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The need for biostatistics in cardiovascular research is 
ever-present, but investigators continue to be challenged 

by the implementation of statistical methods. A review of 
the literature reveals both general awareness of this issue1,2–5 
and multiple attempts at its correction.6–9 Aptitude in ap-
plied statistics is generated by knowledge and experience, 
yet few healthcare workers can devote the time required to 
develop the requisite statistical skill set, a circumstance that 
generates common statistical mistakes that are fortunately 
avoidable (Table 1).

The goal here is to provide an overview of biostatistical 
procedures available to cardiovascular researchers as they 
conduct their bench or translational investigations. Given the 
availability of formulae on the internet and in texts, the focus 
will not be on computation, but on (1) concepts and guide-
lines in approaches and (2) the strengths and weaknesses of 
the available tools. In the end, the reader will have reviewed 
the principles and tools of biostatistics required for preclinical 
and translational research in cardiology.

General Principles
Nature of Relationships
The mission of cardiovascular research is to discern, quantify, 
and ultimately classify relationships. The most important con-
nection between the intervention and a response is causal, that 
is, the intervention or agent is not merely associated in time 
or place with the response but actually elicits that response. 
These causal links are critical because they give the investiga-
tor control of a relationship that can potentially exacerbate or 
ameliorate a disease.

However, discriminating between association and cau-
sation requires deductive skills and clear epidemiological 
thinking (Table 2). Several mechanisms are available to in-
vestigators that, once embedded in the research design, can 
improve the researcher’s capacity for discernment. First, re-
searcher determination of the investigative agent’s assignment 
is the signet of experiments as opposed to observational stud-
ies where investigators simply observe relationships in place. 
Planning the intervention such that the potential for confound-
ing is reduced is essential. Second, blinding the investigator 
and the subject to treatments ensures that the subjects’ and 
investigators’ belief systems do not systematically affect one 
group or the other. Modulating the outcome by adjusting the 
intervention dose or delivery demonstrates the direct control 
that the investigator has on the response. Finally, studying 
multiple end points provides useful information about the 
similarity of findings. Each of these research traits contributes 
to the integrity of the study, enabling internal consistency.

Role of Statistics
The internal consistency of a research effort has little im-
pact if the results cannot be applied to a population at large. 
Generalizability allows the observed effect in a small transla-
tional research outcome to be translated into a powerful and 
beneficial tool that a community of physicians and public 
health workers can use in vulnerable populations.

The ability to generalize from small collections of subjects 
to large populations cannot be taken for granted. Instead, it is 
a property that must be cultivated. In general, 2 features must 
be present to generalize (1) a prospective analysis plan and (2) 
the random selection of samples.
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Prospective Analyses
Critical to the generalizability of the research results is the 
prospective design of a research plan and selection of the pop-
ulation to be sampled. The scientific question must be posed, 
the methodology set in place, the instruments for analysis 
chosen, and the end points selected before the samples are ob-
tained. These procedures permit the correct population to be 
sampled and the sample set to be the appropriate size. Such 
analyses are termed as prospective analyses because they are 
conceived before the study is executed.

Of course, these are not the only analyses to be con-
ducted; sometimes the most exciting evaluations are those 
that cannot be anticipated. Evaluations that were not con-
templated during the design of the study are called retro-
spective, hypothesis generating, or exploratory analyses. 
The principal difficulty with exploratory analyses is that 
their absence of a prospective plan decouples the research 
results from applicability to the larger population. The 
exploratory question, for example, “Were the research 
findings different between male and female mice?” is an 
important question, but one that cannot be effectively ad-
dressed if an inadequate number of female mice were sam-
pled. Therefore, with no plans for their execution, hypothesis 
generating evaluations offer only indirect and unsatisfactory 
answers to questions that the investigator did not think to ask 
prospectively. Confirmatory analyses, that is, those that an-
swer prospectively asked questions, are the product of a well-
conceived protocol.

Both confirmatory and exploratory analyses can play im-
portant roles in sample-based research, as long as the inves-
tigator reports each finding with the appropriate perspective 
and caveats. Well-reported research starts with the prospec-
tively declared research question, followed by the method 
used to provide the answer and then the answer itself. Only 
after these findings are presented in the article, should the 
exploratory evaluations be displayed, perhaps preceded and 
followed by a note on the inability to generalize their intrigu-
ing results.

Random Subject Selection
The second feature required for generalizability is the random 
selection of subjects. Simple random sampling is the process 
by which each subject in the sample set has the same probabil-
ity of being selected from the research sample. This property 
is required to produce a representative sample of the popula-
tion to which one wishes to generalize. Appropriate sample 
selection is key to the researcher’s ability to generalize from 
the sample to the population from which the sample was 
obtained. Simple random sampling also adds the feature of 
statistical independence, that is, a property of observations in 
which knowledge of the outcome of 1 subject does not inform 
the investigators of the outcomes for others.

These 2 properties, prospective selection of the research 
plan and the random selection of subjects, helps to ensure that 
the samples selected provide the most representative view of 
the population.

Statistical Hypothesis Testing
The goal of statistical hypothesis testing is to help determine 
whether differences seen within a sample reflect what is hap-
pening in the population. The process acknowledges that dif-
ferent samples from the same population can support different 
conclusions. It is this awareness that motivates the indirect ap-
proach of statistical hypothesis testing. The fact that samples 
from the same population can produce different results raises 
the natural question of how likely is it that the investigator’s 
sample set provides reliable information about the measure of 
interest (eg, a mean, proportion, odds ratio, or relative risk). If 
the research is well designed (ie, the sample was chosen from 
the appropriate population, the intervention was powered and 
administered correctly, etc.) and the null hypothesis is correct, 
then it is likely that the data will align with the null hypoth-
esis. If, in fact, they do, then the null hypothesis seems valid.

However, what if the sample results are not consistent with 
the null hypothesis? Because the study was well designed, the 
only reasonable explanations for the misalignment are that (1) 

Nonstandard Abbreviations and Acronyms

G-CSF granulocyte colony-stimulating factor

LVEF left ventricular ejection fraction

MSC mesenchymal stem cells

Table 1. Common Statistical Mistakes in Biomedical 
Research

Poor Quality Data

•  High level of missing data

•  Not accounting for all subjects in a reports

•  Improper research design and reporting

•  Inattention to protocol during design and execution

•  Inadequate sample size

•  Too many t tests

•  Assuming correlation is equivalent to causation

•  Reporting only P values for results

•  Not having access to an expert

•  Overfitting regression lines

Table 2. Bradford Hill Criteria for Causation

Strength of association: Is there a quantitative agent–response 
relationship?

Temporality: Was the intervention present before the end point?

Biological gradient: Is the dose strength related to response?

Biological plausibility: Is there a plausible mechanistic effect for the 
relationship?

Consistency: Have the findings been seen in other research 
efforts?

Coherency: Does the relationship contradict a known and 
accepted principle of finding?

Specificity: Are there other explanations for the observed 
outcome?

Analogy: Does the finding fit with similar relationships seen 
in the field

Experimentation: Can the investigator, by removing and reintroducing 
the exposure, change the observed responses
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the null hypothesis is false or (2) a population in which the 
null hypothesis is true yielded a sample that, through chance 
alone, suggested that the null hypothesis is wrong. The lat-
ter is a sampling error. If the probability of this sampling er-
ror is low, then the investigator can reject the null hypothesis 
with confidence. The probability of this sampling error is the 
P value.

