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Ø Considere o seguinte modelo populacional: 
 
 
 
Com  

Ø Se estimarmos os parâmetros, obtemos: 

Ø Essas são estimativas não-enviesadas dos verdadeiros 
parâmetros populacionais.  
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estimate of the return to education.” As we know, an estimate cannot be unbiased: an 
 estimate is a fixed number, obtained from a particular sample, which usually is not equal to 
the population parameter. When we say that OLS is unbiased under Assumptions MLR.1 
through MLR.4, we mean that the procedure by which the OLS estimates are obtained is 
unbiased when we view the procedure as being applied across all possible random samples. 
We hope that we have obtained a sample that gives us an estimate close to the population 
value, but, unfortunately, this cannot be assured. What is assured is that we have no reason 
to believe our estimate is more likely to be too big or more likely to be too small.

Including Irrelevant Variables in a Regression Model
One issue that we can dispense with fairly quickly is that of inclusion of an irrelevant 
variable or overspecifying the model in multiple regression analysis. This means that 
one (or more) of the independent variables is included in the model even though it has no 
partial effect on y in the population. (That is, its population coefficient is zero.)

To illustrate the issue, suppose we specify the model as

 y � C0 � C1x1 � C2x2 � C3x3 � u, [3.38]

and this model satisfies Assumptions MLR.1 through MLR.4. However, x3 has no effect 
on y after x1 and x2 have been controlled for, which means that C3 � 0. The variable x3 may 
or may not be correlated with x1 or x2; all that matters is that, once x1 and x2 are controlled 
for, x3 has no effect on y. In terms of conditional expectations, E(yUx1, x2, x3) � E(yUx1, x2) ���
C0 � C1x1 � C2x2.

Because we do not know that C3 � 0, we are inclined to estimate the equation includ-
ing x3:

  ̂  y  �  ̂  C�0 �  ̂  C�1x1 �  ̂  C�2x2 �  ̂  C�3x3. [3.39]

We have included the irrelevant variable, x3, in our regression. What is the effect of 
 including x3 in (3.39) when its coefficient in the population model (3.38) is zero? In terms 
of the unbiasedness of  ̂  C�1 and  ̂  C�2, there is no effect. This conclusion requires no special 
derivation, as it follows immediately from Theorem 3.1. Remember, unbiasedness means 
E( ̂  C�j) � Cj for any value of Cj, including Cj � 0. Thus, we can conclude that E( ̂  C�0) �  
C0, E( ̂  C�1) � C1, E( ̂  C�2) � C2, and E( ̂  C�3) � 0 (for any values of C0, C1, and C2). Even 
though  ̂  C�3 itself will never be exactly zero, its average value across all random samples 
will be zero.

The conclusion of the preceding example is much more general: including one or 
more irrelevant variables in a multiple regression model, or overspecifying the model, 
does not affect the unbiasedness of the OLS estimators. Does this mean it is harmless to 
include irrelevant variables? No. As we will see in Section 3.4, including irrelevant vari-
ables can have undesirable effects on the variances of the OLS estimators.

Omitted Variable Bias: The Simple Case
Now suppose that, rather than including an irrelevant variable, we omit a variable that 
actually belongs in the true (or population) model. This is often called the problem of 
excluding a relevant variable or underspecifying the model. We claimed in Chapter 2  
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Ø Porém lembre-se que: 

 

Ø Dessa forma, se a variável irrelevante for correlacionada 
com as demais variáveis explicativas do modelo, aumentará 
a variância ou imprecisão na estimação dos parâmetros. Os 
testes de hipótese tenderão a rejeitar a significância de 
parâmetros relevantes com maior probabilidade.  
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Ø Considere o seguinte modelo populacional: 
 
 
 
Ø Porém, por falta de conhecimento ou de dados, estima-se: 

Ø Obtemos uma estimativa não-enviesada do impacto de x1 
em y? 
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and earlier in this chapter that this problem generally causes the OLS estimators to be 
biased. It is time to show this explicitly and, just as importantly, to derive the direction 
and size of the bias.

Deriving the bias caused by omitting an important variable is an example of 
 misspecification analysis. We begin with the case where the true population model has 
two explanatory variables and an error term:

 y � C0 � C1x1 � C2x2 � u, [3.40]

and we assume that this model satisfies Assumptions MLR.1 through MLR.4.
Suppose that our primary interest is in C1, the partial effect of x1 on y. For example, y 

is hourly wage (or log of hourly wage), x1 is education, and x2 is a measure of innate abil-
ity. In order to get an unbiased estimator of C1, we should run a regression of y on x1 and 
x2 (which gives unbiased estimators of C0, C1, and C2). However, due to our ignorance or 
data unavailability, we estimate the model by excluding x2. In other words, we perform a 
simple regression of y on x1 only, obtaining the equation

  ̃  y  �  ̃  C�0 �  ̃  C�1x1. [3.41]

We use the symbol “~” rather than “^” to emphasize that  ̃  C�1 comes from an underspecified 
model.

When first learning about the omitted variable problem, it can be difficult to distin-
guish between the underlying true model, (3.40) in this case, and the model that we actu-
ally estimate, which is captured by the regression in (3.41). It may seem silly to omit the 
variable x2 if it belongs in the model, but often we have no choice. For example, suppose 
that wage is determined by

 wage � C0 � C1educ � C2abil � u. [3.42]

Since ability is not observed, we instead estimate the model

 wage � C0 � C1educ � v,

where v � C2abil � u. The estimator of�C1 from the simple regression of wage on educ is 
what we are calling  ̃  C�1.

We derive the expected value of  ̃  C�1 conditional on the sample values of x1 and x2. 
 Deriving this expectation is not difficult because  ̃  C�1 is just the OLS slope estimator from 
a simple regression, and we have already studied this estimator extensively in Chapter 2.  
The difference here is that we must analyze its properties when the simple regression 
model is misspecified due to an omitted variable.

As it turns out, we have done almost all of the work to derive the bias in the simple  
 regression estimator of  ̃  C�1. From equation (3.23) we have the algebraic relationship 
 ̃  C�1 �  ̂  C�1 �  ̂  C�2  ̃  E 1, where  ̂  C�1 and  ̂  C�2 are the slope estimators (if we could have them) from 
the multiple regression

 yi on xi1, xi2, i � 1, …, n [3.43]

and E ̴1 is the slope from the simple regression

 xi2 on xi1, i � 1, …, n. [3.44]

Because E ̴1 depends only on the independent variables in the sample, we treat it as 
fixed (nonrandom) when computing E( ̃  C�1). Further, since the model in (3.40) satisfies 

 CHAPTER 3 Multiple Regression Analysis: Estimation 89

and earlier in this chapter that this problem generally causes the OLS estimators to be 
biased. It is time to show this explicitly and, just as importantly, to derive the direction 
and size of the bias.

Deriving the bias caused by omitting an important variable is an example of 
 misspecification analysis. We begin with the case where the true population model has 
two explanatory variables and an error term:

 y � C0 � C1x1 � C2x2 � u, [3.40]

and we assume that this model satisfies Assumptions MLR.1 through MLR.4.
Suppose that our primary interest is in C1, the partial effect of x1 on y. For example, y 

is hourly wage (or log of hourly wage), x1 is education, and x2 is a measure of innate abil-
ity. In order to get an unbiased estimator of C1, we should run a regression of y on x1 and 
x2 (which gives unbiased estimators of C0, C1, and C2). However, due to our ignorance or 
data unavailability, we estimate the model by excluding x2. In other words, we perform a 
simple regression of y on x1 only, obtaining the equation

  ̃  y  �  ̃  C�0 �  ̃  C�1x1. [3.41]

We use the symbol “~” rather than “^” to emphasize that  ̃  C�1 comes from an underspecified 
model.

When first learning about the omitted variable problem, it can be difficult to distin-
guish between the underlying true model, (3.40) in this case, and the model that we actu-
ally estimate, which is captured by the regression in (3.41). It may seem silly to omit the 
variable x2 if it belongs in the model, but often we have no choice. For example, suppose 
that wage is determined by

 wage � C0 � C1educ � C2abil � u. [3.42]

Since ability is not observed, we instead estimate the model

 wage � C0 � C1educ � v,

where v � C2abil � u. The estimator of�C1 from the simple regression of wage on educ is 
what we are calling  ̃  C�1.

We derive the expected value of  ̃  C�1 conditional on the sample values of x1 and x2. 
 Deriving this expectation is not difficult because  ̃  C�1 is just the OLS slope estimator from 
a simple regression, and we have already studied this estimator extensively in Chapter 2.  
The difference here is that we must analyze its properties when the simple regression 
model is misspecified due to an omitted variable.

As it turns out, we have done almost all of the work to derive the bias in the simple  
 regression estimator of  ̃  C�1. From equation (3.23) we have the algebraic relationship 
 ̃  C�1 �  ̂  C�1 �  ̂  C�2  ̃  E 1, where  ̂  C�1 and  ̂  C�2 are the slope estimators (if we could have them) from 
the multiple regression

 yi on xi1, xi2, i � 1, …, n [3.43]

and E ̴1 is the slope from the simple regression

 xi2 on xi1, i � 1, …, n. [3.44]

Because E ̴1 depends only on the independent variables in the sample, we treat it as 
fixed (nonrandom) when computing E( ̃  C�1). Further, since the model in (3.40) satisfies 



Omissão de Variáveis Relevantes 

7 

Ø A seguinte relação se verifica: 

Ø Em que delta1 é o impacto de x1 em x2 em uma regressão 
de x2 contra x1 

Ø Portanto, tem-se: 

Ø E o Viés é dado por:  
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regression coefficient  ̂  C�1. It turns out there is a simple relationship between  ̃  C�1 and  ̂  C�1, 
which allows for interesting comparisons between simple and multiple regression:

�   ̃  C�1 �  ̂  C�1 �  ̂  C�2  ̃  E�1, [3.23]

where   ̃  E�1 is the slope coefficient from the simple regression of xi2 on xi1, i � 1, …, n . This 
equation shows how  ̃  C�1 differs from the partial effect of x1 on  ̂  y . The confounding term is the 
partial effect of x2 on  ̂  y  times the slope in the sample regression of x2 on x1. (See Section 3A.4 
in the chapter appendix for a more general verification.)

The relationship between  ̃  C�1 and  ̂  C�1 also shows there are two distinct cases where they 
are equal:

 1. The partial effect of x2 on  ̂  y  is zero in the sample. That is,  ̂  C�2 � 0.

 2. x1 and x2 are uncorrelated in the sample. That is,  ̃  E�1 � 0.

Even though simple and multiple regression estimates are almost never identical, we 
can use the above formula to characterize why they might be either very different or quite 
similar. For example, if  ̂  C�2 is small, we might expect the multiple and simple regression 
estimates of�C1 to be similar. In Example 3.1, the sample correlation between hsGPA and 
ACT is about 0.346, which is a nontrivial correlation. But the coefficient on ACT is fairly 
little. It is not surprising to find that the simple regression of colGPA on hsGPA produces 
a slope estimate of .482, which is not much different from the estimate .453 in (3.15).

