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Preface to the Second Edition

This book is intended as an introduction to basic statistical principles and techniques
for the archaeologist. It grows primarily from my experience in teaching courses in
quantitative analysis for undergraduate and graduate students in archaeology over
a number of years. The book is set specifically in the context of archaeology, not
because the issues dealt with are uniquely archaeological in nature, but because
many people find it much easier to understand quantitative analysis in a familiar con-
text – one in which they can readily understand the nature of the data and the utility
of the techniques. The principles and techniques, however, are all of much broader
applicability. Physical anthropologists, cultural anthropologists, sociologists, psy-
chologists, political scientists, and specialists in other fields make use of these same
principles and techniques. The particular mix of topics, the relative emphasis given
them, and the exact approach taken here, however, do reflect my own view of what
is most useful in the analysis of specifically archaeological data.

It is impossible to fail to notice that many aspects of archaeological informa-
tion are numerical, and that archaeological analysis has an unavoidably quantitative
component. Standard statistical approaches are commonly applied in straightfor-
ward as well as unusual and ingenious ways to archaeological problems, and new
approaches have been invented to cope with the special quirks of archaeological
analysis. The literature on quantitative analysis in archaeology has grown to prodi-
gious size. Some of this literature is extremely good, while some of it reveals only
that publishing on statistics in archaeology is an activity open even to those whose
comprehension of the most fundamental statistical principles is primitive at best.
The article attempting to point out which published work fits into which of these
categories has itself become a recognizable genre. This book does not attempt to
evaluate or criticize in such a mode, but it is motivated in part by the perception
that, as a group, those of us responsible for training archaeologists in quantitative
analysis can claim only mixed success to date. Consequently, this book is in part
a discussion of how quantitative data analysis is done in archaeology but in larger
part a discussion of how quantitative data analysis could be done in archaeology.
Its focus is resolutely on some fundamental principles and how they can be applied
most usefully in archaeology. It is tempting to discuss the numerous variations in
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vi Preface to the Second Edition

these applications that might be made in analyzing archaeological data and to pro-
vide examples of ways in which these principles have actually been put to work by
archaeologists. I have, however, attempted to resist these temptations in an effort to
keep the focus firmly on basic principles and to provide brief and clear explanations
of them. It is to maintain simplicity and clarity that both the examples used in the
text and the practice problems at the ends of the chapters are made up rather than
selected from real archaeological data. I assume that the readers of this book know
enough about archaeology not to need descriptions and pictures of post holes, house
floors, scrapers, or sherds – that we all know what it means to say that we have
conducted a regional survey and measured the areas of 53 sites.

Most of the techniques in this book are fairly standard, either in the “classical”
statistics developed between 1920 and 1950 or in the more recent “exploratory data
analysis” school. The approach or, perhaps more important, the general attitude of
this book derives ultimately from the work of John W. Tukey and his colleagues and
students, progenitors of exploratory data analysis, or EDA for short. As is usual in
general books on statistics, I have not included bibliographic citations in the text, but
Suggested Reading appears at the end. This book leans toward the terminology of
EDA, although the equivalent more traditional terms are usually mentioned. Where
it makes the explanations easier to understand in the context of archaeology, the
terminology used here is simply nonstandard.

Archaeologists (and others) sometimes are as wary of statistics as school children
are of the classroom holding the most imposing disciplinarian among the teachers.
Statistics seems a place filled with rules the rationale of which is opaque, but the
slightest infraction of which may bring a painful slap across the knuckles with a
ruler. This attitude has certainly been reinforced by critiques that take published
work in archaeology to task for breaking sacred statistical rules. It may come as a
surprise to many to learn that a number of conflicting versions exist of many statis-
tical rules. Statisticians, like the practitioners of any other discipline, often disagree
about what are productive approaches and legitimate applications. Use of statistical
tools often involves making subjective judgments. In an effort to provide a sound
basis for such judgments, introductory texts often attempt to reduce them to clear-
cut rules, thereby creating considerable confusion about what are really fundamental
principles and what are merely guidelines for difficult subjective decisions.

