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Narrative Review

A new statistical trend in clinical research –
Bayesian statistics

Arnold Y. L. Wong, Sharon Warren, Gregory N. Kawchuk*

Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Canada

Background: The emphasis on evidence-based practice in physical therapy has increased the number of
clinicians who perform and interpret clinical research. Unfortunately, the traditional statistical analysis
(frequentist approach) used most often in clinical research (except meta-analysis) has been criticized by
biostatisticians for potential bias and misleading results if used with data from single studies. Alternatively,
Bayesian inference can be used instead of the traditional frequentist approach although this trend has yet
to be seen in rehabilitation research. Used for at least three decades, the Bayesian approach provides a
formal framework for researchers to incorporate prior knowledge and current evidence to derive new
probabilities for various hypotheses. Since the results are presented in terms of probability, clinicians can
interpret and apply research findings to clinical practice directly.
Objectives: The objectives of this review are to discuss the common misconceptions among users of the
frequentist approach, the inherent limitations of the frequentist approach, as well as to introduce the
characteristics and limitations of the Bayesian approach using illustrated examples.
Conclusions: The Bayesian approach can be used as an alternative or adjunct to the frequentist method in
future studies. This approach is also robust in situations that are unfavourable to traditional statistics such
as sequential clinical trials. However, biostatisticians may have to be consulted for some sophisticated
Bayesian analysis. As the Bayesian approach may gain popularity, a good understanding of this method
will benefit clinicians in interpreting research papers and planning their future clinical studies.

Keywords: Bayesian approach, Clinical research, Hypothesis testing, Rehabilitation, Statistics, Review

Introduction
With the increasing demand for evidence-based

clinical practice, rehabilitation clinicians are expected

to be competent in both interpreting results of

research papers and carrying out clinical research at

their workplace.1 While most clinicians have been

trained in hypothesis testing using a traditional

approach (also known as the frequentist method),2

they may not be aware of some of the limitations of

this traditional statistical method3,4 or the presence of

alternative statistical methods.

The purpose of inferential statistics is to generalize

sample findings to a targeted population parameter (a

characteristic that describes a population). There are

two mainstream approaches to inferential statistical

methods, namely, the frequentist and Bayesian

approaches. The frequentist approach applies the

concept of proof by contradiction.5 Although there

are different statistical tests under the frequentist

approach, a typical frequentist test usually involves

two hypotheses: a null hypothesis (Ho) and an

alternative hypothesis (Ha). Frequentists presume Ho

to be true before the start of the experiment in order to

predict the outcome. If the empirical sample data do not

support Ho, Ho is rejected.5 This method is traditionally

classified as an objective method. However, some

biostatisticians criticize this method because conclu-

sions are based on the results of a single study.4

In contrast to the frequentist approach, the

Bayesian approach derives the probabilities (‘poster-

ior’ probability) of population parameters from the

empirical data of the current experiment and the

corresponding probabilities (‘prior’ probability) of

these parameters reported in previous studies.6 Such

deduction is achieved by the repeated use of Bayes’

theorem, discussed below. The resulting inferences

are expressed by the ‘posterior’ probabilities of the

observations conditional on the parameters. The

observation with the highest posterior probability is

usually accepted as more likely to be true. However,

some researchers criticize the ‘subjective’ determina-

tion of ‘prior’ probability.6

Despite the perception that the Bayesian approach

is subjective, it has been proposed as a surrogate or
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an adjunct to the frequentist approach because it

incorporates different knowledge (like the physiolo-

gical knowledge) and evidence from previous

studies4,7 into statistical analysis. These considera-

tions can prevent the incorrect (although inadvertent)

interpretation of the results and improve the cred-

ibility of studies. The Bayesian approach is now

applied to many scientific areas.7–11 Leading medical

journals have also provided guidelines to users of the

Bayesian method.12,13 Unfortunately, there are few, if

any, examples of the use of the Bayesian approach in

rehabilitation research. The aims of this paper are to

(1) highlight common misconceptions among users of

the frequentist method, (2) identify limitations of the

frequentist statistical approach, (3) introduce the

concept and limitations of Bayesian inference and (4)

give suggestions for future applications in rehabilita-

tion research. By understanding these two statistical

approaches, clinicians may be more confident in

evaluating, designing and performing clinical

research.

Historical Development of the Frequentist
Approach
The contemporary frequentist approach originated

from the concepts of P-value and hypothesis testing.

The use of the P-value was first proposed by R. A.