 EXAMPLE 3.3 PARTICIPATION IN 401(k) PENSION PLANS

We use the data in 401K.RAW to estimate the effect of a plan’s match rate (mrate) on 
the participation rate (prate) in its 401(k) pension plan. The match rate is the amount the 
firm contributes to a worker’s fund for each dollar the worker contributes (up to some 
limit); thus, mrate � .75 means that the firm contributes 75¢ for each dollar contributed 
by the worker. The participation rate is the percentage of eligible workers having a 401(k) 
 account. The variable age is the age of the 401(k) plan. There are 1,534 plans in the data 
set, the average prate is 87.36, the average mrate is .732, and the average age is 13.2.

Regressing prate on mrate, age gives

 ̂  prate    � 80.12 � 5.52 mrate � .243 age

 n  � 1,534.

Thus, both mrate and age have the expected effects. What happens if we do not control for 
age? The estimated effect of age is not trivial, and so we might expect a large change in 
the estimated effect of mrate if age is dropped from the regression. However, the simple 
regression of prate on mrate yields  ̂  prate    � 83.08 � 5.86 mrate. The simple regression 
estimate of the effect of mrate on prate is clearly different from the multiple regression 
estimate, but the difference is not very big. (The simple regression estimate is only about 
6.2% larger than the multiple regression estimate.) This can be explained by the fact that 
the sample correlation between mrate and age is only .12.

In the case with k independent variables, the simple regression of y on x1 and the mul-
tiple regression of y on x1, x2, …, xk produce an identical estimate of x1 only if (1) the OLS 
coefficients on x2 through xk are all zero or (2) x1 is uncorrelated with each of x2, …, xk.  
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 Assumptions MLR.1 to MLR.4, we know that  ̂  C�1 and  ̂  C�2 would be unbiased for�C1 and C2, 
respectively. Therefore,

 E( ̃  C�1) � E( ̂  C�1 �  ̂  C�2 E
̴
1) � E( ̂  C�1) � E( ̂  C�2) E

̴
1 

[3.45]
� � C1 � C2 E

̴
1,

which implies the bias in  ̃  C�1 is

 Bias( ̃  C�1) � E( ̃  C�1) � C1 � C2 E
̴
1. [3.46]

Because the bias in this case arises from omitting the explanatory variable x2, the term on 
the right-hand side of equation (3.46) is often called the omitted variable bias.

From equation (3.46), we see that there are two cases where  ̃  C�1 is unbiased. The first 
is pretty obvious: if�C2 � 0—so that x2 does not appear in the true model (3.40)—then  ̃  C�1 
is unbiased. We already know this from the simple regression analysis in Chapter 2. The 
second case is more interesting. If  E

̴
1 � 0, then  ̃  C�1 is unbiased for C1, even if�C2 p 0.

Because E ̴1 is the sample covariance between x1 and x2 over the sample variance of x1,   
E ̴1 � 0 if, and only if, x1 and x2 are uncorrelated in the sample. Thus, we have the impor-
tant conclusion that, if x1 and x2 are uncorrelated in the sample, then  ̃  C�1 is unbiased. This 
is not surprising: in Section 3.2, we showed that the simple regression estimator  ̃  C�1 and 
the multiple regression estimator  ̂  C�1 are the same when x1 and x2 are uncorrelated in the 
sample. [We can also show that  ̃  C�1 is unbiased without conditioning on the xi2 if E(x2Ux1) � 
E(x2); then, for estimating C1, leaving x2 in the error term does not violate the zero condi-
tional mean assumption for the error, once we adjust the intercept.]

When x1 and x2 are correlated, E ̴1 has the same sign as the correlation between x1 and x2:  
  ̃  E 1 � 0 if x1 and x2 are positively correlated and E ̴1 � 0 if x1 and x2 are negatively correlated. The 
sign of the bias in  ̃  C�1 depends on the signs of both�C2 and E ̴1 and is summarized in Table 3.2  
for the four possible cases when there is bias. Table 3.2 warrants careful study. For example, 
the bias in  ̃  C�1 is positive if�C2 � 0 (x2 has a positive effect on y) and x1 and x2 are positively 
correlated, the bias is negative if�C2 � 0 and x1 and x2 are negatively  correlated, and so on.

Table 3.2 summarizes the direction of the bias, but the size of the bias is also very 
important. A small bias of either sign need not be a cause for concern. For example, if the 
return to education in the population is 8.6% and the bias in the OLS estimator is 0.1%  
(a tenth of one percentage point), then we would not be very concerned. On the other hand,  
a bias on the order of three percentage points would be much more serious. The size of the 
bias is determined by the sizes of�C2 and E ̴1.

In practice, since�C2 is an unknown population parameter, we cannot be certain 
whether�C2 is positive or negative. Nevertheless, we usually have a pretty good idea about 
the direction of the partial effect of x2 on y. Further, even though the sign of the correlation 
between x1 and x2 cannot be known if x2 is not observed, in many cases, we can make an 
educated guess about whether x1 and x2 are positively or negatively correlated.

In the wage equation (3.42), by definition, more ability leads to higher productivity 
and therefore higher wages:�C2 � 0. Also, there are reasons to believe that educ and abil 
are positively correlated: on average, individuals with more innate ability choose higher 

T A B L E  3 . 2  Summary of Bias in ~C1 when x2 Is Omitted in Estimating Eqution (3.40)

Corr(x1, x2) � 0 Corr(x1, x2)  0

C2 > 0 Positive bias Negative bias

C2 < 0 Negative bias Positive bias
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tant conclusion that, if x1 and x2 are uncorrelated in the sample, then  ̃  C�1 is unbiased. This 
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  ̃  E 1 � 0 if x1 and x2 are positively correlated and E ̴1 � 0 if x1 and x2 are negatively correlated. The 
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the direction of the partial effect of x2 on y. Further, even though the sign of the correlation 
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In the wage equation (3.42), by definition, more ability leads to higher productivity 
and therefore higher wages:�C2 � 0. Also, there are reasons to believe that educ and abil 
are positively correlated: on average, individuals with more innate ability choose higher 

T A B L E  3 . 2  Summary of Bias in ~C1 when x2 Is Omitted in Estimating Eqution (3.40)

Corr(x1, x2) � 0 Corr(x1, x2)  0

C2 > 0 Positive bias Negative bias

C2 < 0 Negative bias Positive bias
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Ø Caso Geral - Considere o seguinte modelo populacional: 
 
 
 
Ø Porém, por falta de conhecimento ou de dados, estima-se: 

Ø Obtemos uma estimativa não-enviesada do impacto de x1 
em y? 
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explanatory variable and the error generally results in all OLS estimators being biased. 
For example, suppose the population model

 y � C0 � C1x1 � C2x2 � C3x3 � u [3.49]

satisfies Assumptions MLR.1 through MLR.4. But we omit x3 and estimate the model as

  ̃  y  �  ̃  C�0 �  ̃  C�1x1 �  ̃  C�2x2. [3.50]

Now, suppose that x2 and x3 are uncorrelated, but that x1 is correlated with x3. In other 
words, x1 is correlated with the omitted variable, but x2 is not. It is tempting to think that, 
while  ̃  C�1 is probably biased based on the derivation in the previous subsection,  ̃  C�2 is unbi-
ased because x2 is uncorrelated with x3. Unfortunately, this is not generally the case: both  
˜  C�1 and  ̃  C�2 will normally be biased. The only exception to this is when x1 and x2 are also 
uncorrelated.

Even in the fairly simple model above, it can be difficult to obtain the direction of bias 
in  ̃  C�1 and  ̃  C�2. This is because x1, x2, and x3 can all be pairwise correlated. Nevertheless, an 
approximation is often practically useful. If we assume that x1 and x2 are uncorrelated, then 
we can study the bias in  ̃  C�1 as if x2 were absent from both the population and the  estimated 
models. In fact, when x1 and x2 are uncorrelated, it can be shown that

 E( ̃  C�1) � C1 � C3       

 ∑ 
i�1

   
n

    (xi1 �  
_
 x 1)xi3

  _____________________  

  ∑ 
i�1

   
n

    (xi1 �  
_
 x 1)

2
     . 

This is just like equation (3.45), but C3 replaces C2, and x3 replaces x2 in regression (3.44). 
Therefore, the bias in  ̃  C�1 is obtained by replacing�C2 with C3 and x2 with x3 in Table 3.2. If 
C3 � 0 and Corr(x1, x3) � 0, the bias in  ̃  C�1 is positive, and so on.

As an example, suppose we add exper to the wage model:

wage � C0 � C1educ � C2exper � C3abil � u.

If abil is omitted from the model, the estimators of both�C1 and�C2 are biased, even if we 
assume exper is uncorrelated with abil. We are mostly interested in the return to educa-
tion, so it would be nice if we could conclude that  ̃  C�1 has an upward or a downward bias 
due to omitted ability. This conclusion is not possible without further assumptions. As an 
approximation, let us suppose that, in addition to exper and abil being uncorrelated, educ 
and exper are also uncorrelated. (In reality, they are somewhat negatively correlated.) 
Since C3 � 0 and educ and abil are positively correlated,  ̃  C�1 would have an upward bias, 
just as if exper were not in the model.

The reasoning used in the previous example is often followed as a rough guide for 
obtaining the likely bias in estimators in more complicated models. Usually, the focus is 
on the relationship between a particular explanatory variable, say, x1, and the key omit-
ted factor. Strictly speaking, ignoring all other explanatory variables is a valid  practice 
only when each one is uncorrelated with x1, but it is still a useful guide.  Appendix 3A 
contains a more careful analysis of omitted variable bias with multiple explanatory 
variables.
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Linearidade 

}  Até agora, consideramos o modelo linear: 
 

}  Esse modelo preve um impacto constante    , também 
chamado de efeito marginal de x em y, que independe 
do valor inicial de x: 

 
}  Em:  

}        é chamado de efeito parcial de x1 em y 
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This can be shown using basic properties of the summation operator:

  ∑ 
i�1

   
n

    (xi �  - x )2 �  ∑ 
i�1

   
n

     (xi
2 � 2xi  

- x  � x̄2)

  �  ∑ 
i�1

   
n

     xi
2 � 2x̄  ∑ 

i�1

   
n

     xi � n (  
- x )2

  �  ∑ 
i�1

   
n

     xi
2 � 2n (  

- x )2 � n (  
- x )2  �  ∑ 

i�1

   
n

     xi
2 � n (  

- x )2.

Given a data set on two variables, {(xi,yi): i ��1, 2, …,  n }, it can also be shown that

  ∑ 
i�1

   
n

     (xi �   
- x )(  yi �   

- y ) �  ∑ 
i�1

   
n

     xi(  yi �   
- y )

� �  ∑ 
i�1

   
n

    (xi �   
- x )yi �  ∑ 

i�1

   
n

     xi yi � n (  
- x .  

- y ); [A.8]

this is a generalization of equation (A.7). (There, yi � xi for all i.)
The average is the measure of central tendency that we will focus on in most of this text. 

However, it is sometimes informative to use the median (or sample median ) to describe the 
central value. To obtain the median of the n  numbers {x1, …, xn }, we first order the values 
of the xi from smallest to largest. Then, if n  is odd, the sample median is the middle number 
of the ordered observations. For example, given the numbers {�4,8,2,0,21,�10,18}, the 
median value is 2 (because the ordered sequence is {�10,�4,0,2,8,18,21}). If we change 
the largest number in this list, 21, to twice its value, 42, the median is still 2. By contrast, 
the sample average would increase from 5 to 8, a sizable change. Generally, the median is 
less sensitive than the average to changes in the extreme values (large or small) in a list of 
numbers. This is why “median incomes” or “median housing values” are often reported, 
rather than averages, when summarizing income or housing values in a city or county.

