~ = -#hz, (1.33) 

Ut + 3,(xUix + UI + lUa) + of  - O, (1.34) 

UI + 2(xUtx + Uz + 1UH) +/zh/= O, (1.35) 

where v, /~, and )L are the multipliers on (1.29), (l.30), and (1.31). Combining 
Equations (1.34) and (1.35) gives of =/~hl, which, combined with (1.33), establishes 
Equation (1.32). 

The first-order conditions for profit maximization for the firms imply that 

, f i _  q ( l + t ] ) _  hz( l + ~/). (1 .36) 
f w h, 

Thus, if condition (l.32) holds, Equation (1.36) implies that r/-- 0. [2 
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The intermediate-goods result holds in general settings in which there are (possibly 
infinitely) many goods and many production technologies. We have assumed that 
the production technologies satisfy constant returns to scale. I f  there are increasing 
returns to scale, then there are standard problems with the existence of  a competitive 
equilibrium. I f  there are decreasing returns to scale, then the intermediate-goods result 
continues to hold, provided that pure profits can be fully taxed away. 

It turns out that the result for uniform commodity taxation follows from the inter- 
mediate-goods result. To see this, consider a utility function o f  the form 

U ( c ,  l) - W ( G ( c ) ,  l), (1.37) 

where c = ( c l , . . . , c n )  and G is homogeneous o f  degree 1. We can reinterpret 
this economy as an economy with a single consumption good x, which is produced 
using n intermediate-goods inputs (c l , . . .  ,c,~) with the constant returns to scale 
technology x = G(c) .  The intermediate-goods result requires that in an optimal tax 
system, the taxes on the intermediate-goods inputs be zero, so that there are taxes only 
on final goods x and 1. This is clearly equivalent to a uniform tax on (cl . . . .  , cn). 

2. Fiscal policy 

In this section, we begin by setting out a general framework for analyzing optimal fiscal 
policy in a stochastic one-sector growth model. We use a deterministic version o f  this 
model to develop results on the taxation of  capital income, in both the short and long 
run. We first show that the optimal capital income taxes are zero in a steady state, even 
if  there are heterogeneous consumers. We then show that for a class of  utility functions, 
there is only one period with nonzero capital income taxes, following which capital 
income taxes are zero along a transition to the steady state. We then turn to the cyclical 
properties of  optimal fiscal policy. In a stochastic model without capital, we illustrate 
how debt can act as a shock absorber. We briefly discuss how incomplete markets 
can alter these results. We then illustrate the main features o f  optimal fiscal policy 
over a business cycle using a calibrated version of  the model with capital. Finally, 
we discuss how these results are altered in three other environments: an endogenous 
growth model, an open economy model, and an overlapping generations model. 

2.1. Genera l  f r a m e w o r k  

Consider a production economy populated by a large number of  identical, infinitely 
lived consumers. In each period t = 0, 1 . . . .  , the economy experiences one o f  finitely 
many events st. We denote by s t = ( s o , . . . ,  s t)  the history o f  events up to and including 
period t. The probability, as of  period 0, o f  any particular history s t is t~t(st). The initial 
realization so is given. This suggests a natural commodity space in which goods are 
differentiated by histories. 
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In each period t, the economy has two goods: a consumption-capital good and labor. 
A constant returns to scale technology which satisfies the standard Inada conditions is 
available to transform capital k(s t-l) and labor l(s t) into output via F(k(st-X), l(st), st). 
Notice that the production function incorporates a stochastic shock st. The output 
can be used for private consumption c(st),  government consumption g(sX), and new 
capital k(st) .  Throughout, we will take government consumption to be exogenously 
specified. Feasibility requires that 

c(s ~ ) + g(s  t) + k(s ~) = F(k ( s  ~-1 ), l(sl), st) + (1 - 6) k(s  I-I ), (2.1) 

where 6 is the depreciation rate on capital. The preferences of  each consumer are given 
by 

Z [3~ lz(s ~) U(c(s~), l(s~)), (2.2) 
t , S  t 

where 0 < [2 < 1 and U is strictly increasing in consumption, is strictly decreasing in 
labor, is strictly concave, and satisfies the Inada conditions. 

Government consumption is financed by proportional taxes on the income from labor 
and capital and by debt. Let T(s t) and O(s t) denote the tax rates on the income from 
labor and capital. Government debt has a one-period maturity and a state-contingent 
return. Let b(s ~) denote the number o f  units of  debt issued at state s t and Rb(S t+l) de- 
note the return at any state s L+I = (s ~, st+l). The consumer's budget constraint is 

c ( s t ) + k ( s t ) + b ( s  t) <~ [1 T(st)] w(st)  l ( s t )+Rk(s t ) k ( s t - l )+Rb(s l )b ( s l -1 ) ,  
(2.3) 

where Rk(s t) = 1 + [1 - O(st)][r(s ~) - 6] is the gross return on capital after taxes and 
depreciation and r(s t) and w(s t) are the before-tax returns on capital and labor. Con- 
sumers' debt holdings are bounded by b(s ~) >~ - M  for some large constant M. Com- 
petitive pricing ensures that these returns equal their marginal products, namely, that 

r(s t) = Fk(k(s t l), l(st), st), (2.4) 

w(s ' )  = Fl(k(s  t 1), l(st), s,). (2.5) 

Consumers'  purchases o f  capital are constrained to be nonnegative, and the purchases 
of  government debt are bounded above and below by some arbitrarily large constants. 
We let x(s t) = (c(sl), l (s t ) ,k(s t ) ,  b(st)) denote an allocation for consumers at s t and 
let x = (x(st)) denote an allocation for all s t. We let (w, r,R~,) = (w(st),  r(st),Rh(s~)) 
denote a price system. 

The government sets tax rates on labor and capital income and returns tbr 
government debt to finance the exogenous sequence o f  government consumption. The 
government's budget constraint is 

b ( s t ) _  Rb( s t )b ( s t - I )+g( s  t) r ( s t ) w ( s , ) l ( s , ) __O(s , j [ r ( s t ) _6]k ( s  l 1). (2.6) 

We let 3"c(s t) = (T(st), O(st)) denote the government policy at s t and let zc - (~(st)) 
denote the infinite sequence of  policies. The initial stock of  debt, b 1, and the initial 
stock of  capital, k-l, are given. 
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Notice that for notational simplicity, we have not explicitly included markets in 
private claims, so all borrowing and lending is between consumers and the government. 
Since all consumers are identical, such claims will not be traded in equilibrium; hence 
their absence will not affect the equilibrium. Thus we can always interpret the current 
model as having complete contingent private claims markets. 

A competitive equilibrium for this economy is a policy a~, an allocation x, and 
a price system (w,r,  Rb) such that given the policy and the price system, the 
resulting allocation maximizes the representative consumer's utility (2.2) subject to the 
sequence of budget constraints (2.3), the price system satisfies (2.4) and (2.5), and the 
government's budget constraint (2.6) is satisfied. Notice that we do not need to impose 
the feasibility condition (2.1) in our definition of equilibrium. Given our assumptions 
on the utility function, constraint (2.3) is satisfied with equality in an equilibrium, and 
this feature, together with (2.6), implies (2.1). 

Consider now the policy problem faced by the govenunent. We suppose that there is 
an institution or a commitment technology through which the government, in period 0, 
can bind itself to a particular sequence of policies once and for all. We model this 
by having the government choose a policy g at the beginning of time and then 
having consumers choose their allocations. Formally, allocation rules are sequences 
of functions x(gc) = (x(s t [ at)) that map policies ~ into allocations x(ar). Price rules 
are sequences of functions w(a~) ~- (w(s t [ a~)) and r(av) = (r(s t I a~)) that map 
policies av into price systems. Since the government needs to predict how consumer 
allocations and prices will respond to its policies, consumer allocations and prices 
must be described by rules that associate government policies with allocations. We 
will impose a restriction on the set of policies that the government can choose. Since 
the capital stock in period 0 is inelastically supplied, the government has an incentive 
to set the initial capital tax rate as high as possible. To make the problem interesting, 
we will require that the initial capital tax rate, O(so), be fixed at some rate. 

A Ramsey equilibrium is a policy av, an allocation rule x(.), and price rules w(.) and 
r(.) that satisfy the following: (i) the policy zc maximizes 

~13t~(s  ') U(c(s' I aO, l(s' l =)) 
I~S t 

subject to constraint (2.6), with allocations and prices given by x(ag), w(g), and r(gr); 
and (ii) for every gl, the allocation x(~1), the price system w(avl), r(ar'), and Rb(~'), 
and the policy ~'  constitute a competitive equilibrium. 

We now turn to characterizing the equilibrium policies and allocations. In terms of 
notation, it will be convenient here and throughout the chapter to let Uc(s t) and U1(s ~) 
denote the marginal utilities of consumption and leisure at state s t and let Fk(s t) and 
Fl(s t) denote the marginal products of capital and labor at state s t. We will show that a 
competitive equilibrium is characterized by two fairly simple conditions: the resource 
constraint 

c(s') -~ g(s*) + k(s ~) = f ' (k(s ' - t ) ,  l(st), s,) + (1 - 6) k(s t q) (2.7) 
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and the implementability constraint 

~ y ~ ( s  t) [Uc(s')c(s~) + U~(st) l(st)] = Uc(so)[R~(so)k-~ +Rb(so)b-1], (2.8) 
l , s  t 

where Rk(so) = I + [1 - O(so)][Fk(so) - b]. The implementability constraint should be 
thought of  as an infinite-horizon version of  the budget constraint of  either the consumer 
or the government, where the consumer and firm first-order conditions have been used 
to substitute out the prices and policies. We have 

Proposition 5, The consumption, labor, and capital allocations and the capital tax 
rate and return on debt in period 0 in a competitive equilibrium satisfi2 conditions 
(2.7) and (2.8). Furthermore, given allocations and period O policies that satisfy (2. 7) 
and (2.8), we can construct policies, prices, and debt holdings that, together with the 
given allocations and period-O policies, constitute a competitive equilibrium. 

Proof: We first show that a competitive equilibrium must satisfy (2.7) and (2.8). ]b  see 
this, note that we can add (2.3) and (2.6) to get (2.7), and thus feasibility is satisfied 
in equilibrium. Next, consider the allocation rule x(¢c). The necessary and sufficient 
conditions for c, 1, b, and k to solve the consumer's problem are given as follows. Let 
p(s ~) denote the Lagrange multiplier on constraint (2.3). Then by Weitzman's (1973) 
and Ekeland and Scheinkman's (1986) theorems, these conditions are constraint (2.3), 
together with first-order conditions for consumption and labor: 

[3tg(s t) Ue(s t) << p(st), with equality if c(s t) > 0, (2.9) 

[3tl~(s t) Ul(s t) <~ -p(st)(1 - r(st))w(st), with equality if l(s t) > 0; (2.10) 

first-order conditions for capital and government debt: 

[p(st)--~+p(st+l)Rb(st+l)l b(st)=O~ (2.11) 

[ p(st)--~-~p(st~')Rk(s"')  ] s  ~+1 k(st) = O; (2.12) 

and the two transversality conditions 

~ p ( s ~ )  b(s~) .... o, (2.13~ 
t 

s t 

t lim ~-2p(s ~) k(s ~) - O. (2.14) 
S / 

We claim that any allocation which satisfies (2.3) and (2.9)-(2.14) must also satisfy 
(2.8). To see this, multiply (2.3) byp(st), sum over t and s t, and use (2.11)-(2.14) to 
obtain 

}~p(s~)~c(s')-[1 ~(sl)] w(s~)l(s')} =p(so)[Rk(so)k ~ +Rb(so)b ~]. (2.15) 
t , s  t 
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Using (2.9) and (2.10) and noting that interiority follows from the Inada conditions, 
we can rewrite Equation (2.15) as 

V~(s ')  [ G . ( s ' )  c(s ~) + Ut(s') l ( s ' ) ]  = G ( s 0 )  [R~(s0) k ~ + Rb(s0) b l ] .  
t,s t 

(2.16) 
Thus (2.7) and (2.8) are necessary conditions that any competitive equilibrium must 
satisfy. 

Next, suppose that we are given allocations and period-0 policies that satisfy (2.7) 
and (2.8). We construct the competitive equilibrium as follows. First, note that for 
an allocation to be part of  a competitive equilibrium, it must satisfy conditions (2.3) 
and (2.9)-(2.14). Multiplying (2.3) by p(s  t) and summing over all periods and states 
following s" and using (2.9)-(2.14), we get 

t=~+l s, V~(s~) 
(2.17) 

Thus any competitive equilibrium debt allocation must satisfy (2.17), and hence (2.17) 
defines the unique debt allocations given consumption, labor, and capital allocations. 
The wage rate and the rental rate on capital are determined by (2.4) and (2.5) from 
the capital and labor allocations. The labor tax rate is determined from (2.5), (2.9), 
and (2.10) and is given by 

V~(s9 
[1 - "v(s~)]/~)(s~). (2.18) 

We can use Equations (2.3), (2.9), (2.11), and (2.12) to construct the capital tax rate 
and the return on debt. From these conditions, it is clear that given the allocations, the 
tax rate on capital and the return on debt satisfy 

~(s t )  Uc(s t) = ~ [3~(st÷l) Uc(st÷l) Rk(gtl 1), ( 2 . 1 9 )  

sttllst 

t F 1 t+l t+l #(s t) U~(s t) .... ~ fitt(s ) U~.(s )Rb(S ), (2.20) 
s/+1 ]s t 

c(s '+~) + k(s "~1) + b(s '~1) 
(2.21) 

= [1 - r ( s '+ l ) ]  w(s '+1) l(s ~+~) +/~(s ~+j)/c(s ')  + gb(s  '+1) O(s'),  

where Rl,(s ~+~) - 1 + [1 - O(st~l)][r(s t+l) - 6]. It turns out that these conditions do 
not uniquely determine the tax rate on capital and the return on debt. To see this, 
suppose that st+l can take on one of  N values. Then counting equations and unknowns 
in Equations (2.19)-(2.21) gives N + 2 equations and 2N unknowns in each period and 
state. Actually, however, there is one linear dependency across these equations. To see 
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this, multiply (2.21) by [3#(s t*l) Uc(s ~+1) and sum across states in period t + 1. Use 
(2.17), (2.19), and (2.20) to obtain an equation that does not depend on Rb and 0. 
Since we can replace any of the N equations from (2.21) with this equation, there are 
only N + 1 equations left to determine Rb and 0. Thus there are N - 1 degrees of 
indeterminacy in setting the tax rate on capital and determining the return on debt. 
One particular set of policies supporting a competitive equilibrium has the capital tax 
rate not contingent on the current state. That is, suppose for each s ~, 

0(st,&+l) = 0(s l) for all st+~. (2.22) 

We can then use (2.19) to define O(s t) and use the period-t + 1 version of (2.21) 
to define Rb(st+l), It is straightforward to check that the constructed return on debt 
satisfies (2.20). Another set of policies supporting the same competitive equilibrium 
has the return on debt not contingent on the current state. [For details, see Chari et 
al. (1994), and for a more general discussion of this kind of indeterminacy, see Bohn 
(1994).] [] 

If the competitive equilibrium associated with each policy is unique, clearly the 
Ramsey equilibrium is also unique. If there are multiple competitive equilibria 
associated with some policies, our definition of a Ramsey equilibrium requires 
that a selection be made from the set of competitive equilibria. We focus on the 
Ramsey equilibrium that yields the highest utility for the government. Given our 
characterization of a competitive equilibrium, the characterization of this Ramsey 
equilibrium is immediate. We have 

Proposition 6. The allocations in a Ramsey equilibrium solve the Jbllowing 
programming problem." 

max ~_~ Z f3' #(s t) U(c(s t), l(sr )) (2.23) 
S t t 

subject to (2.7) and (2.8). 

For convenience, write the Ramsey allocation problem in Lagrangian form: 

max ~_~[3tl~(st) { W(c(s ') , l(s ') ,)~)-  XU~.(so)[Rk(so)k_~ + Rb(so)b-~]} (2.24) 
t ~ S  t 

subject to (2.7). The function W simply incorporates the implementability constraint 
into the maximand and is given by 

W(c(s'), l(st), J.) - U(c(s'), l(s')) + • [U~(s t) c(s') + Ul(s') l(s ' )] ,  (2.25) 

where 3. is the Lagrange multiplier on the implementability constraint, (2.8). ]'he first- 
order conditions for this problem imply that, for t ) 1, 

Wz(s') Fl(st) (2.26) 
We(s9 
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and 

Wc(st)=Zfilz(s~+l Is*)W~(s t+l) [1 -6+Fk(s t+ l ) ]  for t = 0 , 1 , 2  . . . . .  
S t+l 

(2.27) 
A property of the Ramsey allocations which is useful in our analysis of the cyclical 

properties of optimal fiscal policy is the following. I f  the stochastic process on s follows 
a Markov process, then from Equations (2.26) and (2.27) it is clear that the allocations 
from period 1 onward can be described by time-invariant allocation rules c(k, s; ~), 
l(k,s; )0, k'(k,s; )0, and b(k, s; 3.). The period-0 first-order conditions include terms 
related to the initial stocks of capital and debt and are therefore different from the 
other first-order conditions. The period-0 allocation rules are thus different from the 
stationary allocation rules, which govern behavior from period 1 onward. 

