Esta aula

- Plano
- Inclusão de Variáveis Irrelevantes
- Omissão de Variáveis Relevantes
- Revisão: Formas Funcionais
- Testes de Especificação Funcional
- Variáveis Proxy
- Bibliografia
- Wooldridge, J. M. Introductory Econometrics:A modern Approach, 6th Ed.

Inclusão de Variáveis Irrelevantes

Variáveis Irrelevantes

> Considere o seguinte modelo populacional:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+u,
$$

Com $\beta_{3}=0$
$>$ Se estimarmos os parâmetros, obtemos:

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\hat{\beta}_{3} x_{3}
$$

>Essas são estimativas não-enviesadas dos verdadeiros parâmetros populacionais.

Variáveis Irrelevantes

> Porém lembre-se que:

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{\sigma^{2}}{\operatorname{SST}_{j}\left(1-R_{j}^{2}\right)}
$$

>Dessa forma, se a variável irrelevante for correlacionada com as demais variáveis explicativas do modelo, aumentará a variância ou imprecisão na estimação dos parâmetros. Os testes de hipótese tenderão a rejeitar a significância de parâmetros relevantes com maior probabilidade.

Omissão de Variáveis Relevantes

Omissão de Variáveis Relevantes

> Considere o seguinte modelo populacional:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

$>$ Porém, por falta de conhecimento ou de dados, estima-se:

$$
\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1}
$$

> Obtemos uma estimativa não-enviesada do impacto de x1 em y ?

Omissão de Variáveis Relevantes

> A seguinte relação se verifica:

$$
\tilde{\beta}_{1}=\hat{\beta}_{1}+\hat{\beta}_{2} \tilde{\delta}_{1}
$$

>Em que delta1 é o impacto de x1 em x2 em uma regressão de x 2 contra x 1
>Portanto, tem-se:

$$
\begin{aligned}
\mathrm{E}\left(\tilde{\beta}_{1}\right) & =\mathrm{E}\left(\hat{\beta}_{1}+\hat{\beta}_{2} \tilde{\delta}_{1}\right)=\mathrm{E}\left(\hat{\beta}_{1}\right)+\mathrm{E}\left(\hat{\beta}_{2}\right) \tilde{\delta}_{1} \\
& =\beta_{1}+\beta_{2} \tilde{\delta}_{1},
\end{aligned}
$$

$\Rightarrow \mathrm{E}$ o Viés é dado por: $\operatorname{Bias}\left(\tilde{\beta}_{1}\right)=\mathrm{E}\left(\tilde{\beta}_{1}\right)-\beta_{1}=\beta_{2} \tilde{\delta}_{1}$.

Omissão de Variáveis Relevantes

TABLE 3.2 Summary of Bias in $\tilde{\boldsymbol{\beta}}_{1}$ when \boldsymbol{x}_{2} Is Omitted in Estimating Eqution (3.40)		
	$\operatorname{Corr}\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{2}\right)>\mathbf{0}$	$\operatorname{Corr}\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{2}\right)<\mathbf{0}$
$\beta_{2}>0$	Positive bias	Negative bias
$\beta_{2}<0$	Negative bias	Positive bias

Omissão de Variáveis Relevantes

> Caso Geral - Considere o seguinte modelo populacional:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+u
$$

>Porém, por falta de conhecimento ou de dados, estima-se:

$$
\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1}+\tilde{\beta}_{2} x_{2} .
$$

> Obtemos uma estimativa não-enviesada do impacto de x1 em y ?

Omissão de Variáveis Relevantes

$>$ Se x1 e x2 não forem correlacionadas, tem-se:

$$
\mathrm{E}\left(\tilde{\beta}_{1}\right)=\beta_{1}+\beta_{3} \frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right) x_{i 3}}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}
$$

Revisão: Formas Funcionais

Linearidade

Até agora, consideramos o modelo linear:

$$
y=\beta_{0}+\beta_{1} x+u
$$

- Esse modelo preve um impacto constante β_{1}, também chamado de efeito marginal de x em y , que independe do valor inicial de $\mathrm{x}: \quad \Delta y=\beta_{1} \Delta x$
- Em: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$.

$$
\Delta y=\beta_{1} \Delta x_{1} \text { if } \Delta x_{2}=0
$$

- β_{1} é chamado de efeito parcial de x_{1} em y

Linearidade

Linearidade

- É comum fazer-se a regressão de $\log (y)$ contra x. A interpretação do modelo faz mais sentido para muitos problemas em ciências sociais. Em nosso exemplo anterior, teríamos: \log (wage $)=\beta_{0}+\beta_{1} e d u c+u$.

FIGURE A. 5 Graph of $y=\exp (x)$.

Linearidade

- Utilizando cálculo, é possível demonstrar que:

$$
\log \left(x_{1}\right)-\log \left(x_{0}\right) \approx\left(x_{1}-x_{0}\right) / x_{0}=\Delta x / x_{0}
$$

- Em $\log ($ wage $)=\beta_{0}+\beta_{1} e d u c+u$.
, multiplicando-se por 100 tem-se:

$$
\% \Delta \text { wage } \approx\left(100 \cdot \beta_{1}\right) \Delta e d u c .
$$

Linearidade

- Nesse caso, tem-se:
$\% \Delta$ wage $\approx\left(100 \cdot \beta_{1}\right) \Delta e d u c$.

Linearidade

Função quadrática:

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

FIGURE A. 3 Graph of $y=6+8 x-2 x^{2}$.