If n  is even, there is no unique way to define the median because there are two 
 numbers at the center. Usually, the median is defined to be the average of the two middle 
values (again, after ordering the numbers from smallest to largest). Using this rule, the 
median for the set of numbers {4,12,2,6} would be (4 ��6)/2 � 5.

A.2 Properties of Linear Functions
Linear functions play an important role in econometrics because they are simple to inter-
pret and manipulate. If x and y are two variables related by

 y � C0 � C1x, [A.9]

then we say that y is a linear function of x, and C0 and C1 are two parameters (numbers) 
describing this relationship. The intercept is C0, and the slope is C1.

The defining feature of a linear function is that the change in y is always C1 times the 
change in x:

� $y � C1$x, [A.10]

where $ denotes “change.” In other words, the marginal effect of x on y is constant and 
equal to C1.
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 EXAMPLE A.1 LINEAR HOUSING EXPENDITURE FUNCTION

Suppose that the relationship between monthly housing expenditure and monthly in come is

 housing � 164 � .27 income. [A.11]

Then, for each additional dollar of income, 27 cents is spent on housing. If family income 
in creases by $200, then housing expenditure increases by (.27)200 � $54. This function is 
graphed in Figure A.1.

According to equation (A.11), a family with no income spends $164 on housing, 
which of course cannot be literally true. For low levels of income, this linear function 
would not describe the relationship between housing and income very well, which is why 
we will eventually have to use other types of functions to describe such relationships.

In (A.11), the marginal propensity to consume (MPC) housing out of income is .27. 
This is different from the average propensity to consume (APC), which is 

  housing _______ 
income

  �� 164/income � .27.

The APC is not constant, it is always larger than the MPC, and it gets closer to the MPC 
as income increases.

Linear functions are easily defined for more than two variables. Suppose that y is 
 related to two variables, x1 and x2, in the general form

 y � C0 � C1x1 � C2x2. [A.12]

F I G U R E  A . 1  Graph of housing � 164 � .27 income.
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It is rather difficult to envision this function because its graph is three-dimensional. 
 Nevertheless, C0 is still the intercept (the value of y when x1 � 0 and x2 � 0), and C1 and C2 
measure particular slopes. From (A.12), the change in y, for given changes in x1 and x2, is

� $y � C1$x1 � C2$x2. [A.13]

If x2 does not change, that is, $x2 � 0, then we have

� $y � C1$x1 if $x2 � 0,

so that C1 is the slope of the relationship in the direction of x1:

C1 �   
 $y

 ____ 
$x1

   if $x2 � 0.

Because it measures how y changes with x1, holding x2 fixed, C1 is often called the  partial 
effect of x1 on y. Because the partial effect involves holding other factors fixed, it is closely 
linked to the notion of ceteris paribus. The parameter C2 has a similar interpretation: 
C2 � $y/$x2 if $x1 � 0, so that C2 is the partial effect of x2 on y.

 EXAMPLE A.2 DEMAND FOR COMPACT DISCS

For college students, suppose that the monthly quantity demanded of compact discs is 
 related to the price of compact discs and monthly discretionary income by

quantity � 120 � 9.8 price � .03 income,

where price is dollars per disc and income is measured in dollars. The demand curve is 
the relationship between quantity and price, holding income (and other factors) fixed. 
This is graphed in two dimensions in Figure A.2 at an income level of $900. The slope 
of the demand curve, �9.8, is the partial effect of price on quantity: holding income 
fixed, if the price of compact discs increases by one dollar, then the quantity demanded 
falls by 9.8. (We abstract from the fact that CDs can only be purchased in discrete units.) 
An increase in income simply shifts the demand curve up (changes the intercept), but 
the slope remains the same.

A.3 Proportions and Percentages
Proportions and percentages play such an important role in applied economics that it 
is necessary to become very comfortable in working with them. Many quantities reported 
in the popular press are in the form of percentages; a few examples are interest rates, un-
employment rates, and high school graduation rates.

An important skill is being able to convert proportions to percentages and vice versa. 
A percentage is easily obtained by multiplying a proportion by 100. For  example, if the 
proportion of adults in a county with a high school degree is .82, then we say that 82% 
(82 percent) of adults have a high school degree. Another way to think of percentages 
and proportions is that a proportion is the decimal form of a percentage. For example, if 
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This can be shown using basic properties of the summation operator:
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this is a generalization of equation (A.7). (There, yi � xi for all i.)
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the sample average would increase from 5 to 8, a sizable change. Generally, the median is 
less sensitive than the average to changes in the extreme values (large or small) in a list of 
numbers. This is why “median incomes” or “median housing values” are often reported, 
rather than averages, when summarizing income or housing values in a city or county.

If n  is even, there is no unique way to define the median because there are two 
 numbers at the center. Usually, the median is defined to be the average of the two middle 
values (again, after ordering the numbers from smallest to largest). Using this rule, the 
median for the set of numbers {4,12,2,6} would be (4 ��6)/2 � 5.

A.2 Properties of Linear Functions
Linear functions play an important role in econometrics because they are simple to inter-
pret and manipulate. If x and y are two variables related by

 y � C0 � C1x, [A.9]

then we say that y is a linear function of x, and C0 and C1 are two parameters (numbers) 
describing this relationship. The intercept is C0, and the slope is C1.

The defining feature of a linear function is that the change in y is always C1 times the 
change in x:

� $y � C1$x, [A.10]

where $ denotes “change.” In other words, the marginal effect of x on y is constant and 
equal to C1.
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Linearidade 

}  É comum fazer-se a regressão de log(y) contra x. A 
interpretação do modelo faz mais sentido para 
muitos problemas em ciências sociais. Em nosso 
exemplo anterior, teríamos:  
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by some nonzero constant, c, then the OLS slope coefficient is multiplied or divided by c, 
respectively.

The intercept has not changed in (2.41) because roedec � 0 still corresponds to a zero 
return on equity. In general, changing the units of measurement of only the independent 
variable does not affect the intercept.

In the previous section, we defined R-squared as a goodness-of-fit measure for 
OLS regression. We can also ask what happens to R2 when the unit of measurement of 
 either the independent or the dependent variable changes. Without doing any algebra, we 
should know the result: the goodness-of-fit of the model should not depend on the units of 
 measurement of our variables. For example, the amount of variation in salary explained by 
the return on equity should not depend on whether salary is measured in dollars or in thou-
sands of dollars or on whether return on equity is a percentage or a decimal. This  intuition 
can be verified mathematically: using the definition of R2, it can be shown that R2 is, in 
fact, invariant to changes in the units of y or x.

Incorporating Nonlinearities in Simple Regression
So far, we have focused on linear relationships between the dependent and indepen- 
dent variables. As we mentioned in Chapter 1, linear relationships are not nearly general 
enough for all economic applications. Fortunately, it is rather easy to incorporate many 
nonlinearities into simple regression analysis by appropriately defining the dependent 
and independent variables. Here, we will cover two possibilities that often appear in ap-
plied work.

In reading applied work in the social sciences, you will often encounter regression 
equations where the dependent variable appears in logarithmic form. Why is this done? 
Recall the wage-education example, where we regressed hourly wage on years of educa-
tion. We obtained a slope estimate of 0.54 [see equation (2.27)], which means that each 
additional year of education is predicted to increase hourly wage by 54 cents. Because of 
the linear nature of (2.27), 54 cents is the increase for either the first year of education or 
the twentieth year; this may not be reasonable.

Probably a better characterization of how wage changes with education is that each 
year of education increases wage by a constant percentage. For example, an increase in 
education from 5 years to 6 years increases wage by, say, 8% (ceteris paribus), and an 
increase in education from 11 to 12 years also increases wage by 8%. A model that gives 
(approximately) a constant percentage effect is

 log(wage) � C0 � C1educ � u, [2.42]

where log(�) denotes the natural logarithm. (See Appendix A for a review of logarithms.) 
In particular, if $u � 0, then

 %$wage � (100 �C1)$educ. [2.43]

Notice how we multiply C1 by 100 to get the percentage change in wage given one ad-
ditional year of education. Since the percentage change in wage is the same for each 
 additional year of education, the change in wage for an extra year of education increases 
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The Exponential Function
Before leaving this section, we need to discuss a special function that is related to the 
log. As motivation, consider equation (A.27). There, log( y) is a linear function of x. 
But how do we find y itself as a function of x? The answer is given by the exponential 
function.

We will write the exponential function as y � exp(x), which is graphed in Figure A.5. 
From Figure A.5, we see that exp(x) is defined for any value of x and is always greater 
than zero. Sometimes, the exponential function is written as y � e x, but we will not use 
this notation. Two important values of the exponential function are exp(0) � 1 and exp(1) 
� 2.7183 (to four decimal places).

The exponential function is the inverse of the log function in the following 
sense: log[exp(x)] � x for all x, and exp[log(x)] � x for x � 0. In other words, the 
log “undoes” the exponential, and vice versa. (This is why the exponential function is 
sometimes called the anti-log function.) In particular, note that log(y) � C0 � C1x is 
equivalent to

 y � exp(  C0 � C1x).

If C1 � 0, the relationship between x and y has the same shape as in Figure A.5. Thus, if 
log(y) � C0 � C1x with C1 � 0, then x has an increasing marginal effect on y. In Example 
A.6, this means that another year of education leads to a larger change in wage than the 
previous year of education.

Two useful facts about the exponential function are exp(x1 � x2) � exp(x1)exp(x2) 
and exp[c.log(x)] � xc.
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F I G U R E  A . 5  Graph of y � exp(x).
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The logarithm can be used for various approximations that arise in econometric appli-
cations. First, log(1 � x) � x for x � 0. You can try this with x � .02, .1, and .5 to see how 
the quality of the approximation deteriorates as x gets larger. Even more useful is the fact 
that the difference in logs can be used to approximate proportionate changes. Let x0 and x1 
be positive values. Then, it can be shown (using calculus) that

 log(x1) � log(x0) � (x1 � x0)/x0 � $x/x0 [A.22]

for small changes in x. If we multiply equation (A.22) by 100 and write $log(x) � log(x1) 
� log(x0), then

 100.$log(x) � %$x [A.23]

for small changes in x. The meaning of “small” depends on the context, and we will en-
counter several examples throughout this text.

Why should we approximate the percentage change using (A.23) when the exact per-
centage change is so easy to compute? Momentarily, we will see why the approximation 
in (A.23) is useful in econometrics. First, let us see how good the approximation is in two 
examples.

First, suppose x0 � 40 and x1 � 41. Then, the percentage change in x in moving from 
x0 to x1 is 2.5%, using 100(x1 � x0)/x0. Now, log(41) � log(40) � .0247 to four decimal 
places, which when multiplied by 100 is very close to 2.5. The approximation works pretty 
well. Now, consider a much bigger change: x0 � 40 and x1 � 60. The exact percentage 
change is 50%. However, log(60) � log(40) � .4055, so the approximation gives 40.55%, 
which is much farther off.

Why is the approximation in (A.23) useful if it is only satisfactory for small changes? 
To build up to the answer, we first define the elasticity of y with respect to x as
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y = log(x)

F I G U R E  A . 4  Graph of y � log(x).
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by some nonzero constant, c, then the OLS slope coefficient is multiplied or divided by c, 
respectively.