Thus far, we have considered a tax system with capital income taxes and labor 
income taxes. A wide variety of  other tax systems lead to the same Ramsey 
allocation problem. For example, consider a tax system that includes consumption 
taxes, denoted r~(st), as well as labor and capital income taxes. For such a system, 
the implementability constraint is given by 

-- go(s°) [Rk(So)k-i +Rb(S0) b-l] ~ [ 3 ~ ( s  t) [Uc(s ~) c(s t) + Ul(s')/(st)] (1 + v~0) 
[ , S  t 

(2.28) 
where Re(so) = 1 + [1 - O(so)][Fk(so) - 6] and r~0 is the tax rate on consumption in 
period 0. The first-order conditions of  the competitive equilibrium with such a tax 
system are given by 

c / ~ ( s ' )  _ I T ( s ' )  , ~  , .  

Uc(st) ~ + ~ r l t s  ) (2.29) 

and 

Uc(sf) -- Uc(st+l) Rk(sZ+l), (2.30) 
l+r,:(s t) ~-~ /3/~(s " l  I St)l + ~(st+,) 

S I+l ]S t 

where Rg(s t+l) - 1 + [1 - O(st+l)][Fk(s t'l) - 6]. Inspection of these first-order 
conditions shows that if an allocation satisfies the implementability constraint (2.28) 
and the resource constraint (2.1), it can be decentralized as a competitive equilibrium 
under a variety of tax systems. Examples of  such tax systems include those with only 
consumption taxes and labor income taxes and those with only consumption taxes and 
capital income taxes. More complicated examples include those in which tax rates on 
capital and labor income are required to be the same, but are allowed to be different 
from tax rates on consumption. The message of this analysis is that optimal tax theory 
implies optimal wedges between marginal rates of  substitution and marginal rates of  
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transformation and is typically silent on the detailed taxes used to implement these 
wedges. 

Recall that with a capital and labor income tax system, we ruled out lump-sum taxes 
by imposing a constraint on period-0 capital income taxes. In a consumption and labor 
tax system, an analogous constraint is necessary. Notice that if  consumption taxes are 
constant so that Tc(s t) = re0 for all s t and that if labor is subsidized appropriately so that 
r (s  t) = -re0, then (2.29) and (2.30) become the undistorted first-order conditions. By 
setting r~0 arbitrarily high, it is possible to satisfy (2.28) at the lump-sum tax allocations 
and thus to achieve the undistorted optimum. One way to rule this out is to impose 
an upper bound on T~.0. (There seems to be some confusion about this point in the 
literature.) 

2.2. Cap i ta l  i ncome  taxat ion  

2.2.1. In  a s t eady  s ta te  

Here we develop the results on the optimality of  zero capital income taxes in a steady 
state, and we consider various generalizations and qualifications for that result. 

For simplicity, we consider a nonstochastic version o f  the model in which the 
stochastic shock in the production function is constant and government consumption 
is also constant, so g ( s  t) = g.  Suppose that under the Ramsey plan, the allocations 
converge to a steady state. In such a steady state, We. is constant. Thus, from 
Equation (2.27), 

1 =/3(1  - 6 + Fk). (2.31) 

The consumer's intertemporal first-order condition (2.19) in a steady state reduces to 

1 =/311 + (1 - O)(Fk - 6)]. (2.32) 

Comparing (2.31) and (2.32), we can see that in a steady state, the optimal tax rate 
on capital income, 0, is zero. This result is due to Chamley (1980, 1986). 

A natural conjecture is that with heterogeneous consumers, a nonzero tax on capital 
income is optimal to redistribute income from one type of  consumer to another. We 
examine this conjecture in an economy with two types o f  consumers, indexed i = 1,2, 
whose preferences are given by 

O G  

V "  [ j tUi(  c. lit), (2.33) 
t - O  

where cit and [it denote the consumption and labor supply o f  a consumer o f  type i. 
Notice that the discount factors are assumed to be the same for both types of  
consumers. The resource constraint for this economy is given by 

c~t + c2t + g + kt~ l = F(k t ,  11~, lzt) + (1 - 6)  kt, (2.34) 

where the production function F has constant returns to scale. Notice that the 
production function allows for imperfect substitutability between the two types o f  labor 



1694 V.V. Chari and P.J. Kehoe 

and capital. For this economy, the implementability constraints for the two types of  
consumers i = 1,2 are given by 

Z fit (V~tci t + U/,lit) = Uico (Rkok' o + Rbobio), (2.35) 
t 

where k~ and bi~ denote the initial ownership o f  capital and debt by consumers o f  
type i 1. I f  the tax system allows tax rates on capital income and labor income 
to differ across consumer types, then it is straightforward to establish that the 
resource constraint and the two implementability constraints completely characterize 
a competitive equilibrium. 

For the Ramsey equilibrium, we suppose that the government maximizes a weighted 
sum of  consumers' utilities of  the form 

oo o(3 

t 1 Z / 3  U (cat, 12t), (2.36) 601 ~-~fi  U (Clt, llt)+co2 t 2 
t 0 t O  

where the welfare weights coi C [0, 1] satisfy cot + (92 = 1. The Ramsey problem 
is to maximize Equation (2.36) subject to the resource constraint (2.34) and the 
implementability constraints (2.35). Let us define 

W(c, t ,  c2f, ILt, 12t, )~1, ;-2) = ~ [coiUi(ci,, li,) + ,~i(U{,cit + U];l,,) 1 (2.37) 
i - 1 , 2  

for t ~> 1; and for t = 0, W equals the right-hand side o f  Equation (2.37) evaluated 
at t 0 minus i i i = ~ ~ U~o(Rkok ~ + Rbobo). Here 3,i is the Lagrange multiplier on the 
implementability constraint for the consumer o f  type i. The Ramsey problem is, then, 
to maximize 

O(3 

~_~ fit W(CII, CZt, 11;, lat, "~'1, /~2) 

t-O 

subject to the resource constraint (2.34). The first-order conditions for this problem 
imply that 

W~f- - f iW~.~+l (1-6+Fkt~ l )  for i = 1 , 2  and t = 0 , 1 , 2  . . . . .  (2.38) 

In a steady state, W ,  is a constant, and thus 

1 = [3(1 - 6 + F~), (2.39) 

which as before implies that the steady-state tax on capital income is zero. This resait 
is due to Judd (1985). 

I Notice in (2.35) tile initial assets arc denoted k~ and b~, while in (2.8) they are denoted k I and b i. 
Throughout the chapter hi deterministic environments initial assets have a subscript 0, while in stochastic 
environments initial assets have a subscript -1. This unfortunate inconsistency stems from the traditiov, 
of using kt ~ t to denote the capital choise in period t. 
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This result also holds when type-1 consumers are workers who supply labor, cannot 
save or borrow, and hold no initial capital, while type-2 consumers are capitalists who 
own all the capital but supply no labor. Then we replace Equation (2.35) for type-1 
consumers with 

U~tclt + Ul~llt = 0 for all t. (2.40) 

Notice that in the solution to the Ramsey problem, Equation (2.38) continues to hold 
for the capitalists, and thus the steady-state tax on capital income is zero. Notice 
also that this result shows that even if  the Ramsey planner puts zero weight on the 
capitalists, taxing capital in the long run is still not optimal. The reason is that the 
cumulative distortion o f  the capital taxes on intertemporal margins makes even the 
workers prefer the static distortion o f  marginal rates that comes from labor income 
taxes. 

Now suppose that the tax system does not allow tax rates on either capital income 
or labor income to differ across consumer types. These restrictions on the tax system 
imply extra constraints on the allocations that can be achieved in a competitive 
equilibrium. Consider first the restriction that tax rates on capital income do not differ 
across consumers. To derive the restrictions that this adds to the Ramsey problem, 
consider the consumers'  intertemporal first-order conditions, which can be written as 

U~t - f i  [1 + (1 - O t + l ) ( F k t q  1 - 6 ) ] .  ( 2 . 4 1 )  
Uc(t+ 1 

Since the right-hand side of  Equation (2.41) does not vary with i, the restriction 

U]t =-U2'2t (2.42) 

Uct+l 

holds in any competitive equilibrium. Thus Equation (2.42) is an extra restriction that 
must be added to the Ramsey problem. Let/~ denote the Lagrange multiplier on (2.42). 
Defining 

ui + J' 
where xt - ( c m c z t , l l ~ , 1 2 t , Z i , Z 2 ) ,  we can use the same argument as before, with 
V replacing W, to conclude that the steady-state tax on capital income is zero. 

Consider next the restriction that tax rates on labor income do not vary across 
consumers. Consider the consumers' first-order conditions for labor supply, which can 
be written as 

- 1 - T t .  ( 2 . 4 3 )  
Uic t Flit 
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Since the right-hand side of  Equation (2.43) does not vary with i, the restriction 

v, ' ,  _ e , , ,  

Uclt U~t F/2I  
(2.44) 

holds in any competitive equilibrium and thus must be added to the Ramsey problem. 
We proceed as before and, with no confusion, define 

{ U/~ U; 2 Fm ~ (2.45) 

where vt is the Lagrange multiplier on (2.44). A first-order condition lbr the Ramsey 
problem is 

-~V/,+t + V+t, - / 3 G t , + l  [Fk,+~ + (l - O)]. 

In a steady state, this reduces to 

vc! 

Clearly, unless Vk - 0, the steady-state tax on capital income is not zero. Inspection 
of  Equation (2.45) shows that Vk = 0 if  and only if  Filt/F12t does not depend 
on k. Recall that the production function is separable between k and (11,I2) if  
Fm/F12t does not depend on k. Such separable production functions can be written 
in the form F(k, ll,/2) = F(k, H(ll,/2)) for some function H.  [For some related 
discussion, see Stiglitz (1987).] 

This analysis o f  fiscal policy with restrictions suggests that other restrictions on 
tax rates may lead to nonzero taxation of  capital income in a steady state even in 
a representative agent model. Consider an economy with identical consumers, and 
consider another restriction on the tax system, namely, that tax rates are equal for 
all periods. Suppose, for example, that taxes on capital income are restricted to being 
equal for all periods l?om period 1 onward, while labor tax rates are unrestricted. Using 
the consumer's first-order conditions, we see that 

G /  
G,+I 

-- /3 [1 q- (1 --  0 t+ l ) (~ 'k t+ l  - ~ ) ]  (2.46) 

together with the restriction that 0t~ 1 = 01 for all t > 1, implies the following restriction 
across allocations: 

fiU~.f+~ 1 F~-1,t+i~L-~5 - L~-~c i - 1 F~,j--~ for all t > 1. (2.47) 

The appropriate Ramsey problem, then, has constraints o f  the torm (2.47), as well as 
the imptementability constraint and the resource constraint. We leave it to the reader 
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(as a difficult exercise) to show that, under suitable conditions, the optimal tax on 
capital income is positive, even in the steady state. The intuition is that with no such 
restrictions, it is optimal to front-load the capital income taxes by initially making them 
large and positive and eventually setting them to zero. When taxes are constant, it is 
optimal to try to balance these two opposing forces and make them somewhat positive 
tiu'oughout. 

The discussion of  the extra constraints on the Ramsey problem implied by 
restrictions on the tax system suggests the following observation. Zero capital income 
taxation in the steady state is optimal if  the extra constraints do not depend on the 
capital stock and is not optimal if  these constraints depend on the capital stock (and, 
o f  course, are binding). 

Another possible restriction is that there is some upper bound on tax rates. Suppose, 
for example, that capital tax rates are at most  100 percent. Then in addition to satisfying 
the analogs of  conditions (2.7) and (2.8), an allocation must satisl}¢ an extra condition 
to be part o f  a competitive equilibrium. Rewrite the analog of  Equation (2.19) as 

Ucz - - ~ U c t ~ l ( ]  .@ ( l  - Ot.l l )(Fkl+l - c~)). (2.48) 

Then if  an allocation satisfies 

Fk~+~ >~ 6 (2.49) 

and 0t+ 1 ~ 1, Equation (2.48) implies that 

U~ >~ fiU~t+L. (2.50) 

Thus we can simply impose (2.50) as an extra constraint. With this constraint, for 
suitable restrictions on the utility function, the optimal policy is to set the tax rate to its 
upper bound for a finite number of  periods. After that, the tax takes on an intermediate 
value for one period and is zero thereafter. 

2.2.2. In a non-steady state 

in the preceding subsection, we showed that in a variety of  circumstances, in a steady 
state, the optimal tax on capital income is zero. Sometimes one can establish a much 
stronger result, namely, that optimal capital income taxes are close to zero after only 
a few periods. [See Chamley (1986), for example.] In this subsection, we show that 
for a commonly used class of  utility functions, it is not optimal to distort the capital 
accumulation decision in period 1 or thereafter. 

The class of  utility functions we consider are of  ~/he fbrm 

cl-O 
U(c,  l) = l-.S a + V(l). (2.5l) 

One might conjecture that if utility functions of  this fbrm have the property that optimal 
capital income taxes are exactly zero after period 1, then for utility functions that are in 
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some sense close to these, keeping capital income tax rates close to zero after period 1 
is also optimal. 

To motivate our result, we write the consumer's first-order condition for capital as 

qt+ 1 ( 1 -- 6 + F k t  + 1 ) --  1 = q t+ 10t  v 1 (Fk t+  1 --  (~), (2.52) 

where qz+l - flUct+/Uc: is the Arrow-Debreu price of a unit of consumption in 
period t + 1 in units of  consumption in period t. Now, in an undistorted equilibrium, 
the consumer's first-order condition has the same left-hand side as (2.52), but the right- 
hand side equals zero. Thus the right-hand side of  (2.52) measures the size of the wedge 
between the distorted and undistorted first-order conditions for capital accumulation 
in period t. We then have 

Proposition 7. For utility functions o f  the form (2.51), it is not optimal to distort the 
capital accumulation decision at period 1 or thereafter. Namely, the optimal tax rate 
on capital income received in period t is zero for  t ~ 2. Equivalently, 

qt+lOt+l(F~t+l-6) = 0 Jbr all t ~> 1. (2.53) 

Proof: For t >~ 1, the first-order conditions for the Ramsey problem imply that 

Wct+ l . . 
1 = / 3 ~ O  - 6 + Fk~+i), (2.54) 

where W is given in Equation (2.25). For t ~> 1, the consumer's first-order conditions 
for capital imply that 

Uct+l 
1 = / 3 ~  [1 + (1 - O,-,q)(Fk~+l - 6)1. (2.55) 

Now, for any utility function of the tbrm (2.51), we can easily show that 

W.+l Uct+l 
- (2.56) 

We, U. 

Substituting Equation (2.56) into (2.54) and subtracting the resulting equation from 
(2.55) gives the result. E] 

Proposition 7 implies that the tax rate on capital income received in period t is zero 
for t ~> 2 and is typically different from zero in period 1. In period 0, of  course, the 
tax rate is fixed by assumption. 

This result is much stronger than the standard Chamley result, which refers to steady 
states, and the logic behind this result is actually more connected to the uniform tax 
results than to the rest of  the Chamley-type results. To see this, suppose that the tax 
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system allows the government to levy only proportional taxes on consumption and 
labor income. For this tax system, the analog of  the restriction o f  the initial tax on 
capital income is that the initial consumption tax is given. Then with a utility function 
of  the form (2.51), consumption taxes are constant in all periods except period 0. 

In a continuous-time version o f  the deterministic model with instantaneous 
preferences given by Equation (2.51), Chamley (1986) shows that the tax rate on capital 
income is constant for a finite length o f  time and is zero thereafter. The reason for 
Chamley's different result is that he imposes an exogenous upper bound on the tax 
rate on capital income. I f  we impose such an upper bound, the Ramsey problem must 
be amended to include an extra constraint to capture the restrictions imposed by this 
upper bound. (See the example in Subsection 2.2.1.) In the deterministic version of  
the model, with preferences given by Equation (2.51), the tax rate is constant at this 
upper bound for a finite number of  periods, there is one period o f  transition, and the 
tax rate is zero thereafter. 

In the stochastic version of  the model, constraints o f  this kind can also be imposed. 
One can derive an upper bound endogenously. Consider the following scenario. At the 
end of  each period t, consumers can rent capital to firms for use in period t + 1 and 
pay taxes on the rental income from capital in period t + 1. Or consumers can choose 
to hide the capital, say, in their basements. I f  they hide it, the capital depreciates and 
is not available for use in t + 1. Thus, if  they hide it, there is no capital income, and 
consumers pay zero capital taxes. 