In short, the rules of statistics were not on the stone tablets Moses brought down
from the mountain. This book openly advocates the overthrow of rules found in
some texts (by reason and common sense rather than force and violence). Since
it is intended as an introduction to statistical principles, long arguments against
alternative approaches are not appropriate. One issue, however, is of such central
importance that it must be mentioned. The approach taken to significance testing
here does not involve rigid insistence on either rejecting or failing to reject a “null
hypothesis.” In archaeology it is much more informative in most instances simply to
indicate how likely it is that the null hypothesis is correct. The rigorous formulation
of the null hypothesis, then, does not get the all-consuming attention here that is
sometimes devoted to it elsewhere. In this approach to significance testing and to
several issues related to sampling, I have followed the lead of George Cowgill (see
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Suggested Reading at the end of the book), although I have not carried into practice
all of the thoroughly sensible suggestions he has made. (One obstacle to following
some of his suggestions continues to be, as he noted, that few of the available statis-
tics computer programs provide the necessary information in their output.) To those
who were taught that significance testing was built upon the rock of rejecting or
failing to reject the null hypothesis, I recommend thoughtful attention to the points
Cowgill makes.

The approach taken to significance testing makes clear thinking about popu-
lations, samples, and sampling procedures especially important. Indeed, in many
contexts, it makes simply using samples to make statements about the populations
they came from a more appealing approach than significance testing. It is for this
reason that samples and sampling are given much lengthier treatment here than is
common in introductory books on statistics. Part I of this book is about exploring
batches of numbers in ways that are interesting and useful in and of themselves, but
that are especially chosen for their relevance when batches are considered sam-
ples from larger populations. Part II develops this notion of batches as samples
and makes a frontal assault on some of the central principles that relate samples
to populations. Part III presents a fairly standard suite of basic tests of the strength
and significance of relationships between two variables, together with alternative
approaches derived directly from sampling estimation. Part IV returns to take up
a series of separate issues related to sampling – issues of special importance in
archaeology. These chapters relate most directly to those in Part II, but they have
been placed later on to avoid interrupting the steady progression of ideas that links
Parts II and III. Finally, Part V attempts a rapid introduction to exploring multivari-
ate datasets for patterning. It brings us back to the exploratory data analysis attitude
most strongly reflected in Part I.

In archaeology, as in most fields, quantitative concepts come easily and naturally
to some, and only at considerable cost to others. The absence of a natural inclina-
tion toward numerical reasoning is often reinforced by the social acceptability of
professing ignorance of mathematics – a social acceptability nurtured by the notion
that mathematics is an arcane and specialized subject of no use to very many people.
An otherwise well-educated person can profess a complete inability to comprehend
anything about numbers beyond addition and subtraction without incurring the dis-
dain to be expected if he or she admitted to verbal skills so limited as to make
everything in the daily newspaper but the comics unintelligible.

Varying degrees of natural talent should be no more surprising for mathemat-
ics than for writing, playing football, or other activities. The view that mathematics
is only a necessary evil of elementary school, however, aggravates the problem by
encouraging those who have found quantitative reasoning difficult to minimize its
importance and to avoid developing quantitative skills that would be useful to them.
Consequently, a good many students seem to embark on graduate study of archae-
ology equipped only with high school algebra – victims, perhaps, of the same kind
of bad advice I myself received as a first-semester freshman in college, when my
academic advisor scornfully dismissed the math course I intended to enroll in as
irrelevant to my interests.
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This book is written in the hope of providing useful tools for quantitative analysis
in archaeology to those naturally adept at quantitative reasoning as well as to those
who find mathematics not only difficult but even intimidating. It is no challenge to
present statistics to those already comfortable with and adept at mathematical think-
ing; it requires only a nudge in the right direction. The perennial challenge of books
such as this, however, is to present quantitative analysis effectively to those to whom
it does not come naturally. It is with particular concern for this latter group that the
approach taken here was chosen. Part of that approach is to plunge right ahead to the
tools this book is about without a series of preliminary chapters laying basic ground-
work, the importance of which only becomes apparent later on. These “basics” are,
instead, discussed as briefly as possible at the points where they become relevant.

Fortunately, it is possible to approach basic statistical tools with common sense
and in common language so as to convey not only the mechanics of using the tools
of statistics but also a genuine understanding of the way the tools work. Productive
use of statistical tools in archaeology springs not so much from abstract mathe-
matical knowledge as from solid intuitive understanding of principles, applied with
common sense and unwavering attention to the final product desired – that is, the
ultimate research objective. It is worth pausing to emphasize that this book, fun-
damentally, is about tools – tools for identifying patterns in numbers and tools for
assessing how precisely and how reliably the patterns we identify in our data rep-
resent real patterns in the broader world our conclusions really are about. As with
carpenters’ tools, for example, skillful use of statistical tools does not require com-
plete knowledge of how the tools are made. Consequently, I have not attempted to
show how statistical equations are derived from certain assumptions through mathe-
matical logic (the approach followed by some books on statistics). As powerful and
elegant as the language of abstract mathematics may be, it remains utterly impen-
etrable to many archaeologists. I have always found it helpful to avoid an abstract
mathematical approach. This seems especially important to those already frightened
at the thought of mathematics.