The intercept has not changed in (2.41) because roedec � 0 still corresponds to a zero 
return on equity. In general, changing the units of measurement of only the independent 
variable does not affect the intercept.

In the previous section, we defined R-squared as a goodness-of-fit measure for 
OLS regression. We can also ask what happens to R2 when the unit of measurement of 
 either the independent or the dependent variable changes. Without doing any algebra, we 
should know the result: the goodness-of-fit of the model should not depend on the units of 
 measurement of our variables. For example, the amount of variation in salary explained by 
the return on equity should not depend on whether salary is measured in dollars or in thou-
sands of dollars or on whether return on equity is a percentage or a decimal. This  intuition 
can be verified mathematically: using the definition of R2, it can be shown that R2 is, in 
fact, invariant to changes in the units of y or x.

Incorporating Nonlinearities in Simple Regression
So far, we have focused on linear relationships between the dependent and indepen- 
dent variables. As we mentioned in Chapter 1, linear relationships are not nearly general 
enough for all economic applications. Fortunately, it is rather easy to incorporate many 
nonlinearities into simple regression analysis by appropriately defining the dependent 
and independent variables. Here, we will cover two possibilities that often appear in ap-
plied work.

In reading applied work in the social sciences, you will often encounter regression 
equations where the dependent variable appears in logarithmic form. Why is this done? 
Recall the wage-education example, where we regressed hourly wage on years of educa-
tion. We obtained a slope estimate of 0.54 [see equation (2.27)], which means that each 
additional year of education is predicted to increase hourly wage by 54 cents. Because of 
the linear nature of (2.27), 54 cents is the increase for either the first year of education or 
the twentieth year; this may not be reasonable.

Probably a better characterization of how wage changes with education is that each 
year of education increases wage by a constant percentage. For example, an increase in 
education from 5 years to 6 years increases wage by, say, 8% (ceteris paribus), and an 
increase in education from 11 to 12 years also increases wage by 8%. A model that gives 
(approximately) a constant percentage effect is

 log(wage) � C0 � C1educ � u, [2.42]

where log(�) denotes the natural logarithm. (See Appendix A for a review of logarithms.) 
In particular, if $u � 0, then

 %$wage � (100 �C1)$educ. [2.43]

Notice how we multiply C1 by 100 to get the percentage change in wage given one ad-
ditional year of education. Since the percentage change in wage is the same for each 
 additional year of education, the change in wage for an extra year of education increases 
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 additional year of education, the change in wage for an extra year of education increases 
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additional year of education is predicted to increase hourly wage by 54 cents. Because of 
the linear nature of (2.27), 54 cents is the increase for either the first year of education or 
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Probably a better characterization of how wage changes with education is that each 
year of education increases wage by a constant percentage. For example, an increase in 
education from 5 years to 6 years increases wage by, say, 8% (ceteris paribus), and an 
increase in education from 11 to 12 years also increases wage by 8%. A model that gives 
(approximately) a constant percentage effect is

 log(wage) � C0 � C1educ � u, [2.42]

where log(�) denotes the natural logarithm. (See Appendix A for a review of logarithms.) 
In particular, if $u � 0, then
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wage

educ0

F I G U R E  2 . 6  wage � exp(B0 � B1educ), with B1 > 0.

 EXAMPLE 2.10 A LOG WAGE EQUATION

Using the same data as in Example 2.4, but using log(wage) as the dependent variable, we 
obtain the following relationship:

  ̂  log(wage)    � 0.584 � 0.083 educ [2.44]

           n � 526, R2 � 0.186. 

The coefficient on educ has a percentage interpretation when it is multiplied by 100:  @�wage  
increases by 8.3% for every additional year of education. This is what economists mean 
when they refer to the “return to another year of education.”

It is important to remember that the main reason for using the log of wage in (2.42) 
is to impose a constant percentage effect of education on wage. Once equation (2.44) is 
obtained, the natural log of wage is rarely mentioned. In particular, it is not correct to say 
that another year of education increases log(wage) by 8.3%.

The intercept in (2.44) is not very meaningful, because it gives the predicted 
log(wage), when educ � 0. The R-squared shows that educ explains about 18.6% of the 
variation in log(wage) (not wage). Finally, equation (2.44) might not capture all of the 
nonlinearity in the relationship between wage and schooling. If there are “diploma ef-
fects,” then the twelfth year of education—graduation from high school—could be worth 
much more than the eleventh year. We will learn how to allow for this kind of nonlinearity 
in Chapter 7.
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A.4 Some Special Functions and Their Properties
In Section A.2, we reviewed the basic properties of linear functions. We already indicated 
one important feature of functions like y � C0 � C1x: a one-unit change in x results in 
the same change in y, regardless of the initial value of x. As we noted earlier, this is the 
same as saying the marginal effect of x on y is constant, something that is not realistic for 
many economic relationships. For example, the important economic notion of diminishing 
 marginal returns is not consistent with a linear relationship.

In order to model a variety of economic phenomena, we need to study several nonlin-
ear functions. A nonlinear function is characterized by the fact that the change in y for a 
given change in x depends on the starting value of x. Certain nonlinear functions  appear 
frequently in empirical economics, so it is important to know how to interpret them.  
A complete understanding of nonlinear functions takes us into the realm of calculus. Here, 
we simply summarize the most significant aspects of the functions, leaving the details of 
some derivations for Section A.5.

Quadratic Functions
One simple way to capture diminishing returns is to add a quadratic term to a linear rela-
tionship. Consider the equation

 y � C0 � C1x � C2  x
2, [A.16]

where C0, C1, and C2 are parameters. When C1 � 0 and C2 � 0, the relationship between y 
and x has the parabolic shape given in Figure A.3, where C0 � 6, C1 � 8, and C2 � �2.

When C1 � 0 and C2 � 0, it can be shown (using calculus in the next section) that the 
maximum of the function occurs at the point

 x* � C1/(�2C2). [A.17]

For example, if y � 6 � 8x � 2x2 (so C1 � 8 and C2 � �2), then the largest value of y 
 occurs at x* � 8/4 � 2, and this value is 6 � 8(2) � 2(2)2 � 14 (see Figure A.3).

The fact that equation (A.16) implies a diminishing marginal effect of x on y is  easily 
seen from its graph. Suppose we start at a low value of x and then increase x by some amount, 
say, c. This has a larger effect on y than if we start at a higher value of x and increase x by the 
same amount c. In fact, once x � x*, an increase in x actually decreases y.

The statement that x has a diminishing marginal effect on y is the same as saying that 
the slope of the function in Figure A.3 decreases as x increases. Although this is clear from 
looking at the graph, we usually want to quantify how quickly the slope is changing. An 
application of calculus gives the approximate slope of the quadratic function as

 slope �   
$y

 ___ 
$x

   � C1 � 2C2  x, [A.18]

for “small” changes in x. [The right-hand side of equation (A.18) is the derivative of the 
function in equation (A.16) with respect to x.] Another way to write this is

� $y � (C1 � 2C2x)$x  for “small” $x. [A.19]
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To see how well this approximation works, consider again the function y � 6 � 8x � 2x2. 
Then, according to equation (A.19), $y � (8 � 4x)$x. Now, suppose we start at x � 1 and 
change x by $x � .1. Using (A.19), $y � (8 � 4)(.1) � .4. Of course, we can compute 
the change exactly by finding the values of y when x � 1 and x � 1.1: y0 � 6 � 8(1) ���
2(1)2 � 12 and y1 � 6 � 8(1.1) � 2(1.1)2 � 12.38, so the exact change in y is .38. The 
approximation is pretty close in this case.

Now, suppose we start at x � 1 but change x by a larger amount: $x � .5. Then, the 
approximation gives $y � 4(.5) � 2. The exact change is determined by finding the dif-
ference in y when x � 1 and x � 1.5. The former value of y was 12, and the latter value 
is 6 � 8(1.5) � 2(1.5)2 � 13.5, so the actual change is 1.5 (not 2). The approximation is 
worse in this case because the change in x is larger.

For many applications, equation (A.19) can be used to compute the approximate mar-
ginal effect of x on y for any initial value of x and small changes. And, we can always 
compute the exact change if necessary.

 EXAMPLE A.4 A QUADRATIC WAGE FUNCTION

Suppose the relationship between hourly wages and years in the workforce (exper) is 
given by

 wage � 5.25 � .48 exper � .008 exper2. [A.20]

This function has the same general shape as the one in Figure A.3. Using equation (A.17), 
exper has a positive effect on wage up to the turning point, exper* � .48/[2(.008)] � 30. 
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F I G U R E  A . 3  Graph of y � 6 � 8x � 2x2. 
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$y

 ___ 
$��x

    .    x __  y   �   
%$y

 _____ 
%$��x

   . [A.24]

In other words, the elasticity of y with respect to x is the percentage change in y when x 
increases by 1%. This notion should be familiar from introductory economics.

If y is a linear function of x, y � C0 � C1x, then the elasticity is

   
$y

 ___ 
$��x

    .    x __  y   � C1
.    x __  y    � C1

.   x ________ 
C0 � C1x

   , [A.25]

which clearly depends on the value of x. (This is a generalization of the well-known  result 
from basic demand theory: the elasticity is not constant along a straight-line demand 
curve.)

Elasticities are of critical importance in many areas of applied economics, not just in 
demand theory. It is convenient in many situations to have constant elasticity models, and 
the log function allows us to specify such models. If we use the approximation in (A.23) 
for both x and y, then the elasticity is approximately equal to $log(y)/$log(x). Thus, a 
constant elasticity model is approximated by the equation

 log(y) � C0 � C1log(x), [A.26]

and C1 is the elasticity of y with respect to x (assuming that x, y � 0).

 EXAMPLE A.5 CONSTANT ELASTICITY DEMAND FUNCTION

If q  is quantity demanded and p  is price and these variables are related by

 log(q ) � 4.7 � 1.25 log( p ),

then the price elasticity of demand is �1.25. Roughly, a 1% increase in price leads to a 
1.25% fall in the quantity demanded.

For our purposes, the fact that C1 in (A.26) is only close to the elasticity is not 
 important. In fact, when the elasticity is defined using calculus—as in Section A.5—the 
 definition is exact. For the purposes of econometric analysis, (A.26) defines a constant 
elasticity model. Such models play a large role in empirical economics.

Other possibilities for using the log function often arise in empirical work. Suppose 
that y � 0 and

 log(y) � C0 � C1x. [A.27]

Then, $log(y) � C1$x, so 100.$log(y) � (100.C1)$x. It follows that, when y and x are 
related by equation (A.27),

 %$y � (100.C1)$x. [A.28]

β1 = ∂log(y) / ∂log(x)
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We end this subsection by summarizing four combinations of functional forms avail-
able from using either the original variable or its natural log. In Table 2.3, x and y stand for 
the variables in their original form. The model with y as the dependent variable and x as 
the independent variable is called the level-level model because each variable appears in its 
level form. The model with log(y) as the dependent variable and x as the independent vari-
able is called the log-level model. We will not explicitly discuss the level-log model here, 
because it arises less often in practice. In any case, we will see examples of this model in 
later chapters.

The last column in Table 2.3 gives the interpretation of C1. In the log-level model, 
100 �C1 is sometimes called the semi-elasticity of y with respect to x. As we mentioned in 
Example 2.11, in the log-log model, C1 is the elasticity of y with respect to x. Table 2.3 
warrants careful study, as we will refer to it often in the remainder of the text.

