### Esta aula

#### Plano

- Inclusão de Variáveis Irrelevantes
- Omissão de Variáveis Relevantes
- Revisão: Formas Funcionais
- Testes de Especificação Funcional
- Variáveis Proxy

#### Bibliografia

 Wooldridge, J. M. Introductory Econometrics: A modern Approach, 6th Ed.

# Inclusão de Variáveis Irrelevantes

### Variáveis Irrelevantes

Considere o seguinte modelo populacional:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u,$$

 $\mathsf{Com} \ \beta_3 = 0$ 

> Se estimarmos os parâmetros, obtemos:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3$$

Essas são estimativas não-enviesadas dos verdadeiros parâmetros populacionais.

### Variáveis Irrelevantes

Porém lembre-se que:

$$Var(\hat{\beta}_{j}) = \frac{\sigma^{2}}{SST_{j}(1-R_{j}^{2})}$$

Dessa forma, se a variável irrelevante for correlacionada com as demais variáveis explicativas do modelo, aumentará a variância ou imprecisão na estimação dos parâmetros. Os testes de hipótese tenderão a rejeitar a significância de parâmetros relevantes com maior probabilidade.

Considere o seguinte modelo populacional:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

> Porém, por falta de conhecimento ou de dados, estima-se:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$

Obtemos uma estimativa não-enviesada do impacto de x1 em y?

A seguinte relação se verifica:

$$\tilde{\boldsymbol{\beta}}_1 = \hat{\boldsymbol{\beta}}_1 + \hat{\boldsymbol{\beta}}_2 \tilde{\boldsymbol{\delta}}_1$$

- Em que delta1 é o impacto de x1 em x2 em uma regressão de x2 contra x1
- Portanto, tem-se:

$$\begin{split} \mathrm{E}(\tilde{\beta}_1) &= \mathrm{E}(\hat{\beta}_1 + \hat{\beta}_2 \tilde{\delta}_1) = \mathrm{E}(\hat{\beta}_1) + \mathrm{E}(\hat{\beta}_2) \tilde{\delta}_1 \\ &= \beta_1 + \beta_2 \tilde{\delta}_1, \end{split}$$

 $\succ$  E o Viés é dado por: Bias $(\tilde{\beta}_1) = E(\tilde{\beta}_1) - \beta_1 = \beta_2 \tilde{\delta}_1$ .

| <b>TABLE 3.2</b> Summary of Bias in $\tilde{\beta}_1$ when $x_2$ Is Omitted in Estimating Eqution (3.40) |                      |                      |  |
|----------------------------------------------------------------------------------------------------------|----------------------|----------------------|--|
|                                                                                                          | $Corr(x_1, x_2) > 0$ | $Corr(x_1, x_2) < 0$ |  |
| $\beta_2 > 0$                                                                                            | Positive bias        | Negative bias        |  |
| $\beta_2 < 0$                                                                                            | Negative bias        | Positive bias        |  |

Caso Geral - Considere o seguinte modelo populacional:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

> Porém, por falta de conhecimento ou de dados, estima-se:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2.$$

Obtemos uma estimativa não-enviesada do impacto de x1 em y?

Se x1 e x2 não forem correlacionadas, tem-se:

$$E(\tilde{\beta}_{1}) = \beta_{1} + \beta_{3} \frac{\sum_{i=1}^{n} (x_{i1} - \overline{x}_{1}) x_{i3}}{\sum_{i=1}^{n} (x_{i1} - \overline{x}_{1})^{2}}$$

## Revisão: Formas Funcionais

Até agora, consideramos o modelo linear:

$$y = \beta_0 + \beta_1 x + u$$

• Esse modelo preve um impacto constante  $\beta_1$ , também chamado de efeito marginal de x em y, que independe do valor inicial de x:  $\Delta y = \beta_1 \Delta x$ 

em y



• É comum fazer-se a regressão de log(y) contra x. A interpretação do modelo faz mais sentido para muitos problemas em ciências sociais. Em nosso exemplo anterior, teríamos:  $log(wage) = \beta_0 + \beta_1 educ + u_1$ 



# • Utilizando cálculo, é possível demonstrar que: $\log(x_1) - \log(x_0) \approx (x_1 - x_0)/x_0 = \Delta x/x_0$

• Em 
$$\log(wage) = \beta_0 + \beta_1 educ + u_1$$

#### , multiplicando-se por 100 tem-se:

 $\% \Delta wage \approx (100 \cdot \beta_1) \Delta educ.$ 

#### • Nesse caso, tem-se: $\% \Delta wage \approx (100 \cdot \beta_1) \Delta educ.$



Função quadrática:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2,$$



#### Portanto, em

$$\log(y) = \beta_0 + \beta_1 \log(x)$$

 $\beta_1 = \partial \log(y) / \partial \log(x)$ , sendo aproximadamente a

#### elasticidade de y com relação x

 Elasticidade de y com relação a x é definida pela variação percentual de y dividida pela variação percentual de x:

$$\frac{\Delta y}{\Delta x} \cdot \frac{x}{y} = \frac{\% \Delta y}{\% \Delta x}$$