Power and Sample Size
The preceding section developed the thought process required 
to manage sampling error in the face of positive results. 
However, should the sample reveal a result that is consistent 
with the null hypothesis, there are 2 possible explanations. 
One is that the null hypothesis is correct. However, a second is 
that a population in which the finding is positive produced by 
chance a research sample with a null result. This is considered 
a type II error. The type II error subtracted from one is the 
power of a study. Study power is the probability that a popula-
tion in which the finding should be positive generates a sample 
that yields the same positive finding. The minimum power for 
research efforts in cardiology is typically 0.80 (80%). The in-
vestigators’ goal is to conduct all hypothesis tests in a high-
power environment.

Thus, regardless of the findings of a study, the investiga-
tor must manage sampling error. Should the result be posi-
tive, then the investigator would need a type I error less than 
the protocol-declared maximum (traditionally, no >0.05). 
However, should the analysis of the sample lead to a null re-
sult, then the investigator should be concerned about a type 
II error. Essentially, it is beneficial to the investigator if the 
research is designed to minimize both the type I and the 
type II errors. This is typically managed by the sample size 
computation.

There are many sample size formulae. However, each es-
sentially computes the minimum sample size required for the 
study of a fixed effect, an estimate of variability, and an ac-
ceptable level of type I and type II errors. Investigators will be 
served well by sample sizes that (1) have realistic estimates of 
variability that are based on the population chosen for study 
and (2) are based on an effect size that would serve as a find-
ing of importance. In addition, the type I error should be pro-
spectively specified, with the issue of multiplicity considered.

P Value
Although the concept of the P value is simple, one would be 
hard pressed to identify another probability that has gener-
ated nearly as much controversy. P values have been lauded 
as the most effective agent in bringing efficiency to the sci-
entific investigation process, and also derided as—next to 
atomic weapons—the worst invention of the 20th century. Its 
difficulty lies in the twin problems of misinterpretation and 
over-reliance.

History provides an interesting education on the misuse 
of P values.10,11–24 At times, P values have been confused with 
causation.25 Perhaps the best advice to researchers is the ad-
monition of Bradford Hill, the founder of modern clinical 
trials who, when talking about statistical hypothesis testing, 
said that this tool is “…like fire—an excellent servant and 
a bad master.”26 P values in and of themselves only provide 

information on the level of a sampling error that may suggest 
an alternative explanation of results. The best advice to the 
investigator is to design the research effort with great care, and 
to not just rely on the P value, but also to jointly consider the 
research design, effect size, SD, and confidence interval when 
attempting to integrate their research findings into the broader 
scientific context.

Multiple Testing
Research efforts typically generate >1 statistical hypothesis 
test and, therefore, >1 P value. Because the P value reflects the 
probability of a sampling error event, its repeated generation 
in the same experiment is analogous to flipping a coin—the 
more one repeats the experiment (in this case, carrying out 
additional analyses), the more likely one is to get at least 1 P 
value that is below the threshold. When investigators do not 
correct for this phenomenon and report results as positive sim-
ply because the P value is below the 0.05 threshold, then they 
are reporting results that are not related to any fundamental 
property of the population, but that instead misrepresent the 
population. This produces an unacceptably high false report-
ing rate.

The overall type I error rate is sometimes designated as the 
family-wise error rate. It is the probability of at least 1 type I 
error occurring among the multiple tests that the investigator 
has conducted, and this probability increases with the number 
of tests. To combat this probability inflation, the investigators 
can adjust the maximally acceptable P value for a positive re-
sult (typically set at 0.05) downward. This can be as simple 
as dividing the P value by the number of tests that are carried 
out, as is done in the Bonferroni approximation.27 Other pro-
cedures are available for the appropriate adjustment.28–30

One-Sided Testing
Statistical hypothesis testing, firmly embedded in the con-
duct of the scientific method, holds an essential and powerful 
assumption—that the investigator does not know the answer 
to the question before it is put to the test. The researchers 
may have an intuition, perhaps even a conviction that they 
know the result of the study they are designing, but, despite 
its motivating power, this belief does not supplant data-based 
knowledge.

Many arguments about 1-sided testing have arisen in the 
literature, and the attractiveness of these tests is difficult to re-
sist. However, the belief that a study will be beneficial is not an 
acceptable justification to design a study that will demonstrate 
benefit only. Experience31 has demonstrated that investigators 
cannot rely on their beliefs about treatment effectiveness when 
deciding on the sidedness of statistical hypothesis testing. The 
best solution is to allocate the type I error prospectively, and to 
use this level in 2 tails, prospectively looking for both benefit 
and harm.

Quality Control Procedures
Low-quality observations and missing data reduce the preci-
sion of statistical estimations and degrade the ability of the 
investigator to accurately answer their chosen scientific ques-
tion. A periodic review of the data, beginning at the start of 
data collection and continuing with interim inspections of the 
incoming data are critical. Identifying mistakes early in the 
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generation of the data set permits the identification of prob-
lems so that the likelihood of error reoccurrence can be re-
duced (Table 3).

Inspecting the data values themselves is both straightfor-
ward and essential. If the data set is too large for the verifi-
cation of each individual data point, then a random selection 
of observations can be chosen to compare against the source 
data, permitting an assessment of data accuracy, and allowing 
an estimation of the error rate. Examining the minimum and 
maximum values can alert the investigator to the appearance 
of physiologically impossible data points. If the researcher 
is willing to invest time in these straightforward efforts, data 
correction, published errata, and article retractions can be 
avoided.

Missing Data
Missing data occur for a variety of reasons. The unanticipated 
difficulty in taking critical measurements, inability to follow 
subjects for the duration of the study, electronic data storage 
failure, and dissolution of the research team can each lead to 
data losses. Fortunately, the effects can be minimized if not 
completely avoided with pre-emptive action.

One of the most important strategies that the investigator 
can use is to ensure that subjects (be they human or animal), 
and that they comprise the subjects who have the disease 
process of interest, are likely to continue to the end of the 
study and unlikely to have events that make it difficult to as-
sess the effect of the intervention (eg, competing risks) Use 
of equipment in the best working order minimizes the likeli-
hood that data cannot be collected. Once collected, data sets 
should be backed up on secure computer servers in multiple 
locations, ensuring that critical data sets are not lost because 
of misplacement, accidental deletion, or natural calamities 
(eg, floods or widespread power outages). Developing and 
maintaining solid professional relationships with coinvesti-
gators, as well as establishing and adhering to prospective 
and clear authorship guidelines, reduces the chances that a 
disgruntled coworker will abscond with the data.

However, even with adequate protective steps, some data 
collection may be impossible to complete. In this case, the 
researchers should report the extent of missing data and the 
reasons for their absence. Deaths or other loses must be spe-
cifically reported to the research community. There are several 
statistical procedures available to manage this issue. Ad hoc 
tools that fill in missing values to permit standard software 
to evaluate complete data (eg, last observations carried for-
ward) should be avoided. This is because (1) the method of 
data replacement is arbitrary and may be based on fallacious 
assumptions and (2) their use allows an underrepresentation 
of the variability of statistical estimates, for example, sample 
means, proportions, and relative risks.32 Imputation proce-
dures that permit >1 set of replacements for the missing data, 
and therefore multiple data sets for analysis,33 offer improve-
ments over the older observation carried forward approaches. 
In some circumstances, the occurrence of a significant clinical 
event (eg, death) precludes the collection of subsequent data. 
Score functions that are based on the Wilcoxon test34,35 obvi-
ate the need to complete missing data that results from this 
circumstance.

Data Analysis
Reporting Discrete Data
Whether the data are discrete or continuous, the investiga-
tor must adequately characterize their distribution. This ob-
ligation is best met by describing their central tendency and 
dispersion36; how this is carried out, however, depends on the 
character of the data (Table 4).

