## Lecture 11 Shear and bulk viscosities (part I)



Figure by W.Zajc

How does one calculate viscosity?

#### Shear viscosity



Unit for viscosity:  $Pa \cdot s$ . A perhaps more common unit is the centiPoise  $1cP = 10^{-3}Pa \cdot .s$ Exemples:

Water  $\sim 1 \ cP$ Air  $\sim 0.02 \ cP$ Honey  $\sim 2000 - 10\ 000 \ cP$ 

It is generally easy to measure, but not always.

### The world longest running experiment Guinness Book of World Records Pitch drop experiment at the University of Queensland-Australia



Started in 1927: 7 drops fell every 8 years, then air condioning was installed, the viscosity increased and drops fall about every 12-13 years.

 $\longrightarrow$  viscosity of pitch  $\sim$  2.3  $10^{11}cP$ 

John Mainstone (custodian in 2005) and the late Thomas Parnell (started the experiment) were awarded the 2005 Ig Nobel Prize in Physics.

#### Quark Gluon Plasma

The most perfect fluid on earth:

 $\eta/s = \text{few } (\hbar/k_B)1/(4\pi) = \text{few } 1/(4\pi)$ 



C.Shen & U.Heinz Nucl.Phys.News 25 (2015) 6 /arXiv:1507.01558

Figure based on a variety of data at RHIC and LHC: elliptic flow, jet quenching, etc

#### Theoretical estimates of shear viscosity

## Kinetic theory

 $\overline{f(v)d^{\nu}}$ : Boltzmann probability distribution for velocities in gas

probability for a particle to have velocity within  $d^3v$  in the neighbourhood of  $\vec{v}$ .

• Mean free path *I*: average distance travelled by a particle of diameter *d* between each collision



A particle of radius d/2 travels, on average, a length l between each collision. this time it sweeps out a volume  $\pi d^2 l$ .

$$\pi d^2 I = V/N \Rightarrow I = 1/(n\pi d^2)$$

• Viscosity: Direction of plate  $\longrightarrow x$ Perpendicular to plate  $\longrightarrow z$  $F/A = \eta(du_x/dz)$  with *u* flow velocity

nb. of particles per unit time per unit area passing through slab in *z*-direction:  $= n v_z f(v) d^3 v$  momentum picked up by particle at *z* from collisions from particles

above and below:  $\Delta p = m[u_x(z + \Delta z) - u_x(z)] \sim mdu_x/dz\Delta z$  with  $\Delta z = I \cos \theta$ 



Force per unit area acting on any *z* slice is given by rate of change of momentum  $F/A = (-1/A)\Delta p/\Delta t$ 

negative sign due to F force we apply,  $\Delta p / \Delta t$  force of fluid pushing back

 $F/A = -n \int d^3 v \Delta p v_z f(v) = -mn(du_x/dz) \int d^3 v v_z f(\vec{v} l \cos \theta)$ = (mnl/3)(du\_x/dz)  $\int dv 4\pi v^3 f(v) = (mnl/3)(du_x/dz) < v > = \eta(du_x/dz)$ 

$$\eta = mnl < v > /3$$

## Not intuitive: large cross section $\sigma$ ( $I \propto 1/\pi d^2 \sim 1/\sigma$ ) $\Rightarrow$ small $\eta$ small cross section $\Rightarrow$ large $\eta$

#### In fact there is a lower limit for $\eta$ :

P.Danielewicz & M.Gyulassy Phys. Rev. D31 (1985) 53

Before estimating  $\lambda_i$  via Eq. (3.2) we note several physical constraints on  $\lambda_i$ . First, the uncertainty principle implies that quanta transporting typical momenta  $\langle p \rangle$  cannot be localized to distances smaller than  $\langle p \rangle^{-1}$ . Hence, it is meaningless to speak about mean free paths smaller than  $\langle p \rangle^{-1}$ . Requiring  $\lambda_i \geq \langle p \rangle_i^{-1}$  leads to the lower bound

 $\eta \ge \frac{1}{3}n$ , (3.3)

where  $n = \sum n_i$  is the total density of quanta. What seems amazing about (3.3) is that it is independent of dynamical details. There is a finite viscosity regardless of how large is the free-space cross section between the quanta. See Refs. 21 and 22 for examples illustrating how the thermalization rate of many-body systems is limited by the uncertainty nrinciple. Uncertainty principle:  $l \geq h$ 

$$\Rightarrow \eta \ge n/3$$

For gluons and massless quarks (at  $\mu_b = 0$ ):  $s_g + s_q/(n_g + n_q) \sim 4$  $\Rightarrow \eta/s \ge 1/(3 \times 4) \sim 1/(4\pi)$ 

# $\frac{pQCD}{\text{At leading logarithmic order for } N_f = 3: \frac{\eta}{s} \sim \frac{5.12}{g(T)^4 \ln[1.42/g(T)]}$

P. Arnold, G. D. Moore and L. G. Yaffe, JHEP 05. 051 (2003)



L. P. Csernai, J. I. Kapusta, L. D. McLerran Phys.Rev.Lett.97 (2006) 152303 Note:  $\eta \nearrow$  when  $T \nearrow$  (smaller coupling constant)

Lattice QCD



Minimum values are around 0.1  $\sim$  1/(4 $\pi$ )

#### Gauge/gravity correspondence Maldacena '97



Figure by M.Baggioli

A quantum field theory in d flat dimensions can be mapped into a quantum gravity theory in (d+1) (or more) dimensions.

#### Main appeal for us:

When one side of the duality is strongly coupled the other is weakly coupled and vice-versa.

 $\longrightarrow$  Use a quantum gravity weakly coupled theory to learn about a strongly coupled quantum field theory.

**Drawback:** so far, quantum field theories for which the corresponding dual theory of gravity is known are not QCD, but close to it.

For a large class of gauge theories which accept a description at strongly coupling by a dual gravitational theory:  $\eta/s = 1/(4\pi)$ 

#### Summary of theoretical estimates



J.Noronha-Hostler arXiv:1512.06315

#### Best values to explain data (Bayesian analysis)



#### Homework

Estimate the force that must be applied to spread a 1 mm layer of cream on 1  $cm^2$  of your face, without rushing (fingger moving 3 cm in 1/10th second). Assume the shear viscosity of the cream is 1  $Pa \cdot s$