Although learning to use a table saw does not require developing the ability to
make one, skillful use of a table saw does require some understanding of the princi-
ples according to which it does its work. Failure to understand these basic principles
will lead to erroneous and uneven cutting and even the occasional severed finger or
worse. In just the same way, skillful use of statistical tools requires true understand-
ing of underlying principles. Without such understanding, even very keen statistical
tools produce only crude results, and they can cause injury (although generally not
the kind that requires medical attention).

For this reason, I have also tried to avoid the cookbook approach common to
books on applied statistics. Easy recipes for statistical analysis appeal strongly, espe-
cially to those afraid of mathematics. No real mental labor seems to be required;
no difficult concepts need be mastered; just carefully follow the instructions. This
approach may actually work in disciplines where certain kinds of data are regularly
produced in certain formats. Only the most routine data analysis tasks can be suc-
cessfully handled in this manner, however, and archaeological data are never routine.
The nature of the archaeological record and the manner in which we must extract
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data from it inevitably produce idiosyncrasies that practitioners in other disciplines
are taught to avoid through appropriate research design. Coping with such messy
data requires that the archaeologist have a better grasp of underlying principles than
a cookbook approach can provide.

This book, then, seeks a middle ground. It attempts more than simply providing
instructions for the use of statistical tools; yet it makes no pretense of providing a
complete mathematical justification for them. Its aim is to help the reader understand
the principles underlying statistical tools well enough to use them skillfully in the
context of archaeological data analysis. The reader I had in mind while writing is
primarily the graduate or undergraduate student of archaeology taking a first course
in archaeological data analysis. Like most textbooks, this is the book the author
always wanted but never found for his own course. I hope it may also be useful
to archaeologists who wish to develop or consolidate skills in statistical tool use
whether they are enrolled in courses or not.

The statistical tools discussed in this book by no means make up the complete set
ever needed by the archaeologist. They are basic general-purpose tools, but many
other specialized tools exist. Some of the tools presented here are quite simple and
easy to apply, requiring nothing more than pencil and paper or perhaps an ordinary
calculator. Others are more complicated or involve very cumbersome calculations. I
take it for granted that any serious archaeological data analysis effort will be under-
taken with the aid of a computer. Learning to use statistical software packages is best
incorporated directly into the process of learning about the statistical tools. I have
thus omitted the often time-consuming and complex explanations of how to com-
pute certain complicated statistics by hand. While calculating some things out by
hand can facilitate understanding, one soon reaches the point where preoccupation
with the mechanics of calculations interferes with attention that should be devoted
directly to underlying principles.

Many of the results and examples in this book were produced with SYSTAT R©;
other packages that could be used are too numerous even to list. Since the possibili-
ties are so varied (and change so continually), it is useless to attempt to incorporate
instructions for using statistical software into this book. I assume, however, that the
book will be used in conjunction with some package of statistical programs and the
corresponding manuals, and some general comments about using such “statpacks”
are included.

Almost any software package will provide options and choices not discussed in
this book. Some software manuals provide good explanations of what these options
are and bibliographic citations for those interested in learning more about them;
other manuals do not. (This is one feature worth weighing in choosing statistical
software.) Serendipitous encounters with options in statistical software can provide
a useful means of expanding one’s expertise in quantitative analysis. On the other
hand, they can distract the analyst’s attention from the task at hand to the many
other tasks that could be performed but that there is really no need to perform.
The professional carpenter does not first choose a pretty tool and then go looking
for something to use it on. Just so, the skilled data analyst first determines what
analysis to perform and then turns to pencil, paper, calculator, or computer (as may
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be appropriate) to put into use the appropriate tool to accomplish the task at hand.
The mechanics of complicated calculations and complicated computer software can
both divert attention away from central matters of principle concerning the work to
be done. In statistics, as in the several sports from which the cliché is derived, it is
impossible to remind yourself too often to keep your eye on the ball.
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A batch is a set of numbers that are related to each other because they are different
instances of the same thing. The simplest example of a batch of numbers is a set
of measurements of different examples of the same kind of thing. For example, the
lengths of a group of scrapers, the diameters of a group of post holes, and the areas
of a group of sites are three batches of numbers. In these instances, length, diameter,
and area are variables and each scraper, post hole, and site is a case.