Investigators count dichotomous events (eg, deaths). They 
also categorize discrete events (eg, the distribution of the pro-
portions of patients with different Canadian classifications for 
heart failure). They can lucidly display dichotomous data by 
providing the number of events (numerator) and the size of 
the sample from which the events were drawn (denominator). 
When faced with polychotomous data, researchers report the 
frequencies of each of the germane categories, although it can 
also be appropriate to provide means and SDs.

However, it is also important to measure the effect size 
(Table 5). The absolute difference between 2 proportions re-
flects a simple percentage change. It is the simplest reflection 
of how far apart the percentages lie. Researchers can take 
advantage of the flexibility of dichotomous end points in the 
estimation of event rates. For example, if the investigators are 
interested in assessing the first occurrence of an event, for ex-
ample, the heart failure hospitalization rate >1 year, then the 
proportion of such cases is the incidence rate.
If the investigators are interested in comparing the incidence 
rates of the control group I

c
 and a treatment group I

t
, they can 

compute the relative risk R=I
t
 /I

c
. Although the incidence rate 

(which is a proportion over time) is between 0 and 1, the rela-
tive risk can be any positive number. Because the incidence 
rate reflects new cases, it is the estimate most sensitive to the 
effect of a treatment being tested. In cohort studies, in which 
subjects are followed prospectively over time and background 
events can be excluded at baseline, incidence rates, and rela-
tive risks are the preferred estimates. In this case, these es-
timates could be used to determine the expected number of 

Table 3. Data Quality Control

1. Review and rid the data set of errors before analysis

2.  Require that core laboratories that generate the data inspect and certify the 
data before analysis

3. Remove data points generated by technically flawed processes

4.  Do not remove a data point simply because it is inconvenient and not well 
understood

5.  Identify and mitigate sources of missing data during the study; report level 
of missing data and all deaths

Table 4. Central Tendency and Dispersion Estimates

For dichotomous data

                 Report: Central Tendency: Proportion of subjects

For polychotomous data

                 Report: Central Tendency: mean, median, and mode

                 Dispersion: Display actual frequency distribution, SD, and range

For continuous data

                 Report: Central tendency: Mean, median, and mode

                 Dispersion: interquartile range, SD, and confidence interval for the mean
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individuals that would need to be treated to prevent 1 event. 
Odds ratios are useful for comparing differences in prevalence.

Reporting Continuous Data—Normal or 
Distribution-Free Approaches
Reporting continuous data requires the joint consideration of 
central tendency and dispersion. Continuous data that are skewed 
or flat are not adequately summarized by the sample mean and 
SD, and when reported in this fashion, they are commonly mis-
leading. In this case, investigators are advised to use procedures 
that are not reliant on the underlying probability distribution.37 
These distribution-free (also termed nonparametric) procedures 
are based on percentiles of the data that describe the distribu-
tion’s central tendency (eg, the median) and dispersion (eg, the 
minimum, 25th percentile, 75th percentile, and maximum). 
Graphical representations are helpful in presenting continuous 
data; chief among these is the box plot (Figure 1).38,39

The Shapiro–Wilks test40 is useful to assess whether data 
are normally distributed, and the Kolmogorov–Smirnov test, 

although prone to low power, permits the investigator to com-
pare the probability distribution of the sample data with that 
of a known probability distribution41 or that of another sample 
set. The best guide is to observe the data and select an ap-
proach based on their distribution. Should the community of 
researchers expect an approach that is different than that sug-
gested by the data, then, in addition to the procedure that the 
investigators think the data requires, the investigators can take 
the approach suggested by the community and compare re-
sults from the 2 analyses.

When the investigators think that reporting means and their 
measures of dispersion are appropriate, they should consider 
the choice of SD versus the SE. The SE is simply the SD of 
a sample mean, and it is smaller than the SD. Which of these 
measures should be reported depends on the circumstances. 
If the investigators are interested in reporting the location 
and dispersion of individual observations in their sample set, 
then using the SD permits the reader to assess the variability 
among observations. However, if the purpose is to show the 
value and variability not of the observations, but of the means, 
then the SE should be used. However, once the investigators 
choose one of these measures of variability, they should be 
clear as to which they are providing.

Hypothesis Testing Tools
Hypothesis Testing for Dichotomous and 
Polychotomous Data
A list of statistical tests to assess common statistical hypoth-
eses is available in Table 6. Investigators can test the null hy-
pothesis for dichotomous data using Fisher exact test. In many 

Table 5. Effect Size Measurements for Dichotomous Data

Example: 18 of 25 mice die post infarction in the control group, whereas 10 of 
30 die in the gene therapy group

Absolute differences: p p1 2 18 25 10 30 0 720 0 334 0 386− = − = − =. . .

Relative risk: p p2 1 0 334 0 720 0 46= =. . .

Odds ratio: 
p p p p2 2 1 11 1 0 334 0 666 0 720 0 280 0 195( ) ( ) ( . . ) ( . . ) .− − = =
Percent reduction (efficacy): 
( ) . . . . . .p p p1 2 1 0 720 0 334 0 720 0 386 0 720 0 54− = − = =

Number needed to treat: 1 1 0 720 0 334 1 0 386 2 591 2( ) . . . .p p− = − = =

Figure 1. Example of a box plot.
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cases, investigators will find that their data are polychotomous. 
Examples of these data include the Canadian Classification 
Score for Angina or the New York Association Heart Failure 
Score. In these cases, they can use Fisher exact test as well 
because it is more accurate than χ2 testing, particularly when 
there is a small number of events in some variable categories.

Distribution-Free Hypothesis Testing  
Results—Continuous Data
Many distribution-free tests are available to investigators 
(Figure 2). When investigators examine their data and find 
that the distribution-free approach is best, they can conduct 
a 1-sample assessment using the 1-sample Wilcoxon signed-
rank test that determines the population median based on the 
sample. The investigators should anticipate the median value 
for the population under the null hypothesis. This test requires 
all the data, not just the sample size, mean, and variance. Its 
output is the sample median and P value.

Two-sample testing can be conducted using the 2-sam-
ple Wilcoxon signed-rank test if there is a natural pairing 

of the data. As with the 1-sample test, all of the data are 
required, as the data are ordered and the ranks of each pair 
of data points are compared. The test addresses whether the 
medians of the 2 populations are different, and the output 
is the 2 medians and the P value. The investigators can also 
conduct a 2-sample Wilcoxon rank sum test (distribution 
free) when the data consists of 2 unpaired samples. In this 
case, each of the observations from 1 sample is compared 
with the observations in the second sample, and a score is 
computed based on whether, within a data pair, the first 
group’s data point is greater than, equal to, or less than the 
second sample’s data point.

In some circumstances, the transformation of data that are 
not normally distributed to data that do follow the normal dis-
tribution can be useful. For example, in eventualities where 
the underlying data for a specific variable follow a log-normal 
distribution, this transformation is essential. In other cases, the 
mathematics underlying the variable’s development (eg, those 
variables found in kinematics) provide a solid rationale for 
transformation. In these cases, the process the investigator can 

Table 6. Statistical Methods

Question to be Answered Procedure Advises on Application

1-sample testing

                 Normality assumption valid

                   Is the population mean different than expected? 1-sample t test Requires the sample size, mean, and SD

                 Distribution free

                   Is the median of this distribution different than expected? 1-sample Wilcoxon-signed rank 
sum test

Requires the entire sample

2-Sample testing

                 Normality assumption valid

                   Do the means of 2 paired samples differ? Paired t test Requires sample, mean difference and SD of that difference

                   Do the 2 independent samples have different means? Unpaired t test Test variance first. Use equivariant solution for test on means 
if variances equal. Use unequal variance solution otherwise

                 Distribution free

                   Are the elements of 2 sequences mutually independent? Spearman Rank Correlation Test Requires entire data set; computes correlation based on ranks

     Are the paired samples from populations with equal 
medians?

