

Potenciais escalar e vetor.

Recordando

• Como, a partir de $\rho(\mathbf{r},t)$ e $\mathbf{J}(\mathbf{r},t)$, podemos encontrar os campos $\mathbf{E}(\mathbf{r},t)$ e $\mathbf{B}(\mathbf{r},t)$ que sejam solução geral das Equações de Maxwell?

 Potencial escalar elétrico e potencial vetor magnético

Valem nos regimes estático e dinâmico.

• Equações (III) e (IV) satisfazem eqs. (I) e (II) e todas as eqs. de Maxwell.

Conhecidos $V \in \mathbf{A}$, elas permitem determinar $\boldsymbol{\rho} \in \mathbf{J}$.

(I) $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}. \qquad \mathbf{E} = -\mathbf{\nabla} V - \frac{\partial \mathbf{A}}{\partial t}.$

$$\nabla^2 V + \frac{\partial}{\partial t} (\nabla \cdot \mathbf{A}) = -\frac{1}{\epsilon_0} \rho;$$

$$\left(\nabla^{2}\mathbf{A} - \mu_{0}\epsilon_{0}\frac{\partial^{2}\mathbf{A}}{\partial t^{2}}\right) - \nabla\left(\nabla\cdot\mathbf{A} + \mu_{0}\epsilon_{0}\frac{\partial V}{\partial t}\right) = -\mu_{0}\mathbf{J}.$$
(IV)

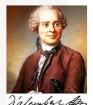
Potenciais escalar e vetor. Operador d'Alembertiano.

Recordando

• Exercício 2:

Mostre que as equações diferenciais para $V \in \mathbf{A}$ (III e IV) podem ser escritas na forma mais simétrica:

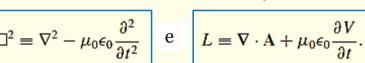
$$\nabla^2 V + \frac{\partial}{\partial t} (\nabla \cdot \mathbf{A}) = -\frac{1}{\epsilon_0} \rho;$$



onde

$$(V) \qquad \Box^2 V + \frac{\partial L}{\partial t} = -\frac{1}{\epsilon_0} \rho,$$

(VI)
$$\Box^2 \mathbf{A} - \nabla L = -\mu_0 \mathbf{J},$$



Operador d'Alembertiano

14

Transformações de calibre

- *Problema*: As equações (I) e (II) não definem univocamente os potenciais...
- Podemos supor condições extras para V e
 A, que não alterem E e B, i.e., se também forem soluções das equações (I) e (II)...
- · Essa é a Invariância de calibre.
- Suponha, p. ex., as soluções **A**' e V', em que se soma uma *função escalar* λ (**r**,t):

$$A' = A + \nabla \lambda, V' = V - \frac{\partial \lambda}{\partial t}.$$

• Verifica-se, de fato, que:

$$\mathbf{B} = \nabla \times \mathbf{A}. \quad (\mathbf{I})$$

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}.$$
 (II)

• $\mathbf{B}' = \nabla \times \mathbf{A}' = \nabla \times \mathbf{A} + \nabla \times \nabla \lambda$ $\therefore \mathbf{B}' = \nabla \times \mathbf{A} = \mathbf{B}$

•
$$\mathbf{E}' = -\nabla V' - \frac{\partial \mathbf{A}'}{\partial t} =$$

$$= -\nabla V + \frac{\partial (\nabla \lambda)}{\partial t} - \frac{\partial \mathbf{A}}{\partial t} - \frac{\partial (\nabla \lambda)}{\partial t} =$$

$$\therefore \mathbf{E}' = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} = \mathbf{E} \quad \mathbf{V}$$

Transformações de calibre. Calibre de Coulomb

(III)