Linearidade

- Portanto, em

$$
\log (y)=\beta_{0}+\beta_{1} \log (x)
$$

$\beta_{1}=\partial \log (y) / \partial \log (x)$, sendo aproximadamente a elasticidade de y com relação x

Linearidade

- Elasticidade de y com relação a x é definida pela variação percentual de y dividida pela variação percentual de x :

$$
\frac{\Delta y}{\Delta x} \cdot \frac{x}{y}=\frac{\% \Delta y}{\% \Delta x}
$$

(Cálculo) A elasticidade pode ser aproximada por:

$$
\Delta \log (y) / \Delta \log (x)
$$

Linearidade

- Nesse caso, tem-se:

Model	Dependent Variable	Independent Variable	Interpretation of $\boldsymbol{\beta}_{1}$
Level-level	y	x	$\Delta y=\beta_{1} \Delta x$
Level-log	y	$\log (x)$	$\Delta y=\left(\beta_{1} / 100\right) \% \Delta x$
Log-level	$\log (y)$	x	$\% \Delta y=\left(100 \beta_{1}\right) \Delta x$
Log-log	$\log (y)$	$\log (x)$	$\% \Delta y=\beta_{1} \% \Delta x$

Testes de Especificação Funcional

Testes de Especificação Funcional

$>$ Regression Especification Error Test (RESET) - Ramsey's (1969)
> Considere o seguinte modelo sob HO :

$$
y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+u
$$

> Queremos testar se o quadrado das variáveis explicativas e produtos cruzados deveriam ser incluídos no modelo.
$>$ Considere o seguinte modelo alternativo, sob H 1:

$$
y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\delta_{1} \hat{y}^{2}+\delta_{2} \hat{y}^{3}+\text { error. }
$$

Testes de Especificação Funcional

>Ramsey's (1969) RESET consiste no teste F de H1 contra HO:
$\mathrm{H}_{0}: \delta_{1}=\delta_{2}=0$
H_{1} : H_{0} não é verdadeira

Considerar o valor critíco considerando-se a distribuição

$$
F_{2, n-k-1-2}
$$

Teste de Hipótese

As etapas do teste são:
।. Escrever as hipóteses alternativas e nulas
2. Escolher o nível de significância do teste α
3. Calcular a estatística F , conhecida como a estatística do teste
4. Encontrar o valor crítico do teste F^{*},
5. Decidir: Se o valor de F for maior do que o de F^{*}, rejeitar H_{0} com um nível de confiança de $1-\alpha$

Testes de Especificação Funcional

$>$ Testes de Nonnested Models
$>$ Considere o seguinte modelo sob H0:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

$>$ Considere agora o seguinte modelo alternativo, sob H1:

$$
y=\beta_{0}+\beta_{1} \log \left(x_{1}\right)+\beta_{2} \log \left(x_{2}\right)+u
$$

> Uma possibilidade seria agrugar todas as variáveis em um único modelo:

$$
y=\gamma_{0}+\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3} \log \left(x_{1}\right)+\gamma_{4} \log \left(x_{2}\right)+u
$$

Testes de Especificação Funcional

$>$ Mizon e Richard (1968) Test consite no teste F:
$\mathrm{H}_{0}: \gamma_{3}=\gamma_{4}=0$
H_{1} : H_{0} não é verdadeira

Se trocarmos o modelo sob H0 pelo modelo sob H1, poderíamos teríamos as hipóteses:
$\mathrm{H}_{0}: \gamma_{1}=\gamma_{2}=0$
H_{1} : H_{0} não é verdadeira

Testes de Especificação Funcional

$>$ Considere novamente o seguinte modelo sob HO :

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

E o seguinte modelo alternativo, sob H 1 :

$$
y=\beta_{0}+\beta_{1} \log \left(x_{1}\right)+\beta_{2} \log \left(x_{2}\right)+u
$$

$>$ Tome os valores estimados $\hat{\hat{y}}$ sob H1. Davidson e MacKinnon propuseram o seguinte teste t nessa variável:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\theta_{1} \hat{y}+\text { error } .
$$

$\mathrm{H}_{0}: \theta_{1}=0$
H_{1} : H_{0} não é verdadeira

Variável Proxy

$>$ Suponha que o modelo populacional seja:

$$
\log (\text { wage })=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { abil }+u
$$

Sendo ability sendo não-observável
$>$ De uma forma geral, considere o seguinte modelo populacional:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}^{*}+u
$$

Sendo x_{3}^{*} não-observável.

Variável Proxy

$>$ Se x_{3}^{*} puder ser escrita como uma função da variável x_{3} :

$$
x_{3}^{*}=\delta_{0}+\delta_{3} x_{3}+v_{3}
$$

E substituindo-se dentro do modelo populacional, obtemse:

$$
y=\left(\beta_{0}+\beta_{3} \delta_{0}\right)+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} \delta_{3} x_{3}+u+\beta_{3} v_{3}
$$

Ou, reescrevendo-se:

$$
y=\alpha_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\alpha_{3} x_{3}+e
$$

Variável Proxy

$>$ Se x_{3}^{*} for uma função de todas as variáveis explicativas, tem-se:

$$
x_{3}^{*}=\delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\delta_{3} x_{3}+v_{3}
$$

Nesse caso, substituindo-se dentro do modelo populacional, obtém-se:

$$
\begin{aligned}
y= & \left(\beta_{0}+\beta_{3} \delta_{0}\right)+\left(\beta_{1}+\beta_{3} \delta_{1}\right) x_{1}+\left(\beta_{2}+\beta_{3} \delta_{2}\right) x_{2} \\
& +\beta_{3} \delta_{3} x_{3}+u+\beta_{3} v_{3},
\end{aligned}
$$

Variável Proxy

- Em trabalhos empíricos, é comum utilizar-se a primeira defasagem da variável dependente como variável proxy:
crime $=\beta_{0}+\beta_{1}$ unem $+\beta_{2}$ expend $+\beta_{3}$ crime $_{-1}+u$,

Obrigada!