Two sample signed-rank test A paired difference test requiring all of the data

     Are the unpaired samples from populations with equal 
medians?

Wilcoxon Rank Sum test (Mann– 
Whitney U test)

Requires entire data set; computes a sum of signed ranks of 
the observations

>2 Groups

                 Normality assumption valid

                   Do the predictor variables explain the response variable? Regression analysis Requires entire data set; adjusts for confounders; chunk 
testing is available; provides effect sizes and P values

                   Are there differences among the treatment group means? ANOVA Requires entire data set; adjusts for confounders; blocking can 
be used; provides effect sizes and P values

                   Are their differences between different groups with multiple 
response variables?

Multivariate analysis of variance Requires entire data set; produces table related to ANOVA 
table; effects for individual response variable must be 
analyzed separately

                 Distribution free

                   Are samples from each group from the same distribution? Kruskal–Wallis test Requires entire data set; provides results analogous to a 
1-way ANOVA

                Survival analysis

                   Is there a difference in the time to event between the 
groups?

Kaplan–Meier (log rank) Requires for each subject the censoring category and time to 
event or end of follow-up; can manage more than 2 groups

                   Can predictors explain the difference in time to event? Cox proportional hazard analysis Requires the entire data set; provides effect sizes as well  
as P values. Adjusts for confounders
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follow is to (1) transform the data, (2) carry out an analysis 
using parametric procedures, and then (3) apply the inverse 
transforms to convert the estimates of the mean and confi-
dence intervals into the data with the original distribution.

Continuous Data Under a Normal Distribution
The investigators can avail themselves of several statistical 
tools when assessing the impact of an intervention on a con-
tinuous response variable that follows a normal distribution 
(Figure 3). When reporting data that is normally distributed, 
the investigators should report the effect size, the SE (which 
is the SD of the effect size), and the 95% confidence inter-
val. The most useful statistical test for the investigator is the t 
test. There are essentially 3 types of t tests: (1) 1-sample, (2) 
2-sample, paired, and (3) 2-sample, unpaired. The latter can 
be conducted when either the variances of the 2 groups are 
considered equal or are believed to be unequal. In each case, 
all that is required is the sample size, mean, and SD of the 
measures of interest from each group.

If investigators have response measures from n subjects 
and wish to test whether the population from which they se-
lected their sample has a particular mean value, they would 
conduct a 1-sample test based on the mean response vari-
able value X  and the SD S

x
. The output of this analysis is 

the mean, 95% confidence interval for the population mean, 
and P value.

If investigators have an interest in tracking changes in 
a response variable over time, then each subject will have a 
measure at baseline X

b
 and a measure at follow-up X f . To as-

sess the change in response, the investigators can conduct a 
paired t test because each subject has a baseline and follow-up 
measurement, with the baseline measurement providing infor-
mation about the follow-up measurement. This information 
provided by one measure about the other permits a smaller 
estimate of the variance, and therefore a more powerful hy-
pothesis test. Here, the output is the sample means and SDs 
for each of the 2 groups, the 95% confidence interval for the 
difference in means, and the P value.

If investigators have 2 groups of subjects that differ in 
a particular characteristic and they are interested in testing 
whether the means of the 2 populations are different, then the 
2-sample t test would serve the researchers well. As before, 
the output of the analysis is the sample means and SDs for 
each of the 2 groups, the 95% confidence interval for the dif-
ference in means, and the P value. However, the exact com-
putation for the P value depends on whether the variances in 
the 2 samples can be considered equal. Typically, statistical 

Figure 2. Flowchart of distribution-free analysis for continuous data.

Figure 3. Flowchart of regression analyses.
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software provides the results for both the scenario where the 
investigators assume the variances are equal (and can there-
fore be pooled across the 2 groups) and also when the varianc-
es are assumed to be different. A separate hypothesis test can 
be conducted to assess the equality of variance assumption.

There is sometimes confusion about the best analysis to 
perform in a study where there is a control and a response 
group and each subject has a baseline and follow-up measure-
ment. It is common for investigators to use 2 paired t tests to 
determine if (1) the change in the response of the control group 
is statistically significant and (2) the change in the response of 
the active group is statistically significant; however, this ap-
proach is suboptimal. A better approach to use is to compute 
for each group the mean change from baseline to follow-up 
and the SE, and then to compare these mean changes using a 
2-sample unpaired t test. However, investigators are well ad-
vised to avoid t testing when the sample size of each group is 
extremely small (eg, n=3) and effect sizes are anticipated to 
be small or moderate. In this case, the researchers are better 
off with a 1-sample sign test or 2-sample Wilcoxon rank sum 
test. In addition, the investigators should keep in mind that 
one of the principal reasons to conduct hypothesis testing is 
to reliably determine whether results can be generalized from 
the sample to the larger population, a reliability that is under-
mined by the small size of the sample.

Analysis of Variance
ANOVA and regression modeling focus on building relation-
ships between the response variable of interest and a collec-
tion of predictor variables (Figure 4). Investigators can use 
these procedures to assess whether the values of predictor 
variables change the response variable’s mean.

The fundamental concept behind ANOVA is that subjects 
treated differently will differ more than subjects treated the 
same. Even though it is the arithmetic means of the response 

variables that are examined across the predictor variables, 
the analysis is principally focused on converting unexplained 
variability to explained variability. If a variable is completely 
unexplained, then the investigator does not know why one 
subject’s measure is different than that of another. Identifying 
predictor variables provides an explanation for these differ-
ences, thereby reducing the unexplained variability. The in-
clusion of each new predictor variable increases the percent 
of the total variability that is explained, an increase that is re-
flected in an increased R2.42

Researchers can randomize subjects to one type of vari-
able but with multiple levels (eg, a single variable diet that 
comprises 3 different and distinct diets). They are interested 
in assessing whether there are any differences among these 
levels of the response variable. Because there are >2 groups in 
this type of analysis, a single t test is inappropriate. Although 
the investigators could conduct several different t tests, the 
multiple testing issue must be addressed to avoid type I error 
inflation. Alternatively, an ANOVA test could be conducted 
to assess the degree to which the supplements explain dif-
ferences in the rats’ left ventricular ejection fraction (LVEF) 
measurements. Because supplements are essentially the same 
class of predictor variable, the analysis is a 1-way ANOVA. 
The F-statistic provides the overall test of significance.

Having conducted the ANOVA, investigators are com-
monly interested in assessing which group had the greatest 
effect on the response variable. This is the multiple testing 
problem, and the investigators are faced with comparing pairs 
of interventions (commonly referred to as contrasts). Dunnett 
test is useful when the investigator is interested in testing 
several different interventions against a single control, and it 
is relatively easy to implement.43 Scheffé method constructs 
confidence intervals simultaneously for multiple hypothesis 
tests, and it is helpful in ANOVA.44 Tukey test permits the 

Figure 4. Flowchart of parametric analyses for ANOVA.
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investigator to identify differences in means that have passed 
statistical testing, while correcting for multiple comparisons.45 
These are important tools available to the investigator that 
should be considered during the design of a research protocol.

A distribution-free analog to the 1-way ANOVA that is 
available to investigators is the Kruskal–Wallis procedure.46 
It can be used to compare the distributions of ≥2 samples in a 
1-way ANOVA.