The length of one scraper, the diameter of one post hole, and the area of one site
do not, together, make a batch of numbers because they are completely unrelated.
The length, width, thickness, and weight of one scraper do not, together, make a
batch because they are not different instances of the same thing; that is, they are
different variables measured for a single case. The length, width, thickness, and
weight of each of 20 scrapers make, not one batch of numbers, but four. These four
batches can be related to each other because they are four variables measured for
the same 20 cases. The diameters of a set of 18 post holes from one site and the
diameters of a set of 23 post holes from another site can be considered a single
batch of numbers (the variable diameter measured for 41 cases, ignoring entirely
which site each post hole appeared in). They can also be considered two related
batches of numbers (the variable diameter measured for 18 cases at one site and 23
cases at another site). Finally they can be considered two related batches of numbers
in a different way (the variable diameter measured for 41 cases and the variable site
classified for the same 41 cases). This last, however, carries us to a different kind
of batch or variable, and it is easier to stick to batches of measurements for the
moment.

R.D. Drennan, Statistics for Archaeologists, Interdisciplinary Contributions
to Archaeology, DOI 10.1007/978-1-4419-0413-3 1,
c© Springer Science+Business Media, LLC 2004, 2009
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4 CHAPTER 1

STEM-AND-LEAF PLOTS

A list of measurements does not lend itself very well to making interesting obser-
vations, so the first step in exploration of a batch of numbers is to organize them. If
the batch is a set of measurements, the stem-and-leaf plot is the fundamental organ-
izational tool. Consider the batch of numbers in Table 1.1. Ordering them along a
scale can often help us to see patterns. Figure 1.1 shows how to produce a stem-
and-leaf plot that does exactly this for the numbers in Table 1.1. First, the numbers
are divided into a stem section and a leaf section. In the first case, for instance, 9.7
becomes a stem of 9 and a leaf of 7. The leaf for each number is placed on the stem
plot beside the stem for that number. The lines in Fig. 1.1 connect some of the num-
bers to the corresponding leaves in their final positions on the stem-and-leaf plot.
(Not all the connections are drawn in to avoid a hopeless confusion of lines.)

Several characteristics of this batch of numbers are immediately apparent in the
stem-and-leaf plot. First, the numbers tend to bunch together at about 9 to 12 cm.
Most fall in this range. Two more (14.2 and 7.6 cm) fall a little outside this range,
and one (44.6 cm) falls far away from the rest. It is a fairly common occurrence for
batches of numbers to bunch together like this. It is also relatively common for one
or a few numbers in a batch to fall far away from the bunch where the majority of
the numbers lie. Such numbers that fall far from the bunch are often called outliers,
and we will discuss them in more detail later. For now it is sufficient to note that we
often examine such outliers with a skeptical eye. A post hole 44.6 cm in diameter
is certainly a very unusual post hole in this batch, and we might be suspicious that
someone has simply written the measurement down wrong. A quick check of field
drawings or photographs should be sufficient to determine whether such an error
has been made and, if so, to correct it. If, indeed, this measurement seems correct,
then one of the conspicuous features of this batch is that one post hole simply does
not seem to fit with the rest of the group.

Stem-and-leaf plots can be made at different scales (that is, using different inter-
vals on the stem), and the selection of an appropriate scale is essential to producing a
helpful stem-and-leaf plot. Table 1.2 shows another batch of numbers in a stem-and-
leaf plot at the same scale as in the previous example. The numbers here, however,
are spread out over such a large distance that the characteristics of the batch are not

Table 1.1. Diameters of 13
Post holes at the Black

Site (cm)

9.7 11.7
9.2 11.1

12.9 7.6
11.4 11.8

9.1 14.2
44.6 10.8
10.5
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Figure 1.1. A stem-and-leaf plot of the numbers in Table 1.1.