The Meaning of “Linear” Regression
The simple regression model that we have studied in this chapter is also called the simple 
linear regression model. Yet, as we have just seen, the general model also  allows for 
 certain nonlinear relationships. So what does “linear” mean here? You can see by look-
ing at equation (2.1) that y � C0 � C1x � u. The key is that this equation is linear in 
the param e ters C0 and C1. There are no restrictions on how y and x relate to the original 
explained and explanatory variables of interest. As we saw in Examples 2.10 and 2.11, 
y and x can be natural logs of variables, and this is quite common in applications. But 
we need not stop there. For example, nothing prevents us from using simple regression 
to estimate a model such as cons � C0 � C1 √

___
 inc   � u, where cons is annual consumption 

and inc is annual income.
Whereas the mechanics of simple regression do not depend on how y and x are de-

fined, the interpretation of the coefficients does depend on their definitions. For successful 
empirical work, it is much more important to become proficient at interpreting coefficients 
than to become efficient at computing formulas such as (2.19). We will get much more 
practice with interpreting the estimates in OLS regression lines when we study multiple 
regression.

Plenty of models cannot be cast as a linear regression model because they are not 
linear in their parameters; an example is cons � 1/(C0 � C1inc) � u. Estimation of such 
models takes us into the realm of the nonlinear regression model, which is beyond the 
scope of this text. For most applications, choosing a model that can be put into the linear 
regression framework is sufficient.

T A B L E  2 . 3  Summary of Functional Forms Involving Logarithms

Model
Dependent

Variable
Independent

Variable
Interpretation

of B1

Level-level y x $y � C1$x

Level-log y log(x) $y � (C1/100)%$x

Log-level log(y) x %$y � (100C1)$x

Log-log log(y) log(x) %$y � C1%$x
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Ø Regression Especification Error Test (RESET) – Ramsey’s 
(1969) 

Ø Considere o seguinte modelo sob H0: 

Ø Queremos testar se o quadrado das variáveis explicativas e 
produtos cruzados deveriam ser incluídos no modelo. 

Ø Considere o seguinte modelo alternativo, sob H1: 
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up until pcnv � .365, and then the relationship is negative. We might conclude that there is 
little or no deterrent effect at lower values of pcnv; the effect only kicks in at higher prior 
conviction rates. We would have to use more sophisticated functional forms than the qua-
dratic to verify this conclusion. It may be that pcnv is not entirely exogenous. For example, 
men who have not been convicted in the past (so that pcnv � 0) are perhaps casual criminals, 
and so they are less likely to be arrested in 1986. This could be biasing the estimates.

Similarly, the relationship between narr86 and ptime86 is positive up until ptime86 � 
4.85 (almost five months in prison), and then the relationship is negative. The vast major-
ity of men in the sample spent no time in prison in 1986, so again we must be careful in 
interpreting the results.

Legal income has a negative effect on narr86 until inc86 � 242.85; since income is 
measured in hundreds of dollars, this means an annual income of $24,285. Only 46 of the 
men in the sample have incomes above this level. Thus, we can conclude that narr86 and 
inc86 are negatively related with a diminishing effect.

Example 9.1 is a tricky functional form problem due to the nature of the dependent 
variable. Other models are theoretically better suited for handling dependent variables tak-
ing on a small number of integer values. We will briefly cover these models in Chapter 17.

RESET as a General Test for Functional  
Form Misspecification
Some tests have been proposed to detect general functional form misspecification. 
 Ramsey’s (1969) regression specification error test (RESET) has proven to be useful 
in this regard.

The idea behind RESET is fairly simple. If the original model

 y � C0 � C1x1 � ... � C kxk � u [9.2]

satisfies MLR.4, then no nonlinear functions of the independent variables should be sig-
nificant when added to equation (9.2). In Example 9.1, we added quadratics in the signifi-
cant explanatory variables. Although this often detects functional form problems, it has the 
drawback of using up many degrees of freedom if there are many explanatory variables in 
the original model (much as the straight form of the White test for heteroskedasticity con-
sumes degrees of freedom). Further, certain kinds of neglected nonlinearities will not be 
picked up by adding quadratic terms. RESET adds polynomials in the OLS fitted values to 
equation (9.2) to detect general kinds of functional form misspecification.

To implement RESET, we must decide how many functions of the fitted values to in-
clude in an expanded regression. There is no right answer to this question, but the squared 
and cubed terms have proven to be useful in most applications.

Let  ̂  y  denote the OLS fitted values from estimating (9.2). Consider the expanded equation

 y � C0 � C1x1 � ... � C k xk � E 1  ̂  y 2 � E 2  ̂  y 3 � error. [9.3]

This equation seems a little odd, because functions of the fitted values from the initial 
estimation now appear as explanatory variables. In fact, we will not be interested in the 
estimated parameters from (9.3); we only use this equation to test whether (9.2) has 
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Ø Ramsey’s (1969) RESET consiste no teste F de H1 contra 
H0: 

H0: δ1 = δ2=0 

H1: H0 não é verdadeira 

 

Considerar o valor critíco considerando-se a distribuição    

F2,n-k-1-2 
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} As etapas do teste são: 
1.  Escrever as hipóteses alternativas e nulas 
2.  Escolher o nível de significância do teste α 
3.  Calcular a estatística F, conhecida como a 

estatística do teste  
4.  Encontrar o valor crítico do teste F*, 
5.  Decidir: Se o valor de F for maior do que o 

de F*, rejeitar H0 com um nível de confiança 
de 1-α 
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Ø Testes de Nonnested Models 
Ø Considere o seguinte modelo sob H0: 

Ø Considere agora o seguinte modelo alternativo, sob H1: 

Ø Uma possibilidade seria agrugar todas as variáveis em um 
único modelo: 
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missed important nonlinearities. The thing to remember is that  ̂  y 2 and  ̂  y 3 are just nonlinear 
 functions of the xj.

The null hypothesis is that (9.2) is correctly specified. Thus, RESET is the F statistic 
for testing H0: E1 � 0, E2 � 0 in the expanded model (9.3). A significant F statistic suggests 
some sort of functional form problem. The distribution of the F statistic is approximately 
F2,n�k�3 in large samples under the null hypothesis (and the Gauss-Markov assumptions). 
The df in the expanded equation (9.3) is n ��k ��1 ��2 ��n ��k ��3. An LM version is also 
available (and the chi-square distribution will have two df  ). Further, the test can be made 
robust to heteroskedasticity using the methods discussed in Section 8.2.

 EXAMPLE 9.2 HOUSING PRICE EQUATION

We estimate two models for housing prices. The first one has all variables in level form:

 price � C0 � C1lotsize � C 2 sqrft � C 3 bdrms � u. [9.4]

The second one uses the logarithms of all variables except bdrms:

 lprice � C0 � C1llotsize � C 2 lsqrft � C 3 bdrms � u. [9.5]

Using n � 88 houses in HPRICE1.RAW, the RESET statistic for equation (9.4) turns out 
to be 4.67; this is the value of an F2,82 random variable (n ��88, k ��3), and the associated 
p-value is .012. This is evidence of functional form misspecification in (9.4).

The RESET statistic in (9.5) is 2.56, with p-value � .084. Thus, we do not reject 
(9.5) at the 5% significance level (although we would at the 10% level). On the basis of 
 RESET, the log-log model in (9.5) is preferred.

In the previous example, we tried two models for explaining housing prices. One was 
rejected by RESET, while the other was not (at least at the 5% level). Often, things are not 
so simple. A drawback with RESET is that it provides no real direction on how to proceed 
if the model is rejected. Rejecting (9.4) by using RESET does not immediately suggest 
that (9.5) is the next step. Equation (9.5) was estimated because constant elasticity models 
are easy to interpret and can have nice statistical properties. In this example, it so happens 
that it passes the functional form test as well.

Some have argued that RESET is a very general test for model misspecification, 
including unobserved omitted variables and heteroskedasticity. Unfortunately, such use 
of RESET is largely misguided. It can be shown that RESET has no power for detecting 
omitted variables whenever they have expectations that are linear in the included inde-
pendent variables in the model [see Wooldridge (1995) for a precise statement]. Further, 
if the functional form is properly specified, RESET has no power for detecting heteroske-
dasticity. The bottom line is that RESET is a functional form test, and nothing more.

Tests against Nonnested Alternatives
Obtaining tests for other kinds of functional form misspecification—for example, trying to 
decide whether an independent variable should appear in level or logarithmic form—takes 
us outside the realm of classical hypothesis testing. It is possible to test the model

 y � C0 � C1x1 � C 2 x2 � u [9.6]
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against the model

 y � C0 � C1log(x1) � C2log(x2) � u, [9.7]

and vice versa. However, these are nonnested models (see Chapter 6), and so we cannot simply 
use a standard F test. Two different approaches have been suggested. The first is to construct a 
comprehensive model that contains each model as a special case and then to test the restrictions 
that led to each of the models. In the current example, the comprehensive model is

 y � H0 � H1x1 � H2x2 � H3log(x1) � H4log(x2) � u. [9.8]

We can first test H0: H3 � 0, H4 � 0 as a test of (9.6). We can also test H0: H1 � 0, H2 � 0 
as a test of (9.7). This approach was suggested by Mizon and Richard (1986).

Another approach has been suggested by Davidson and MacKinnon (1981). They 
point out that if (9.6) is true, then the fitted values from the other model, (9.7), should be 
insignificant in (9.6). Thus, to test (9.6), we first estimate model (9.7) by OLS to obtain 
the fitted values. Call these  ̂   ̂  y  . Then, the Davidson-MacKinnon test is based on the t sta-
tistic on  ̂   ̂  y   in the equation

 y � C0 � C1x1 � C2x2 � V 1  ̂   ̂  y   � error.

A significant t statistic (against a two-sided alternative) is a rejection of (9.6).
Similarly, if  ̂  y  denotes the fitted values from estimating (9.6), the test of (9.7) is the t 

statistic on  ̂  y  in the model

y � C0 � C1log(x1) � C2log(x2) � V 1 ̂  y  � error;

a significant t statistic is evidence against (9.7). The same two tests can be used for testing 
any two nonnested models with the same dependent variable.

There are a few problems with nonnested testing. First, a clear winner need not 
emerge. Both models could be rejected or neither model could be rejected. In the lat-
ter case, we can use the adjusted R-squared to choose between them. If both models are 
 rejected, more work needs to be done. However, it is important to know the practical con-
sequences from using one form or the other: if the effects of key independent variables on 
y are not very different, then it does not really matter which model is used.

A second problem is that rejecting (9.6) using, say, the Davidson-MacKinnon test 
does not mean that (9.7) is the correct model. Model (9.6) can be rejected for a variety of 
functional form misspecifications.

An even more difficult problem is obtaining nonnested tests when the competing models 
have different dependent variables. The leading case is y versus log(y). We saw in Chapter 6 
that just obtaining goodness-of-fit measures that can be compared requires some care. Tests 
have been proposed to solve this problem, but they are beyond the scope of this text. [See 
Wooldridge (1994a) for a test that has a simple interpretation and is easy to implement.]