Fisher in the 1920s.14 By definition, the P-value

represents the probability of obtaining a result at

least as extreme as the actual observed data if the null

hypothesis is true.6 Therefore, the P-value measures

the evidence against a single Ho (e.g. null effect of

treatment). Fisher did not provide specific guidelines

for using the P-value. He simply suggested combining

the P-value with background information in order to

justify the Ho rejection. Although Fisher proposed a

mathematical method to deduce P-value, his method

makes no reference to any alternative hypothesis. It

simply examines whether the observed data look

extreme or not.15 Neyman and Pearson proposed an

alternative statistical method to make inferences

using the concept of hypothesis testing, in which Ho

(there is no difference or no effect), Ha (an opposite

of Ho), alpha (a, probability of false positive error)

and beta (b, probability of false negative error) value

are predefined for the inference.16 Two types of error

may arise in hypothesis testing. Type I error (false

positive error) occurs if a researcher rejects a true

Ho,5 while Type II error (false negative error) occurs

if a researcher fails to reject a false Ho.5 Neyman and

Pearson suggested researchers make inferential judg-

ments based on the relative importance of these

errors.16 This method emphasizes limiting Type I or

Type II errors of a statement in the long-run at the

expense of proving the truth or falsehood of each

separate hypothesis.

Two separate concepts of P-value and hypothesis

testing are, however, combined in current frequentist

statistics. In a typical approach, Ho and Ha are

determined after the identification of a clear research

question. Since the test statistic (a characteristic that

describes a sample, such as the mean) of random

samples drawn from a population will vary from one

another, the resulting sampling distribution of test

statistic will form a specific pattern (e.g. normal

distribution).5 Sampling distribution of a test statistic

under Ho is the theoretical distribution of the test

statistic if Ho is true. Such distribution together with

a predetermined alpha-value can verify whether Ho

can correctly predict the sample test statistic. An

alpha-value is conventionally set at either 0.01 or

0.05. The extremely unlikely sample outcomes, as

defined by the alpha-value, make up the critical

regions in the ‘tails’ of the sampling distribution of a

test statistic under Ho. If the test statistic (evidence)

falls into the critical region, Ho is rejected. As a result,

one will conclude that the observed result is unlikely

to occur by chance given Ho is true.5 Therefore, the

frequentist method uses an alpha-value to confine the

long-run probability of Type I error and makes an

inference solely based on the sample data. Although

it is a logical concept, there are some common

misconceptions among some who use the frequentist

approach.

Common Misconceptions of the Frequentist
Approach
One common misconception of the frequentist

approach is the interpretation of the P-value. The

P-value is commonly misinterpreted as the Type I

error of sample statistics.17 Although both P and

alpha-values represent the tailed-area probability of

the sampling distribution of a test statistic under Ho,

the P-value is not a measure of sample Type I

error.4,5 The P-value only indicates the probability of

finding the observed value or more extreme value if

Ho is true. This concept is illustrated by the six-

minute walk test (6 MWT) results of a resistance

exercise (RE) group in a study examining the efficacy

of home-based exercise programmes among breast

cancer survivors.18 The 6 MWT was carried out at

baseline and 12-weeks post-exercise programme on

subjects in the RE group. Ho stated that the

difference in the walking distance of 6 MWT between

pre- and post-12-week exercise of subjects in RE

group was less than or equal to zero. The Wilcoxin-

Signed Rank Test showed a significant improvement

in their walking distance (Z52.366, one-tailed

P50.009) at the end of 12-week period. The alpha-

value of the test was set at 0.01. Figure 1 displays the

test result. One should note that the curve represent-

ing the sampling distribution of differences in

Wong et al. Statistical trend in clinical research
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pre- and post-walking distance of 6 MWT under Ho

is not in the exact scale and the actual distribution of

data may not be normally distributed. The P-value in

this case was very small (P50.009) since the observed

value was found at the extreme end of this sampling

distribution under Ho. However, the P-value can

sometimes be very large if the observed value is close

to the centre of the distribution or has a sample mean

close to the value specified in Ho. Unlike the P-value,

the alpha-value is adopted by researchers before the

commencement of an experiment. The alpha-value is

independent of the experimental results while the P-

value depends on the results. In other words, the P-

value in a single study can only serve as evidence

against Ho. It is not equivalent to the alpha-value,

which represents the maximum Type I error that

researchers will tolerate if a true Ho is rejected.

Another common error made when using the

frequentist approach is treating the P-value as either

the probability of having the observed data due to

chance, or the probability of a true Ho.19 The distinction

between these errors and the true definition is the

absence of the phrase ‘if Ho is true’.19 Since Ho is

assumed to be true in the hypothesis test, the P-value

can only quantify the probability of obtaining a result

equal to or more extreme than the actual observation,

given Ho is true. It cannot calculate the actual

probability of a true Ho. The frequentist method is not

intended to measure the probability of any hypothesis.