Factorial Designs
The ANOVA model just described provides a structured set 
of procedures to determine if a set of >2 conditions has an ef-
fect on the response variable. However, research designs are 
increasingly complex, allowing deeper analyses of the rela-
tionship between a response variable and a predictor variable. 
In particular, factorial designs and blocking permit the inves-
tigator to examine the relationship between multiple predic-
tor variables and the response variable, and at the same time 
decrease the response variable’s unknown variability. For this 
procedure, data on the response variable and each of the pre-
dictor variables must be available at the subject level.

A factorial design examines the impact of multiple di-
chotomous or polychotomous explainer variables on the re-
sponse variable. In this case, the investigator is interested in 
each relationship. Consider an example where an investigator 
is interested in assessing the effects of 2 factors on LVEF re-
covery post infarction. In each pig, the researcher assesses the 
change in LVEF over time. One factor is the provision of gran-
ulocyte colony-stimulating factor (G-CSF) 1 week before the 
beginning of the infarction. The second factor is the presence 
of mesenchymal stem cells (MSCs), which are delivered im-
mediately post infarction. The investigators randomly choose 
whether the pigs receive G-CSF alone, MSC alone, both treat-
ments or a placebo. This 2-by-2 design permits an assessment 
of the overall effect of each of the G-CSF and MSC effects. It 
also evaluates whether the effect of MSC cells will be more 
pronounced in the presence of G-CSF than in its absence. This 
is traditionally known as an interaction, but is more helpfully 
described as an effect modifier, that is, the effect of MSC is 
modified by the presence of G-CSF. The estimates of the main 
effects of G-CSF and MSC, as well as an effect modification, 
give this design a unique name: factorial design. Three and 
higher dimension factorial designs are also possible. From a 
variability reduction perspective, this is a efficient design. The 
investigators can assess the influences of G-CSF and MSC, 
both separately or together, to reduce the unexplained vari-
ability in LVEF.

Blocking Designs
Blocking designs, as with factorial designs, evaluate the re-
lationship between multiple dichotomous or polychotomous 
explainer variables on the response variable. However, unlike 
the factorial design, where the researcher is interested in each 
relationship, in the blocking design, the researcher is only 
interested in the relationship between some of the predictor 
variables and the response variable. Variables that have a re-
lationship with the response variables, but in which the inves-
tigator has little interest, are used to explain (or block) and 
eliminate variability in the response variable.

Using the previous example as a foundation, consider now 
the investigator who is interested in assessing the effects of 
G-CSF on the change in LVEF. Here, either G-CSF or placebo 
is randomly provided to pigs immediately post infarction. 
However, the second factor for this experiment is not MSC, 
but is instead the size of the myocardial infarction.

The similarity of this design (G-CSF and myocardial in-
farction size as explainer variables) with the previous example 
(G-CSF and MSC as the explainer variables) is both helpful and 
misleading. Each design has 2 dichotomous explainer variables, 
and contains data in each of 4 cells. Therefore, mathematically, 
they can be analyzed the same way. However, there is a major 
difference. In the factorial design, each of the factors, G-CSF 
and MSC, were assigned randomly and the investigators were 
interested in the effects of each. In the second design, only 
G-CSF was randomly allocated. Infarct size could not be prede-
termined and assigned, and could very well be a surrogate for 
other variables, (eg, condition of the LV before the myocardial 
infarction occurred or factor precipitating the myocardial in-
farction). In fact, the investigators are not particularly interested 
in assessing the effect of myocardial infarction on ∆LVEF.

However, this established relationship between infarct size 
and ∆LVEF is used to the investigator’s advantage. Because 
the infarct size–∆LVEF relationship is well understood, the in-
vestigators know that myocardial infarct size will substantial-
ly reduce the unknown variability of ∆LVEF. This reduction in 
unknown variability is akin to reducing the surrounding noise, 
a procedure that will make it easier to detect the relationship 
of G-CSF to ∆LVEF. In this case, the infarct size is a blocking 
variable, that is, it is of no real interest itself, but it reduces 
the background noise, making it easy to detect the G-CSF–
∆LVEF signal.

Repeated Measures Testing
The repeated measures design refers to research in which sub-
jects have multiple measurements over time. These designs 
are useful when investigators are interested in assessing the 
effect of time on the distribution of observations. The simplest 
repeated measures analysis is a paired t test, in which there 
are 2 measurements per subject. In these designs, time is con-
sidered to be the within subjects variable. These designs can 
be expanded to have observations at many time points and si-
multaneously contain “between subjects” measurements (eg, 
control versus treatment). Crossover designs are adaptations 
of repeated measure designs.

An efficiency introduced by the repeated measures design 
is the ability to directly assess the relationship between the re-
sponse variables over time. Although the researcher’s knowl-
edge of the first subject’s baseline response measurement tells 
them nothing about the next subject’s measurement (the sine 
qua non of independence), knowing subject one’s baseline 
response can inform the investigator about that individual’s 
responses in the future. If these responses are linearly depen-
dent (ie, the fact that subject one’s baseline response is above 
the average baseline level makes it more likely that subject 
one’s response in the future will be above average) then a posi-
tive correlation is present. Just as in the ANOVA discussed 
above, the F-statistic determines the statistical significance of 
the time effect.
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However, it is important for the investigators to recognize 
2 critical assumptions in classical repeated measures design. 
The first is that this evaluation assumes an underlying normal 
distribution for the response variable. If the response variable 
is not normally distributed, or is not linear over time, then re-
searchers can consider transformations of the data. In addi-
tion, investigators can carry out the Friedman test to assess 
differences over time when the response variables are ordi-
nal, or when they are continuous but violate the normality 
assumption.

A second assumption in classical repeated measures de-
signs is the compound symmetry assumption (ie, there is 
equal correlation between the data points over all times). 
Modern computing programs permit the investigator to use 
the precise correlation structure in the data set to be evaluated. 
In addition, the researcher can adjust the overall degrees of 
freedom used in the evaluations with the Greenhouse–Geisser, 
Huynh–Feldt, and lower bound procedures.

Multivariate Analysis of Variance
Investigators can turn to multivariate analyses when they 
are interested in assessing the effects of multiple predictor 
variables on the differences in means of multiple response 
variables. This procedure uses the correlation between mul-
tiple response variables to reduce the unexplained variabil-
ity. Essentially, the multiple response variables are converted 
into 1 multidimensional response variable, and the statistical 
analysis assesses the effects of the predictor variables on this 
response variable vector.

For example, if the investigators are interested in assess-
ing the effect of Ckit+ cells, MSC cells, and the combination 
of these 2 cell types on LVEF post myocardial infarction, they 
could assess these cell effects by ANOVA. However, decid-
ing on a single response variable that determines LV function 
can be a challenge. Alternatively, they could measure LVEF, 
LVESVI (left ventricular end systolic volume index), LVEDVI 
(left ventricular end diastolic volume index), and infarct size 
as response variables and conduct 1 multivariate analysis of 
variance for these 4 variables.

The multivariate analysis generates an assessment of the 
effects of Ckit+ cells, MSC cells, and the combination of all 
4 response variables. This analysis is a efficient process, pro-
ducing 1 P value for all of these evaluations, and it is most 

useful when the result is null. If the investigators conducted 
an ANOVA on each of the 4 response variables, the multi-
plicity problem would be daunting (4 hypothesis tests per 
ANOVA and 4 ANOVAs). However with multivariate analy-
sis of variance, should at least 1 relationship be statistically 
significant, the investigator must conduct a series of contrasts 
to determine where in the system the significant relationship 
lies. Also, like ANOVA, multivariate analysis of variance hy-
pothesis testing is based on the underlying normality of the 
individual response variables. When the observations do not 
follow a normal distribution, the investigator can transform 
the data to normality. If this is not possible, then permutation 
tests can be useful.