9.2 Using Proxy Variables for Unobserved  
Explanatory Variables

A more difficult problem arises when a model excludes a key variable, usually because of 
data unavailability. Consider a wage equation that explicitly recognizes that ability (abil) 
affects log(wage):

 log(wage) � C0 � C1educ � C2exper � C3abil � u. [9.9]
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Ø Mizon e Richard (1968) Test consite no teste F: 

H0: γ3 = γ4=0 

H1: H0 não é verdadeira 

 

Se trocarmos o modelo sob H0 pelo modelo sob H1, 

poderíamos teríamos as hipóteses: 

H0: γ1= γ2=0 

H1: H0 não é verdadeira 
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Ø Considere novamente o seguinte modelo sob H0: 

   E o seguinte modelo alternativo, sob H1: 
 

Ø Tome os valores estimados   sob H1. Davidson e 
MacKinnon propuseram o seguinte teste t nessa variável: 

 

H0: θ1 =0 

H1: H0 não é verdadeira 
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missed important nonlinearities. The thing to remember is that  ̂  y 2 and  ̂  y 3 are just nonlinear 
 functions of the xj.

The null hypothesis is that (9.2) is correctly specified. Thus, RESET is the F statistic 
for testing H0: E1 � 0, E2 � 0 in the expanded model (9.3). A significant F statistic suggests 
some sort of functional form problem. The distribution of the F statistic is approximately 
F2,n�k�3 in large samples under the null hypothesis (and the Gauss-Markov assumptions). 
The df in the expanded equation (9.3) is n ��k ��1 ��2 ��n ��k ��3. An LM version is also 
available (and the chi-square distribution will have two df  ). Further, the test can be made 
robust to heteroskedasticity using the methods discussed in Section 8.2.

 EXAMPLE 9.2 HOUSING PRICE EQUATION

We estimate two models for housing prices. The first one has all variables in level form:

 price � C0 � C1lotsize � C 2 sqrft � C 3 bdrms � u. [9.4]
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 RESET, the log-log model in (9.5) is preferred.

In the previous example, we tried two models for explaining housing prices. One was 
rejected by RESET, while the other was not (at least at the 5% level). Often, things are not 
so simple. A drawback with RESET is that it provides no real direction on how to proceed 
if the model is rejected. Rejecting (9.4) by using RESET does not immediately suggest 
that (9.5) is the next step. Equation (9.5) was estimated because constant elasticity models 
are easy to interpret and can have nice statistical properties. In this example, it so happens 
that it passes the functional form test as well.

Some have argued that RESET is a very general test for model misspecification, 
including unobserved omitted variables and heteroskedasticity. Unfortunately, such use 
of RESET is largely misguided. It can be shown that RESET has no power for detecting 
omitted variables whenever they have expectations that are linear in the included inde-
pendent variables in the model [see Wooldridge (1995) for a precise statement]. Further, 
if the functional form is properly specified, RESET has no power for detecting heteroske-
dasticity. The bottom line is that RESET is a functional form test, and nothing more.

Tests against Nonnested Alternatives
Obtaining tests for other kinds of functional form misspecification—for example, trying to 
decide whether an independent variable should appear in level or logarithmic form—takes 
us outside the realm of classical hypothesis testing. It is possible to test the model

 y � C0 � C1x1 � C 2 x2 � u [9.6]
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against the model

 y � C0 � C1log(x1) � C2log(x2) � u, [9.7]

and vice versa. However, these are nonnested models (see Chapter 6), and so we cannot simply 
use a standard F test. Two different approaches have been suggested. The first is to construct a 
comprehensive model that contains each model as a special case and then to test the restrictions 
that led to each of the models. In the current example, the comprehensive model is

 y � H0 � H1x1 � H2x2 � H3log(x1) � H4log(x2) � u. [9.8]

We can first test H0: H3 � 0, H4 � 0 as a test of (9.6). We can also test H0: H1 � 0, H2 � 0 
as a test of (9.7). This approach was suggested by Mizon and Richard (1986).

Another approach has been suggested by Davidson and MacKinnon (1981). They 
point out that if (9.6) is true, then the fitted values from the other model, (9.7), should be 
insignificant in (9.6). Thus, to test (9.6), we first estimate model (9.7) by OLS to obtain 
the fitted values. Call these  ̂   ̂  y  . Then, the Davidson-MacKinnon test is based on the t sta-
tistic on  ̂   ̂  y   in the equation

 y � C0 � C1x1 � C2x2 � V 1  ̂   ̂  y   � error.

A significant t statistic (against a two-sided alternative) is a rejection of (9.6).
Similarly, if  ̂  y  denotes the fitted values from estimating (9.6), the test of (9.7) is the t 

statistic on  ̂  y  in the model

y � C0 � C1log(x1) � C2log(x2) � V 1 ̂  y  � error;

a significant t statistic is evidence against (9.7). The same two tests can be used for testing 
any two nonnested models with the same dependent variable.

There are a few problems with nonnested testing. First, a clear winner need not 
emerge. Both models could be rejected or neither model could be rejected. In the lat-
ter case, we can use the adjusted R-squared to choose between them. If both models are 
 rejected, more work needs to be done. However, it is important to know the practical con-
sequences from using one form or the other: if the effects of key independent variables on 
y are not very different, then it does not really matter which model is used.

A second problem is that rejecting (9.6) using, say, the Davidson-MacKinnon test 
does not mean that (9.7) is the correct model. Model (9.6) can be rejected for a variety of 
functional form misspecifications.

An even more difficult problem is obtaining nonnested tests when the competing models 
have different dependent variables. The leading case is y versus log(y). We saw in Chapter 6 
that just obtaining goodness-of-fit measures that can be compared requires some care. Tests 
have been proposed to solve this problem, but they are beyond the scope of this text. [See 
Wooldridge (1994a) for a test that has a simple interpretation and is easy to implement.]

9.2 Using Proxy Variables for Unobserved  
Explanatory Variables

A more difficult problem arises when a model excludes a key variable, usually because of 
data unavailability. Consider a wage equation that explicitly recognizes that ability (abil) 
affects log(wage):

 log(wage) � C0 � C1educ � C2exper � C3abil � u. [9.9]
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A second problem is that rejecting (9.6) using, say, the Davidson-MacKinnon test 
does not mean that (9.7) is the correct model. Model (9.6) can be rejected for a variety of 
functional form misspecifications.

An even more difficult problem is obtaining nonnested tests when the competing models 
have different dependent variables. The leading case is y versus log(y). We saw in Chapter 6 
that just obtaining goodness-of-fit measures that can be compared requires some care. Tests 
have been proposed to solve this problem, but they are beyond the scope of this text. [See 
Wooldridge (1994a) for a test that has a simple interpretation and is easy to implement.]

9.2 Using Proxy Variables for Unobserved  
Explanatory Variables

A more difficult problem arises when a model excludes a key variable, usually because of 
data unavailability. Consider a wage equation that explicitly recognizes that ability (abil) 
affects log(wage):

 log(wage) � C0 � C1educ � C2exper � C3abil � u. [9.9]
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against the model

 y � C0 � C1log(x1) � C2log(x2) � u, [9.7]

and vice versa. However, these are nonnested models (see Chapter 6), and so we cannot simply 
use a standard F test. Two different approaches have been suggested. The first is to construct a 
comprehensive model that contains each model as a special case and then to test the restrictions 
that led to each of the models. In the current example, the comprehensive model is

 y � H0 � H1x1 � H2x2 � H3log(x1) � H4log(x2) � u. [9.8]

We can first test H0: H3 � 0, H4 � 0 as a test of (9.6). We can also test H0: H1 � 0, H2 � 0 
as a test of (9.7). This approach was suggested by Mizon and Richard (1986).

Another approach has been suggested by Davidson and MacKinnon (1981). They 
point out that if (9.6) is true, then the fitted values from the other model, (9.7), should be 
insignificant in (9.6). Thus, to test (9.6), we first estimate model (9.7) by OLS to obtain 
the fitted values. Call these  ̂   ̂  y  . Then, the Davidson-MacKinnon test is based on the t sta-
tistic on  ̂   ̂  y   in the equation

 y � C0 � C1x1 � C2x2 � V 1  ̂   ̂  y   � error.

A significant t statistic (against a two-sided alternative) is a rejection of (9.6).
Similarly, if  ̂  y  denotes the fitted values from estimating (9.6), the test of (9.7) is the t 

statistic on  ̂  y  in the model

y � C0 � C1log(x1) � C2log(x2) � V 1 ̂  y  � error;

a significant t statistic is evidence against (9.7). The same two tests can be used for testing 
any two nonnested models with the same dependent variable.

There are a few problems with nonnested testing. First, a clear winner need not 
emerge. Both models could be rejected or neither model could be rejected. In the lat-
ter case, we can use the adjusted R-squared to choose between them. If both models are 
 rejected, more work needs to be done. However, it is important to know the practical con-
sequences from using one form or the other: if the effects of key independent variables on 
y are not very different, then it does not really matter which model is used.

A second problem is that rejecting (9.6) using, say, the Davidson-MacKinnon test 
does not mean that (9.7) is the correct model. Model (9.6) can be rejected for a variety of 
functional form misspecifications.

An even more difficult problem is obtaining nonnested tests when the competing models 
have different dependent variables. The leading case is y versus log(y). We saw in Chapter 6 
that just obtaining goodness-of-fit measures that can be compared requires some care. Tests 
have been proposed to solve this problem, but they are beyond the scope of this text. [See 
Wooldridge (1994a) for a test that has a simple interpretation and is easy to implement.]

9.2 Using Proxy Variables for Unobserved  
Explanatory Variables

A more difficult problem arises when a model excludes a key variable, usually because of 
data unavailability. Consider a wage equation that explicitly recognizes that ability (abil) 
affects log(wage):

 log(wage) � C0 � C1educ � C2exper � C3abil � u. [9.9]
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against the model

 y � C0 � C1log(x1) � C2log(x2) � u, [9.7]

and vice versa. However, these are nonnested models (see Chapter 6), and so we cannot simply 
use a standard F test. Two different approaches have been suggested. The first is to construct a 
comprehensive model that contains each model as a special case and then to test the restrictions 
that led to each of the models. In the current example, the comprehensive model is

 y � H0 � H1x1 � H2x2 � H3log(x1) � H4log(x2) � u. [9.8]

We can first test H0: H3 � 0, H4 � 0 as a test of (9.6). We can also test H0: H1 � 0, H2 � 0 
as a test of (9.7). This approach was suggested by Mizon and Richard (1986).

Another approach has been suggested by Davidson and MacKinnon (1981). They 
point out that if (9.6) is true, then the fitted values from the other model, (9.7), should be 
insignificant in (9.6). Thus, to test (9.6), we first estimate model (9.7) by OLS to obtain 
the fitted values. Call these  ̂   ̂  y  . Then, the Davidson-MacKinnon test is based on the t sta-
tistic on  ̂   ̂  y   in the equation

 y � C0 � C1x1 � C2x2 � V 1  ̂   ̂  y   � error.

A significant t statistic (against a two-sided alternative) is a rejection of (9.6).
Similarly, if  ̂  y  denotes the fitted values from estimating (9.6), the test of (9.7) is the t 

statistic on  ̂  y  in the model

y � C0 � C1log(x1) � C2log(x2) � V 1 ̂  y  � error;

a significant t statistic is evidence against (9.7). The same two tests can be used for testing 
any two nonnested models with the same dependent variable.

