
Lecture 9
Hydrodynamics

Part III
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Landau model

This is another analytical solution for 1+1 expansion with the following
initial conditions:
• Initially colliding nuclei form a highly compressed disk of matter with
zero fluid velocity.
• This is very different from the Bjorken model where matter forms
initially a very long tube (to have boost-invariance) with fluid velocity
vf = tanh z/t ⇔ y = ηs
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Initial times
For t ≤ l/cs:

The solution of the hydro eq. is a simple wave, traveling inward with
the speed of sound and with expansion outward at light speed
Analytical formulas in Wong et al. Phys. Rev. C 90 (2014) 064907/arXiv:1408.3343 and Florkowski Ch.20

Last 2 figures on the right: V.S.Franção
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Larger times
For t > l/cs:

The solution of the hydro eq. “inside” (continuous lines) is more
complicated (Khalatnikov solution) and “outside” it is still a simple
wave (dashed lines)
Exact formulas in Wong et al. Phys. Rev. C 90 (2014) 064907/arXiv:1408.3343 and Florkowski Ch.20

Last 2 figures on the right: V.S.Franção
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Rapidity distribution

In this model, it is argued that the end of the expansion occurs when
t2 − z2 = R2

f with Rf ∼ 2R and that then T << T0, so:

s = s0 exp(−2L +
√

L2 − y2) where L ≡ ln Rf/(2l)

Using dS = s × πR2 Rf dy , we get (for y << L)
dS
dy = πR2 Rf s0 e−L exp

(
− y2

2L

)
and identifying entropy density with particle density
dN
dy

=
N√
2πL

exp
(
− y2

2L

)
i.e. a Gaussian rapidity distribution comes out naturally.

5 / 11



Classical Navier-Stokes theory

d~v
dt

= −
~∇p
ρ

+
η

ρ
∇2~v +

(ζ + 1
3η)

ρ
~∇(~∇ ·~v) (1)

Acceleration is affected by shear viscosity η and bulk viscosity ζ

The above equation can be rewritten:
∂v i

∂t + v j ∂v i

∂x j = − 1
ρ
∂p
∂x i − 1

ρ
∂Πji

∂x j ,

Πji = −η
(
∂v i

∂x j +
∂v j

∂x i −
2
3
∂vk

∂xk δ
ji
)
− ζ ∂vk

∂xk δ
ji
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Relativistic Navier-Stokes theory
This derivation follows P.Romatschke Int.J.Mod.Phys.E19 (2010) 1/arXiv:0902.3663

Yet another derivation that Tµν
ideal = (ε+ p)uµuν − gµνp

Tµν
ideal depends on ε, p, uµ, is symmetric and transforms as a tensor

under Lorentz transformation:
Tµν

ideal = ε(c0gµν + c1uµuν) + p(c2gµν + c3uµuν)
We know the expression of Tµν

ideal in the rest frame and it implies
(c0 + c1)ε+ (c2 + c3)p = ε and −c0ε− c2p = p
so: c0 = 0, c1 = 1, c2 = −1, c3 = 1 or Tµν

ideal = (ε+ p)uµuν − gµνp
and another way to take the non-relativistic limit of ∂µTµν = 0
Project the hydro. eq. using uµ and ∆µν ≡ gµν − uµuν Note 1: ∆µν

projects perpendicularly to uµ: ∆µνuµ = 0. Note 2: Use uν∂µuν = 0

uν∂µTµν
ideal = Dε+ (ε+ p)∂µuµ = 0

∆α
ν ∂Tµν

ideal = (ε+ p)Duα −∇αp = 0

with shorthands for proj. of ∂µ: D = uµ∂µ and ∇α = ∆µα∂µ .

For small velocity: D ∼ ∂t + ~v · ~∂ +O(|~v |2) and ∇i ∼ ∂ i +O(|~v |)
So for a non-relativistic equation of state p << ε and ε ∼ ρ, the hydro
eq. reduce to entropy conservation and Euler eq.
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Relativistic case
Write Tµν = Tµν

ideal + Πµν

Assume for simplicity no conserved charges.
Multiplying by uν or ∆α

ν , we get:{
uν∂µTµν = Dε+ (ε+ p)∂µuµ + uν∂µΠµν = 0
∆α
ν ∂µTµν = (ε+ p)Duα −∇αp + ∆α

ν ∂µΠµν = 0
We use uν∂µΠµν = ∂µ(uνΠµν)− Πµν∂(µuν) where
A(µBν) = (1/2)(AµBν + AνBµ) and re-write

uν∂µTµν
ideal = Dε+ (ε+ p)∂µuµ−Πµν∇(µuν) = 0

∆α
ν ∂Tµν

ideal = (ε+ p)Duα −∇αp+∆α
ν ∂µΠµν = 0

These are the relativistic viscous hydrodynamics eq. but we still need
to specify Πµν .
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This can be done using the thermodynamic laws/equalities:
ε+ p = Ts, Tds = dε and ∂µsµ ≥ 0.
We re-write Πµν in a traceless part πµν and its trace defined as 3Π:
Πµν = πµν + ∆µνΠ
Similarly for the tensor ∇(µuν):
∇(µuν) ≡ (1/2)∇<µuν> + (1/3)∆µν∇αuα

then
∂µsµ = Ds + s∂µuµ = 1

T Dε+ ε+p
T ∂µuµ = 1

T Πµν∇(µuν) =
1

2T π
µν∇<µuν> + 1

T Π∇αuα ≥ 0
This inequality is fulfilled if
πµν = η∇<µuν> Π = ζ∇αuα with η and ζ ≥ 0.

In the non-relativistic limit, we get back the classical Navier-Stokes
eq. (slide 6).
This is a beautiful derivation but this theory has some problems.
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Challenge

Read Romatschke’s paper §I and IIa and work through as many
derivations as you can.
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Other references on this topic
I Paul Romatschke “New Developments in Relativistic

Viscous Hydrodynamics” Int.J.Mod.Phys.E19 (2010)
1/arXiv:0902.3663

I W. Florkowski, http://ift.uni.wroc.pl/
~karp2017/Florkowski_lecture1.pdf
http://ift.uni.wroc.pl/~karp2017/
Florkowski_lecture2.pdf
http://ift.uni.wroc.pl/~karp2017/
Florkowski_lecture3.pdf

I W. Florkowski,
https://www.youtube.com/watch?v=Cwpx3eaym5Y
https://www.youtube.com/watch?v=7EKySqAH3KM
https://www.youtube.com/watch?v=kt4cqDevkwo
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