Besides the common misunderstanding of the P-

value, some clinicians may misinterpret the meaning of

a 95% confidence interval (CI), therefore affecting

their application of research findings to clinical

practice. In the frequentist approach, every population

parameter (such as a true treatment effect) is usually

assumed to be a single unknown value that will vary

over time. A 95% CI is interpreted as the long-run

probability of this interval including the true popula-

tion parameter. It only denotes that if random samples

of the identical sample size are repetitively drawn from

a population, 95% of the resulting sample mean

intervals will contain the true population mean while

5% will not (Fig. 2). Hence, a deduced 95% CI of

sample mean from a single sample may or may not

contain the true population mean. Instead of inter-

preting CI in terms of probability, one should only

state that there is 95% confidence that the actual

population mean can be found within this interval.

Despite the aforementioned misconceptions, one

should note that the frequentist approach is a very

useful statistical tool as long as users are aware of

common misconceptions.

Limitations of the Frequentist Approach
Like any type of statistical method, the frequentist

approach has its limitations. Since the frequentist

method does not intend to estimate the probability of

different hypotheses, it may not provide the most

pertinent information to clinicians. Clinicians always

want to know the probability of a true Ho or Ha given

the observed evidence. In a hypothetical experiment

investigating the effect of ultrasound therapy (US)

and cryotherapy (Fig. 3), the frequentist approach

can provide a P-value or CI of an observed

experimental result. Although it provides useful

inference, clinicians may prefer to directly obtain

the probability of different hypotheses, which

allows them to choose the most effective treatment

modalities.

Figure 2 Graphical representation of 95% confidence inter-

vals (CI) of a population mean. Each horizontal solid line

represents a 95% CI that contains the true population mean.

The horizontal dotted line represents a 95% CI that does not

contain the true population mean. The vertical line repre-

sents the true population mean. A 95% CI will either contain

the true population mean or it will not. It is an all-or-none

phenomenon

Figure 1 A sampling distribution of difference in walking

distance of 6 MWT of pre- and post-resistance exercise

programme in a study investigating the efficacy of home-

based exercise on breast cancer survivors. It represents the

probability of every possible outcome under null hypothesis

(Ho). With a50.01, Z52.33 defines the boundary that

separates the extreme 1% from the rest of 99% possible

value of sampling distribution under Ho. The critical region,

determined by alpha-value, is composed of extreme sample

values that are very unlikely to be observed if Ho is true. The

P-value is the probability of finding results equal to or more

extreme than the actual observed sample data given Ho is

true. The P-value is obtained after data collection (P50.009

when the empirical data, Z52.366). Both alpha and P-value

are found at the tail region of this sampling distribution. (The

above sampling distribution may not reflect the actual

distribution from sample data and the critical region should

cover the infinite value on the right hand side of the curve).

Wong et al. Statistical trend in clinical research
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Besides the aforementioned limitation, the P-value

is highly vulnerable to artifacts as a result of sample

size. Theoretically, even the smallest treatment

difference can become statistically significant if the

sample size is sufficiently large, as is the case in large

scale clinical trials.3,20

The frequentist approach may also cause inflex-

ibility on some research designs. In order to control

the Type I error in the long run, sophisticated designs

and calculations are required in studies such as

sequential clinical trials. In sequential trials, interim

analyses and multiple endpoint comparisons are

performed. The result of each interim analysis will

affect the subsequent progression of the studies. Since

each interim analysis is associated with a risk of Type

I error, the potential cumulative errors resulting from

multiple interim inspections may inflate the overall

false-positive findings in the research. Strict control

over the study design and adjustment of nominal

significance level for each interim test are needed

prior to the experiment.21 This restriction inevitably

prohibits the amendment of study protocols when an

unforeseeable situation occurs during the experimen-

tal period.6 For example, it is impossible to eliminate

part of the interim data collections even if there are

tight financial constraints during the research period.

Such inflexibility of the frequentist approach can be

circumvented by the Bayesian approach, which does

not require the calculation of the alpha-value.3,22

Although the frequentist approach is supposed to

be an ‘objective’ statistical approach, the choice of

alpha-value and interpretation of the P-value are

implicitly subjective. The arbitrary choice of alpha-

value has never been justified although it is generally

accepted as 0.01 or 0.05.23 Furthermore, the P-value

may be used inconsistently for inference.4,17 When an

unexpectedly large P-value is obtained from a study,

some investigators may justify their preconceived

notions by imputing the insignificant result to small

sample size or describing the findings as ‘trend’ or

‘very likely to have effect’. However, if the P-value in

a study is small, researchers may blindly accept the

alternative hypothesis without the same critical

thought, and rationalize their findings with new self

created theories. Even though it may indicate a

genuine new discovery, it may also imply an

inconsistent interpretation of P-value.4 To improve

the interpretability of results, the inclusion of 95%CI

in research reports has been suggested.5

The Bayesian Approach
An alternative to the frequentist approach is the

Bayesian inference. Bayes’ theorem (equation (1))

was first proposed 200 years ago by the Reverend

Thomas Bayes.3,6 It is a mathematical formula using

‘prior’ probability (‘prior’) obtained from previous

studies and evidence from a current study to calculate

the ‘posterior’ probability (‘posterior’) of different

hypotheses.6 It is a conditional probability that takes

into account the ‘prior’ and observed probability of a

particular hypothesis and its rival alternative hypoth-

eses. Based on the external knowledge and evidence

from available literature, investigators formulate the

‘prior’ of all hypotheses before the start of an

experiment. On completion of the experiment, new

supportive or non-supportive evidence for a particu-

lar hypothesis is obtained. This new evidence will

update the ‘prior’ to derive the ‘posterior’ of a

particular hypothesis

P(HijData)~
P(DatajHi)P(Hi)