• (Cálculo) A elasticidade pode ser aproximada por:  $\Delta \log(y) / \Delta \log(x)$ 

#### Nesse caso, tem-se:

| TABLE 2.3 Summary of Functional Forms Involving Logarithms |                       |                         |                                          |  |
|------------------------------------------------------------|-----------------------|-------------------------|------------------------------------------|--|
| Model                                                      | Dependent<br>Variable | Independent<br>Variable | Interpretation of $\beta_1$              |  |
| Level-level                                                | У                     | X                       | $\Delta y = \beta_1 \Delta x$            |  |
| Level-log                                                  | У                     | $\log(x)$               | $\Delta y = (\beta_1 / 100) \% \Delta x$ |  |
| Log-level                                                  | $\log(y)$             | X                       | $\% \Delta y = (100\beta_1) \Delta x$    |  |
| Log-log                                                    | $\log(y)$             | $\log(x)$               | $\% \Delta y = \beta_1 \% \Delta x$      |  |

- Regression Especification Error Test (RESET) Ramsey's (1969)
- Considere o seguinte modelo sob H0:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

 Queremos testar se o quadrado das variáveis explicativas e produtos cruzados deveriam ser incluídos no modelo.
 Considere o seguinte modelo alternativo, sob H1:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \delta_1 \hat{y}^2 + \delta_2 \hat{y}^3 + error.$$

Ramsey's (1969) RESET consiste no teste F de H1 contra H0:

$$H_0: \delta_1 = \delta_2 = 0$$
  
 $H_1: H_0 n \tilde{a} o e verdadeira$ 

Considerar o valor critíco considerando-se a distribuição

*F*<sub>2,*n*-*k*-1-2</sub>

### Teste de Hipótese

- As etapas do teste são:
- I. Escrever as hipóteses alternativas e nulas
- 2. Escolher o nível de significância do teste  $\alpha$
- 3. Calcular a estatística F, conhecida como a estatística do teste
- 4. Encontrar o **valor crítico** do teste F<sup>\*,</sup>
- 5. Decidir: Se o valor de F for maior do que o de F<sup>\*</sup>, rejeitar H<sub>0</sub> com um nível de confiança de  $1-\alpha$

Testes de Nonnested Models
Considere o seguinte modelo sob H0:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

> Considere agora o seguinte modelo alternativo, sob H1:

$$y = \beta_0 + \beta_1 \log(x_1) + \beta_2 \log(x_2) + u,$$

Uma possibilidade seria agrugar todas as variáveis em um único modelo:

$$y = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + \gamma_3 \log(x_1) + \gamma_4 \log(x_2) + u.$$

Mizon e Richard (1968) Test consite no teste F:

 $\mathsf{H}_0: \gamma_3 = \gamma_4 = 0$ 

H<sub>1</sub>: *H*<sub>0</sub> não é verdadeira

Se trocarmos o modelo sob H0 pelo modelo sob H1, poderíamos teríamos as hipóteses:

 $H_0: \gamma_1 = \gamma_2 = 0$  $H_1: H_0 n \tilde{a} o e verdadeira$ 

Considere novamente o seguinte modelo sob H0:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

E o seguinte modelo alternativo, sob H1:

$$y = \beta_0 + \beta_1 \log(x_1) + \beta_2 \log(x_2) + u,$$

> Tome os valores estimados  $\hat{\mathscr{Y}}$  sob H1. Davidson e MacKinnon propuseram o seguinte teste t nessa variável:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \theta_1 \hat{\hat{y}} + error.$$

 $H_0: \theta_1 = 0$  $H_1: H_0 n \tilde{a} o e verda de ira$  > Suponha que o modelo populacional seja:

 $\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 abil + u.$ 

Sendo ability sendo não-observável

De uma forma geral, considere o seguinte modelo populacional:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3^* + u.$$

Sendo  $x_3^*$  não-observável.

Se  $x_3^*$  puder ser escrita como uma função da variável  $x_3$ :  $x_3^* = \delta_0 + \delta_3 x_3 + v_3$ 

E substituindo-se dentro do modelo populacional, obtemse:

$$y = (\beta_0 + \beta_3 \delta_0) + \beta_1 x_1 + \beta_2 x_2 + \beta_3 \delta_3 x_3 + u + \beta_3 v_3.$$

Ou, reescrevendo-se:

$$y = \alpha_0 + \beta_1 x_1 + \beta_2 x_2 + \alpha_3 x_3 + e_1$$

Se  $x_3^*$  for uma função de todas as variáveis explicativas, tem-se:

$$x_3^* = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + v_3$$

Nesse caso, substituindo-se dentro do modelo populacional, obtém-se:

$$y = (\beta_0 + \beta_3 \delta_0) + (\beta_1 + \beta_3 \delta_1) x_1 + (\beta_2 + \beta_3 \delta_2) x_2 + \beta_3 \delta_3 x_3 + u + \beta_3 v_3,$$

### Variável Proxy

Em trabalhos empíricos, é comum utilizar-se a primeira defasagem da variável dependente como variável proxy:

 $crime = \beta_0 + \beta_1 unem + \beta_2 expend + \beta_3 crime_{-1} + u$ ,

# Obrigada!