clearly displayed. In Table 1.3 the same numbers yield a denser stem-and-leaf plot
when the stem is structured differently. In the first place, the numbers are broken
differently into stem and leaf sections – not at the decimal point but between the
units and tens. Since there are two digits for each leaf, commas are used to indi-
cate the separation between leaves. To avoid greatly increasing the density, two
positions are allowed on the stem for each stem section, the lower position cor-
responding to the lower half of the numbers that might fit that stem section and
the upper corresponding to the upper half (as indicated by the notations to the right
of the stem-and-leaf plot). The characteristics of the batch are much clearer in this
plot. The numbers bunch together from about 130 to 160. And one unusually light
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Table 1.2. Too Sparse Stem-and-Leaf Plot of Weights
of 17 Scrapers from the Black Site

Weight (g) Stems Leaves

169 5
168

148.7 148 7 167
166

154.5 154 5 165
164 7

169.5 169 5 163
162

145.1 145 1 161 2
160

157.9 157 9 159
158

137.8 137 8 157 9
156

151.9 151 9 155
154 5

146.2 146 2 153
152 0

164.7 164 7 151 9
150

149.3 149 3 149 3
148 7

141.3 141 3 147
146 29

161.2 161 2 145 1
144

146.9 146 9 143 0
142

152.0 152 0 141 3
140

143.0 143 0 139
138

132.6 132 6 137 8
136

115.3 115 3 135
134
133
132 6
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115 3
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Table 1.3. Stem-and-Leaf Plot at an Appropriate Scale of Weights of 17
Scrapers from the Black Site

Weight (g) Stems Leaves

148.7 14 87
154.5 15 45
169.5 16 95 17 (175.0–179.9)
145.1 14 51 17 (170.0–174.9)
157.9 15 79 16 95 (165.0–169.9)
137.8 13 78 16 12,47 (160.0–164.9)
151.9 15 19 15 79 (155.0–159.9)
146.2 14 62 15 19,20,45 (150.0–154.9)
164.7 16 47 14 51,62,69,87,93 (145.0–149.9)
149.3 14 93 14 13,30 (140.0–144.9)
141.3 14 13 13 78 (135.0–139.9)
161.2 16 12 13 26 (130.0–134.9)
146.9 14 69 12 (125.0–129.9)
152.0 15 20 12 (120.0–124.9)
143.0 14 30 11 53 (115.0–119.9)
132.6 13 26
115.3 11 53

scraper seems to be an outlier. This pattern can certainly be detected (especially in
hindsight) in Table 1.2, but it is much clearer in Table 1.3.

Table 1.4 shows a still denser stem-and-leaf plot of the same numbers. Stem and
leaf sections are separated as in Table 1.4, but only one position is allowed on the
stem for each stem section. At this scale, the bunching of numbers is still evident, but
what seemed an outlier in Table 1.4 has come so close to the bunch that it no longer
seems very different. The characteristics of the batch are less clearly displayed in
this stem-and-leaf plot because it crowds the numbers too closely together.

Table 1.5 is yet another stem-and-leaf plot of the same numbers. This one is much
too dense. There is simply not enough room on the stem for the leaves to spread out
far enough to show the patterning. The outlier from Table 1.3 is no longer apparent
(although it is still there – it is just obscured by the inappropriate scale). It is difficult
even to evaluate the extent of the bunching of numbers. You can create the next step
in the direction of denser stem-and-leaf plots for these numbers yourself. It has a
stem consisting only of 1, with all the leaves in one line next to it.

An appropriate scale for a stem-and-leaf plot avoids the two extremes seen in
Tables 1.2 and 1.5. The leaves should make one or more branches or bunches of
leaves that protrude from the stem. This cannot happen if they are spread out along
a stem that is simply too long as in Table 1.2. At the same time, the leaves should
be allowed to spread out enough so that outliers can be noticed and two or more
bunches, if they occur, can be distinguished from one another. This latter cannot
happen if the leaves are crowded together as in Table 1.5. Tables 1.3 and 1.4 show
stem-and-leaf plots at scales that are clearer, although Table 1.3 definitely shows the
patterns more clearly than Table 1.4 does.
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Table 1.4. Too Dense a Stem-and-Leaf Plot of Weights of 17 Scrapers
from the Black Site

Weight (g) Stems Leaves

148.7 14 87
154.5 15 45
169.5 16 95
145.1 14 51 17
157.9 15 79 16 12,47,95
137.8 13 78 15 19,20,45,79
151.9 15 19 14 13,30,51,62,69,87,93
146.2 14 62 13 26,78
164.7 16 47 12
149.3 14 93 11 53
141.3 14 13
161.2 16 12
146.9 14 69
152.0 15 20
143.0 14 30
132.6 13 26
115.3 11 53