P2

j~1

P(DatajHj)P(Hj)

(i~1, 2) (1)

In equation (1), Hi represents mutually exclusive rival

hypotheses where i51 and 2. Although i and j can be

any number, they are limited to 2 for this example.

P(Hi) represents the ‘prior’ probabilities of two

hypotheses. The probabilities, P(Data|Hi) (i51,2), of

observing supportive evidence (Data) for a particular

Hi given Hi is true, are also known as the likelihoods

of the sample data. The ‘posterior’ probabilities,

P(Hi|Data) (i51,2), of two hypotheses being true are

updated based on the relative weight of newly

observed evidence (Data) and previous knowledge,

P(Hi). The denominator of the right-hand side of

Figure 3 Experiment comparing the treatment effect of

ultrasound therapy (US) and cryotherapy in whirlpool for

patients with an acute sprained ankle. RICE stands for rest,

ice, compression and elevation of leg above the heart level.

In the frequentist approach, null hypothesis (Ho) is that there

is no difference in treatment effect between US and

cryotherapy when treating patients with a sprained ankle.

Alternative hypothesis (Ha) is that there is a difference in

treatment effect between US and cryotherapy in the treat-

ment of sprained ankles. alpha50.05.

Wong et al. Statistical trend in clinical research
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equation (1) is simply a normalizing constant inde-

pendent of i.6

Since the original Bayes’ theorem requires the

calculation of probabilities of all the possible

hypotheses in the denominator, a likelihood ratio

(also called Bayes factor, BF) is used as an alternative

to simplify the calculation (Fig. 4). BF is the ratio of

the conditional probability of observed data given Ho

and the conditional probability of observed data

given Ha. Similar to hypothesis testing in the

frequentist approach, the Bayesian approach uses

BF to compare two hypotheses at a time. It compares

how well each hypothesis predicts the observed data

of a given study.6 The hypothesis that predicts data

more accurately will be supported by more new

evidence.17 If more evidence supports Ho, the BF will

increase and vice versa. The combination of BF and

‘prior’ modifies the previous ‘belief’ and leads to new

‘posterior’ for both hypotheses.24,25

To demonstrate the calculation of ‘posterior’ using

the Bayesian approach, we revert to the hypothetical

US and cryotherapy experiment. A successful treat-

ment (m) is defined as >80% recovery of a sprained

ankle. From the total number of m in each treatment

group (within the first 4 weeks of treatment), the

likelihood for m to occur within each treatment group

at a different period can be calculated. Table 1 shows

the hypothetical probability distributions (likeli-

hoods) of observed m in two treatment groups. The

likelihoods of m in US and cryotherapy group at

different weeks are denoted by discrete f(m|US) and

f(m|Ice) respectively. These probability distributions

show that most of m are observed within the first

2 weeks of US treatment while most of m in the

cryotherapy group are found in the third and fourth

week of treatment. However, the ‘posterior’ distribu-

tions of m may be changed by the incorporation of

‘prior’. Table 2 shows the ‘posterior’ for all values of

m under the influence of three sets of ‘prior’: (1) each

treatment modality has the same ‘prior’ for m (equal

to 0.50), (2) cryotherapy is nine times more probable

than US for m, and (3) US is four times more

probable than cryotherapy to obtain m. If equal

probability (0.50) is assigned to both treatments, the

resulting ‘posterior’ distributions will be similar to

that of the observed results. If the ‘prior’ distributions

are similar to that of the observed data, the ‘poster-

ior’ will further support the ‘prior’. An example of

Table 1 A hypothetical observed probability distribution of successful treatment from patients with a sprained ankle
receiving ultrasound therapy (US) and cryotherapy (Ice) over first 4 weeks

Successful treatment (m) after First week Second week Third week Fourth week

f(m|US) 0.72 0.18 0.07 0.03
f(m|Ice) 0.10 0.006 0.47 0.424

Note: successful treatment is defined as >80% recovery for a sprained ankle. The probability distributions of successful treatment from
US and cryotherapy group are defined by their discrete densities f(m|US) and f(m|Ice) respectively.