Regression Analyses and Adjusting for Influences in 
Normal Data
Relationship building plays a pivotal role in understanding the 
true nature of the relationship between the response variable 
and the predictor variable. As pointed out earlier, ANOVA 
is useful when the response variable is continuous and the 
predictor variables are dichotomous or polychotomous in 
character. However, commonly, the predictor variables are 
continuous as well. In this case, the investigator can carry out 
regression analyses.

These analyses require the entire data set. When there is 
only 1 predictor variable, the regression analysis assesses the 
strength of the association between the response and the pre-
dictor variable, and the R2 value indicates the percent of the 
total variability of the response variable that is explained by 
the predictor variable. When >1 predictor variable is included 
in the regression model, the analysis indicates the strength of 
the association between the response and each of the predictor 
variables, adjusted for the effect of the other predictor vari-
ables. P values are produced for each variable in the regres-
sion analysis.

As an example, suppose that a team of investigators is 
examining the change in LVEF over time in human subjects 
with heart failure and ongoing ischemia. These patients had 
their baseline CD34 phenotypes assessed. The investigators 
are interested in understanding the relationship between the 
response variable ∆LVEF and the predictor variable CD34. A 
simple regression analysis demonstrates the strength of the re-
lationship between the 2 variables (Table 7). If the R2 from this 

Table 7. Regression Analyses and Adjustment on ∆LVEF

Variable DF Parameter Estimate SE t  Value Pr > t R 2

CD34 only model

                 Intercept 1 −3.28340 1.47829 −2.22 0.0293 0.0788

                CD34 1 1.28326 0.49991 2.57 0.0122

Age only model

                 Intercept 1 8.53181 3.59827 2.37 0.0201 0.0601

                 Age 1 −0.12680 0.05608 −2.26 0.0265

CD34 and age model

                 Intercept 1 3.18055 3.4.12730 0.77 0.4433 0.1116

                 Age 1 −0.09309 0.05559 −1.67 0.0981

                CD34 1 1.08682 0.50789 2.14 0.0356

LVEF indicates left ventricular ejection fraction.
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model is 7.9%, then this indicates that 7.9% of the total vari-
ability of ∆LVEF is because of CD34, leaving most of the vari-
ability (100×[1−0.079]=92.1%) in this simple model to be is 
explained by factors other than the baseline CD34 phenotype.

Using this same table, the investigators see that there is a 
quantitative relationship between ∆LVEF and CD34. It can be 
written as follows:

∆LVEF = 1.28 CD34× − 3 28.

They can reject the null hypothesis that there is no relation-
ship between CD34 and ∆LVEF, and can explain the effect size 
from this model as follows: if there are 2 patients, and one has 
a CD34 level one unit higher than the other, then, on average, 
the ∆LVEF of the patient with the higher CD34 level will be 
1.28 absolute LVEF units greater than the other. The P value 
associated with this relationship is 0.012. Thus, the investiga-
tors would conclude that (1) there is a statistically significant 
relationship between ∆LVEF and CD34 and (2) the relationship 
still leaves most of the variability of ∆LVEF unexplained.

Now suppose that the investigator expected that ∆LVEF 
might also be explained by age and analyzes this new vari-
able. The result of that analysis shows an R2=6.01%, co-
efficient=−0.127, and P=0.027. From this analysis, the 
investigators have learned that just as there was a statisti-
cally significant relationship between ∆LVEF and CD34, 
there is also a statistically significant relationship be-
tween ∆LVEF and age. In the latter case, the relationship is 
∆LVEF = age− × +0 127 8 53. . .

These results suggest that older subjects having a lower 
∆LVEF level. However, identifying these 2 relationships begs 
the question: Of the 2 variables, CD34 and age, which is more 
closely related to ∆LVEF? This requires the research team to 
be familiar with the concept of statistical adjustment.

Adjustment
The notion of adjustment is different for researchers. To some, 
adjustment is synonymous with control, or in this circum-
stance, keeping age constant to assess the effect of baseline 
CD34 levels on ∆LVEF. This would be achieved by (1) choos-
ing an age and (2) carrying out a regression analysis relating 
∆LVEF to CD34 for individuals only of that age. This is dif-
ficult to carry out, of course, because there are typically not 
enough individuals with the same age (or in an age stratum) 
that would permit a useful assessment of the ∆LVEF–CD34 
relationship.

To biostatisticians, adjustment means something different 
then control. It means identifying, isolating, and then remov-
ing the influence of the adjusted variable on the relationship 
between the 2 other variables. This is the process of control-
ling for confounding, or understanding the way in which 2 
predictor variables are correlated and, therefore, confound or 
conflate the relationship that each of them has with LVEF.

Regression analysis achieves this adjustment by (1) iden-
tifying and isolating the relationship between ∆LVEF and 
age, removing this effect from ∆LVEF, then (2) identifying 
the relationship between age and CD34 and removing this 
effect from CD34, and (3) evaluating the relationship be-
tween what is left of the CD34 effect on ∆LVEF completes 

the adjusted analysis. This process of isolating, identifying, 
and removing effects is precisely what multiple regression 
analysis achieves. Specifically, the result of this complex 
sequence of evaluations is the output of a regression analy-
sis that relates ∆LVEF to both CD34 and age when they are 
both in the same model.

From the table, with both variables in the model, the total 
variability has increased to 11.2%, which is greater than that of 
either CD34 by itself or age by itself. The overall model keeps 
the same directionality of the relationship, that is, ΔLVEF is 
decreased by age, and it is larger in subjects with larger CD34 
measures. However, the significance of the CD34 effect re-
mains after the adjustment (ie, after identifying, isolating, and 
removing the effect of age). Note, however, that the statistical 
significance of the ΔLVEF–age relationship is lost after ad-
justing for CD34. Thus, the age-adjusted CD34 relationship 
with ∆LVEF remains significant, whereas the CD34–adjusted 
age relationship with ∆LVEF does not.

Investigators should be aware of some cautions concern-
ing regression analyses. With small data sets, the regression 
model is likely to be overspecified, providing so close a fit 
to the data set that the results are of little value for the popu-
lation at large. In this circumstance, partitioning the data 
into a data set from which the model was created, and a 
second (and sometimes third) data set on which the model 
is tested increases the validity of the model.

Statistical software is adept at building complex models 
that can explain a substantial proportion of the variability 
in dependent variable values. However, although a small 
number of predictor variables may have important impacts 
on the dependent variable, other predictor variables that are 
in the model, while also having a measurable impact on the 
dependent variable, are less influential. Therefore, when in-
vestigators face a model with a substantial number of pre-
dictor variables, they may be able to simplify the message 
conveyed to the research community by focusing on the 2 or 
3 predictor variables that have the greatest impact.

An alternative approach to regression model building is 
to test an ensemble or group of effects for several predic-
tor variables simultaneously. In this case, the investigators 
consider a model with and without this group of predictor 
variables. These chunk tests are straightforward, but require 
the investigators to know how to bundle subsets of predictor 
variables so that group-variable effects can be more easily 
interpreted.

Survival Analysis and Logistic Regression
Survival analysis with Cox regression and logistic regression 
are regression procedures in which the response variable is a 
dichotomous variable or the combination of a response vari-
able and a continuous variable (time to event).

Researchers can take advantage of the flexibility of di-
chotomous end points in the estimation of event rates. For ex-
ample, if the investigators are interested in assessing the first 
occurrence of an event, for example, the heart failure hospi-
talization rate >1 year, then the proportion of such cases is the 
incidence rate discussed earlier.