Different statisticians make stem-and-leaf plots in slightly different ways. There
are several approaches to spreading out or compressing the scale. The exact format
followed is less important than to show as clearly as possible the patterns to be
observed in the batch of numbers. Two essential principles are involved. First, the
distances between the numbers are represented visually as spatial distances along
the vertical number scale in the graph. And second, the number of numbers in each
of a series of equal intervals is represented visually as a spatial distance along each
horizontal row of numbers. However the stem sections are divided, it is important
that each stem section correspond to a range of numbers equal to that of every other
stem section. It would be a bad idea to structure a stem with positions corresponding
to, say, 3.0–3.3, 3.4–3.6, and 3.7–3.9 because the intervals are unequal. That is, a
larger range is included between 3.0 and 3.3 than in the other two intervals. There
will tend to be longer rows of leaves for that larger interval, simply because it is a
larger interval, and that interferes with the horizontal spacing principle that enables
the stem-and-leaf plot to do its work.

The stem-and-leaf plots in this book have lower numbers at the bottom and higher
numbers at the top. This makes it easier to talk about numbers and stem-and-leaf
plots in the same terms since lower numbers are lower on the plot and higher num-
bers are higher on the plot. It is more common for stem-and-leaf plots to be drawn
with lower numbers at the top and higher numbers at the bottom. This is unfor-
tunate because it adds a small and entirely unnecessary element of confusion, but
either way, the stem-and-leaf plot shows the same patterns.

Finally, the stem-and-leaf plots in the tables in this chapter have the leaves on
each line in numerical order. This makes no difference in observing the kinds of
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Table 1.5. Much Too Dense a Stem-and-Leaf Plot of Weights of 17 Scrapers
from the Black Site

Weight (g) Stems Leaves

148.7 1 487
154.5 1 545
169.5 1 695
145.1 1 451
157.9 1 579
137.8 1 378
151.9 1 519
146.2 1 462 1 519,520,545,579,612,647,695
164.7 1 647 1 153,326,378,413,430,451,462,469,487,493
149.3 1 493
141.3 1 413
161.2 1 612
146.9 1 469
152.0 1 520
143.0 1 430
132.6 1 326
115.3 1 153

Table 1.6. Diameters of 15
Post holes at the Smith

Site (cm)

20.5 19.4
17.2 16.4
15.3 18.8
15.9 15.7
18.3 18.9
17.9 16.8
18.6 8.4
14.3

patterns we have been noting here, but it does make it easier to do some of the
things we will do with stem-and-leaf plots in Chapters 2 and 3. It makes drawing a
stem-and-leaf plot a little more time consuming, but it is well worth the effort, as
we shall see.

BACK-TO-BACK STEM-AND-LEAF PLOTS

The stem-and-leaf plot is a fundamental tool not just for exploring a single batch
but also for comparing batches. The batch of numbers in Table 1.6 consists of post
hole diameters from the Smith Site, which we may want to compare to the batch
of post hole diameters from the Black Site (Table 1.1). These batches can be related
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Table 1.7. Back-to-Back Stem-and-Leaf
Plot of Post hole Diameters from the Black

and Smith Sites (Tables 1.1 and 1.6)

Black Site Smith site

6 44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20 5
19 4
18 3689
17 29
16 48
15 379

2 14 3
13

9 12
8741 11

85 10
721 9

8 4
6 7

since they are measurements of the same variable (diameter of post holes), although
two different sets of post holes are involved. Table 1.7 shows a back-to-back stem-
and-leaf plot in which the leaves representing both batches of numbers are placed
on opposite sides of the same stem.
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We see the bunch of post holes at diameters of 9–12 cm that we saw for the
Black Site in Fig. 1.1, as well as the outlier, or unusually large post hole 44.6 cm in
diameter. For the Smith Site we see a bunch of numbers as well, but this bunch of
numbers falls somewhat higher on the stem than the bunch for the Black Site. We
quickly observe, then, that the post holes at the Smith Site are in general of larger
diameter than those at the Black Site. This general pattern is unmistakable in the
stem-and-leaf plot even though the 44.6-cm post hole at the Black Site is by far the
largest post hole in either site. There is also an outlier among post holes at the Smith
Site – in this instance a low outlier much smaller than the general run of post holes
at the site. If this post hole were at the Black site instead of the Smith Site, it would
not be nearly so unusual, but at the Smith Site it is clearly a misfit.