2.3. Cycl ical  proper t ies  

2.3.1. D e b t  taxation as a shock  absorber  

In this subsection, we illustrate how state-contingent returns on debt can be used 
as a shock absorber in implementing optimal fiscal policy. One interpretation of  
state-contingent returns on debt is that the government issues debt with a non-state- 
contingent return and uses taxes or partial defaults to make the return state-contingent. 
We show that under reasonable assumptions, during periods o f  high government 
expenditures such as wartime, the government partially defaults on debt, and during 
periods o f  low government expenditures such as peacetime, it does not. Many of  the 
insights here are developed in Lucas and Stokey (1983) and Chaff et al. (1991). 

We illustrate this shock-absorber role in a version o f  our model o f  fiscal policy with 
no capital. Specifically, we assume that F ( k ,  1,z) = zl ,  where z is a technology shock. 
The resource constraint is 

c(s t) + g ( s t )  ~ " z ( s ' )  l ( s ' )  

and the consumer's first-order condition for labor supply is 

ul(st) - I1 r(s')] z (~)  (2.57) 
gc(s t) 
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The first-order condition tbr debt is 

Uc(s t) = ~ [3~(St+l) Vc(st+l)Rb(xt+l)/[A(st). 

st+~ 
(2.58) 

For convenience, let H(s  t) - Uc(s t) c(s ~) + Ul(s t) l(st). Notice that the resource con- 
straint and the consumer's first-order condition imply H(s  t) = Uc(st)[v(st)z(s  t) l(s t) - 
g(st)].  Thus H(s  t) is the value of  the (primary) government surplus at s t in units o f  
current marginal utility. The implementability constraint reduces to 

~_~ f ig ( s t )  H(s t )  = U~(so) R0 b t. (2.59) 
t,S t 

Expression (2.17) reduces to 

t = r + l  s t 

(2.60) 

Now imagine that the government promises a non-state-contingent (gross) rate of  
return on government debt R(s t 1) and then levies a state-contingent tax v(s t) on the 
gross return on government debt. That is, R and v satisfy 

Rh(s ~) = [1 - V(s~)]/~(s~<). 

Consider next determining the tax rate and the return on debt. The after-tax return on 
debt [1 - v(sr)] R(s r-l)  in some period r and state s" is obtained as follows. Multiplying 
the consumer budget constraint by fit p(s ~) U~:(s t) and summing from period r and over 
all periods and states from period r + 1 onward, we obtain the familiar requirement 
that the value of  the government's after-tax debt obligation must equal the expecteC 
present value of  government surpluses: 

t = r + l  ,v t 

(2.61) 
While the after-tax returns are determined by Equation (2.61), the gross returns and file 
tax rates on debt are not separately determined. The reason is that both consumers and 
the govermnent care only about the after-tax return on debt. Obviously, there are many 
ways of  combining (before-tax) gross returns and tax rates to give the same after-tax 
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returns. More formally, if  v and R support a particular set o f  Ramsey allocations, so 
do any v and R' that satisfy 

[1 - v(s~)]R'(s  ~ 1) : [1 - v(s")]R(s  r 1) for all r and s '~. (2.62) 

We resolve this indeterminacy by normalizing gross returns R to satisfy 

k(s' 1)= ~(st+L) U~(s'-l) 
(2.63) 

where s t - (s t-l ,  st). Notice that the normalization in Equation (2.63), together with 
(2.62), implies that tax rates on debt satisfy 

#(s  t [ s I L) U,.(Sl)V(S t) 0 for all t a n d s  t 1 (2.64) 
S t 

where/~(s t [ s t 1) = l~(st+l)/t~(st). 
Next, we derive the first-order conditions fbr the Ramsey problem. Let 3. denote the 

Lagrange multiplier on the implementability constraint. The first-order conditions for 
t ~> 1 imply that 

z(s t) u, .(s ')  + U;(s ' )  + Z [z(s ' )H~(s ' )  + H;(s ' )]  = 0, (2.65) 

where H,.(s t) and Hl(s  t) denote the derivatives o f  H( s t ) .  For t - 0, the first-order 
condition is the same as (2.65), except that the right-hand side is replaced by 

,~ [z(so) G c ( s o ) +  Gl(so)]  [1 - V(So)] R_lb_l. 

These first-order conditions can be used to prove the following proposition: 

Proposi t ion 8. For t >~ 1, there exist  .functions ~, 7, and  ~ such that the Ramsey  
consumpt ion allocations, labor allocations, and labor tax rates can be written as 

c ( s ' )  ' C'(gt,zD, l (s ' )  = 7(g,z,),  c(s ' )  = ~(gt,z,) .  

Moreover, i f  b ~ = O, then c(so), l(so), and  ~C(so) are given by these same funct ions.  

Proof:  For t /> 1, substituting from the resource constraint for l(s t) into (2.65) 
gives one equation o f  the form F ( c , g , z ; ) O  = 0. Solving this gives the Ramsey 
consumption allocation as a function o f  the current levels o f  government consumption, 
the technology shock, and the multiplier. From the resource constraint and from 
Equation (2.57), we know that the labor allocation and the labor tax rate are a function 
of  these same variables. For t = 0, the same procedure gives allocations and the labor 
tax rate in period 0 as a function of  go, z0, and 5~. We can solve for )~ by substituting 
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the allocations into the implementability constraint (2.59). Clearly, for b-1 = 0, the 
first-order conditions for t = 0 are the same as the first-order conditions for t ~> 1. [] 

Proposition 8 says that the allocations and the labor tax rate depend only on 
the current realizations of  the shocks and not separately on the entire history 
o f  realizations. This proposition implies that labor tax rates inherit the stochastic 
properties of  the underlying shocks. For example, if  government consumption is i.i.d. 
and the technology shock is constant, then tax rates are i.i.d. (This result does not hold 
in general with capital.) 

I f  government consumption is persistent, then so are the tax rates. This result of  
standard neoclassical theory sharply contrasts with claims in the literature that optimal 
taxation requires labor tax rates to follow a random walk. [See Barro (1979), Mankiw 
(1987), and our discussion in the following subsection, 2.3.2.] 

To understand the nature of  the Ramsey outcomes, we consider several examples. 
In all o f  them, we let technology shocks be constant, so z(st) = 1 for all s t. We begin 
with a deterministic example that illustrates how Ramsey policies smooth distortions 
over time. 

Example  1. Consider an economy that alternates between wartime and peacetime. 
Specifically, let gt = G for t even and gt = 0 for t odd. Let the initial indebtedness 
R l b 1 = 0. We will show that the government runs a deficit in wartime and then 
pays off  the debt in the ensuing peacetime. Consider the first-order condition for the 
Ramsey problem in peacetime. Using the resource constraint, we have that 

(1 + )L)[U,.(O) + Ul(O)] + ,~c[U~.,..(O) + 2 U~.I(O) + Ua(O)] - 0, 

where the partial derivatives are evaluated at gr = 0. By strict concavity, the second 
bracketed term is negative. Since the multiplier ~ is positive, the first term is positive. 
From Equation (2.57), we have that U~. + Uz -- rUc. Thus r(0) > 0. When we use 
Proposition 8, Equation (2.59) implies that H ( G )  +/3H(0) = 0, which can be rewrittetJ 
a s  

Uc( G)[ T( G) l(g ) - G] + [3 U,,( O )['~( O ) l(O)] - O. 

That is, the discoumed value of  the government surplus is zero over the two-period 
cycle o f  government consumption. Since the government runs a surplus in peacetime, 
it must run a deficit in wartime. Here the government sells debt b(G) - G -- r(G) l (G) 
in wartime and retires debt in the next peacetime. The gross return on the debt from 
wartime to peacetime is R(G)  = Uc(G)/[3U~(O), and with our normalization, the tax 
rate on debt is always zero. 

Example  2. Consider an economy that has recurrent wars with long periods of  peace 
in between. Specifically let gt = G for t = 0, T, 2T, . . . ,  and let gt - 0 otherwise. Let 
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the initial indebtedness R-lb-x = 0 .  Again, by Proposition 8, the budget is balanced 
over each T-period cycle, that is, 

G ( G ) [ T ( G )  l(G) - G] + fiU~(O)[v(O) l(O)] + . . .  +/3 ~ 1U~(O)[r(O) l(O)] = O. 

Here, as in Example 1, the government runs a deficit in wartime and a constant surplus 
in peacetime. The war debt is slowly retired during the following T - 1 periods of  
peace. The government enters the next wartime with zero debt and restarts the cycle. 
Specifically, the government issues debt o f  level G - v(G) l(G) in wartime. In the first 
period of  peacetime, the government sells 

G(G) 
fiu.(o) - - -  [G r (G)  I(G)] . -  r(0) l(0) 

units o f  debt. In the second period, it sells 

fi2 Uc(O) 
G(G)_ [G - ¢(G) I(G)]- -rS-°~l--(-°) r(0), l(0), 

and so on. Clearly, the debt is decreasing during peacetime. 

Example  3. Here we will illustrate the shock-absorbing nature of  optimal debt 
taxes. Let government spending follow a two-state Markov process with a symmetric 
transition matrix with positive persistence. The two states are g: = G and gt = 0. Let 

1 J r = P r o b { g t ~ l = G I g , - G } = P r o b { g , + l = 0 1 g :  0} > 3 

Therefbre, the probability of  staying at the same state is greater than the probability 
of  switching states. Let go =- G, and let the initial indebtedness R 1 b 1 be positive. 

The government's period t budget constraint is 

b(s t) = [1 - v(st)] R(s t-l) b(s: 1) + g ( s ' ) -  T(s') l(s'). (2.66) 

From Proposition 8, the allocations and the labor tax rates depend only on the current 
realization gt for t ~> 1. Under the Markov assumption, Equations (2.60) and (2.63) 
imply that the end-of-period debt b(s t) and the interest rate R(s t) depend only on the 
current realization gt. From Equation (2.66), we know that the tax rate on debt depends 
on the current and the previous realizations. Let b(g:), R(g:), and v(g~-i ,g~) denote the 
end-of-period debt, the gross interest rate, and the tax rate on debt, For a large class 
of  economies, we can prove the following proposition: 

Proposi t ion 9. Suppose that in the solution to the Ramsey problem, t t (0)  > H(G) > O; 
that is, the value o f  government surpluses is larger in peacetime than in wartime, the 
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government's debt is always positive, the marginal utility o f  consumption is greater in 
wartime U~(G) than in peacetime Uc(O), and both b(G) and b(O) are positive. Then 

v(0, G) > v(G, G) > 0 > v(O, 0) > v(G, 0). (2.67) 

That is, the debt tax rates' are most extreme in periods of' transition: they are highest 
in transitions from peacetime to wartime and lowest in transitions from wartime to 
peacetime. Furthermore, debt is taxed in wartime and subsidized in peacetime. 

R e m a r k :  It is possible to show that the assumptions in this proposition are satisfied 
for a large class of  economies if  the initial debt is sufficiently large. 

Proof: Let V(G) and V(0) denote the expected present value of  govermnent surpluses 
when the economy is in state G and state 0, respectively. These surpluses are given by 
the left-hand side of  Equation (2.61) multiplied by the marginal utility of  consumption 
in that state, which can be written recursively as 

V(G) = H(G) + fi[jr V(G) + (1 - Jr) V(0)], (2.68) 

V(0) = H(0)  +/3[¢cV(0) + (1 - Jr) V(G)]. (2.69) 

Solving these, we obtain 

fi(1 Jr)H(O)+(I- /3Jr)H(G) 
V(G) - ~ (2.70) 

D 
/3(1 - ¢v)H(G) + (1 - /3 j r )H(O)  

V(0) = , (2.71) 
D 

where D = (1 -/3go) 2 -/32(1 - J r )2  > 0. From Equation (2.60), we obtain 

/3[:rV(G) + (1 - Jr) V(0)] 
b(G) = , (2.72) 

U~.(G) 

/3[jrV(O) + (1 s D V(G)] 
b(0) = , (2.73) 

uc(0) 

and from Equation (2.63), we obtain 

g c ( c )  
R(G) . . . . . . . . . . . . . . . . . . .  , 

/3[~Uc(G) + (1 - :r) Uc(O)] ~ 
uc(o) 

R(0) =/3[jrUe(0) + (1 --Jr) U~.(G)]" 

Combining these, we obtain expressions for the befbre-tax 
government: 

JrV(G) + (1 - aT) V(0) 
R(G) b(G) = JrUc(G) + (1 - :v) Uc(O)' (2.*76) 

Jr V(0) + (1 - Jr) V(G) 
R(O) b(O) -- ( 2 . / 7 )  

Jr U~:(0) + (1 -- Jr) Uc(G) 

(2.74) 

(2.75) 

obligations of  the 
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Since H(G) < H(0), Equations (2.70) and (2.71) imply that V(G) < V(0). Using this 
result, :w > ½, and U~(0) < U~(G), we can see that Equations (2.76) and (2.77) imply 
that 

R(G) b(G) < R(O) b(O). (2.78) 

We can rewrite Equation (2.61) as 

V(&) 
[1 - v(gt-a,gt)] R(&-I) b(&-l) - Uc(gt)" (2.79) 

The right-hand side of  Equation (2.79) depends only on the cm'rent state; thus (2.78) 
implies that v(0, G) > v(G, G) and v(0, 0) > v(G, 0). To establish Equation (2.67), we 
need only show that v(G, G) > 0 > v(0, 0). But this follows from (2.64) and (2.'79), 
using V(G) < V(0) and Uc(0) < Uc(G). [] 

The intuition for these results is as follows. The Ramsey policy smooths labor tax 
rates across states. This smoothing implies that the government runs a smaller surplus 
in wartime than in peacetime. With persistence in the shocks, the expected present 
value of surpluses starting from tile next period is smaller if  the economy is currently 
in wartime than if it is in peacetime. The end-of-period debt is, of course, just the 
expected present value of these surpluses. [See Equation (2.60).] Thus the end-of'- 
period debt is smaller if  tile economy is in wartime than if it is in peacetime, so 
D(G) < b(O). 

As was shown in (2.78), R(G)b(G) < R(O)b(O). Thai is, the obligations of  the 
government if  there was war in the preceding period are smaller than if there was 
peace. Suppose the economy is currently in wartime, so gt = G. The current deficit 
and end-of-period debt are the same regardless of  the history. Thus, if the inherited debt 
obligations are larger, the only way to meet the government budget constraint is to tax 
debt at a higher rate. So a transition from peacetime to wartime results in higher debt 
taxes than does a continuation of wartime. Similar intuition applies for the comparisons 
of transitions from wartime to peacetime with continuations of peacetime. 

2.3.2. Tax-smoothing and incomplete markets 

Here we develop Barro's (1979) result on tax-smoothing and compare it to the work 
of Marcet et al. (1996) on optimal taxation with incomplete markets. In a well- 
known paper, Barro (1979) analyzes a reduced-form model of  optimal taxation. It- 
his theoretical development, there is no uncertainty and the government chooses a 
sequence of tax rates ~t on income to maximize 

t=Z-~o (1 + r )"  
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where Yt is income in period t and r is an exogenously given interest rate, subject to 
budget constraints of the form 

bt = (1 + r ) b t  I + g t  - "6Yt, 

where g~ is government spending, b-t is given, and an appropriate boundedness 
condition on debt is imposed. These constraints are equivalent to the present value 
budget constraint 

Z "rty: _ g t 
t=0 (1 +r)t l=0 ( l + r ) t  + b °  

(2.80) 

Barro shows that in this deterministic setup, optimal tax rates are constant. 
Barro goes on to assert that the analog of this result with uncertainty is that optimal 

taxes are a random walk. In an environment with uncertainty, the properties of optimal 
policy depend on the structure of asset markets. I f  asset markets are complete, the 
analogous present value budget constraint is 

r(sgy(s')  g(s') 
1 + . ( s , )  - i-+ r( -Z +b° 

t~S t l , s  t 

With this asset structure, optimal tax rates are clearly constant across both time 
and states of nature. If  asset markets are incomplete, then the analysis is much 
more complicated and depends on precise details of the incompleteness. Suppose, for 
example, that the only asset available to the government is non-state-contingent debt. 
The sequence of budget constraints for the government can be written as 

b(s') = (l + ,)  b(s '  t) + g(s ~) _ r(~)y(s,)  

together with appropriate boundedness conditions on debt. Substituting the first-order 
conditions to the government's problem into the budget constraints and doing some 
manipulations yields 

U r ( s I ) y ( s  t) T ( S t ) y ( s t ) ]  
~ [ 3 '  '~(~' t s )  .... (1 +~)b(:  ~). (2.82) 

U~(s")y(s9 f - -F  S t 

The restriction that debt is not state-contingent is equivalent to the requirement that 
the left-hand side of Equation (2.82) is the same for any two states in period r in the 
sense that for all s r l, 

u~(s~) y( s' ) [g(s~) - ~(s')y(~')l 
U~(s")y(s") 

t--r S t 
(2.83) 

U~(s')y(s') [g(,,) r ( s t ) y ( s t ) j  

I = r ~'/ F /  > s' Ur ( s  ) y ( s  ) 

where s ~ = (s: ~ ,s . )  and s"' - (s" 1,s~,) tbr all s , . , s . , .  Analyzing an economy with 
incomplete markets requires imposing, in addition to (2.81), an infinite number of 
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constraints o f  the form (2.83). This problem has not yet been solved. An open question 
is whether optimal tax rates in such an environment follow a random walk. 