Investigators use survival analyses when they want to 
examine and compare the survival of groups of individuals 
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treated differently.47 Survival is the time to an event (eg, time to 
first hospitalization or time to death). The quantity of interest 
is the average time to event, and this is commonly compared 
between a control group and treatment group. It is a straight-
forward process when the investigators know the survival time 
of each individual. However, this knowledge is frequently un-
available for all subjects. Kaplan–Meier life tables,48 log rank 
testing,49 and Cox regression analyses50,51 are most helpful to 
investigators in this case.

In analyses where subjects are followed for a proscribed 
period, investigator knowledge of the fate of each subject can 
be limited, and this limitation has an impact on the analysis. 
In a mortality study, for example, if a subject dies during the 
trial and the death date is known, then the investigators can use 
the survival time of that individual in their analysis; this subject 
is uncensored and the duration of survival is known. However, 
subjects may disappear from the study but not necessarily be 
dead. In these cases, the researcher only knows when the subject 
was last seen in the study, but does not know their current event 
status after they removed themselves from the research (some 
of the more eyebrow-raising reasons why subjects do not finish 
studies are that they are fleeing the law, have left their spouse 
for a surreptitious partner, are active traders in illegal narcotics 
businesses, are in prison, or are members of an organized crime 
network.). All that is known is that the individual survived up 
to the time of last contact. This survival is considered censored. 
These subjects are removed from follow-up after their last vis-
its, and their removal is censored. Finally, subjects can reach 
the end of the study without an event occurring at all, denoted 
as administrative censoring. These different occurrences can all 
affect the estimates of mean survival times in the study.

Kaplan–Meier estimates rank the data by survival time in 
the study, and, then, using the censoring mechanisms, com-
pute the number of subjects at risk of death in a time period, 
and, from that, determine the proportion of those at risk of 
death who actually die. This is assembled for the duration of 
the study to compute estimates of the overall survival rates. 
Cox hazard regression permits the investigator to conduct re-
gression analyses on time to event/censored data. Here, there 
are 2 response variables: (1) whether the subject’s final status 
is censored or uncensored and (2) the individual’s follow-up 
time in the study. Predictor variables were reviewed above. 
Cox regression produces as its output the relative risk associ-
ated with the predictor variable (through an exponentiation of 
the product of the coefficient and the predictor variable) and 
the P value associated with that relative risk.

Alternatively, proportions can be used to estimate preva-
lence, for example, the proportion of the population that has 
ever been hospitalized for heart failure. In retrospective stud-
ies, where the investigator starts with the number of cases and 
cannot differentiate incident cases from those that have been 
present in the population for a while, the investigator must 
rely on prevalence measures. If the investigators have only the 
prevalences for the control and intervention groups, p

c
 and p

t
, 

they can compute the prevalence ratio=p
t
 /p

c
 Although this is 

related to the incidence ratio, it can be difficult for an inter-
vention to have an impact on this ratio if the background rate 
(which is not affected by the intervention) is large.

In an assessment of prevalence, investigators can compute a 
more helpful quantity, the odds, which for the control group would 
be O

c
=p

c
 /1−p

c
. This can take any value >0, and with this value, 

it becomes easier to think of a regression model that would be 
based on it. To compare 2 groups, the odds ratio=O

t
 /O

c
=(p

t
 /1−p

t
)/

(p
c
 /1−p

c
) can be used. Odds ratios greater than one indicate that 

the treatment is more closely associated with the event than the 
control, and odds ratios <1 indicate that the odds of the event are 
lower for the treatment than for the control group.

Another advantage of odds ratios is that investigators can 
produce them from logistic regression analyses.52 The response 
variable in a logistic regression is most commonly a dichoto-
mous variable. The predictor variables can be either continuous 
or discrete. In addition, as was the case for regression analysis, 
logistic regression can accommodate multiple predictor vari-
ables. The exponentiated coefficient of a dichotomous predic-
tor variable from a logistic regression analysis is an odds ratio. 
This procedure, therefore, permits the investigators to model 
the odds ratio as a function of covariates, and produces analysis 
tables that would be familiar to investigators who understand 
how to interpret this value from a regression analysis.

Combined End Points
An adaptation available to investigators in clinical trials is a 
combined end point. In this case, the investigators combine 
multiple end points into 1 single but complex event. Researchers 
will face complications in the design of these end point struc-
tures, so the design must be based on an appropriate rationale.

There are advantages and disadvantages to this approach. 
When each component end point of the combined end point is 
dichotomous, the combined end point has a higher frequency 
of occurrence that will decrease the trial’s sample size. This 
can also decrease the cost of the trial. However, there are com-
plications that come with the combined end point. If the com-
bined end point has a nonfatal component, data collection can 
present a new administrative burden because it now requires 
an assessment to determine if the nonfatal component for any 
subject (eg, hospitalization for heart failure) meets the study 
criterion. This increases the cost and complexity of the study.

In addition, the use of combined end points can compli-
cate the interpretation. The most straightforward conclusion 
to the study would be if all components of the combined end 
point are influenced in the same direction by the intervention. 
Any discordance in the findings of the component end points 
vitiates the impact of the intervention and undermines any ar-
gument that the treatment was effective.

However, even with these difficulties, combined end 
points have become an important adaptation in clinical trials. 
They are most useful if 4 principals are followed (Table 8).53 
Both the combined end point and each of its component end 
points must be clinically relevant and prospectively specified 
in detail. Each component of the combined end point must be 
carefully chosen to add coherence to the combined end point, 
and should be measured with the same scrupulous attention 
to detail. The analysis of the therapy’s effect on the combined 
end point should be accompanied by a tabulation of the effects 
of the intervention on each component end point.

In addition, investigators should avoid the temptation to alter 
the composite end point and its prospectively declared type I error 
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structure during the course of the study. This tempting midcourse 
correction can lead to studies that are difficult to interpret.54–56 In 
addition, changing components of the combined end point based 
on an interim result is often unsuccessful because such interim 
findings are commonly driven by sampling error. Therefore, in-
vestigators should adhere closely to the prospective analysis plan.

Subgroup Analyses
A subgroup analysis is an evaluation of a treatment effect in 
a fraction of the subjects in the overall study. These subjects 
share a particular characteristic (eg, only males, or only pa-
tients with phenotype CD34 levels below a specific value). 
There are several justifiable reasons for investigators to con-
duct subgroups analyses. However, they should know that these 
analyses are also fraught with difficulty in interpretation.57,58

Commonly, the investigator simply and innocently wish-
es to determine whether the effect seen in the overall study 
applies to a specific demographic or comorbid group. This 
search for homogeneity of effect can be instigated by the in-
vestigators of the study. This evaluation can also be requested 
by journal reviewers and editors, or the entity that sponsors 
the research. Even the US Food and Drug Administration 
conducts subgroup analyses on data presented to it. Subgroup 
analyses are ubiquitous in the clinical trial literature, typified 
by Peto-grams (named for the eminent British biostatistician, 
Richard Peto) or forest plots that allow one to quickly scan 
down a figure and determine whether any of the subgroups are 
off center, that is, well to the right or left of the main effect.

However, there are 4 main difficulties with subgroup anal-
yses (Table 9). The first is that these analyses are not com-
monly considered before the beginning of a study, and fall into 
the rubric of exploratory analyses. Therefore, although they 
are provocative, they are rarely generalizable.

A second difficulty is that subgroup membership may 
not be known at baseline. Thus, not just the end point ef-
fect, but subgroup membership itself may be influenced by 
the intervention. Perhaps the most notorious example is the 
“as treated” analysis, frequently conducted during clinical tri-
als, in which the treatment may have an influence (such as an 
adverse effect) that pushes patients assigned to the treatment 

group into those not receiving the treatment. Thus, the therapy 
seems to be more effective than it is because only comparing 
those who could take the medicine and respond are compared 
with those who did not. Not even the prospective declaration 
of an “as treated” analysis can cure this problem. The third, 
lack of adequate power, and fourth, P value multiplicity, are 
statistical, and undermine the generalizability of these within-
subgroup effects.