HISTOGRAMS

The stem-and-leaf plot is an innovation of exploratory data analysis. Although it
has certainly appeared in the archaeological literature, there is a traditional way
of drawing plots with similar information that is probably more familiar to more
archaeologists. It is the histogram, and it corresponds precisely to the stem-and-
leaf plot. The histogram is familiar enough that no detailed explanation of it is
needed here. Table 1.8 provides a stem-and-leaf plot of the areas of 29 sites in the
Kiskiminetas River Valley. Figure 1.2 shows that a histogram of this same batch of
numbers is simply a boxed-in stem-and-leaf plot turned on its side with the numbers
themselves eliminated as leaves. Most of the same patterns we have noted up to now
in stem-and-leaf plots can be observed in histograms as well. In making a histogram,
one faces the same choice of scale or interval that we have already discussed for the
stem-and-leaf plot, and precisely the same considerations apply. Histograms have
the advantage of being somewhat more elegant and esthetically pleasing as well as
of being more familiar to archaeologists. Stem-and-leaf plots, on the other hand,
have the advantage that the full detail of the actual numbers is all present, and this
makes it possible to use them in ways that histograms cannot be used, as we shall
see in Chapters 2 and 3. In general terms, however, the stem-and-leaf plot and the
histogram serve fundamentally the same purpose.

MULTIPLE BUNCHES OR PEAKS

The batch of numbers in Table 1.8 also demonstrates another characteristic of
batches that sometimes becomes obvious in either a stem-and-leaf plot or a his-
togram. We see the usual bunching of numbers in the stem-and-leaf plot. In this
case, however, there are two distinct and separate bunches, one between about 1
and 5 ha and another between about 7 and 16 ha. The same bunches are obvious
in the histogram (Fig. 1.2), where the two separate bunches appear as two hills or
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Table 1.8. Areas of 29 Sites in the
Kiskiminetas River Valley

Site area (ha) Stem-and-leaf plot

12.8 15 3
11.5 14 0
14.0 13 49

1.3 12 388
10.3 11 0257

9.8 10 367
2.3 9 089

15.3 8 27
11.2 7 4

3.4 6
12.8 5
13.9 4 5

9.0 3 48
10.6 2 0239

9.9 1 37
13.4

8.7
3.8

11.7
1.7

12.3
11.0

2.9
10.7

7.4
8.2
2.0
2.2
4.5

peaks. Such a pattern of multiple bunches or peaks is a clear indication of distinct
kinds of cases – in this instance two distinct kinds of sites. We might likely call
them large sites and small sites, and the pattern seen in the stem-and-leaf plot or the
histogram indicates that the two are clearly separate. That is, in discussing these as
large and small sites, we would not be arbitrarily dividing sites up into large and
small but rather responding to an innate characteristic of this batch of numbers. We
see quickly that the large sites are more numerous, but there are enough small sites
to form a clear and separate peak. This is not a case of outliers but instead, of two
sets of sites, each numerous enough to form its own peak in the histogram.

The presence of multiple peaks in a batch is always an indication that two or more
fundamentally different kinds of things have been thrown together and measured.
To take a ridiculous example, I might measure the diameters of a series of dinner
plates and manhole covers. If I presented these as a single list of measurements of
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Figure 1.2. A histogram of areas of 29 sites in the Kiskiminetas River Valley.

round objects, you would see immediately in a stem-and-leaf plot that there were
two separate peaks. Knowing nothing about the objects except their diameters, you
would guess that two fundamentally different kinds of things had been measured.
You would be correct to subdivide the batch into two batches with no further jus-
tification than the pattern you saw in the stem-and-leaf plot. One of the first things
you might do, however, would be to seek further information about the nature of the
objects that might clarify their differences. Your reaction, on finding out that both
dinner plates and manhole covers were included among the objects measured, might
well be “No wonder; now I understand!” This is a perfectly appropriate reaction and
would put substance behind a division made on purely formal grounds (that is, on
the basis of the pattern observed in a stem-and-leaf plot).