In our general equilibrium setup, restrictions on government policy also impose 
extra constraints. Suppose that neither capital tax rates nor the return on debt can be 
made state-contingent. Then the additional restrictions that the allocation must satisfy 
so that we can construct a competitive equilibrium are given as follows. Substituting 
Equations (2.17) and (2.18) into the consumer's budget constraint yields, after some 
simplification, 

t = v  x r  

- {1 + [1 - O(s ~ l)][Fl~(s")- c5]} k(s  '-1) :Ro(s r l )b(s '  1), 
(2.84) 

where 0(s r 1) satisfies 

S r 

(2.85) 

The requirement that the debt be non-state-contingent is, then, simply the requirement 
that the left-hand side of  Equation (2.84) with O(s ~ -l) substituted from (2.85) be the 
same for all st. Furthermore, we need to impose bounds on the absolute value of  the 
debt to ensure that the problem is well posed. We then have that i f  an allocation satisfies 
these requirements, together with the resource constraint (2.7) and the implementability 
constraint (2.8), a competitive equilibrium can be constructed which satisfies the 
restriction that neither the capital tax rate nor the return on debt be state-contingent. 
Clearly, computing equilibria with non-state-contingent capital taxes and return on debt 
is a difficult exercise. 

Marcet et al. (1996) analyze an economy with incomplete markets but without 
capital. When government consumption is serially uncorrelated,, they find that the 
persistence properties of  tax rates are a weighted average of  a random walk and 
a serially uncorrelated process. They also find that the allocations are close to the 
complete markets allocations. They argue that their results partially affirm Barro's 
(1979) assertion. 

In Section 3, we consider a model in which debt is nominal and non-state-contingent. 
There we show that inflation can be used to make the real returns state.-contingent 
and that the Ramsey allocations are identical to those in an economy with real state- 
contingent debt. This result is reminiscent of  our result that even if debt returns are 
not state-contingent, as long as capital tax rates are state-contingent, the Ramsey 
allocations are identical to those in an economy in which all instruments are state- 
contingent. This feature suggests that for actual economies, judging the extent of  
market incompleteness can be tricky. 
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2.3.3. A quant i ta t ive  il lustration 

Here we consider a standard real business cycle model and use it to develop the 
quantitative features of  optimal fiscal policy. We follow the development in Chari et 
al. (1994). In quantitative stochastic growth models, preferences are usually specified 
to be of  the form 

e l ( c ,  l )  - 
[c 1 ~(L - l )y]v '  

~p 

where L is the endowment of labor. This class of  preferences has been widely used 
in the literature [Kydland and Prescott (1982), Christiano and Eichenbaum (1992), 
Backus et al. (1992)]. The production technology is usually given by 

F ( k ,  l , z ,  t) = UZ(ePt+~l) 1 a. 

Notice that the production technology has two kinds of labor-augmenting technological 
change. The variable p captures deterministic growth in this change. The variable z 
is a technology shock that follows a symmetric two-state Markov chain with states zt 
and zh and transition probabilities Prob(zt~l = zi I zt = zi) = ~ for i = l, h. Government 
consumption is given by gt = ge  pt, where again p is the deterministic growth rate 
and g follows a symmetric two-state Markov chain with states gf and gh and transition 
probabilities Prob(gt+t = gi i gt = gi)  = ~ for i = l ,h.  Notice that without shocks 
to technology or government consumption, the economy has a balanced growth path 
along which private consumption, capital, and government consumption grow at rate p 
and labor is constant. Zhu (1992) shows that in economies of  this form, setting capital 
income tax rates to be identically zero is not optimal. We ask whether capital tax rates 
are quantitatively quite different from zero. 

Recall from the proof of  Proposition 5 that certain policies are uniquely determined 
by the theory, while others are not. Specifically, the labor tax rate is determined, while 
the state-by-state capital tax rate and return on debt are not. From Equation (2.19), 
however, we know that the value of revenues fi'om capital income taxation in 
period t + 1 in terms of the period-t good is uniquely determined. To turn this variabie 
into a tax rate, consider the ratio of the value of these revenues to the value of capital 
income, namely; 

O~(s ,) = ) 2  q(s~' t)  O ( s ~ l ) [ F / , ( s ~ )  6] 
q(s'+l)[Fk(s t+l) - 6] ~ ( 2 . 8 6 )  

where q(s t*l ) = [3[.1(s tt i ] s t) U~.(st~l)/Uc(s i) is the price of a unit of consumption at 
state s t+l in units of consumption at s t. We refer to Oe(s ~) as the ex ante  tax rate on 
capital income. 
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Table 1 
Parameter values for two models" 
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Model Parameters and values 

Baseline model 

Preferences y - 0.80 

Technology a = 0.34 

Markov chains for 

Gover,tment consumption 

Technology shock 

High risk aversion model 

Preferences q~ = -8 

~p - 0 fi - 0.97 

6 = 0.08 p = 0.016 

g/= 350 gh-  402 ¢ = 0.95 

z l - 0.04 z h = 0.04 ~ = 0.91 

L = 5475 

a Source: Chari et al. (1994). 

Next, in defining the last variable that is uniquely determined by the theory, it 
is useful to proceed as follows. Imagine that the government promises a non-state- 
contingent rate of return on government debt ?(s t ~) and levies a state-contingent tax 
v(s ~) on interest payments from government debt. That is, ? and v satisfy 

Rh(s t) = 1 + ?(s ~ L)[1 - v(st)], (2.87) 

and ~ q(s t ) v ( s  t) = 0, where q(s t) is the price of a unit of consumption at state s ¢ in 
units of  consumption at state s t-l. Thus ?(s t 1 )  is the equilibrium rate of return on a unit 
purchased in period t - 1 at s t 1, which yields a non-state-contingent return ?(s t` l )  at all 
states s t. It is clear from (2.21) that the theory pins down Rl,(s t) k (s  f 1) ~ Rb(S t) b(s t 1). 
Given our definition of v, it is also clear that the theory pins down the sum of the tax 
revenues from capital income and the interest on debt, which is given by 

O(s t) [Ft(s t) - 6]/~(s ~ 1)+ v ( s ' )~ ( s '  ' )b (s ' - l ) .  (2.88) 

We transform these revenues into a rate by dividing by the income from capital and 

debt to obtain the tax rate on private  assets, given by 

rl(st)= O(s')[l~'k(st) 6]k(st ~)+ v(st)~(s t L)b(s' ~) 
[Fk(s t) - 6] k(s  t 1) + ?(s t l )b(s ,  1) 

(2.89) 

We consider two parametrizations of this model. (See Table 1.) Our baseline model 
has ~p = 0 and thus has logarithmic preferences. Our high risk aversion model has 
~p = -8 .  The remaining parameters of preferences and the parameters tbr technology 
are those used by Chari et al. (1994). We choose the three parameters of the Markov 
chain for government consumption to match three statistics of the postwar US data: 
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Table 2 
Properties of the fiscal policy models a 

ggChari  and RJKehoe  

Income tax rates Percentage in models 

Baseline High risk aversion 

Labor 

Mean 23.87 20.69 

Standard deviation 0.10 0.04 

Autocorrelation 0.80 0.85 

Capital 

Mean 0.00 0.06 

Standard deviation 0.00 4.06 

Autocorrelation 0.83 

Private assets 

Mean 1.10 0.88 

Standard deviation 53.86 78.56 

Autocorrelation -0.01 0.02 

a All statistics are based on 400 simulated observations. The means and standard deviations are in 
percentage terms. For the US economy, the tax rates are constructed as described by Chari et al. (1994). 
For the baseline model, the capital tax rate is zero; thus, its autocorrelation is not defined. 

the average value of the ratio of government consumption to output, the variance of 
the detrended log of government consumption, and the serial autocorrelation of the 
detrended log of government consumption. We construct the Markov chain tbr the 
technology parameters by setting the mean of the technology shock equal to zero, 
and we use Prescott's (1986) statistics on the variance and serial correlation of the 

technology shock to determine the other two parameters. 
For each setting of the parameter values, we simulate the Ramsey equilibrium for our 

economy, starting from the steady state of the deterministic versions of our models. 
In Table 2, we report some of the resulting properties of the fiscal variables in our 

models. 
In the baseline model, the tax rate on labor income fluctuates very little. For example, 

i f  the labor tax rate were approximately normally distributed, then 95 percent of the 
time, the tax rate would fluctuate between 23.67 percent and 24.07 percent. The tax on 
capital income is zero. This is to be expected because with ~p = 0, the utility function 
is separable between consumption and leisure and is homothetic in consumption, and 
the utility function thus satisfies the conditions discussed in Subsection 2.2.2. In the 
baseline model, the tax on private assets has a large standard deviation. Intuitively, we 

know that the tax on private asset income acts as a shock absorber. The optimal tax rate 
on labor does not respond much to shocks to the economy. The government smooths 
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labor tax rates by appropriately adjusting the tax on private assets in response to shocks. 
This variability of the tax on private assets does not distort capital accumulation, 
since what matters for the capital accumulation decision is the ex ante tax rate on 
capital income. This can be seen by manipulating the first-order condition for capital 
accumulation. 

In Table 2, we also report some properties of the fiscal policy variables for the high 
risk aversion model. Here, too, the tax rate on labor income fluctuates very little. The 
tax rate on capital income has a mean o f -0 .06  percent and a standard deviation of 
4.06 percent so that the tax rate is close to zero. We find this feature interesting because 
it suggests that, for the class of  utility functions commonly used in the literature, not 
taxing capital income is optimal. Here, as in the baseline model, we find that the 
standard deviation of the tax rate on the income from private assets is large. 

2.4. Other  environments' 

2.4.1. Endogenous  growth models' 

Thus far, we have considered fiscal policy in models in which the growth rate of the 
economy is exogenously given. We turn now to models in which this growth rate is 
determined by the decisions of  agents. Our discussion is restricted to a version of the 
model described in Lucas (1990). Analysis of optimal policy in this model leads to a 
remarkable result: Along a balanced growth path, all taxes are zero. Bull (1992) and 
Jones et al. (1997) discuss extensions to a larger class of  models. 

Consider a deterministic, infinite-horizon model in which the technology for 
producing goods is given by a constant returns to scale production function F(k l ,  h~lj~), 
where kt denotes the physical capital stock in period t, ht denotes the human capital 
stock in period t, and lli denotes labor input to goods production in period t. Human 
capital investment in period t is given by htG(12t), where 12t denotes labor input into 
human capital accumulation and G is an increasing concave function. The resource 
constraints for this economy are 

and 

ct + g + kt+l = F(k l ,  htllt) + (1 - Ok) kt (2.90) 

hx+L = htG(lzt)  + (1 - 6h) h,~ (2.91) 

where et is private consumption, g is exogenously given government consumption, and 
6/, and Oh are depreciation rates on physical and human capital, respectively. 

The consumer's preferences are given by 

o o  

~ [3' c'] ° v(lt, + let)~(1 - a), 
t - O  

where v is a decreasing convex function. Government consumption is financed by 
proportional taxes on the income from labor and capital in the goods production sector 
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and by debt. Let rt and 0t denote the tax rates on the income from labor and capital. 
Government debt has a one-period maturity. Let bt+l denote the number of  units of  
debt issued in period t and Rbtbt denote the payoff  in period t. The consumer's budget 
constraint is 

ct + k~+j + bt+l ~< (1 - rt) wthtllt + Rekt  + Rbtbt, (2.92) 

w h e r e  Rkt  - 1 + ( 1  - Ot)(r t  - c5) is the gross return on capital after taxes and depreci- 
ation and 1"1 and wt are the before-tax returns on capital and labor. Note that human 
capital accumulation is a nonmarket activity. The consumer's problem is to choose 
sequences of  consumption, labor, physical and human capital, and debt holdings to 
maximize utility subject to (2.91) and (2.92). We assume that consumer debt holdings 
are bounded above and below by some arbitrarily large constants. Competitive pricir~ 
ensures that the returns to factor inputs equal thei,~ marginal pre~ducts, nameIy, tha~ 

rl = f k ( k .  h~l~), (2.93) 

wt = Ft(kt, hfllt). (2,94) 

We let xt = (ct, lit, 12t, kt, kt, bt) denote an allocation for consumers in period t and let 
x = (st) denote an allocation for all t. The government's budget constraint is 

b,+ l = Rbtb~ + g -  rtwthtll~ - Ot(r~ - (3)k, (2.95) 

We let zct = (rt, 0t) denote the goverrmaent policy at period t and let s~ ~- (zc~) denote 
the infinite sequence of  policies. '1"he initial stock of  debt, b 1, and the initial stock of  
capital, k-l ,  are given. A competitive equilibrimn is defined in the usual way. We have 
the following proposition. 

Proposi t ion lO. The consumption allocation, the labor allocation, the physical and 
human capital allocations, the capital tax rate, and the return on debt in period 0 in 
a competitive equilibrium satisfy (2.90), (2.91), and 

O(3 

"~ [3 [ ct Uct = Ao, (2.96) 
t - 0  

where 

A0 -- C:~.0{[I + (1 -00)(~0 - 6)1 l,o +R~0b0} U~o [l~0 + 1 - 6h + (~(l~0)] 
G'(12o) j 

Furthermore, given any allocations and period-O policies' that satisfy (2.90), (2.91Z 
(2.96), and 

Ul, [3U/~.! [3U~z+l ll~+l 
hL G'(12~) - ht+l G'(lzt+l) [ 1 -  C~ h -I- G(12, l )] + ht+~ ' (2.97) 

we can construct policies, prices, and debt holdings whick, together wztk the given 
allocations and period-O policies, constitute a competitive equilibrium. 
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Proof: The procedure we use to derive the implementability constraint is to express 
the consumer budget constraint in period-0 form with the prices substituted out. Recall 
that in the model with exogenous growth, this procedul"e implied that the capital 
stock from period 1 onward did not appear in the implementability constraint. It turns 
out that when human capital is accumulable, human capital does not appear in the 
implementability constraint from period 1 onward either. 

The consumer's first-order conditions imply that 

-[YU1, = )~t(1 - rt)wtht ,  

- i l l  U# -= ~tthtG' (12,), 

-ktt + ktt ~1 [1 - Oh + G(121+l)] + )~t+l (1 t)+O wt+l l l t+ l  - O. 

(2.98) 

(2.99) 

(2.100) 

(2./01) 

Multiplying Equation (2.101) by ht~l, substituting for /tt~ and gt+~ from (2.99) and 
(2.100), and using Equation (2.91), we obtain 

2t(1 ---Tt)wlhl+L '~t+l(1-- Tt+l)w~+lht+2 
- -  + + "~t+l (1  - -  Z)+I ) W t +  1 l t t . l l h t t  1 - O. 

G'(lzt) G'(12,+1) 
(2.102) 

From Equation (2.102) and a standard transversality condition, we know that 

~,o )to(1 - Z'O) Wohl 
Z )~t+l(l - "gt~ i) wt+tllt+lht, 1 = (2.103) 
t = o G'(12o) 

Similarly, we can show that 

~l+lRk,.+l k~+l = 2okt + Z ,~tkt. (2.104) 
t - o  t = l  

Next, we multiply the consumer budget constraint (2.92) by ~.t and sum from period 
0 onward. When we use (2.103) and (2.104), (2.96) follows. To derive (2.97), we 
substitute (2.99) into (2.102). We leave it to the reader to prove the converse. [] 

The Ramsey problem is to maximize consumer utility subject to conditions (2.90), 
(2.91), (2.96), and (2.97). Recall that human capital accumulation occurs outside 
the market and cannot be taxed. In any competitive equilibrium, the Euler equation 
for human capital accumulation is undistorted. Therefore, there is no tax instrument 
that can be used to make the Euler equation for human capital accumulation hold 
for arbitrary allocations. In contrast, for arbitrary allocations, the Euler equation 
for physical capital can be made to hold by choosing the tax on capital income 
appropriately. This incompleteness of the tax system implies that the undistorted Euler 
equation for human capital accumulation is a constraint on the set of competitive 
allocations. We have the following proposition. 
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Proposition 11. Suppose  that the Ramsey  allocations converge to a balanced growth 
path.  In such a balanced growth path,  all taxes are zero. 

