Graduate Statistical Mechanics -1st Exam- 08/10/2022

Instruções para a realização da avaliação: A prova deverá ser enviada até 10:00h de 10/10/2022 no meu escaninho, localizado no piso superior do DFGE e/ou para os email fiorecarlos.cf@gmail.com e william2.castilho@usp.br. Neste último caso, a entrega via papel será obrigatória (até o dia de aula $11 / 10 / 2022$). Ela pode ser realizada com a consulta de livros e/ou materiais, porém as respostas e interpretações são individuais.

Todas as respostas deverão ser devidamente justificadas com base em argumentos físicos e matemáticos adequados. A não justificativa das respostas implicará na não integralidade da nota. Utilizem o idioma que for melhor para você.

Para ajudar na correção e garantir que tudo corra bem, procurem seguir as seguintes recomendações:

- procurem mandar a prova em um único arquivo PDF, pode ser foto ou scan. Sugestão de app: Adobe Scan;
- verifiquem a ordem das páginas, a orientação delas e a legibilidade do texto;
- mandem para o email do professor e do monitor e confiram o envio.

1 Extra(Canonical ensemble)

Consider a system of N particles, in which each one can occupy only two levels with energies 0 e ϵ, respectively. The system is placed in contact with a thermal reservoir of temperature T.
a) (0.25) Obtain the partition function $Z(T, N)$ as well as the internal energy and specific heat per site $u(T), c_{v}(T)$ as a function of T.
b) (0.5) Obtain an equation of state for the pressure $p=p(T, v)$ by introducing the effect of volume $v=V / N$ according to the following relation $\epsilon=a / v^{\gamma}$, with $a>0$. Obtain the equation of state relating p, v and u.
c) (0.75) Obtain the expression for the isothermal compressibility $\kappa_{T}=-\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_{T}$ and its relation with $c_{v}(T)$.
d) (0.5) Obtain the expression for the thermal expansion coefficient $\alpha=\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{P}$ as well as their relationships with $c_{v}(T)$ and κ_{T}.

2 Fermi ideal gas

Consider a system of ideal fermions with degeneracy γ constrained in a volume $V=L^{3}$, whose energy spectrum is given by

$$
\begin{equation*}
\epsilon_{\vec{k}}=c|\vec{k}| \tag{1}
\end{equation*}
$$

where $c>0$.
a) (0.5) Find the prefactor A of the equation of state $p V=A U$ for an arbitrary temperature T;
b) (0.5) Find the Fermi energy as a function of the volume V and the particle number N;
c) (0.5) Obtain expressions for the mean energy, pressure and compressibility of a gas of free fermions at null temperature;
d) (0.5) Find the asymptotic expression for the specific heat at constant volume for $T \ll T_{F}$;
e) (1.0) Find the asymptotic expression for the isothermal compressibility $\kappa_{T}=-\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_{T}$ for $T \ll T_{F}$.

3 Ultrarelativistic ideal gas of bosonic particles

Let us consider an ideal gas of bosonic particles (spinless) constrained in a volume $V=L^{3}$, whose spectrum of energy given by $\epsilon_{\vec{k}}=\hbar c|\vec{k}|$.
a) (0.5) Obtain an expression for the Bose-Einstein condensation temperature T_{0};
b) (1.5) Obtain expressions for the pressure, mean energy U, entropy S and molar specific heat c_{v} in terms of Bose-Einstein functions $g_{\nu}(z)^{\prime} s$ and appropriate system parameters at the normal phase;
c) (1.0) Obtain expressions for above quantities for $T \leq T_{0}$.

4 (1.5) Bosonic particle with internal degree of freedom

Consider an ideal Bose gas consisting of molecules with internal degrees of freedom. Assuming that, besides the ground state $\epsilon_{0}=0$, only the first excited state ϵ_{1} of the internal spectrum needs to be taken into account. In other words, assume that the spectrum of energy is given by

$$
\begin{equation*}
\epsilon_{\vec{k}, \sigma}=\frac{\hbar^{2} k^{2}}{2 m}+\epsilon_{1} \sigma \tag{2}
\end{equation*}
$$

where $\sigma=0,1$. Determine the (transcendental equation) for the condensation temperature T_{0} of the gas as a function of ϵ_{1}. Obtain an approximate expression for $\beta_{0} \epsilon_{1} \gg 1$.

5 van-der-Waals gas

The van-der-Waals is given by the following equation of state

$$
\begin{equation*}
p=\frac{R T}{v-b}-\frac{a}{v^{2}} \tag{3}
\end{equation*}
$$

a) $(0,5)$ Find the critical parameters p_{c}, v_{c} e T_{c}.
b) $(0,25)$ Show that the molar Helmholtz free energy is given by $f(T, v)=-R T \ln (v-b)-a / v+f_{0}(T)$, where $f_{0}(T)$ solely depends on the temperature.
c) $(0,25)$ Obtain the reduced expression for the equation of state (as shown in my lectures) $\tilde{P}=8 \tilde{T} /(3 \tilde{v}-1)-3 / \tilde{v}^{2}$.
d) $(0,5)$ Show that the Maxwell construction leads to the expression

$$
\ln \left(3 \tilde{v_{g}}-1\right)+\frac{9}{4 \tilde{T} \tilde{v_{g}}}-\frac{3 \tilde{v_{g}}}{3 \tilde{v_{g}}-1}=\ln \left(3 \tilde{v_{l}}-1\right)+\frac{9}{4 \tilde{T} \tilde{v}_{l}}-\frac{3 \tilde{v_{l}}}{3 \tilde{v_{l}}-1}
$$

e) $(0,5)$ Obtain, by performing the Maxwell construction, the values for the pressure, volume of liquid and gas phases $\left(\tilde{P}_{l}=\tilde{P}_{g}, \tilde{v_{l}}\right.$ and $\left.\tilde{v_{g}}\right)$ for $\tilde{T}=0.92$. Suggestion: Use the mathematica notebook I sent you.
f) $(0,5)$ For very small temperatures, the van-der-Waals gas isotherms present negatives values for the pressure. Obtain the temperature in which this occurs.