Figure 4 ‘Odds’ form of Bayes’ theorem. Ho is the null

hypothesis, Ha is the alternative hypothesis. P(Ho|Data) is the

‘posterior’ probability of Ho given the observed data.

P(Ha|Data) is the ‘posterior’ probability of Ha given the

observed data. The ratio of these ‘posterior’ probabilities

constitutes the ‘posterior’ odds ratio. P(Data|Ho) is a condi-

tional probability meaning probability of Data (empirical

outcome) to be observed given that Ho is true. P(Data|Ha) is

a conditional probability meaning probability of Data to be

observed given Ha. Bayes factor (BF) is a likelihood ratio

between these two conditional probabilities. P (Ho) and P (Ha)

represent the ‘prior’ probability of Ho and Ha respectively. If

Ho is the complement of Ha, P (Ho) plus P (Ha) must be equal

to 1.

Table 2 Calculation of ‘posterior’ probability of sprained ankle treatment in ultrasound (US) & cryotherapy (Ice) group
using Bayes’ theorem based on three different ‘prior’ distributions x, y and z

‘Prior’ probability ‘Posterior’ probability First week Second week Third week Fourth week

Px(US)50.50 Px(US|m) 0.88 0.97 0.01 0.07
Px(Ice)50.50 Px(Ice|m) 0.12 0.03 0.99 0.93
Py(US)50.10 Py(US|m) 0.44 0.77 0.02 0.008
Py(Ice)50.90 Py(Ice|m) 0.56 0.23 0.98 0.992
Pz(US)50.80 Pz(US|m) 0.97 0.99 0.37 0.22
Pz(Ice)50.20 Pz(Ice|m) 0.03 0.01 0.63 0.78

Notes: Px(US) & Px(Ice); Py(US) & Py(Ice); and Pz (US) & Pz(Ice) are different sets of ‘prior’ probabilities distributions for the ultrasound
therapy and cryotherapy; Px(US|m) & Px(Ice|m); Py(US|m) & Py(Ice|m); and Pz(US|m) & Pz(Ice|m) are the corresponding pairs of ‘posterior’
probabilities of ultrasound therapy and cryotherapy. The ‘posterior’ probabilities are calculated from Bayes’ theorem by combining the
empirical data in Table 1 and different set of ‘prior’ probabilities in Table 2.
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this is when ‘prior’ favours US [Pz(US)50.80;

Pz(Ice)50.20], ‘posterior’ further supports that US

is more likely to have a successful treatment in the

first week, than cryotherapy [Pz(US|m)50.97;

Pz(Ice|m)50.03]. It implies that if a patient is

successfully treated within the first week, there is a

97% chance that this patient received US given US

and cryotherapy as the treatment options. Under

another situation, ‘prior’ may wash out the effect of

observed data. For instance, when the ‘prior’ strongly

favours cryotherapy [Py(US)50.10; Py(Ice)50.90],

the resulting ‘posterior’ will favour cryotherapy

[Py(US|m)50.44; Py(Ice|m)50.56] although the distri-

bution of observed data favours US [f(m|US)50.72;

f(m|Ice)50.10]. The resulting ‘posterior’ makes the

cryotherapy group more likely to obtain successful

treatment in the first week. However, if the empirical

evidence is strong, the existence of contradicting

‘prior’ may not change the conclusions. For example,

the ‘posterior’ still favours cryotherapy in the fourth

week [Pz(US|m)50.22; Pz(Ice|m)50.78] although

‘prior’ favours US [Pz(US)50.80; Pz(Ice|m)50.20]. It

implies that if a patient requires 4 weeks to be

successfully treated, there is a 78% chance that this

patient was treated by cryotherapy given the treat-

ment option of either US or cryotherapy. Regardless

of the effect of ‘prior’ on the observed data, the

‘posterior’ derived by Bayes’ theorem can be used as

‘prior’ for future studies.

Although the previous example illustrates the

calculation of ‘posterior’ for a discrete random

variable (successful treatment), the Bayesian method

can be used to infer the probability distributions of

continuous population parameters (such as walking

distance) based on that of the sample test statistics.6

In the Bayesian approach, a continuous population

parameter (theta) is considered to be a random

variable that has different values and corresponding

probabilities. The set of all possible unobserved

values of theta is called the parameter space. The

Bayesian approach assumes that our knowledge of

the true value of theta can be expressed by a

probability distribution over the parameter space.6,26

The prior knowledge of a parameter is expressed as a

‘prior’ distribution of theta. Empirical data update

the ‘prior’, and the resulting information of theta is

described by its ‘posterior’ distribution.6,26 To

illustrate this concept graphically, the 6 MWT result

from a study investigating the walking distance of

post-cardiac surgery patients before an in-hospital

rehabilitation programme is used.27 Figure 5A shows

the simulated probability distributions of walking

distance of male post-cardiac surgery patients aged

>71 with left ventricle ejection fraction >50%.27

Since the original study did not use the Bayesian

approach, we simulate the ‘prior’, ‘posterior’ dis-

tribution and the distribution of observed walking

distance in this figure. The ‘prior’ distribution is

modified by the observed data to obtain a ‘posterior’