Proof." We prove that along a balanced growth path, the first-order conditions for the 
Ramsey problem are the same as those for a planner who has access to lump-sum 
taxes. (This, of course, does not mean that the government can achieve the lump-sum 
tax allocations, because there are distortions along the transition path.) 

Let W(ct ,  lit + 12t; )0 = U ( c ,  lit + 12t) + ~ctUct, where ~ is the Lagrange multiplier 
on (2.96). For our specified utility function, 

W(ct ,  lit + 12t; ~) = [1 + ~(1 - o')] U(ct ,  lit + [2t). 

The Ramsey problem is to maximize 

t [3 W(cf ,  lit + [2t; ~.) - )~Ao 

subject to (2.90), (2.91), and (2.97). Consider a relaxed problem in which we 
drop condition (2.97). Since the objective function in this rewritten problem from 
period 1 onward is proportional to that of a social planner who has access to lump-sum 
taxes, the solutions to the two problems are the same along a balanced growth path. 
This solution also satisfies condition (2.97). Thus, along a balanced growth path, the 
Ramsey problem has the same solution as the lump-sum tax problem. The solutions to 
these last two problems differ along the transition paths only because the two problems 
imply different allocations for period 0 and therefore for the capital stocks for the 
beginning of period 1. [] 

The reader may be concerned that this result depends on the ratio of government 
consumption to output going to zero. To see that this concern is not warranted, 
consider an extension of the model described above. Consider an environment in 
which the government chooses the path of  government consumption optimally. To 
see this, suppose that the period utility function is given by U(cl ,  li + 12) + V(g),  
where V is some increasing function of government consumption. The government 
problem in this setup is to choose both tax rates and government consumption to 
maximize the consumer utility. We can solve this problem in two parts. In the first part, 
government consumption is taken as exogenous and tax rates are chosen optimally. In 
the second part, government consumption is chosen optimally. The proof described 
above obviously goes through for extensions of  this kind. For V(g)  - a g  I °/(1 -(f)~ 
it is easy to show that along a balanced growth path, govermnent consumption is a 
constant fraction of output. 

2.4.2. Open economy models' 

So far, we have considered models of  a closed economy. We turn now to considering 
issues that arise in an open economy. The elasticity of capital supply is likely to be 
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much greater in an open economy than in a closed economy because in the open 
economy capital is mobile  and can flow to the country with the highest rate of  return. 
We consider a small open economy that takes the rates o f  return on saving in the rest 
of  the world as given. In so doing, we abstract from the interesting strategic issues that 
arise when more than one authority sets taxes, and we abstract from general equilibrium 
linkages between an economy's fiscal pol icy and world prices. 

In an open economy, in addition to the standard taxes a government can levy on 
its citizens, a government can tax foreign owners o f  factors that are located in its 
country. To allow this possibility, we allow there to be source-based taxes as well as 
residence-based taxes. Source-based taxes are taxes that governments levy on income 
generated in their country at the income's source, regardless o f  ownership. Residence- 
based taxes are taxes that governments levy on the income o f  their residents regardless 
of  the income's  source. We show that source-based taxes on capital income are zero in 
all periods and that, with a restriction that ensures that the economy has a steady state, 
residence-based taxes on capital income are zero in all periods as well. This result is 
much stronger than the corresponding result for closed economies. [See Razin and 
Sadka (1995) for some closely related work.] 

Consider a model  with both source-based and residence-based taxation. We model  
source-based taxes as those levied on a firm and residence-based taxes as those levied 
on consumers. Let r[ denote the world rental rate on capital absent any domestically 
levied taxes. The firm's problem is to solve 

m a x f ( k t ,  l t ) -  (1 + 02~)r[lq- (1 + rj~)writ, 

where 0fi and Tji are the source-based tax rates on capital and labor. The first-order 
conditions are 

* * (2.105) Ot~r, Fk,  - r , ,  

"Cj~wt = Fit - wt. (2.106) 

Consumers solve 
O<3 

max ~ [3' U(ct,  lt) (2.107) 
t - 0  

subject to 
o ~  oG 

 p,c, = -- (2.  o8) 
t~O t-O 

where pt  = 1T~= i(1/&),  R~.- 1 v ( l  -O~.~,)(r~--6), P0 = 1, 0~. and ~2 are the residence° 
based tax rates on capital and labor, and initial assets are set to zero for convenience. 
The consumer first-order conditions are summarized by 

U# 
- w t ( 1 -  ~>t), (2.109) 

f i U ~ .  1 1 
- (2.110) 

U~., Rt+~" 
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The economy-wide budget constraint (which is simply the sum of the consumer and 
government budget constraints) is given by 

oo oQ 

Z q t [ c t + g + k t + l - - ( 1  6)k t ]  = ~ - ~ q t F ( k t ,  lt), 
t = 0  t = 0  

(2.111) 

where qt = lTs=  1(1/R2) and R2 = r* + 1 - 6 .  Notice that the economy as a whole 
borrows and lends at the before-tax rate R2, while consumers borrow and lend at the 
after-tax rate R~.. Intuitively, we know that any taxes on borrowing or lending levied 
on consumers are receipts of  the government and cancel out in their combined budget 
constraint. 

Notice also that in the closed economy models studied in earlier sections, the 
competitive equilibrium has consumer budget constraints, a government budget 
constraint, and a resource constraint. In this small open economy, there is no resource 
constraint, and it is convenient to replace the govermnent budget constraint by the 
economy-wide budget constraint. 

To derive the constraints for the Ramsey problem, substitute the consumer first-order 
conditions into Equation (2.108) to get the implementability constraint 

c'/d 

~ l ~ ' [ G t c ,  + U~,l,] = o, 
t = 0  

(2.112) 

where we have used the fact that Equation (2.110) implies that pt  = fit U~./Uco. Next, 
notice that the first-order conditions of the firm and the consumer can be summarized 
by Equations (2.105), (2.110), and 

UI, _ F)a ( 1 - Tj_). ( 2 . 1 1 3 )  
U ,  (1 + rj~ ) 

Thus, tbr each marginal condition, there is at least one tax rate so that the tax system 
is complete and there are no additional constraints on the Ramsey problem. Thus, with 
both source- and residence-based taxes available, the Ramsey problem is to maximize 
Equation (2.107) subject to (2.111) and (2.112). 

With purely source-based taxation, rct= Oct --- O, so from Equation (2.110) it is clea~ 
that for such a tax system, the Ramsey problem has the additional constraint 

f iUcg+ l  1 

Ucl R/+ 1 " 

With purely residence-based taxation, r# = 0/* = 0, so from Equation (2.105) it is clear 
that the Ramsey problem has the additional constraint 

Yt,, = r;.  
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Consider the Ramsey problem when both source- and residence-based taxes are 
available. For convenience, write the problem as 

o o  

max Z [3' W(ct ,  lt, 3.) 
l - O  

subject to (2.111), where W(c, ,  It, 3,) - U(ct,  lt) + )~ [Uact + U#lt]. The first-order 
condition for capital implies that 

F~t = rt*, (2.114) 

while the first-order condition for consumption implies that 

fiWd+l 1 

We, Rt+ I 
(2.115) 

From Equation (2.114) it is clear that setting @ = 0 for all t is optimal. Next, note 
that this small economy will have a steady state only if 

flR[ - 1 (2.116) 

for all t. Under this parameter restriction, Equation (2.115) implies that Wet = Wc,  l, 
and thus the Ramsey allocations are constant, so in particular, Uct = Uct)l. Equations 
(2.110) and (2.116) imply that Oct = 0 for all t. 

Under a system with only source-based taxes, the Ramsey problem is to maximize 
~--,t = o [3 W ( c ,  It, )~) subject to conditions (2.111) and (2.115). If we consider a relaxed 
version of this problem with the constraint (2.115) dropped, the above analysis 
makes clear that the solution to this relaxed problem satisfies this dropped constraint 
and hence solves the original problem. The first-order condition for capital then 
implies (2.114); hence, 0j~ = 0 tbr all t. 

Similarly, under a system with only residence-based taxes, the Ramsey problem 
is to maximize ~ - o  fit W ( c ,  lt, )0 subject to conditions (2.111) and (2. 114). If we 
consider a relaxed version of this problem with the constraint (2.114) dropped, the 
above analysis makes clear that the solution to this relaxed problem satisfies this 
dropped constraint and hence solves the original problem• The first-order condition for 
consumption in the relaxed problem is (2.115). Under the parameter restriction (2.116), 
Wct = We,  l, so Uc, = Ua+l. Hence, equations (2.110) and (2.116) imply that Oct = 0 
for all t. 

In sum: 

Proposition 12. Under a system with both source-  and  res idence-based taxes, 
0/~ = O~.t = O.for all t. Under  a sys tem with only source-based  taxes, O/t = O.fi~r all t. 
Under a sys tem with only res idence-based taxes, with the addi t ional  restriction (2.116), 

Oct = 0 f o r  all t. 
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Notice that the Ramsey allocations from the problem with both source- and 
residence-based taxes can be achieved with residence-based taxes alone. With the 
additional restriction (2.116), the allocations from the problem with both types of  
taxes can be achieved with source-based taxes alone. The intuition for why source- 
based taxes are zero is that with capital mobility, each country faces a perfectly elastic 
supply of capital as a factor input and therefore optimally chooses to set capital income 
taxes on firms to zero. The intuition for why residence-based taxes are zero is that 
under (2.116) the small economy instantly jumps to a steady state, and so the Chamley- 
type logic applies for all t. 

2.4.3. Ot;erlapping generations models' 

The discussion thus far has focused on models with infinitely lived agents. There 
is also an extensive literature on optimal policy in overlapping generations models. 
[See, for example, Atkinson (197l), Diamond (1973), Pestieau (1974), and Atkinson 
and Sandmo (1980); the surveys by Auerbach (1985) and Stiglitz (1987); and the 
applied work of Auerbach and Kotlikoff (1987) and Escolano (1992).] The results in 
this literature are much weaker than those in standard models with infinitely lived 
agents. One reason is that in a life cycle model, agents have very heterogeneous 
preferences over the infinite stream of consumption goods. For example, in a two- 
period overlapping generations model, an agent of  generation t values consumption 
goods only in periods t and t + 1. 

In this subsection, we show that tax rates on capital income in a steady state are 
zero if certain homotheticity and separability conditions are satisfied. This result is 
well known. For an exposition using the dual approach, see, for example, Atkinson 
and Stiglitz (1980). Here we follow the primal approach used by Atkeson et al. (1999) 
and Garriga (1999). In this sense, the proposition we prove is more closely connected 
to the results on uniform commodity taxation than to the results on zero capital taxation 
in infinitely lived agent economies. 

We briefly develop a formulation of optimal fiscal policy in an overlapping 
generations model. Consider a two-period overlapping generations model with a 
constant population normalized to 1. The resource constraint is 

clt + c2t + kt+l + g  = F(kt, lit, 12t) + (1 - (3) I¢/~ (2.117) 

where clt and c2L denote the consumption of a representative young agent mad a 
representative old agent in period t, IjL and 12t denote the corresponding labor inputs, 
k1 denotes the capital stock in t, and g denotes government consumption. Each young 
agent in t solves the problem 

max U (cm lit) + f iU (c2t L~I, 12i+t) 

subject to 

Clt + kt+| + bt+t - (1 --- Ti t )  Wl t l l t  

and 

c2,+j - (1 ~:2t~l) Wzt+ll2t+l "4:- [1 + (1 - Ot+l)(rt+ 1 -- 6)]  kt+l + e t+ lb t+ l ,  
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where rl: and T2/ are the tax rates on the two types o f  labor inputs and O: is the tax 
rate on capital income. The government budget constraint is 

TltWltllt + T2tw2tl2t + Otrtk/ + bt+l = g + R t b .  

To define an optimal policy, we need to assign weights to the utility of  agents in 
each generation. We assume that the government assigns weight )~t to generation t with 
)~ < 1. Then the Ramsey problem can be written as 

O(3 

max U(c2o,/20)/X + ~ X t [U(cl:, l l /)+ [~U(c2t+l, 12/+1)] 
t - 0  

subject to the resource constraint for each t and 

R(Clf,llt)+[3R(c21~-l,12,~-l) = 0 for each t, (2.118) 

where R(c, l) =-- cU:(c, l) + 1U:(c, l) and U(C20 ,/20) is the utility of  the initial 
old. There is also an implementability constraint for the initial old, which plays 
no role in our steady-state analysis. Constraints (2.118) are the implementability 
constraints associated with each generation. It is straightforward to show that i f  the 
solution to the Ramsey problem converges to a steady state with constant allocations 
(cl,, lit, C2t+l, 12t+l, kt~ 1) = ( C l ,  11, c 2 , / 2 ,  k), then the Ramsey allocations satisfy 

1 
F/, + 1 - 6. (2.119) 2 

In a steady state, the first-order condition for capital accumulation is 

Uc(cl,ll) 
~g~.(c2,~) 

1 +(1 - O ) ( F x - 6 ) .  (2.120) 

Inspecting these equations, we see that unless 

1 U~(c~, ll) 
,~ [~Uc(c2,/2) 

(2.121) 

the tax rate on capital income is not zero. In general, we would not expect this condition 
to hold. Notice the contrast with infinitely lived representative consumer models in 
which, in a steady state, the marginal utility of  the representative consumer U,(c ,  l:) 
is constant. In an overlapping generations model, we would not expect the marginal 
utility o f  a consumer to be constant over the consumer's lifetime. 

If  the utility function is of  the form 

C 1 o 
U(c, l) = - 1 - ~  + V(1) (2.122) 

then we can show the following: 
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Proposition 13. I f  the utility Jimction is o f  the Jbrm (2.122), then in a s teady state, 
the optimal tax on capital income is zero. 

Proof: To prove this, consider the first-order conditions for the Ramsey problem for 
consumption evaluated at a steady state: 

U~.l + atR~.l - ~tt, (2.123) 

/3[Ue2 + atRc2] = ;t,~,, (2.124) 

where )~t~tt and )~tat are the multipliers on (2.117) and (2.118), respectively. We can 
easily see that at and b~t are constant in a steady state. With a utility function of the 
form (2.122), &. is proportional to Uc so that (2.123) and (2.124) imply (2.121). [] 

The key properties used in proving this result are homotheticity of the utility function 
over consumption and the separability of  consumption and leisure. In this sense, this 
proposition is more closely connected to the results on unitbrm commodity taxation 
than to the results on zero capital taxation in infinitely lived agent economies. 

When )~ = fl and F ( k ,  11,12) = F ( k ,  11 + 12) then one can show that for all strictly 
concave utility functions the optimal tax on capital income is zero in a steady state. 
[See Atkeson et al. (1999).] 

3. Monetary policy 

In this section, we study the properties of  monetary policy in three monetary 
economies. Friedman (1969) argues that to be optimal, monetary policy should follow 
a rule: set nominal interest rates to zero. For a deterministic version of our economy, 
this would imply deflating at the rate of time preference. Phelps (1973) argues that 
Friedman's rule is unlikely to be optimal in an economy with no lump-sum taxes. 
Phelps' argument is that optimal taxation generally requires using all available taxes, 
including the inflation tax. Thus Phelps argues that the optimal inflation rate is higher 
than the Friedman rule implies. In this section, we set up a general framework that 
allows us to analyze Phelps' arguments. 

We analyze them in three standard monetary economies with distorting taxes: a 
cash--credit model, a money-in-the-utility-function model, and a shopping-time model. 
The conditions for the optimality of the Friedman rule in the first two economies 
are analyzed by Chari et al. (1996), while those for the shopping-time model are 
extensively analyzed in the literature. [See Kimbrough (1986), Faig (1988), Woodford 
(1990), Guidotti and V6gh (1993), and Correia and Teles (1996), as well as Chariet  
al. (t996).] In this section, we show that the Friedman rule is optimal when simple 
homotheticity and separability conditions are satisfied. These conditions are similar to 
the ones developed in the uniform taxation results in Section 1. 

We explore the cmmection between tile optimality of  the Friedman rule and the 
intermediate-goods result. For all three monetary economies, when the homotheticity 
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and separability conditions hold, the optimality of  the Friedman role follows from the 
intermediate-goods result. To prove this, we show that under such conditions, all three 
monetary economies can be reinterpreted as real intermediate-goods economies, and 
the optimality o f  the Friedman rule in the monetary economies follows directly from 
the intermediate-goods result in the reinterpreted real economies. In contrast, when 
these conditions do not hold, there is no such connection. To prove this, we show 
that when these conditions do not hold, there are two possibilities. First, there are 
monetary economies in which the Friedman rule holds which cannot be reinterpreted 
as real intermediate-goods economies. Second, there are monetary economies which 
can be reinterpreted as real intermediate-goods economies but in which the Friedman 
result does not hold. 