Subgroups analyses have received substantial attention in 
clinical trial methodologies. However, investigators are best 
advised to treat provocative subgroup findings like “fool’s 
gold.” Caveat emptor.

Interim Monitoring and Other Adaptive Procedures
Up until this point in the review, the requirement for prospective 
planning in research has been emphasized. The intervention to 
be studied, the characteristics of the study population, the num-
ber of study arms, the number of end points, and the sample size 
of the study should all be identified prospectively. Then, once 
established, the protocol should be followed in detail. The ad-
vantage of this procedure is that the results of the study are more 
likely to be generalizable than with ad hoc analyses.

However, even though this ability to apply the study’s results 
to the population at large is ideal, it is also inflexible. Might there 
not be some advantage to other approaches to research?

The need for protocol resilience is clearest when there 
is an ethical reason to end the study early because of early 
therapeutic triumph59 or early catastrophe.31 Because investi-
gators carrying out the trial must remain blind to therapy as-
signment, a special oversight board with access to unblinded 
data (the Data Safety and Monitoring Board) is charged with 
reviewing the data well in advance of the completion of sub-
ject follow-up.

In so doing, these groups are required to consider action 
based on compelling but incomplete data. Several quantita-
tive tools, called group sequential procedures (procedures that 
examine data from groups of subjects sequentially), were spe-
cifically designed to assist in these complex determinations.60 
Although the mathematics are somewhat complicated here, 
the concepts are simple.

First, if a study is to be ended prematurely, the data must be 
more persuasive than the minimal acceptable efficacy, had the 
trial been permitted to proceed to its conclusion. Second, the 
earlier the study is stopped, the more persuasive these findings 
must be. In addition, because data are examined repeatedly 
(although more data are added for each interim examination), 
there is a price one pays for multiple examinations of the data 
(and multiple P values). Although this price is modest,61 an 
adjustment must be made.

However, perhaps the most important part of these interim 
examinations is nonstatistical. Issues such as internal consistency 
(do primary and secondary end point align?), external consis-
tency (have these results been seen in other studies?), biological 
plausibility, and data coherence must also show that the interim 
data support a unified conclusion. All these factors must be con-
sidered together for the decision to prematurely end a study.

Now, it is not uncommon for the Data Safety and 
Monitoring Board to examine not just end point data for signs 
of early efficacy or early harm, but to examine the event rate 

Table 8. Principles of Combined End Points

Principle of Prospective Deployment: Both the combined end point and each 
of its component end points must be clinically relevant and prospectively 
specified in detail

Principle of Coherence: Each component of the combined end point must be 
carefully chosen to add coherence to the combined end point

Principle of Precision: Each of the component end points must be measured 
with the same scrupulous attention to detail

Principle of Full Disclosure: The analysis of the effect of therapy on the 
combined end point should be accompanied by a tabulation of the effect of the 
therapy for each of the component end points

Table 9. Problems With Subgroup Analyses

1.   Not prospectively declared

2.   Improperly defined (membership not known at baseline)

3.   Inadequate power

4.   No correction for multiplicity
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in the placebo group of a clinical trial to recommend either 
increasing or decreasing the follow-up period based on the ob-
served rate. If the end point is continuous, then its SD can be 
appraised in real time. Each of these procedures is designed to 
test the assumptions of the underlying sample size computa-
tion, adapting the computation to the actual data. Multi-armed 
clinical trials, for example, studies designed to evaluate the 
effects of multiple doses of the agent in question, can have the 
sample sizes in specific arms increased or decreased, depend-
ing on the effect seen in that treatment arm. Each of these 
possibilities must be described in detail in the protocol, but 
once specified, they can be implemented without prejudice 
to the trial. The Food and Drug Administration has recently 
produced a draft guideline on adaptive clinical trial design.62

The principal motivation for these rules is the conservation 
of resources. Subjects, workers, materials, and financial re-
sources are rapidly consumed in research. In an era of increas-
ing resource consciousness, careful planning for potential 
midcourse corrections that would save on trial cost and main-
tain ethical standards of the study is a laudable goal. However, 
the investigator must remember that (1) they are engaged in 
sample-based research, (2) the process of drawing generaliz-
able conclusions from sample-based research is challenging, 
and (3) the smaller the sample size that a researcher is working 
with, the more likely one is to be misled.

Bayesian Analyses
Bayesian approaches are becoming increasingly common in 
biostatistics, and in some circumstances, can represent a vi-
able alternative to hypothesis testing. The investigator who uses 
a Bayesian analysis has an alternative to the classic P value. 
Essentially, the investigator begins with a probability distribu-
tion of the parameter of interest. The data are then used to update 
this probability, essentially converting the previous probability 
distribution into a posterior probability. This permits the inves-
tigator to address specific questions of direct relevance, for ex-
ample, “What is the probability that the effect size of the study is 
greater than zero?” In addition, using a loss function permits the 
researchers to compute an estimate of the treatment effect known 
as the Bayes estimate. One must take care, however, in choosing 
the previous distribution and loss function. Adaptive designs (ie, 
allowing interim evaluations of efficacy to determine the ratio of 
treatment to control group subjects to reduce the overall sample 
size of the study) are becoming more common.

Common Mistakes to Avoid
Most epidemiological and biostatistics mistakes in cardiovas-
cular research derive from 1 flaw—an inadequately prepared 
protocol. In its absence, the researcher is left to flounder in a 
rushing river of administrative, recruitment, and logistical is-
sues that threaten to swamp any modern research effort.

Authors of a good protocol recognize at once the informa-
tion needed to conduct the research effort successfully. The 
scientific question is essential. From this, end points are de-
rived that define the instruments for measurement that will be 
used, followed by a determination of the number of treatment 
groups, and then a calculation of the required sample size and 
duration of the study. Dwelling on these concerns early sim-
plifies the execution of the study.

When investigators have a solid, carefully considered, 
and well-written protocol, they are best advised to adhere to 
it. There will be many temptations to change. Other studies 
with interesting findings will be reported, leading investiga-
tors to new questions they may wish to pursue. New mea-
surement tools will be discovered. Regulatory agencies may 
change direction. It is rare occurrence that these interceding 
events strengthen the study; instead, they threaten its vitiation. 
Investigators should maintain their commitment to the proto-
col in these circumstances. They can certainly report explor-
atory analyses, but these analyses must be acknowledged as 
such and not be permitted to overshadow the findings of the 
primary end points, whether they are positive or negative.

In addition, investigators should acknowledge and obtain 
any epidemiological or biostatistical support that they need. The 
statistical analyst should keep the statistical analysis as simple 
as possible. The focus of the investigator’s query is to answer a 
cardiovascular question, and the study should be designed and 
the analysis conducted as simple as possible. The computations 
should be in line with the standards and expectations of the car-
diology community. If a new computation is required, the inves-
tigators should precede this by using the standard computation, 
so that investigators can compare the 2 and come to a conclu-
sion about the added value of the new approach. In this type of 
research, the statistics should be like the solid foundation of a 
house: all but invisible to the naked eye, but providing the solid 
basis from which to determine the exposure–disease relationship.

Investigators who are mindful of the methodologies de-
picted here can produce research results that permit the com-
munity to assimilate their conclusions. There is no doubt that 
there will be disappointments along the way, as data have 
no obligation to provide support for a researcher’s incorrect 
ideas. Data do, however, provide a window to the true state of 
nature, and through that, illumination.
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