distribution. Although the ‘posterior’ distribution

constitutes the complete inferential statement about

theta, sometimes a certain summary measure of this

‘posterior’ distribution may suffice. Therefore, the

95% credible interval, in which there is 95% prob-

ability that the true theta lies (Fig. 5B), is commonly

used.6 This credible interval is similar to the

frequentist 95% CI except it reports in terms of

probability. In general, the resulting ‘posterior’ can

be reported as a single value with the highest

posterior probability density (Bayesian point esti-

mate) or as a more informative summary (Bayesian

credible interval).6,19 Table 3 shows the similarities

and differences between the frequentist and the

Bayesian approaches.

Given the key role of ‘prior’ in the Bayesian

approach, it is essential to choose an appropriate

Figure 5 (A) A simulated ‘prior’, ‘posterior’ probability distribution and the distribution of observed walking distance in 6-

minute walk test (6 MWT) of male post-cardiac surgery patients (>71 age with left ventricle ejection fraction >50%) in a study

investigating the walking distance of post-cardiac surgery patients before an in-hospital rehabilitation programme.27 The

simulated data are used because the original study did not use the Bayesian approach. The ‘prior’ distribution is modified by

the observed data to obtain a ‘posterior’ distribution. (B) A simulated posterior probability distribution of the walking distance

of 6 MWT of male post-cardiac surgery patients in a study investigating the walking distance of 6 MWT before an in-hospital

rehabilitation programme.27 A 95% credible interval is determined from the ‘posterior’ probability distribution.
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‘prior’. In general, ‘prior’ or ‘prior’ distribution is

chosen based on researchers’ knowledge, experts’

opinions and available literatures. Different mathe-

matical methods and ‘prior’ distribution models have

been proposed for situations encompassing prior

ignorance, vague prior knowledge and substantial

prior knowledge.6,26,28 Given the complexity of this

topic, readers are referred to appropriate statistics

books for detail.6,26,28

Since the philosophy of the Bayesian approach is

different from that of the frequentist approach, it

allows calculation of the probability of the data

under a true Ho. Goodman calculated different Bayes

factors corresponding to different P-values found in

the frequentist method (Table 4). He showed that if

the P-value in an experiment calculated by the

frequentist method was equal to 0.05, but the results

from previous studies strongly supported Ho (75%

‘prior’), the ‘posterior’ of a true Ho calculated from

Bayes’ theorem using BF51/6.8 would be as high as

31%. The calculation is shown below

P(HojData)

1{P(HojData)
~

1

6:8
|

0:75

0:25
~0:45;

where 1{P(HojData)~P(HajData)

P(H0jData)~
0:45

1z0:45
~0:3103 (i:e: 31:03%)

Characteristics of the Bayesian Approach
Therapeutic effect exploration
The Bayesian approach can be as effective as the

frequentist approach in assessing the magnitude of

therapeutic effect. It can precisely estimate all

possible differences between two treatments by

defining multiple hypotheses.22 The strength of

evidence for each hypothesis is proportional to the

probability of observed data under that hypothesis in

the form of BF. The idea of multiple comparisons can

be once again explained by the US and cryotherapy

experiment. Given that the treatment effects of two

therapies may vary among individuals, the actual

differences in treatment effect in the population may

be distributed over a range. To identify the most

probable treatment effect, researchers can establish

multiple hypotheses ranging from those favouring

cryotherapy to those favouring US (e.g. 0 to 100%

difference). From the observed results, researchers

can subsequently compare BFs of all hypotheses and

identify the one that has the highest ‘posterior’.

Table 3 Comparison between the frequentist and the Bayesian approach

Frequentist Bayesian

‘Prior’ probability determination Unnecessary Essential
‘Posterior’ probability Cannot be calculated Official outcome
Sample size Predetermined Unrestricted
Hypothesis testing Predetermined Unrestricted
Truth of null hypothesis Assumed Not assumed
Point estimate P-value ‘Posterior’ probability
Interval estimate Confidence interval Credible interval
Alpha and beta value Predetermined Unnecessary
Interim analysis Predetermined Unrestricted

Table 4 Relation between two-sided, fixed sample size P-values under Gaussian distribution and corresponding Bayes
factor and the effect of such evidence on the probability of the null hypothesis (Ho)

Frequentist statistics Current sample results Bayesian statistics

P-value (Z-score)
Corresponding Bayes factor
(strength of evidence against Ho)