There are a few problems with nonnested testing. First, a clear winner need not 
emerge. Both models could be rejected or neither model could be rejected. In the lat-
ter case, we can use the adjusted R-squared to choose between them. If both models are 
 rejected, more work needs to be done. However, it is important to know the practical con-
sequences from using one form or the other: if the effects of key independent variables on 
y are not very different, then it does not really matter which model is used.

A second problem is that rejecting (9.6) using, say, the Davidson-MacKinnon test 
does not mean that (9.7) is the correct model. Model (9.6) can be rejected for a variety of 
functional form misspecifications.

An even more difficult problem is obtaining nonnested tests when the competing models 
have different dependent variables. The leading case is y versus log(y). We saw in Chapter 6 
that just obtaining goodness-of-fit measures that can be compared requires some care. Tests 
have been proposed to solve this problem, but they are beyond the scope of this text. [See 
Wooldridge (1994a) for a test that has a simple interpretation and is easy to implement.]

9.2 Using Proxy Variables for Unobserved  
Explanatory Variables

A more difficult problem arises when a model excludes a key variable, usually because of 
data unavailability. Consider a wage equation that explicitly recognizes that ability (abil) 
affects log(wage):

 log(wage) � C0 � C1educ � C2exper � C3abil � u. [9.9]
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This model shows explicitly that we want to hold ability fixed when measuring the  return 
to educ and exper. If, say, educ is correlated with abil, then putting abil in the  error 
term causes the OLS estimator of C1 (and C 2) to be biased, a theme that has appeared 
repeatedly.

Our primary interest in equation (9.9) is in the slope parameters C1 and C2. We do 
not really care whether we get an unbiased or consistent estimator of the intercept C 0; 
as we will see shortly, this is not usually possible. Also, we can never hope to estimate 
C3  because abil is not observed; in fact, we would not know how to interpret C3 anyway, 
since ability is at best a vague concept.

How can we solve, or at least mitigate, the omitted variables bias in an equation like 
(9.9)? One possibility is to obtain a proxy variable for the omitted variable. Loosely 
speaking, a proxy variable is something that is related to the unobserved variable that 
we would like to control for in our analysis. In the wage equation, one possibility is to 
use the intelligence quotient, or IQ, as a proxy for ability. This does not require IQ to be 
the same thing as ability; what we need is for IQ to be correlated with ability, something 
we clarify in the following discussion.

All of the key ideas can be illustrated in a model with three independent variables, 
two of which are observed:

 y � C0 � C1x1 � C2 x2 � C3x *   3 � u. [9.10]

We assume that data are available on y, x1, and x2—in the wage example, these are 
log(wage), educ, and exper, respectively. The explanatory variable x *   3  is unobserved, but 
we have a proxy variable for x *   3 . Call the proxy variable x3.

What do we require of x3? At a minimum, it should have some relationship to x *   3 . This 
is captured by the simple regression equation

 x *   3  � E0 � E3x3 � v3, [9.11]

where v3 is an error due to the fact that x *   3  and x3 are not exactly related. The parameter E3 
measures the relationship between x *   3  and x3; typically, we think of x *   3  and x3 as being posi-
tively related, so that E3 � 0. If E3 � 0, then x3 is not a suitable proxy for x *   3 . The intercept 
E0 in (9.11), which can be positive or negative, simply allows x *   3  and x3 to be measured 
on different scales. (For example, unobserved ability is certainly not required to have the 
same average value as IQ in the U.S. population.)

How can we use x3 to get unbiased (or at least consistent) estimators of C1 and C2? 
The proposal is to pretend that x3 and x *   3  are the same, so that we run the regression of

 y on x1, x2, x3. [9.12]

We call this the plug-in solution to the omitted variables problem because x3 is just 
plugged in for x *   3  before we run OLS. If x3 is truly related to x *   3 , this seems like a sensible 
thing. However, since x3 and x *   3  are not the same, we should determine when this proce-
dure does in fact give consistent estimators of C1 and C2.

The assumptions needed for the plug-in solution to provide consistent estimators of 
C1 and C2 can be broken down into assumptions about u and v3:

(1) The error u is uncorrelated with x1, x2, and x *   3 , which is just the standard assump-
tion in model (9.10). In addition, u is uncorrelated with x3. This latter assumption just 
means that x3 is irrelevant in the population model, once x1, x2, and x *   3  have been included. 

x3
*
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This model shows explicitly that we want to hold ability fixed when measuring the  return 
to educ and exper. If, say, educ is correlated with abil, then putting abil in the  error 
term causes the OLS estimator of C1 (and C 2) to be biased, a theme that has appeared 
repeatedly.

Our primary interest in equation (9.9) is in the slope parameters C1 and C2. We do 
not really care whether we get an unbiased or consistent estimator of the intercept C 0; 
as we will see shortly, this is not usually possible. Also, we can never hope to estimate 
C3  because abil is not observed; in fact, we would not know how to interpret C3 anyway, 
since ability is at best a vague concept.

How can we solve, or at least mitigate, the omitted variables bias in an equation like 
(9.9)? One possibility is to obtain a proxy variable for the omitted variable. Loosely 
speaking, a proxy variable is something that is related to the unobserved variable that 
we would like to control for in our analysis. In the wage equation, one possibility is to 
use the intelligence quotient, or IQ, as a proxy for ability. This does not require IQ to be 
the same thing as ability; what we need is for IQ to be correlated with ability, something 
we clarify in the following discussion.

All of the key ideas can be illustrated in a model with three independent variables, 
two of which are observed:

 y � C0 � C1x1 � C2 x2 � C3x *   3 � u. [9.10]

We assume that data are available on y, x1, and x2—in the wage example, these are 
log(wage), educ, and exper, respectively. The explanatory variable x *   3  is unobserved, but 
we have a proxy variable for x *   3 . Call the proxy variable x3.

What do we require of x3? At a minimum, it should have some relationship to x *   3 . This 
is captured by the simple regression equation

 x *   3  � E0 � E3x3 � v3, [9.11]

where v3 is an error due to the fact that x *   3  and x3 are not exactly related. The parameter E3 
measures the relationship between x *   3  and x3; typically, we think of x *   3  and x3 as being posi-
tively related, so that E3 � 0. If E3 � 0, then x3 is not a suitable proxy for x *   3 . The intercept 
E0 in (9.11), which can be positive or negative, simply allows x *   3  and x3 to be measured 
on different scales. (For example, unobserved ability is certainly not required to have the 
same average value as IQ in the U.S. population.)

How can we use x3 to get unbiased (or at least consistent) estimators of C1 and C2? 
The proposal is to pretend that x3 and x *   3  are the same, so that we run the regression of

 y on x1, x2, x3. [9.12]

We call this the plug-in solution to the omitted variables problem because x3 is just 
plugged in for x *   3  before we run OLS. If x3 is truly related to x *   3 , this seems like a sensible 
thing. However, since x3 and x *   3  are not the same, we should determine when this proce-
dure does in fact give consistent estimators of C1 and C2.

The assumptions needed for the plug-in solution to provide consistent estimators of 
C1 and C2 can be broken down into assumptions about u and v3:

(1) The error u is uncorrelated with x1, x2, and x *   3 , which is just the standard assump-
tion in model (9.10). In addition, u is uncorrelated with x3. This latter assumption just 
means that x3 is irrelevant in the population model, once x1, x2, and x *   3  have been included. 
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This is essentially true by definition, since x3 is a proxy variable for x *   3 : it is x *   3  that directly 
affects y, not x3. Thus, the assumption that u is uncorrelated with x1, x2, x *   3 , and x3 is not 
very controversial. (Another way to state this assumption is that the expected value of u, 
given all these variables, is zero.)

(2) The error v3 is uncorrelated with x1, x2, and x3. Assuming that v3 is uncorrelated 
with x1 and x2 requires x3 to be a “good” proxy for x *   3 . This is easiest to see by writing the 
analog of these assumptions in terms of conditional expectations:

 E(x *   3 Ux1, x2, x3) � E(x *   3 Ux3) � E0 � E3x3. [9.13]

The first equality, which is the most important one, says that, once x3 is controlled for, 
the expected value of x *   3  does not depend on x1 or x2. Alternatively, x *   3  has zero correlation 
with x1 and x2 once x3 is partialled out.

In the wage equation (9.9), where IQ is the proxy for ability, condition (9.13) 
becomes

E(abilUeduc,exper,IQ) � E(abilUIQ) � E0 � E 3IQ.

Thus, the average level of ability only changes with IQ, not with educ and exper. Is this 
reasonable? Maybe it is not exactly true, but it may be close to being true. It is certainly 
worth including IQ in the wage equation to see what happens to the estimated return to 
education.

We can easily see why the previous assumptions are enough for the plug-in solution 
to work. If we plug equation (9.11) into equation (9.10) and do simple algebra, we get

y � (C0 � C3 E 0) � C1x1 � C2x2 � C3E3x3 � u � C3v3.

Call the composite error in this equation e � u � C3v3; it depends on the error in the model 
of interest, (9.10), and the error in the proxy variable equation, v3. Since u and v3 both 
have zero mean and each is uncorrelated with x1, x2, and x3, e also has zero mean and is 
 uncorrelated with x1, x2, and x3. Write this equation as

y � B0 � C1x1 � C2x2 � B3x3 � e,

where B0 � (C0 � C3E 0) is the new intercept and B3 � C3E3 is the slope parameter on the 
proxy variable x3. As we alluded to earlier, when we run the regression in (9.12), we will 
not get unbiased estimators of C0 and C 3; instead, we will get unbiased (or at least consis-
tent) estimators of B0, C1, C2, and B3. The important thing is that we get good estimates of 
the parameters C1 and C2.

In most cases, the estimate of B3 is actually more interesting than an estimate of C3 
anyway. For example, in the wage equation, B3 measures the return to wage given one 
more point on IQ score.

 EXAMPLE 9.3 IQ AS A PROXY FOR ABILITY

The file WAGE2.RAW, from Blackburn and Neumark (1992), contains information on 
monthly earnings, education, several demographic variables, and IQ scores for 935 men in 
1980. As a method to account for omitted ability bias, we add IQ to a standard log wage 
equation. The results are shown in Table 9.2.
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This is essentially true by definition, since x3 is a proxy variable for x *   3 : it is x *   3  that directly 
affects y, not x3. Thus, the assumption that u is uncorrelated with x1, x2, x *   3 , and x3 is not 
very controversial. (Another way to state this assumption is that the expected value of u, 
given all these variables, is zero.)

(2) The error v3 is uncorrelated with x1, x2, and x3. Assuming that v3 is uncorrelated 
with x1 and x2 requires x3 to be a “good” proxy for x *   3 . This is easiest to see by writing the 
analog of these assumptions in terms of conditional expectations:

 E(x *   3 Ux1, x2, x3) � E(x *   3 Ux3) � E0 � E3x3. [9.13]

The first equality, which is the most important one, says that, once x3 is controlled for, 
the expected value of x *   3  does not depend on x1 or x2. Alternatively, x *   3  has zero correlation 
with x1 and x2 once x3 is partialled out.

In the wage equation (9.9), where IQ is the proxy for ability, condition (9.13) 
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E(abilUeduc,exper,IQ) � E(abilUIQ) � E0 � E 3IQ.

Thus, the average level of ability only changes with IQ, not with educ and exper. Is this 
reasonable? Maybe it is not exactly true, but it may be close to being true. It is certainly 
worth including IQ in the wage equation to see what happens to the estimated return to 
education.