- Assim, existem inúmeras soluções para os potenciais $V \in \mathbf{A}$, associados aos mesmos valores de $\mathbf{E} \in \mathbf{B}$.
- Podemos usar a invariância dos campos
 E e B com transformações de calibre a nosso favor, escolhendo as funções λ de modo a simplificar as equações.
- **Fixação de calibre**: escolha de λ
- (I) No Calibre de Coulomb, escolhese a função λ de modo que: $\nabla \cdot \mathbf{A} = 0$. tal como na *magnetostática*.
- Com isso, a eq. (IV) fica:

$$\nabla^{2}V + \frac{\partial}{\partial t}(\nabla \cdot \mathbf{A}) = -\frac{1}{\epsilon_{0}}\rho;$$

$$(IV)$$

$$\left(\nabla^{2}\mathbf{A} - \mu_{0}\epsilon_{0}\frac{\partial^{2}\mathbf{A}}{\partial t^{2}}\right) - \nabla\left(\nabla \cdot \mathbf{A} + \mu_{0}\epsilon_{0}\frac{\partial V}{\partial t}\right) = -\mu_{0}\mathbf{J}.$$

$$\therefore \left(\nabla^2 \mathbf{A} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{A}}{\partial t^2} \right) - \nabla \left(\mu_0 \epsilon_0 \frac{\partial V}{\partial t} \right) = -\mu_0 \mathbf{J}.$$

• E, no caso da magnetostática:

$$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}$$
. 3 eqs. de Poisson

...cuja solução é (se $\mathbf{J}=0$ p/ $r\rightarrow~\infty)$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\imath} \, d\tau'.$$

Transformações de calibre. Calibre de Coulomb

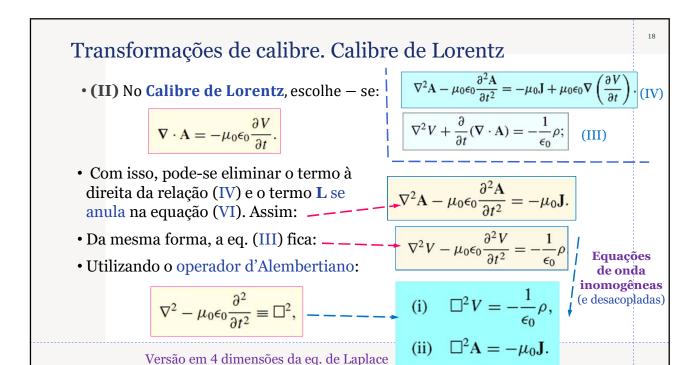
17

• No caso *eletrostático*, então

$$\nabla^2 V = -\frac{1}{\epsilon_0} \rho.$$
 Eq. de Poisson
$$V(\mathbf{r}, t) = \frac{1}{4\pi \epsilon_0} \int \frac{\rho(\mathbf{r}', t)}{\imath} d\tau'.$$
 ... cuja solução é (se $V = 0$ p/ $r \to \infty$)

- Qualquer alteração na distribuição de cargas ρ afeta o potencial V a qualquer distância r, teoricamente no mesmo instante!
- Mas *V não é mensurável*, e, sim, *E* e *B*, nesse mesmo ponto.
- Mas *E* depende dos dois potenciais, e seu valor depende de uma *variação* no tempo do potencial *A*. Porém, *A* é mais difícil de calcular...

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}. \qquad \mathbf{e} \qquad \nabla^2 \mathbf{A} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J} + \mu_0 \epsilon_0 \nabla \left(\frac{\partial V}{\partial t}\right).$$



18

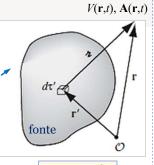
 $\nabla^2 - \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} \equiv \Box^2,$ Potenciais retardados • Quais as soluções para as equações (i) e (ii)? (i) $\Box^2 V = -\frac{1}{\epsilon_0} \rho$, • No caso estático, como vimos: $\nabla^2 V = -\frac{1}{\epsilon_0} \rho, \quad \nabla^2 \mathbf{A} = -\mu_0 \mathbf{J},$ (ii) $\Box^2 \mathbf{A} = -\mu_0 \mathbf{J}$ com as soluções gerais conhecidas: $V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}')}{\hbar} d\tau', \quad \mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\hbar} d\tau',$ As alterações (sinais) eletromagnéticos viajam à velocidade da luz. Então, no caso dinâmico, interessa o status da fonte num instante fonte anterior t_r , quando o sinal foi *emitido*. Tempo retardado Retardo (tempo de r' a r) 19

Potenciais retardados

• Assim, as soluções gerais para os potenciais, para fontes que se alteram no tempo devem ser:

$$V(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}',t_r)}{\imath} \, d\tau', \quad \ \, \mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}',t_r)}{\imath} \, d\tau'. \label{eq:V}$$

- Como ρ e **J** são calculados num tempo anterior (t_r) , eles são chamados Potenciais retardados.
- Quanto > ι , < é o instante de tempo t_r retardado.
- Essas soluções só têm sentido no calibre de Lorentz, já que, no calibre de Coulomb, a informação é instantânea.
- Elas satisfazem as eqs. (i) e (ii) e o calibre de Lorentz, de fato?