Change in probability of Ho

Prior probability of Ho Posterior probability of Ho

0.10 (1.64) 1/3.8 (weak) 75 (strong support) 44
50 21
17 (weak support) 5

0.05 (1.96) 1/6.8 (moderate) 75 (strong support) 31
50 13
26 (weak support) 5

0.01 (2.58) 1/28 (moderate to strong) 75 (strong support) 10
60 5
50 (neutral support) 3.5

Notes: This table shows the relation between the P-values (from frequentist approach), Bayes factor (from empirical data using the
Bayesian approach) and different ‘posterior’ probabilities of true Ho (by the Bayesian approach). For example, when P50.05,
corresponding Bayes factor51/6.8 and the ‘prior’ probability for Ho calculated from previous studies is 75%, the ‘posterior’ probability
of a true H0 calculated by the Bayesian approach is still as high as 31%. (Table is modified from Goodman17 article with permission).
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Meta-analysis
The Bayesian model is well suited to meta-analysis

because it provides a clear framework to analyze

information from different sources.19,29 For example,

a researcher investigating the effect of US and

cryotherapy in treating a sprained ankle by Bayesian

meta-analysis would attribute equal probability weight

to the ‘prior’ of each hypothesis in the first (A) of five

chronologically published studies given there was no

similar study prior to A (Fig. 6). The ‘posterior’ of

each study would then be used as the ‘prior’ for the

subsequent trial. The ‘posterior’ obtained from the

second trial, B, may be quite different from that of A.

However, as more evidence is accumulated from prior

studies, the relative probability of each hypothesis

becomes more distinct and constant. Diamond and

Kaul used the Bayesian and frequentist meta-analysis

approach to compare the effect of conservative and

aggressive cardiovascular intervention for uncompli-

cated post-infarction patients.3 Based on the same set

of data from five randomized controlled trials invol-

ving 9000 patients, both methods found statistically

significant reduction of death by aggressive interven-

tion. Although both the frequentist meta-analysis and

the Bayesian meta-analysis can assess the magnitude

of therapeutic response from pooled data, the

Bayesian approach provides a direct probability

interpretation which may be preferred by clinicians

for determining the effectiveness of treatments and

making clinical judgment.

Sequential clinical trials
As discussed in a previous section regarding sequen-

tial clinical trials using the frequentist approach,

adjustment of the alpha-value in interim analysis is

essential for confining the overall Type I error within

the preset limit.30 Interim analyses will not affect the

BF of Bayesian analysis. If there is strong evidence

against Ho (small BF), the BF will remain robust,

irrespective of the number of interim analyses.31 This

is because BF depends on the probability of observed

data alone; the termination of an experiment will not

affect BF. Furthermore, the inflation of probability

of Type I error by performing multiple tests is not

important in the Bayesian approach because its

philosophy is unrelated to Type I error.3 Hence, this

approach can provide accurate results without

jeopardizing the flexibility of sequential clinical

trials.32 This property enables frequent interim

analyses and timely termination of trials if accumu-

lative results significantly support a superior treat-

ment or disprove an ineffective treatment. Lewis and

Berry compared the frequentist and the Bayesian

approach in a theoretic clinical sequential trial. They

concluded that the Bayesian approach could reduce

both the sample size and cost of experiment without

affecting the credibility of the results.32 Given these

advantages, the Bayesian approach has been used in

different pharmaceutical sequential trials.33,34

Standardized interpretation of Bayes factors and
conclusion
The interpretation of ‘posterior’ and BF is straight-

forward and standardized. The results of different

hypotheses are expressed in terms of probability. The

explicit definition of hypotheses also enhances the

specificity of each hypothesis and facilitates readers

to understand the relative strength of each hypothesis

directly.22 Although the Bayesian approach cannot

guarantee that each researcher will derive the same

‘prior’ from the same previous data, it ensures that

they will have the same conclusion if they choose the

same magnitude of ‘prior’.3

Prediction
Since the Bayesian approach calculates the ‘posterior’

for each hypothesis, it provides valuable predictive

probability for a future event. This property is

beneficial to clinicians. For example, a clinician can

anticipate the recovery rate of a patient with a

sprained ankle given that the pain score of that

patient has dropped by 20% in the last two weeks.

Hence, the clinician can not only estimate the

discharge time more accurately, but also make timely

adjustments to the treatment regime.