Finally, we conduct some numerical exercises designed to develop quantitative 
features o f  optimal monetary policy. We find that if  debt has nominal non-state- 
contingent returns, inflation can be used to make real returns state-contingent so that 
debt can serve as a shock absorber. 

3.1. Three standard monetary models 

3.1.1. Cash-credit 

Consider a simple production economy populated by a large number of  identical, 
infinitely lived consumers. In each period t = 0, 1 . . . .  , the economy experiences one 
o f  finitely many events st. We denote by s t = (so . . . . .  st) the history of  events up to 
and including period t. The probability, as o f  period 0, of  any particular history s t is 
#(st). The initial realization so is given. 

In each period t, the economy has three goods: labor and two consumption 
goods, a cash good and a credit good. A constant returns to scale technology is 
available to transform labor l(s t) imo output. The out-put can be used for private 
consumption of  either the cash good c l(s t) or the credit good c2(s t) or for government 
consumption g(s t). 

The resource constraint in this economy is thus 

c~ ( s ' )  + c2(s t) + g(s t )  = l(st). (3.~) 

The preferences of  each consumer are given by 

Z [~t[~(st) U(CI(St) '  C2(SI)' [(SI))' (3.2) 
t s t 

where the utility function U is strictly concave and satisfies the Inada conditions. 
In period t, consumers trade money, assets, and goods in particular ways. At the start 

of  period t, after observing the current state st, consumers trade money and assets in a 
centralized securities market. The assets are one-period, non-state-contingent nominal 
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claims. Let M(s t) and B(s t) denote the money and the nominal bonds held at the end 
of  the securities market trading. Let R(s t) denote the gross nominal return on these 
bonds payable in period t + 1 in all states S t+x = ( s t , s t l  1). Notice that the nominal 
return on debt is not state-contingent. After this trading, each consumer splits into 
a shopper and a worker. The shopper must use the money to purchase cash goods. 
To purchase credit goods, the shopper issues nominal claims, which are settled in the 
securities market in the next period. The worker is paid in cash at the end of  each 
period. 

This environment leads to the following constraint for the securities market: 

M(s , )+  B(s t )= R(s t 1)B(s,- l)+ M(s , - l )  p(s t 1)cl(st 1) 

_p ( s  t 1)c2(s,-1 ) +p(s t  u)[1 __ r(s t l)] l(s,-I), 
(3.3) 

where p is the price o f  the consumption goods and T is the tax rate on labor income. 
The real wage rate is 1 in this economy given our specification of  technology. The left- 
hand side of  Equation (3.3) is the nominal value o f  assets held at the end of  securities 
market trading. The first term on the right-hand side is the value of  nominal debt 
bought in the preceding period. The next two terms are the shopper's unspent cash. 
The fourth term is the payments for credit goods, and the last term is the after-tax 
receipts from labor services. We will assume that the holdings of  real debt B(st)/p(s t) 
are bounded above and below by some arbitrarily large constants. Purchases o f  cash 
goods must satisfy the following cash-in-advance constraint: 

p(s t) cl (s t) <~ M(st). (3.4) 

We assume throughout that the cash-in-advance constraint holds with equality. We let 
x(s t) = (cl(st), c2(st), l (s t) ,M(st) ,B(sl))  denote an allocation for consumers at s t, and 
we let x = (x(st)) denote an allocation for all s ~. We let q = (p(st),R(st)) denote a 
price system for this economy. The initial stock of  money M 1 and the initial stock of  
nominal debt B-I are given. 

Money is introduced into and withdrawn from the economy through open market 
operations in the securities market. The constraint facing the government in this market 
is 

M ( s ' ) - M ( s l - I ) +  B(s t) = R(s I 1)B(st-l)~ p(s t - l )g(s  t 1)-p(s t-I)  r(SL-l) l(st-1). 
(3.5) 

The terms on the left-hand side o f  this equation are the assets sold by the government. 
The first term on the right is the payments on debt incurred in the preceding period, 
the second term is the payment for government consumption, and the third term is tax 
receipts from labor income. Notice that government consumption is bought on credit. 
We let Jr = (r(st)) denote a policy for all s t. 

Given this description of  an economy, we now define a competitive equilibrium. 
A competitive equilibrium is a policy ~, an allocation x, and a price system q such 
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that given the policy and the price system, the resulting allocation maximizes the 
representative consumer's utility and satisfies the government's budget constraint. 

In this equilibrium, the consumer maximizes Equation (3.2) subject to (3.3), (3.4), 
and the bounds on debt. Money earns a gross nominal return of 1. I f  bonds earn a gross 
nominal return of less than 1, then the consumer can make profits by buying money 
and selling bonds. Thus, in any equilibrium, R(s 0 ~> 1. The consumer's first-order 
conditions imply that U~(st)/U2(s t) = R(st); thus in any equilibrium, the following 
constraint must hold: 

gl(s  t) >~ g2(st). (3.6) 

This feature of  the competitive equilibrium constrains the set of  Ramsey allocations. 
Consider now the policy problem faced by the government. As before, we assume 

that there is an institution or a commitment technology through which the government 
can bind itself to a particular sequence of policies once and for all in period 0, and 
we model this technology by having the government choose a policy ~ = (r(s0)  
at the beginning of time and then having consumers choose their allocations. Since 
the government needs to predict how consumer allocations and prices will respond 
to its policies, consumer allocations and prices are described by rules that associate 
allocations with government policies. Formally, allocation rules and price functions are 
sequences of  functions x(jr) = (x(s t t :r)) and q(jr) = (/)(s t ] ~) ,R(s  t [ ~)) that map 
policies Jr into allocations and prices. 

A Ramsey equilibrium is a policy Jr, an allocation rule x(.), and a price system q(.) 
that satisfy the following: (i) the policy Jr maximizes 

}-~'[Y~(s9 g(cx(st l m,  c2(s' l m,  l(st l jr)) 
I~S r 

subject to (3.5), with allocations given by x(jr), and (ii) ~br every Jr', the allo- 
cation x(~ ' )  and the price system q(~t), together with the policy Jr', constitute a 
competitive equilibrium. 

As is well known, if  the initial stock of nominal assets held by consumers is positive, 
then welfare is maximized in the Ramsey problem by increasing the initial price level 
to infinity. I f  the initial stock is negative, then welfare is maximized by setting the 
initial price level so low that the government raises all the revenue it needs without 
levying any distorting taxes. To make the problem interesting, we set the initial sum 
of nominal assets of consumers M 1 + R I B  1 to zero. For convenience, let Ui(sO 
for i = 1,2, 3 denote the marginal utilities at state s t. Using standard techniques [for 
example, from Lucas and Stokey (1983), Chari et al. (1991), and Section 1], we can 
establish the implementability constraint: 

Proposition 14. The consumption and labor allocations in a competitive equilibrium 
satisfy conditions (3.1), (3.6), and the implementability constraint 

Z/{tg(st) [c, (s ~) U~ (s ~) + c2(s ~) U~(s t) +/(s t) U3(st)] = O, (3.7) 
l S t 
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Furthermore, allocations that satisfy (3.1), (3, 6), and (3.7) can be decentralized as a 
competitive equilibrium. 

The Ramsey problem is to maximize consumer utility subject to conditions (3.1), 
(3.6), and (3.7). Consider utility functions of the form 

U(cI,  c2, l) ~- V(w(c1, c2), [), (3.8) 

where w is homothetic. We then have 

Proposition 15. For utility functions o f  the .]'brm (3.8), the Ramsey equilibrium has 
R(s t) = 1 .for all st. 

Proof: Consider for a moment the Ramsey allocation problem with constraint (3.6) 
dropped. We will show that under (3.8), constraint (3.6) is satisfied. Let Z denote the 
Lagrange multiplier on (3.7) and fitkt(s t) y(s t) denote the Lagrange multiplier on (3.1). 
The first-order conditions for ci(s t) :for i - 1,2 in this problem are 

(l +Z) Ui(s ~) +Z cj(s t) Uji(s t) + l(s t) U3i(s t) = y(st). (3.9) 

U = 

Recall from Section ] that a utility function which satisfies (3.8) also satisfies 

v'2 c:(s') ~l(s') @, C:(s9 ~2(s t) 
(3.10) Z_., V 1 (S t) U2(s t) Z_, 

j= l  j = l  

Next, dividing Equation (3.9) by Ui and noting that U3i/Ui = V I 2 / V I  for i =- 1 , 2 ,  we 
have that 

+ ,ts r v-7~f ~ (3.1 l) 

Using Equation (3.10), we have that the left-hand side of (3.11) has the same value 
for i - 1 and for i = 2. Therefore, Ul(st)/U2(s t) = 1. Since the solution to the 
less-constrained problem satisfies (3.6), it is also a solution to the Ramsey allocation 
problem. From the consumer's first-order condition, we have that UI (st)/U2 (s t) = R(st) 
and thus that R(s t) = 1. [] 

Now let us relate our results to Phelps' (1973) arguments for taxing liquidity 
services. Phelps (1973, p. 82) argues that "if, as is often maintained, the demand for 
money is highly interest-inelastic, then liquidity is an attractive candidate for heavy 
taxation at least from the standpoint of monetary and fiscal efficiency". Our results 
suggest that the commction between the interest elasticity of money demand and the 
desirability of taxing liquidity services is, at best, tenuous. 
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To see this, suppose that the utility function is o f  the form 

clj ~ c~ ~ 
U(cl ,  c2, l) ~ + ~ + V(1). (3.12) 

Then the consumer's first-order condition UE/U2 = R becomes 

m o 

(c - m) a 
- -  - R ,  ( 3 . 1 3 )  

where m is real money balances and c - cl + c2. The implied interest elasticity of  
money demand r/is given by 

1 R 1/° 
r /=  ~ - R ~ / - r  1" (3.14) 

Evaluating this elasticity at R = 1 gives r/ = 1/2a,  and thus the elasticity of  money 
demand can range from zero to infinity. Nevertheless, all preferences in this class 
satisfy our homotheticity and separability conditions; hence the Friedman rule is 
optimal. Phelps '  partial equilibrium intuition does not hold up for reasons we saw 
in Section 1. As we noted there, in general equilibrium, it is not necessarily true that 
inelastically demanded commodities should be taxed heavily. 

The homotheticity and separability conditions are equivalent to the requirement that 
the consumption elasticity of  money demand is unity. To see this, consider a standard 
money demand specification: 

log m = a0 + ai log c + f (R) ,  

where f (R)  is some invertible function of  the interest rate. I f  al - 1, so the consumption 
elasticity of  money demand is unity, this formulation implies that m/c = e a°+jO~), 
or that there is some function h such that h(m/c) = R. The consumer's first-order 
condition is U1/U2 = R. Thus UI/U2 must be homogeneous of  degree 0 in m and c if  
the consumption elasticity of  money demand is unity. This formulation immediately 
implies the homotheticity and separability conditions. 

Note two points about the generality of  the result. First, restricting w to be 
homogeneous of  degree 1 does not reduce the generality of  the result, since we can 
write w(.) = g ( f ( . ) ) ,  where g is monotone and f is homogeneous of  degree 1, 
and simply reinterpret V accordingly. Second, the proof  can be easily extended to 
economies with more general prodnction technologies, including those with capital 
accumulation. To see how, consider modifying the resource constraint (3.1) to 

f (Cl(Sl), C2(St),g(xt), l(st), k(s ' ) ,  k(s l - l ) )  = O, (3.15) 

where k is the capital stock a n d f  is a constant returns to scale function, and modifying 
the consumer's and the government's budget constraints appropriately. Let capital 
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income net of depreciation be taxed at rate O(s~), and let capital be a credit good, 
although the result holds if capital is a cash good. For this economy, combining the 
consumer's and the firm's first-order conditions gives 

U1 (s ~) _ R ( s , f l ( s ' ) .  

Thus the optimality of the Friedman rule requires that Ul(st)/U2(s ~) = ft(st)/J2(st). 
The constraint requiring that R(s t)/> 1 now implies that 

g~(s')  ./i(s') 
u2(s,--5 >~ A(s '~ '  (3.16) 

and the implementability constraint (3.7) now reads 

t s, (3.17) 

= v c ( s 0 )  { [ l  - 0 ( s 0 ) ]  [ . / i ( s 0 )  - 6 ) ] }  k ~, 
where k_ 1 is the initial capital stock. Since the tax on initial capital O(so) acts like a 
lump-sum tax, setting it as high as possible is optimal. To make the problem interesting, 
we follow the standard procedure of fixing it exogenously. The Ramsey allocation 
problem is to choose allocations to maximize utility subject to conditions (3.15), 
(3.16), and (3.17). For preferences of the form (3.8), the analog of Equation (3.11) 
has the right-hand side multiplied by f ( s ' )  for i = 1,2. This analog implies that 
U1 (st)/U2 (s t) = fl (st)/f2 (st), and thus the Friedman rule holds. 

We now develop the connection between the optimality of the Friedman rule and 
the uniform taxation result, in this economy, the tax on labor income implicitly taxes 
consumption of the cash good and the credit good at the same rate. In Section l, we 
showed that if the utility function is separable in leisure and the subutility function over 
consumption goods is homothetic, then the optimal policy is to tax all consumption 
goods at the same rate. If R(s t) > 1, the cash good is effectively taxed at a higher 
rate than the credit good, since cash goods must be paid for immediately, but credit 
goods are paid for with a one-period lag. Thus, with such preferences, efficiency 
requires that R(s t) = 1 and therefore that monetary policy follow the Friedman rule. 

To make this intuition precise, consider a real barter economy with the same 
preferences (3.2) and resource constraint (3.1) as the monetary economy and with 
commodity taxes on the two consumption goods. Consider a period-0 representation 
of the budget constraints. The consumer's budget constraint is 

~ q(s t) {[1 + rl(s~)] ci (s t) + [1 + T2(st)] C2(st)} ~ ~ q(s ~) l(st), (3.18) 
t S t 

and the government's budget constraint is 

~ q(st)g(st)= ~ Z q(s~)[ T'(st)c''(s~) + T2(st)c2(s~)] ' (3.19) 
t S t • S t 

where q(s t) is the price of goods in period t and at state sq A Ramsey equilibrium for 
this economy is defined in the obvious fashion. The Ramsey allocation problem for 
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this barter economy is similar to that in the monetary economy, except that the barter 
economy has no constraint (3.6). 

The consumer's first-order conditions imply that 

Ul(s  t) 1 -b Tl(S t) 

U2(s9 1 + r2(sg 

Thus Ramsey taxes satisfy Tt(s t) = r2(s ~) if and only if in the Ramsey allocation 
problem of maximizing Equation (3.2) subject to (3.1) and (3.7), the solution has 
Ui(sZ)/Uz(s t) = 1. Recall from Proposition 3 in Section 1 that for utility functions 
of the form (3.8), the Ramsey equilibrium has ~q(s t) = r2(s t) for all s t. 

Thus, with homotheticity and separability in the period utility function, the optimal 
taxes on the two consumption goods are equal at each state. Notice that this proposition 
does not imply that commodity taxes are equal across states. [That is, Ti(s t) may not 
equal Tj(s r) for t ~ r and for i,j = 1,2.] 

We have shown that if the conditions for uniform commodity taxation are satisfied 
in the barter economy, then in the associated monetary economy, the Friedman rule 
is optimal. Of course, since the allocations in the monetary economy must satisfy 
condition (3.6) while those in the barter economy need not, there are situations in which 
uniform commodity taxation is not optimal in the barter economy but in which the 
Friedman rule is optimal in the monetary economy. To see this, consider the following. 

Example. Let preferences have the form 

1 oi 1 o2 
U(Cl, c2, l) - cl c2 i ~ al + ~_-U~ + V(l). (3.20) 

The first-order conditions for the Ramsey problem in the barter economy imply that 

Ul(s t) cl(s t) a~ 1 +).(1 a2) 
- - ( 3 . 2 1 )  

U2(s t) c2(st) -~ 1 + )~(1 - 01)" 

Clearly, Ul(s t) >~ U2(s ~) if and only if CVl ~ o 2. For cases in which al = 02, 
these preferences satisfy condition (3.6), and both uniform commodity taxation and 
the Friedman rule are optimal. If as > a2, then neither uniform commodity taxation 
nor the Friedman rule is optimal. What is optimal is to tax good 1 at a higher rate 
than good 2. In the barter economy, this higher taxation is accomplished by setting 
rl (s t) > r2 (s t), while in the monetary economy, it is accomplished by setting R(st) > 1. 
More interestingly, when a~ < a2, uniform commodity taxation is not optimal, but the 
Friedman rule is. To see this, note that when a~ < {72, the solution in the monetary 
economy that ignores the constraint Ul(s t) >~ U2(s t) violates this constraint. Thus this 
constraint must bind at the optimum, and in the monetary economy, U1 (s t) = Ue(st). 
Thus, in the barter economy, taxing good 1 at a lower rate than good 2 is optimal, 
and this is accomplished by setting rl (st) < r2(s~). In the monetary economy, taxing 
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good 1 at a lower rate than good 2 is not feasible, since R(s t) ~> 1, and the best feasible 
solution is to set R(s t) = 1. 

in this subsection, we have focused on the Lucas and Stokey (1983) cash-credit 
version of the cash-in-advance model. It turns out that in the simpler cash-in-advance 
model without credit goods, the inflation rate and the labor tax rate are indeterminate. 
The first-order conditions for a deterministic version of that model are the cash-in= 
advance constraint, the budget constraint, and 

Ult _ Rt 1 Ult _ R~p: 

U2i 1 - Tt' [3 U2t Pt+l 

where the period utility function is U(ct,  lt) and Rt is the nominal interest rate from 
period t to period t + 1. Here, only the products R / ( 1  - vt) and Rtp/pt+~ are pinned 
down by the allocations. Thus the nominal interest rate, the tax rate, and the inflation 
rate are not separately determined. The Ramsey allocation can be decentralized in a 
variety of ways. In particular, trivially, both the Friedman rule and arbitrarily high rates 
of  inflation are optimal. 