 $t_r \equiv t - \frac{\pi}{c}.$

• Vamos calcular o *laplaciano* de *V...*

20

Potenciais retardados

 $V(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}',t_r)}{\imath} \, d\tau', \quad \mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}',t_r)}{\imath} \, d\tau'.$

- Inicialmente, o gradiente de V será:
- : $\nabla V = \frac{1}{4\pi\epsilon_0} \int \left[(\nabla \rho) \frac{1}{\imath} + \rho \nabla \left(\frac{1}{\imath} \right) \right] d\tau'$

e $\nabla \rho = \frac{\partial \rho}{\partial t} \vec{\nabla} t_r = \frac{\partial \rho}{\partial t} \left(-\frac{1}{c} \vec{\nabla} \Lambda \right) = -\frac{1}{c} \dot{\rho} \hat{\lambda}$ sendo $\dot{\rho} = \frac{\partial \rho}{\partial t}$

- $: \nabla V = \frac{1}{4\pi\epsilon_0} \int \left[-\frac{\dot{\rho}}{c} \frac{\hat{\imath}}{\imath} \rho \frac{\hat{\imath}}{\imath^2} \right] d\tau'$ já que $\nabla \cdot \left(\frac{\hat{\imath}}{\imath} \right) = \frac{1}{\imath^2}$
- Tomando o divergente:

$$\dot{\nabla}^2 V = \frac{1}{4\pi\epsilon_0} \int \left\{ -\frac{1}{c} \left[\frac{\hat{\imath}}{\imath} \cdot (\nabla \dot{\rho}) + \dot{\rho} \, \nabla \cdot \left(\frac{\hat{\imath}}{\imath} \right) \right] - \left[\frac{\hat{\imath}}{\imath^2} \cdot (\nabla \rho) + \rho \, \nabla \cdot \left(\frac{\hat{\imath}}{\imath^2} \right) \right] \right\} d\tau'$$

• Mas considerando que: $\nabla \dot{\rho} = -\frac{1}{c} \ddot{\rho} \nabla z = -\frac{1}{c} \ddot{\rho} \hat{\lambda}$, $\nabla \cdot \left(\frac{\hat{\lambda}}{z^2}\right) = 4\pi \delta^3(\lambda)$

Potenciais retardados

- ...Chegamos a: $\nabla^2 V = \frac{1}{4\pi\epsilon_0} \int \left[\frac{1}{c^2} \frac{\ddot{\rho}}{\imath} 4\pi\rho \delta^3(\imath) \right] d\tau' = \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} \frac{1}{\epsilon_0} \rho(\mathbf{r}, t),$
- ... o que confirma que o Potencial retardado satisfaz a equação de onda inomogênea.
- Incidentalmente, essa dedução também se aplica a tempos avançados (futuros) e Potenciais avançados, em que se avalia cargas e densidades de correntes em instantes futuros t_a .
- : $V_a(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}',t_a)}{\imath} d\tau'$, $A_a(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \frac{J(\mathbf{r}',t_a)}{\imath} d\tau'$, sendo $t_a \equiv t + \frac{\imath}{c}$.
- Os potenciais *avançados* são inteiramente consistentes com as eqs. de Maxwell, porém violam o *princípio da causalidade*, que é sagrado na física.
- Eles sugerem que os potenciais agora dependem de qual será a carga e a
 distribuição de corrente em algum momento futuro ... I.e., o efeito viria antes da
 causa!

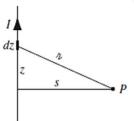
22

Potenciais retardados

• Exercício 3:

Um fio reto infinito transporta a corrente:

$$I(t) = \begin{cases} 0, & \text{for } t \le 0, \\ I_0, & \text{for } t > 0. \end{cases}$$



Assim, uma corrente constante I_0 é acionada abruptamente quando t=0.

- (a) Encontre os campos elétrico e magnético gerados.
- (b) Repita o problema para o caso em que $I_0 = kt$.