Limitations of the Bayesian Approach
Despite the advantages of the Bayesian approach, a

few factors have limited its use. Firstly, the Bayesian

approach requires researchers to apply sophisticated

mathematical calculations for most situations, so

they may need assistance from biostatisticians. The

Figure 6 A simulated Bayesian meta-analysis of ultrasound

therapy against cryotherapy in treating sprain ankles. A to E

represents five journal articles that were published chron-

ologically. A: first trial without ‘prior’ information, B|A: B

result given A result; C|AB: C result given A and B results,

D|ABC: D result given ABC results; E|ABCD: E result given

ABCD results. The y-axis represents the ‘posterior’ prob-

ability of different hypotheses based on different study

results. Different hypotheses: same ultrasound and cryother-

apy treatment effect (US5Cryotherapy), treatment effect of

ul t rasound is bet ter than cryotherapy by 10%

(US.Cryotherapy by 10%), treatment effect of ultrasound is

better than cryotherapy by 20% (US.Cryotherapy by 20%),

treatment effect of ultrasound is inferior to cryotherapy by

5% (US,Cryotherapy by 5%).
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formula shown in Fig. 4 is simplified to facilitate

understanding of the basic Bayesian concept. The

complexity of calculation increases as the number of

outcome variables increases.

With the advancement of computer technology,

this limitation has been overcome. Researchers can

now perform complex Bayesian analysis by using

Bayesian inference software available on the inter-

net.35 Well-developed databases and search engines

also facilitate searches of relevant articles and books

for ‘prior’ determination.

A second factor limiting the popularity of the

Bayesian approach is the requirement of explicit

‘prior’ determination. There is no consensus regard-

ing the method of determination for ‘prior’ or ‘prior’

distribution.6 Theoretically, ‘prior’ should be derived

from results of meta-analyses including all available

randomized clinical trials. However, since most

research studies aim to explore new findings or

relationships, it is difficult to find comparable

previous studies. Even if there are related prior

studies, their quality will affect the results of ‘prior’

determination. In addition, different ‘posterior’ could

be derived from the same set of data due to the

disparities in researchers’ ‘beliefs’. By virtue of the

subjective nature of ‘prior’ justification, the Bayesian

method is less preferred by many researchers.4,25

To minimize the contention regarding subjectivity

and biases of researchers toward this issue, Bayesian

researchers can perform a sensitivity analysis in

which a range of ‘prior’ distributions can be assigned

to Ho or other hypotheses based on evidence in the

literature. For example, the ‘prior’ for Ho can range

from the most supportive (e.g. 99% ‘prior’ to support

Ho) to the most skeptical (e.g. 0% ‘prior’ to support

Ho). The corresponding ‘posterior’ probabilities

derived from each of the ‘priors’ can be tabulated

and explained thoroughly to improve the interpret-

ability of findings by allowing readers to draw their

own (possibly different) conclusions.

In the case of insufficient prior information, ‘non-

informative prior’ or ‘objective prior’ can be

adopted.6 This means that no supporting evidence

is given to any of the proposed hypotheses. In an

experiment with only two complementary hypoth-

eses, 50% ‘prior’ is assigned to each hypothesis based

on this principle.36 Although the idea of ‘objective

prior’ appears to be applicable, its usage remains

controversial even among Bayesian statisticians.37 If

‘objective prior’ is applied, the conclusions from the

Bayesian method will not be very distinct from that

of the frequentist approach. Another solution to

address this ‘prior’ ignorance is to increase the sample

size of the current study so that the influence of

current findings can outreach the relative contribu-

tion of ‘prior’. With the increase in sample size, the

power of the statistical test will increase. The result

will be a better reflection of truth rather than

subjective ‘belief’.

Suggestions for Future Research Statistics
Given the inherent limitations of the frequentist

approach, future studies should report results in

terms of P-value, CI and effect size. This can provide

more information for readers to determine the clinical

implications of study results. Moreover, the study

findings should be compared with similar studies in

the discussion section to improve the credibility of the

results.16

The Bayesian approach can be used as an alternative

or adjunct to the frequentist method in future scientific

and clinical studies. Since the Bayesian approach

unites external evidence from previous studies with

those from a current experiment, it minimizes the risk

of drawing wrong conclusions from a single study and

improves the overall strengths of the conclusions. The

Bayesian approach is an ideal analysis for sequential

clinical trials as BFs are unaffected by interim

inspections. However, biostatisticians may have to be

consulted for some sophisticated Bayesian analysis.

Researchers should also justify their choice of ‘prior’

as well as acknowledge differences between reference

studies and the current study.

Regardless of types of statistical approach, one

should be aware that a statistically significant result is

not equivalent to clinical significance.38 In order to

discern between these two significances, readers

should interpret the reported results in research

papers with other statistical parameters, such as P-

value, CI, effect size, posterior probabilities or

credible interval. Researchers should also report the

clinical significance of results in clinical trials or

perform hypothesis testing based on the minimal

clinically important difference, which represents the

smallest change in outcome measures that signifies

a meaningful change in an individual patient’s

symptom.39

Conclusions
As evidence-based practice becomes commonplace in

clinical settings, clinicians will more frequently

incorporate research findings into their practice as

well as critically interpret the results from research

papers. As the Bayesian approach may become more

common in future research studies, a good under-

standing of this method will benefit clinicians in

interpreting research papers and planning their future

clinical studies.
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