3.1.2. Money-in-the-uti l i ty-f imction 

In this section, we prove that the Friedman rule is optimal for a money-in-the-ntility- 
function economy under homotheticity and separability conditions similar to those 
above. 

Consider the tbllowing monetary economy. In this economy, labor is transformed 
into consumption goods according to 

c(s ¢) + g(s  t) = l(st). (3.22) 

(We use the same notation here as in the last subsection.) The pretbrences of  the 
representative consumer are given by 

Z ~_~ ffl~(st) U(M(st)/P(St)' c(st)' l(st))' (3.23) 
t S t 

where the utility function has the usual monotonicity and concavity properties and 
satisfies the Inada conditions. In period t, the consumer's budget constraint is 

p(s  t) c (s , )+ M ( s t ) +  B(s  ~) = M(st- l)  + R(s  t a) B(s ~ 1) +p(s~)[ 1 _ T(st)] l(st). 
(3.24) 

The holdings of real debt B(s~)/p(s ~) are bounded below by some arbitrarily large 
constant, and the holdings of  money are bounded below by zero. Let M l  and 
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R_IB 1 denote the initial asset holdings of the consumer. The budget constraint of 
the government is given by 

B(s t) = R(s t 1)B(st 1)+p(st)g(st  ) _ [M(s t) _ M ( s  t 1)] _p(st)[1 _ r(st)ll(sZ). 
(3.25) 

A Ramsey equilibrium for this economy is defined in the obvious fashion. We set 
the initial stock of assets to zero for reasons similar to those given in the preceding 
section. Let m(s t) = M(st)/p(s t) denote the real balances in the Ramsey equilibrium. 
Using logic similar to that in Proposition 14, we can show that the consumption and 
labor allocations and the real money balances in the Ramsey equilibrium solve the 
Ramsey allocation problem 

max Z Z ff t~(s~) U (m(s~)' c(st)' l(s~) ) (3.26) 
f S t 

subject to the resource constraint (3.22) and the implementability constraint 

~ [Y [m(s ~) U~(s') + c(s') U2(s ~) + l(s ~) U3(s ~)] - o. (3.27) 

These two constraints, (3.22) and (3.27), completely characterize the set of competitive 
equilibrium allocations. 

We are interested in finding conditions under which the Friedman rule is optimal. 
Now the consumer's first-order conditions imply that 

U t ( s ' )  _ 1 1 (3.28) 
U2(s9 R(st) 

Thus, for the Friedman rule to hold, namely, for R(s f) = 1, it must be true that 

Ui (s t) _ O. (3.29) 
U2(s t) 

Since the marginal utility of consumption goods is finite, condition (3.29) will hold 
only if Ul(s t) = 0, that is, if the marginal utility of real money balances is zero. 
Intuitively, we can say that under the Friedman rule, satiating the economy with real 
money balances is optimal. 

We are interested in economies for which preferences are not satiated with any finite 
level of  money balances and for which the marginal utility of  real money balances 
converges to zero as the level of real money balances converges to infinity. That is, 
for each c and l, l i m m ~  Ul(m,c, l )  = 0 and l i m m ~  U2(m,c,l) > 0. Intuitively, 
in such economies, the Friedman rule holds exactly only if the value of real money 
balances is infinite, and for such economies, the Ramsey allocation problem has no 
solution. To get around this technicality, we consider an economy in which the level 
of real money balances is exogenously bounded by a constant. We will say that the 
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Friedman rule is optimal if, as this bound on real money balances increases, the 
associated nominal interest rates in the Ramsey equilibrium converge to one. 

With this in mind, we modify the Ramsey allocation problem to include the 
constraint 

m(s t) <~ Fn, (3.30) 

where ffz is a finite bound. Consider preferences of the form 

U(m, c, l) = V(w(m, c), l), (3.31) 

where w is homothetic. We then have 

Proposition 16. l f  the utility Jimction is' o f  the form (3.31), then the Friedman rule is" 
optimal. 

Proof: The Ramsey allocation problem is to maximize Equation (3.23) subject to 
(3.22), (3.27), and (3.30). Consider a less-constrained version of this problem in which 
constraint (3.30) is dropped. Let/3t/~(st)y(s t) and 3, denote the Lagrange multipliers 
on constraints (3.22) and (3.27). The first-order conditions for real money balances 
and consumption are 

( l+Z)  Ul(St)+~[m(st)Ull(St)+c(st)U21(st)+l(st)U31(xt)] = 0  (3.32) 

and 

(1 + )~) U2(s l) +,I, [m(s ~) U12(s t ) + c(s t ) U22(s t) + l(s t ) U32(st)] = ]/(st). (3.33) 

Since the utility function satisfies condition (3.31), it follows (as in Section 1) that 

m(s~) gll(s~) + c(s~) g21(s ~) m(s~) Ui2 + c(s~) U22(s ') 
= (3.34) 

gl (s ~) g2(s ~) 

Using the form of Equation (3.31), we can rewrite conditions (3.32) and (3.33) as 

and 

[m(s t ) Ull(S l) + c(s') U21(s t) 
(1 + ~) +.,~ [ Ul (s') 

(1 -I- ~) -l-,~ [ re(St) Ul2(St)u2(st) + C(St) U22(st) 

From Equation (3.34), we know that 

]/(s~) 0 
g2(sO 

+ l(~t) V21(st) ] = 0 (3.35) 
"~ " Vl(s ' )  I 

. ~. v : l ( s ' ) ]  _ y(s ~) 
+ ,ts ~ l cl2(s~) (3.36) 

(3.37) 

m the less-constrained problem. Hence the associated m(s t) is arbitrarily large, and 
thus for any finite bound N, the constraint (3.30) binds in the original problem. The 
result then follows from (3.28). [] 
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Again, restricting w to be homogeneous does not reduce the generality of the result. 
Clearly, the Friedman rule is optimal for some preferences which do not satisfy 

condition (3.31). Consider 

m [ ~l c I o~ 
- + + V(I).  (3.38) U(m,c,l) 1-al  

Note that for cases in which (Yl ~ 02, Equation (3.38) does not satisfy condition (3.31). 
The first-order condition for the Ramsey problem for money balances m(s t ) ,  when the 
upper bound on money balances is ignored, is 

[1 +)~(1 O~)] m ( s l )  -°~ - O. (3.39) 

Unless the endogenous Lagrange multiplier ,~ just happens to equal (oi - 1) 1, 
Equation (3.38) implies that the Friedman rule is optimal. 

In related work, Woodford (1990) considers the optimality of  the Friedman rule 
within the restricted class of  competitive equilibria with constant allocations and 
policies. Woodford shows that if  consumption and real balances are gross substitutes, 
then the Friedman rule is not optimal. Of  course, there are functions that satisfy our 
homotheticity and separability assumptions which are gross substitutes, for example, 

m I (y c 1 (r 

g ( m ,  c, l) = ~ + ~ + v(1). 

The reason for the difference in the results arises from the difference in the 
implementability constraints. Woodford's problem is 

max U ( m ,  c, l) (3.40) 

subject to 

c + g  <~ l, (3.41) 

U t m  + U2c + U3l - (1 - [ 3 ) U l ,  (3.42) 

where (3.42) is the implementability constraint associated with a competitive equilib- 
rium with constant allocations. The first-order conditions for our problem are similar to 
those fbr Woodford's problem, except that his include derivatives of  the right-hand side 
of condition (3.42). Notice that in Woodford's problem, iffi = 1 and preferences satisfy 
our homotheticity and separability conditions, then the Friedman rule is optimal. 

Notice, too, that if  the model had state variables, such as capital, then constant 
policies would not typically imply constant allocations. To analyze the optimal constant 
monetary policy for such an economy, we would analyze a problem similar to that in 
Equation (3.26) with extra constraints on allocations that capture these restrictions. 
[These restrictions would be similar in spirit to those in (2.47).] 
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3.1.3. Shopping-time 

In this subsection, we prove the optimality o f  the Friedman rule in a shopping-time 
monetary economy under appropriate homotheticity and separability conditions. 

Consider a monetary economy along the lines of  Kimbrough (1986). Labor is 
transformed into consumption goods according to 

c(st)+ g(s t) <~ l(st). (3.43) 

The preferences of  the representative consumer are given by 

~ [3~l~(s ~) U (c(s~), l(s t ) + O(c(st), M(st)/p(st))), (3.44) 
t S t 

where U is concave, U1 > 0, U2 < 0, 01 > 0, and q~2 < 0. The function ~(Cl, M/p) 
describes the amount o f  time needed to obtain c units of  the consumption good when 
the consumer has M/p units of  real money balances. We assume that q~l > 0 so that with 
the same amount of  money, more time is needed to obtain more consumption goods. 
We also assume that q~2 < 0 so that with more money, less time is needed to obtain 
the same amount of  consumption goods. The budget constraints of  the consumer and 
the government are the same as (3.24) and (3.25). 

The Ramsey equilibrium is defined in the obvious fashion. Let m(s t) -M(st) /p(s  t) 
and set the initial nominal assets to zero; we can then show that the consumption and 
labor allocations and the real money balances in the Ramsey equilibrium solve the 
problem 

max Z Z / 3 ~  #(s~) U( c(st)' l(st) + O(c(s~)' m(st) ) ) 
[ S t 

subject to condition (3.43) and 

Z ~ [~t~(St) { c ( s t )  I ~71 (st) + 01(st) g2(s t )]  -t- [(S t) g2(s  t) -~ m(st)O2(s t) U2(s')} - 0. 
t s t 

(3.45) 
From the consumer's first-order conditions, we know that R(s s) - 1 if  and only if  
02 = 0. We then have 

Proposi t ion 17. [[ ~ is homogeneous of degree k and k >~ 1, then the Friedman rule 
is optimal. 

Proof:  The first-order conditions for the Ramsey problem with respect to m(s t) and 
l(s ~) are given by 

U202+,~[cU1202+U2202(Olc+~2m+l)+U202+u2(O12c+O22m)]=O (3.46) 

and 

U2 +• [cUI2 + U22(~1C -I- ~2m + I) + U2] + 7 - 0, (3.47) 

where 7 is the multiplier on the resource constraint and we have dropped refer- 
ence to s t  
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Suppose first that 02 ;e 0 SO that the optimal policy does not follow the Friedman 
rule. Then, from Equations (3.46) and (3.47), we have that 

~U2(012c Jr 022 m) 

02 
+ y = O. (3.48) 

Now, under the condition that 0(c, m) is homogeneous of degree k and k >~ 1, we 
have that 02(ac, ]tm) = ak-102(C , m). Differentiating with respect to a and evaluating at 
a = 1, we have that c012 + m022 = (k - 1)02, and thus 

CO12 q- toO2 2 

02 
~> 0. (3.49) 

Since 3. ~> 0, U2 < 0, and y > 0, conditions (3.48) and (3.49) contradict each other. [] 

Note that this proof does not go through if q~(c, m) is homogeneous of degree less 
than 1. Using the dual approach, however, Correia and Teles (1996) prove that the 
Friedman rule is optimal for this shopping-time economy when 0(c, m) is homogeneous 
of any degree. 

3.2. From monetary to real 

In this subsection, we examine the relationship between the optimality of the Friedman 
rule and the intermediate-goods result developed in Section 1. The relationship is the 
following. First, if the homotheticity and separability conditions hold, then in the three 
monetary models we have studied, the optimality of  the Friedman rule follows from 
the intermediate-goods result. Second, if  these conditions do not hold, then in all three 
economies, the optimality of the Friedman rule and the intermediate-goods result are 
not connected. 

To establish these results, we proceed as follows. We begin by setting up the 
notation for a simple real intermediate-goods economy and review the intermediate- 
goods result for that economy. We then show that when our homotheticity and 
separability conditions hold, the cash-credit goods and the money-in-the-utility- 
function economies can be reinterpreted as real economies with intermediate goods. 
For these two monetary economies, we establish that the optimality of the Friedman 
rule in the monetary economy follows from the intermediate-goods result in the 
reinterpreted real economy. It is easy to establish a similar result for the shopping- 
time economy. This proves the first result. 

Next, we consider monetary economies which do not satisfy our conditions. We 
establish our second result with a couple of examples. We start with an example 
in which the monetary economy can be reinterpreted as a real intermediate-goods 
economy but in which the Friedman rule does not hold in the monetary economy. 
We then give an example of a monetary economy in which the Friedman rule does 
hold, but this economy cannot be reinterpreted as a real intermediate-goods economy. 
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The cash-credit economy can be reinterpreted as a real production economy with 
intermediate goods. Under our homotheticity and separability assumptions, the period 
utility is U(w(cl~, c2t), 4) and the resource constraint is 

cll + c2l +gt = 4. (3.50) 

Since the gross nominal interest rate cannot be less than unity, the allocations in the 
monetary economy must satisfy 

wl(cl,, c2~) >>. w2(c1~, c2~). (3.51) 

The reinterpreted economy is an infinite sequence of real static economies. In each 
period, the economy has two intermediate goods zlt and z2t, a final private consumption 
good xt, labor 4, and government consumption gt. The intermediate goods zlt and z2t in 
the real economy correspond to the final consumption goods c~t and c2t in the monetary 
economy. The period utility function is U(xt,  4). The technology set for producing the 
final good xt is given by 

f l ( x , , z l , , z z t ,  4) = x , - - w ( z l , , z 2 , )  <<. O, 

f 2 (x t , z l t ,Z2 t ,4 )  = w2(z l t ,Z2 t ) -Wl(Z l t , z2 t )  ~ O, 

(3.52) 

(3.53) 

while the technology for producing the intermediate goods and government consump- 
tion is given by 

h(zlt ,  z2t, gt, 4) = zl~ + z2t + gt - It <<. O. (3.54) 

The real econon'ly and the monetary economy are obviously equivalent. The interme- 
diate-goods result for the real economy is that the Ramsey allocations satisfy 
production efficiency. For this economy, because the marginal rate of transformation 
between zl and z2 is 1 in the intermediate-goods technology, production efficiency 
requires that 

WI 
1. (3.55) 

W2 

Recall that in the monetary economy, the Friedman rule is optimal when Equa- 
tion (3.55) holds. Thus the intermediate-goods result in the real economy implies the 
optimality of the Friedman rule in the monetary economy. 

Does this implication hold more generally? Whenever the monetary economy can 
be reinterpreted as an intermediate-goods economy, is the Friedman rule optimal in 
the monetary economy? No. Suppose that the utility function U(cl ,  c2, l) is of  the 
separable form V(w(c l ,  c2), 1), but that it does not have a representation in which 
w exhibits constant returns to scale. Suppose that w instead exhibits decreasing returns. 

= k)~c 1-~, where k is a constant. In the For example, suppose that w(cl ,  c2) (Cl + 2 
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intermediate-goods reinterpretation, the constant k can be thought of  as a scarce factor 
inelastically supplied by the consumer. The intermediate-goods result holds, provided 
that the returns to the scarce factor are fully taxed away. I f  the returns to the scarce 
factor cannot be taxed, then the intermediate-goods result does not hold. It is easy to 
show that the Friedman rule is not optimal in the monetary economy. In a sense, the 
Friedman rule is not optimal because in the monetary economy, there is no sensible 
interpretation under which the parameter k can be taxed. 

Next, one might ask, Is it true that whenever the Friedman rule is optimal in the 
monetary economy, there exists an analogous intermediate-goods economy? Again, no. 
Consider, for example, Ramsey allocation problems in which the constraint U1 >~ U2 
binds, but in which the utility function is not separable in consumption and leisure. 
The Friedman rule is optimal, but the monetary economy cannot be reinterpreted as 
an intermediate-goods economy. 