We can easily see why the previous assumptions are enough for the plug-in solution 
to work. If we plug equation (9.11) into equation (9.10) and do simple algebra, we get

y � (C0 � C3 E 0) � C1x1 � C2x2 � C3E3x3 � u � C3v3.

Call the composite error in this equation e � u � C3v3; it depends on the error in the model 
of interest, (9.10), and the error in the proxy variable equation, v3. Since u and v3 both 
have zero mean and each is uncorrelated with x1, x2, and x3, e also has zero mean and is 
 uncorrelated with x1, x2, and x3. Write this equation as

y � B0 � C1x1 � C2x2 � B3x3 � e,

where B0 � (C0 � C3E 0) is the new intercept and B3 � C3E3 is the slope parameter on the 
proxy variable x3. As we alluded to earlier, when we run the regression in (9.12), we will 
not get unbiased estimators of C0 and C 3; instead, we will get unbiased (or at least consis-
tent) estimators of B0, C1, C2, and B3. The important thing is that we get good estimates of 
the parameters C1 and C2.

In most cases, the estimate of B3 is actually more interesting than an estimate of C3 
anyway. For example, in the wage equation, B3 measures the return to wage given one 
more point on IQ score.

 EXAMPLE 9.3 IQ AS A PROXY FOR ABILITY

The file WAGE2.RAW, from Blackburn and Neumark (1992), contains information on 
monthly earnings, education, several demographic variables, and IQ scores for 935 men in 
1980. As a method to account for omitted ability bias, we add IQ to a standard log wage 
equation. The results are shown in Table 9.2.
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black man with the same IQ, education, experience, and so on, as a white man is predicted 
to earn about 14.3% less, and the difference is very statistically significant.

Column (3) in Table 9.2 includes the 
interaction term educ�IQ. This  allows for 
the possibility that educ and abil inter-
act in determining log(wage). We might 
think that the return to education is higher 
for people with more ability, but this turns 
out not to be the case: the interaction term 
is not significant, and its addition makes 

educ and IQ individually insignificant while complicating the model. Therefore, the esti-
mates in column (2) are preferred.

There is no reason to stop at a single proxy variable for ability in this example. The data 
set WAGE2.RAW also contains a score for each man on the Knowledge of the World of 
Work (KWW) test. This provides a different measure of ability, which can be used in place 
of IQ or along with IQ, to estimate the return to education (see Computer Exercise C2).

It is easy to see how using a proxy variable can still lead to bias if the proxy variable 
does not satisfy the preceding assumptions. Suppose that, instead of (9.11), the unobserved 
variable, x  *   3 , is related to all of the observed variables by

 x  *   3  � E0 � E1x1 � E2x2 � E3x3 � v3, [9.14]

where v3 has a zero mean and is uncorrelated with x1, x2, and x3. Equation (9.11) assumes 
that E1 and E2 are both zero. By plugging equation (9.14) into (9.10), we get

 y � (C0 � C3E 0) � (C1 � C3E 1)x1 � (C2 � C3E 2)x2

� C3E3x3 � u � C3v3,
 [9.15]

from which it follows that plim( ̂  C�  1) � C1 � C3E1 and plim( ̂  C�  2) � C2 � C3E2. [This follows 
because the error in (9.15), u � C3v3, has zero mean and is uncorrelated with x1, x2, and x3.]  
In the previous example where x1 � educ and x  *   3  � abil, C3 � 0, so there is a positive bias 
(inconsistency) if abil has a positive partial correlation with educ (E1 � 0). Thus, we could 
still be getting an upward bias in the return to education by using IQ as a proxy for abil 
if IQ is not a good proxy. But we can reasonably hope that this bias is smaller than if we 
ignored the problem of omitted ability entirely.

A complaint that is sometimes aired about including variables such as IQ in a re-
gression that includes educ is that it exacerbates the problem of multicollinearity, likely 
leading to a less precise estimate of Ceduc. But this complaint misses two important points. 
First, the inclusion of IQ reduces the error variance because the part of ability explained by 
IQ has been removed from the error. Typically, this will be reflected in a smaller standard 
error of the regression (although it need not get smaller because of its degrees-of-freedom 
adjustment). Second, and most importantly, the added multicollinearity is a necessary evil 
if we want to get an estimator of Ceduc with less bias: the reason educ and IQ are correlated 
is that educ and abil are thought to be correlated, and IQ is a proxy for abil. If we could 
observe abil we would include it in the regression, and of course there would be unavoid-
able multicollinearity caused by correlation between educ and abil.

Proxy variables can come in the form of binary information as well. In Example 7.9 [see 
equation (7.15)], we discussed Krueger’s (1993) estimates of the return to using a computer on 

EXPLORING FURTHER 9.2
What do you make of the small and sta-
tistically insignificant coefficient on educ 
in  column (3) of Table 9.2? (Hint: When 
educ�IQ is in the equation, what is the inter-
pretation of the coefficient on educ?)
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black man with the same IQ, education, experience, and so on, as a white man is predicted 
to earn about 14.3% less, and the difference is very statistically significant.

Column (3) in Table 9.2 includes the 
interaction term educ�IQ. This  allows for 
the possibility that educ and abil inter-
act in determining log(wage). We might 
think that the return to education is higher 
for people with more ability, but this turns 
out not to be the case: the interaction term 
is not significant, and its addition makes 

educ and IQ individually insignificant while complicating the model. Therefore, the esti-
mates in column (2) are preferred.

There is no reason to stop at a single proxy variable for ability in this example. The data 
set WAGE2.RAW also contains a score for each man on the Knowledge of the World of 
Work (KWW) test. This provides a different measure of ability, which can be used in place 
of IQ or along with IQ, to estimate the return to education (see Computer Exercise C2).

It is easy to see how using a proxy variable can still lead to bias if the proxy variable 
does not satisfy the preceding assumptions. Suppose that, instead of (9.11), the unobserved 
variable, x  *   3 , is related to all of the observed variables by

 x  *   3  � E0 � E1x1 � E2x2 � E3x3 � v3, [9.14]

where v3 has a zero mean and is uncorrelated with x1, x2, and x3. Equation (9.11) assumes 
that E1 and E2 are both zero. By plugging equation (9.14) into (9.10), we get

 y � (C0 � C3E 0) � (C1 � C3E 1)x1 � (C2 � C3E 2)x2

� C3E3x3 � u � C3v3,
 [9.15]

from which it follows that plim( ̂  C�  1) � C1 � C3E1 and plim( ̂  C�  2) � C2 � C3E2. [This follows 
because the error in (9.15), u � C3v3, has zero mean and is uncorrelated with x1, x2, and x3.]  
In the previous example where x1 � educ and x  *   3  � abil, C3 � 0, so there is a positive bias 
(inconsistency) if abil has a positive partial correlation with educ (E1 � 0). Thus, we could 
still be getting an upward bias in the return to education by using IQ as a proxy for abil 
if IQ is not a good proxy. But we can reasonably hope that this bias is smaller than if we 
ignored the problem of omitted ability entirely.

A complaint that is sometimes aired about including variables such as IQ in a re-
gression that includes educ is that it exacerbates the problem of multicollinearity, likely 
leading to a less precise estimate of Ceduc. But this complaint misses two important points. 
First, the inclusion of IQ reduces the error variance because the part of ability explained by 
IQ has been removed from the error. Typically, this will be reflected in a smaller standard 
error of the regression (although it need not get smaller because of its degrees-of-freedom 
adjustment). Second, and most importantly, the added multicollinearity is a necessary evil 
if we want to get an estimator of Ceduc with less bias: the reason educ and IQ are correlated 
is that educ and abil are thought to be correlated, and IQ is a proxy for abil. If we could 
observe abil we would include it in the regression, and of course there would be unavoid-
able multicollinearity caused by correlation between educ and abil.

Proxy variables can come in the form of binary information as well. In Example 7.9 [see 
equation (7.15)], we discussed Krueger’s (1993) estimates of the return to using a computer on 

EXPLORING FURTHER 9.2
What do you make of the small and sta-
tistically insignificant coefficient on educ 
in  column (3) of Table 9.2? (Hint: When 
educ�IQ is in the equation, what is the inter-
pretation of the coefficient on educ?)
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Variável Proxy 

}  Em trabalhos empíricos, é comum utilizar-se a 
primeira defasagem da variável dependente 
como variável proxy: 
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the job. Krueger also included a binary variable indicating whether the worker uses a computer 
at home (as well as an interaction term between computer usage at work and at home). His pri-
mary reason for including computer usage at home in the equation was to proxy for unobserved 
“technical ability” that could affect wage directly and be related to computer usage at work.

Using Lagged Dependent Variables as Proxy Variables
In some applications, like the earlier wage example, we have at least a vague idea about 
which unobserved factor we would like to control for. This facilitates choosing proxy 
variables. In other applications, we suspect that one or more of the independent variables 
is correlated with an omitted variable, but we have no idea how to obtain a proxy for that 
omitted variable. In such cases, we can include, as a control, the value of the dependent 
variable from an earlier time period. This is especially useful for policy analysis.

Using a lagged dependent variable in a cross-sectional equation increases the data 
 requirements, but it also provides a simple way to account for historical factors that cause current 
differences in the dependent variable that are difficult to account for in other ways. For example, 
some cities have had high crime rates in the past. Many of the same unobserved factors contrib-
ute to both high current and past crime rates. Likewise, some universities are traditionally better 
in academics than other universities. Inertial effects are also captured by putting in lags of y.

Consider a simple equation to explain city crime rates:

 crime � C0 � C1unem � C2expend � C3crime�1 � u, [9.16]

where crime is a measure of per capita crime, unem is the city unemployment rate, expend 
is per capita spending on law enforcement, and crime�1 indicates the crime rate measured 
in some earlier year (this could be the past year or several years ago). We are interested in 
the effects of unem on crime, as well as of law enforcement expenditures on crime.

What is the purpose of including crime�1 in the equation? Certainly, we expect that  
C3 � 0 because crime has inertia. But the main reason for putting this in the equation is 
that cities with high historical crime rates may spend more on crime prevention. Thus, 
factors unobserved to us (the econometricians) that affect crime are likely to be correlated 
with expend (and unem). If we use a pure cross-sectional analysis, we are unlikely to get 
an unbiased estimator of the causal effect of law enforcement expenditures on crime. But, 
by including crime�1 in the equation, we can at least do the following experiment: if two 
cities have the same previous crime rate and current unemployment rate, then C2 measures 
the effect of another dollar of law enforcement on crime.

 EXAMPLE 9.4 CITY CRIME RATES

We estimate a constant elasticity version of the crime model in equation (9.16) (unem, 
because it is a percentage, is left in level form). The data in CRIME2.RAW are from 46 
cities for the year 1987. The crime rate is also available for 1982, and we use that as an 
additional independent variable in trying to control for city unobservables that affect crime 
and may be correlated with current law enforcement expenditures. Table 9.3 contains the 
results.

Without the lagged crime rate in the equation, the effects of the unemployment rate 
and expenditures on law enforcement are counterintuitive; neither is statistically signifi-
cant, although the t statistic on log(lawexpc87) is 1.17. One possibility is that increased law 
enforcement expenditures improve reporting conventions, and so more crimes are  reported. 
But it is also likely that cities with high recent crime rates spend more on law enforcement.
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