In this subsection, we have shown that under our homotheticity and separability 
assumptions, the optimality of the Friedman rule follows from the optimality of 
uniform commodity taxation. We have also shown that the optimality of the Friedman 
rule follows from the intermediate-goods result. These findings are not inconsistent 
because the uniform taxation result actually follows from the intermediate-goods result. 
(See Section 1.) 

The construction of the intermediate-goods economy for the money-in-the-utility- 
function economy is straightforward. Recall that in the monetary economy, under our 
homotheticity and separability conditions, the period utility function is U ( w ( m t ,  ct), lt) 

and the resource constraint is ct + gt = l~. The reinterpreted economy is again an infinite 
sequence of real static economies. In each period, the economy has two intermediate 
goods zl~ and z2t, a final private consumption good xt,  labor lt, and government 
consumption gt. The intermediate goods zit and z2t correspond to money mt and the 
consumption good ct in the monetary economy, respectively. The technology set for 
producing the final good xt is given by 

f ( x t , Z l t , Z 2 t ,  lt) = Xt - W(Zlt,Z2t) <~ O. 

The technology set for producing intermediate goods and consumption is given by 

k (x t , z l t , z2 t ,  lt) - z2t +g t  -It <~ O. 

The real and monetary economies are obviously equivalem. Production efficiency in the 
intermediate-goods economy requires that the marginal rates of  transformation between 
zl and z2 in the two technologies be equated. Since the marginal rate of transformation 
between zl and z2 in the intermediate-goods technology is z e r o  (h2/h3 = 0), we have 
wl /w2  = 0. Thus production efficiency in the intermediate-goods economy implies 
optimality of  the Friedman rule in the monetary economy. 



1736 EV. Chari and P..~ Kehoe 

3.3. Cyclical properties 

We turn now to some quantitative exercises which examine the cyclical properties of  
optimal monetary policy in our cash-credit goods model. For some related work, see 
Cooley and Hansen (1989, 1992). 

In these exercises, we consider preferences of  the form 

U ( c ,  l )  = {[C 1 Y(L  - l)Y] qJ - 1}/% 

where L is the endowment of labor and 

c = [(1 - or) c'[ + ac#]  i /v .  

The technology shock z and government consumption both follow the same symmetric 
two-state Markov chains as in the model in Section 2. 

In the baseline model, for preferences, we set the discount factor/3 = 0.97; we 
set ~p = 0, which implies logarithmic preferences between the composite consumption 
good and leisure; and we set 7 = 0.80. These values are the same as those in Christiano 
and Eichenbaum (1992). The parameters cr and v are not available in the literature, 
so we estimate them using the consumer's first-order conditions. These conditions 
imply that Ult/U2t = Rt. For our specification of preferences, this condition can be 
manipulated to be 

C2t ( (7 ]u(E-V)RI/O v) 
cl, k T 2 ~  ) ' 

(3.56) 

With a binding cash-in-advance constraint, ci is real money balances and c2 is 
aggregate consumption less real money balances. We measure all the variables with 
US data: real money balances by the monetary base, Rt by the return on three- 
month Treasury bills, and consumption by consumption expenditures. Taking logs in 
Equation (3.56) and running a regression using quarterly data for the period 1959-1989 
gives a = 0.57 and v = 0.83. 

Our regression turns out to be similar to those used in the money demand literature. 
To see this, note that Equation (3.56) implies that 

Clt 

Clt + C2t 

- [1 + ( a ,~1/(1 V)R,/(1_v) ] 1 

L kT- / ' J 
(3.57) 

Taking logs in Equation (3.57) and then taking a Taylor's expansion yields a money 
demand equation with consumption in the place of  output and with the restriction that 
the coefficient on consumption is 1. Our estimates imply that the interest elasticity 
of  money demand is 4.94. This estimate is somewhat smaller than estimates obtained 
when money balances are measured by MI instead of the base. 
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Table 3 
Properties of the cash-credit goods monetary models 
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Rates Percentage in models 

Baseline High risk aversion I.I.D. 

Labor income tax 

Mean 20.05 20.18 20.05 

Standard deviation 0.11 0.06 0.11 

Autocorrelation 0.89 0.89 0.00 

Correlation with shocks 

Government consumption 0.93 -0.93 0.93 

Technology -0.36 0.35 -0.36 

Output 0.03 -0.06 0.02 

Inflation 

Mean -0.44 4.78 -2.39 

Standard deviation 19.93 60.37 9.83 

Autocorrelation 0.02 0.06 -0.41 

Correlation with shocks 

Government consumption 0.37 0.26 0.43 

Technology -0.21 -0.21 -0.70 

Output -0.05 -0.08 -0.48 

Money growth 

Mean -0.70 4.03 -2.78 

Standard deviation 18.00 54.43 3.74 

Autocorrelation 0.04 0.07 0.00 

Correlation with shocks 

Government consumption 0.40 0.28 0.92 

Technology -0.17 -0.20 0.36 

Output 0.00 -0.07 0.02 

We set the initial real claims on the government so that, in the resulting stationary 
equilibrium, the ratio of debt to output is 44 percent. This is approximately the ratio 
of US federal government debt to GNP in 1989. 

For the second parametrization, we set ~[~ = -8 ,  which implies a relatively high 
degree o f  risk aversion. For the third, we set ~p = 0 and make both technology shocks 
and government consumption i.i.d. 

In Table 3, we report the properties of the labor tax rate, the inflation rate, and the 
money growth rate for these three parametrizations of our cash-credit goods model. In 
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all three, the labor tax rate inherits the persistence properties of  the underlying shocks 
(as it did in Subsection 2.3.1). 

Consider the inflation rate and the money growth rate. Recall that for these cash- 
credit goods monetary models, the nominal interest rate is identically zero. Table 3 
shows that the average inflation rate and the money growth rate are roughly zero. 
This result may, at first glance, be puzzling to readers familiar with the implications 
of  the Friedman rule in deterministic economies. I f  government consumption and the 
technology shock were constant, then the price level and the money stock would fall 
at the rate of time preference, which is 3 percent per year. In a stochastic economy, the 
inflation rate and the money growth rate vary with consumption. Therefore, the mean 
inflation rate depends not only on the rate of  time preference, but also on the covariance 
of the inflation rate and the intertemporal marginal rate of substitution. Specifically, 
the consumer's first-order conditions imply that 

] =/3Et[UI(StM)/U 1 (st)] R(sg)p(St)/p(sl+l), (3.58) 

where Et is the expectation conditional on s t. 
Under the Friedman rule, R(s t) = 1. Using the familiar relationship that the 

expectation of a product of two random variables is the sum of the product of  the 
expectations of these variables and their covariance in Equation (3.58) and rearranging, 
we obtain 

Et [p(sf)/p(st~l)] = 1//3 covt(p(st)/p(s t*l), Ui (st+l)/Uj (st)) (3.59) 
Et [ U1 (s t+ ~ )/U~ (s 9] 

In a stationary deterministic economy, Equation (3.59) reduces to Pt/Pt+l = 1//3 so that 
following the Friedman rule is equivalent to deflating at the rate of time preference. In 
our stochastic economy, periods of higher-than-average consumption (and hence lower- 
than-average marginal utility) are also periods of  lower-than-average inflation (and 
hence higher-than-average p(s t)/p(st+l)). Thus the covariance term in Equation (3.59) 
is negative. Taking unconditional expectations on both sides of Equation (3.59), we 
have that following the Friedman rule implies that E[p(st)/p(s t+l)] > 1//3. 

For all three parametrizations, the autocorrelation of the inflation rate is small or 
negative. Thus, in each, the inflation rate is far from a random walk. The correlations 
of  inflation with government consumption and with the technology shock have the 
expected signs. Notice that these correlations have opposite signs, and in the baseline 
and high risk aversion models, this leads to inflation having essentially no correlation 
with output. The most striking feature of the inflation rates is their volatility. In the 
baseline model, for example, if  the inflation rate were normally distributed, it would 
be higher than 20 percent or lower than -20  percent approximately a third of  the time. 
The inflation rates for the high risk aversion model are even more volatile. The money 
growth rate has essentially the same properties as the inflation rate. The inflation rates 
in these economies serve to make the real return on debt state-contingent. In this sense, 



Ch. 26: Optimal Fiscal and Monetary Policy 1739 

A: Government Consumption Shock 

0,75. 

0.5.  

Labortax rate 

0 .  

-025 . 

Inflation rate 

0 0.2 0.4 0.5 0.8 

Autocorrelation of government consumption shock 

0.75 

0,5 

0.25 
o 
o 

0 

-0.25 

-0.5 

B: Technology Shock 

0.2 0,4 0.6 08  

Autocorrelation of technology shock 

Fig. I. Persistence plots of inflation rates and labor tax rates versus shocks to government consumption 
and technology: (a) govermnent consumption shock; (b) technology shock. 

debt, together with appropriately chosen monetary policy, acts as a shock absorber. 
The inflation rates are volatile in these economies because we have not allowed for 
any other shock absorbers. 

The results for the high risk aversion model are basically similar to those for the 
baseline model, with two exceptions. First, the correlation o f  the labor tax rate with 
the shocks has opposite signs from the baseline model. Changing the risk aversion 
changes the response o f  the marginal rate of  substitution o f  consumption and leisure 
to the shocks. This change in the response alters the sign o f  the correlation. Second, 
and more significantly, the inflation rate in the high risk aversion model is substantially 
more variable and has a higher mean than the inflation rate in the baseline model. The 
reason for the difference is that the higher variability in the inflation rate increases the 
covariance term in Equation (3.59) and thus increases the average inflation rate. 

The results for the i.i.d, model are similar to those for the baseline model, with 
two exceptions. In the i.i.d, model, the autocorrelation o f  the labor tax rate and 
the autocorrelation o f  the inflation rate are quite different from their values in the 
baseline model. The labor tax rate has basically the same persistence properties as the 
underlying shocks - and so does the price level. A standard result is that if a random 
variable is i.i.d., its first difference has an autocorrelation o f - 0 . 5 .  The inflation rate 
is approximately the first difference o f  the log o f  the price level. Thus, in our i.i.d. 
model, the autocorrelation of  the inflation rate is close to -0.5.  

We investigated the autocorrelation properties o f  the labor tax rate and the inflation 
rate as we varied the autocorrelation (or persistence) o f  the underlying shocks. We 
found that the autocorrelation of  both the labor tax rate and the inflation rate increased 
as we increased the persistence of  the underlying shocks. Specifically, we set one shock 
at its mean value and varied the persistence of  the other shock. In Figure 1A, we 
plot the autocorrelations o f  the labor tax rate and the inflation rate as functions of  the 
autocorrelation of  government consumption. In Figure 1B, we plot the autocorrelations 
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o f  these rates as functions of  the autocorrelation of  the technology shock. In both of  
these figures, the autocorrelations o f  the rates increase as the autocorrelations o f  the 
shocks increase. 

The inflation rate and money growth rate are close to i.i.d. These rates are positively 
correlated with government consumption and negatively correlated with the technology 
shock. As with the labor tax rate, these shocks have opposing effects on inflation and 
similar effects on output, implying that the correlation of  inflation and money growth 
with output is roughly zero. 

To gain some intuition for the labor tax rates and the inflation rates, we simulated 
a version of  the baseline model in which technology shocks were set equal to their 
mean levels so that the only source of  uncertainty is government consumption. In 
Figure 2, we report a 20-period segment o f  our realizations. In Figure 2A, we see 
the shock to government consumption: this variable is constant at a low level from 
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period 0 to period 5, is then high from period 6 to period 12, and returns to its low 
level from period 13 to period 20. In Figure 2B, we plot the optimal labor tax rates. 
These tax rates follow the same pattern: they are constant between periods 0 and 5, 
when government consumption is low; are slightly higher between periods 6 and 12, 
when government consumption is higher; and return to their low level between periods 
13 and 20, when government consumption returns to its low level. The striking feature 
is that labor tax rates hardly fluctuate in response to the shocks. In Figure 2C, we plot 
the optimal inflation rate. There is a large inflation rate from period 5 to period 6, 
when government consumption rises to its higher level, and a large deflation rate from 
period 12 to period 13, when government consumption falls. In periods without a 
change in government consumption, the inflation rate is roughly zero. 

To gain an appreciation of the magnitude of the shock absorber role of inflation, 
it is useful to trace through the effects of shocks on govenmlent debt, revenues, and 
expenditures. Using the analog of Proposition 7 for this economy, we can show that 
the allocations c(st), l(st), real money balances re(st), and real debt B(st)/p(s t) depend 
only on the current state st, while the change in the price level p(s~)/p(s ~ 1) depends 
on st 1 and st. We write these functions as c(st), l(st), m(st), b(st), and ~(st-1, st). 

Consider now the government's budget constraint under the assumption that the 
economy in period t - 1 is at the mean level of government consumption and the mean 
level of  the technology shock. Denote this state by ~. Consider two scenarios. Suppose 
first that the economy in period t stays at ~. We can rearrange the government's budget 
constraint to obtain 

b(S ) -  , ~ , ~  [g(~)-  r(~)z(S)l(~)]- m(S) (3.60) 

Suppose next that the economy in period t switches to state s', where g is higher and 
the technology shock is at its average level. The government budget constraint can 
then be written as 

R(s) b 1 [ 1 
b(s') - ~(~,s') + ~ [ g ( s ) -  T(~)z(~)/(~)]- m(s') 0r(S,s')J ' (3.61) 

In both (3.60) and (3.61), the term on the left is the new debt. The first term on the right 
is the inberited debt obligations net of  the inflation tax. The second term on the right 
is the inflation-adjusted government deficit from period t 1. The inflation adjustment 
reflects that both government consumption and tax revenues are credit goods that are 
paid for with a one-period lag. The last term on the right is the seigniorage. Subtracting 
Equation (3.60) from (3.61) gives the accounting identity 

A New debt -= A Value of old debt + A Tanzi ef fec t -  A Seigniorage, (3.62) 

(-23) ( 1 9 )  (+1) (+5) 

where the Tanzi effect is the difference in the inflation-adjusted deficit. [See Tanzi 
(1977).] (The numbers in parentheses are discussed below.) 
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We can use our simulation to calculate the terms in Equation (3.62). We normalize 
the economy so that mean output is 100 units of  the consumption good. We consider 
an innovation in government consumption of 1 unit of this consumption good. This 
innovation leads to an increase in the present value of government consumption of 
28 units of  the consumption good. The numbers in parentheses below the terms in 
Equation (3.62) are the changes in the relevant terms in units of  the consumption good. 
The value of the old debt falls by 19 units because the sharp rise in inflation acts as a 
tax on inherited nominal debt. In our economy, the government debt is positive when 
the shocks are at their mean values. The government runs a surplus to pay the interest 
on the debt. A rise in the inflation rate erodes the value of the nominal surplus, leading 
to a Tanzi effect of  1 unit. The large inflation rate is, of course, due to a sharp rise 
in the money growth rate. The government collects 5 units of additional seigniorage 
by printing this money. Thus the new debt falls by 23 units. Since the present value 
of govenmaent consumption rises by 28 units, the present value of labor tax revenues 
needs to rise by only 5 units. This result implies that labor tax rates need to change 
by only a small amount. 

In this economy, the volatile inflation rate acts as a shock absorber, allowing the 
labor tax rate to be smooth. In essence, the government pays for 82 percent (23/28) 
of  the increase in the present value of government spending by increasing the price 
level sharply, which taxes inherited nominal claims, and for only 18 percent (5/28) by 
increasing the present value of labor taxes. 

Note that our autocorrelation results are quite different from those of Mankiw 
(1987). Using a partial equilibrium model, he argues that optimal policy implies 
that both labor taxes and inflation should follow a random walk. It might be 
worth investigating whether there are any general equilibrium settings that rationalize 
Manldw's argument. 

In the models considered in this subsection, nominal asset markets are incomplete 
because returns on nominal debt are not state-contingent. The government, however, 
can insure itself against adverse shocks by varying the ex post inflation rate 
appropriately. These variations impose no welfare costs because private agents care 
only about the expected inflation rate and not about the ex post inflation rate. A useful 
extension might be to consider models in which ex post inflation imposes welfare costs. 
An open question is whether optimal inflation rates will be roughly a random walk if 
the welfare costs are high enough. 

4. Conclusion 

In this chapter we have analyzed how the primal approach can be used to answer 
a fundamental question in macroeconomics: How should fiscal and monetary policy 
be set over the long run and over the business cycle? We use this approach to draw 
a number of  substantive lessons for policymaking. Obviously, these lessons depend 
on the details of the specific models considered. By and large we have considered 
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envi ronments  wi thout  imperfec t ions  in private markets ,  such as externali t ies and 

miss ing  markets .  In mode l s  wi th  such imperfect ions ,  opt imal  po l icy  not only must  be 

responsive  to the eff ic iency considerat ions we have emphas ized ,  but  also must  at tempt 

to cure the private marke t  imperfect ions.  
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