To repeat, batches with multiple peaks cannot be analyzed further. The only cor-
rection for this problem is to subdivide the batch into separate batches for separate
analysis. In the best of all possible worlds, we can identify other characteristics of
the objects in question to aid us in making the division. If not, we must do it sim-
ply on the basis of the stem-and-leaf plot or histogram, drawing a dividing line on
the number scale at the lowest point of the valley that separates the peaks. This is
especially easy for the numbers illustrated in Fig. 1.2. The lowest point of the valley
here is around 6 ha. There are no sites at all of this size, so the small sites are clearly
those ranging from 1 to 5 ha, and the large sites are those ranging from 7 to 16 ha.
If there is not an actual gap at the bottom of the valley, as there is in this instance,
just where to draw the dividing line may not be so obvious, but it must be done
nevertheless before proceeding to any further analysis.
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Statpacks

The stem-and-leaf plot is such a simple way to display the numbers in a batch
that it can be produced quickly and easily with pencil and paper. When work-
ing with pencil and paper, it is necessary only to be careful to line the numbers
up vertically so that the patterns are represented accurately. It is also easy to
use a word processor to produce a stem-and-leaf plot. As when working with
pencil and paper, it is important to line the numbers up vertically. This hap-
pens automatically as long as the font chosen shows all characters (or at least
all numbers) as the same width. Fonts in which 1, for example, is narrower
than 2 don’t work for stem-and-leaf plots because the numbers will get out
of alignment. The easiest way to make stem-and-leaf plots, of course, is with
a statistics computer package, or statpack for short. A statpack will perform
the entire operation automatically, including choosing an appropriate scale
or interval for the stem. Some statpacks still do not include exploratory data
analysis (EDA) tools like stem-and-leaf plots, but many do.

Histograms are more time consuming to draw nicely than stem-and-leaf
plots, but many statpacks do a very good job of it. True statistical packages
are best for this task, since their programmers had in mind exactly the goals
discussed in this chapter when they wrote the programs. Numerous programs
that draw bar graphs might at first glance seem another option, but bar graphs,
while superficially similar to histograms, are actually a different tool—one that
we will explore more fully in Chapter 6.

PRACTICE

In Tables 1.9 and 1.10 are two batches of numbers – measurements of the lengths
of scrapers recovered from two sites. The scrapers are made from either flint or
chert. These numbers could be considered a single batch of numbers (lengths of
scrapers, disregarding what raw material they were made from and what site they

Table 1.9. Scrapers from Pine Ridge Cave

Raw material Length (mm) Raw material Length (mm)

Chert 25.8 Chert 25.9
Chert 6.3 Chert 23.8
Flint 44.6 Chert 22.0
Chert 21.3 Chert 10.6
Flint 25.7 Flint 33.2
Chert 20.6 Chert 16.8
Chert 22.2 Chert 21.8
Chert 10.5 Flint 48.3
Chert 18.9
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Table 1.10. Scrapers from the Willow Flats Site

Raw material Length (mm) Raw material Length (mm)

Chert 15.8 Flint 49.1
Flint 39.4 Flint 41.7
Flint 43.5 Chert 15.2
Flint 39.8 Chert 21.2
Chert 16.3 Flint 30.2
Flint 40.5 Flint 40.0
Flint 91.7 Chert 20.2
Chert 21.7 Flint 31.9
Chert 17.9 Flint 42.3
Flint 29.3 Flint 47.2
Flint 39.1 Flint 50.5
Flint 42.5 Chert 10.6
Flint 49.6 Chert 23.1
Chert 13.7 Flint 44.1
Chert 19.1 Flint 45.8
Flint 40.6

came from). They also form two related batches in two different ways. We could
divide the single batch into two batches according to which site the scrapers were
recovered at. (This is the way the numbers are presented in the tables.) Or we could
divide the single batch into two batches according to which raw material they were
made of (disregarding which site they came from).

1. Make a stem-and-leaf plot of scraper lengths, treating the entire set of scrapers as
a single batch. Experiment with different intervals for the stem to consider which
interval produces the most useful plot. What patterns do you see in the plot?

2. Make a back-to-back stem-and-leaf plot of scraper lengths, treating the scrap-
ers from the Willow Flats site as one batch and those from Pine Ridge Cave as
another batch. (That is, ignore the raw material of which the scrapers were made
for the moment.) How do the two batches compare to each other? Do you see any
patterns that help you interpret the stem-and-leaf plot of all scrapers as a single
batch?

3. Make a back-to-back stem-and-leaf plot of scraper lengths, treating the flint
scrapers as one batch and the chert scrapers as another batch. (That is, this
time ignore which site the scrapers came from.) How do these two batches com-
pare to each other? Do you see any patterns this time that help you interpret the
stem-and-leaf plot of all scrapers as a single batch?
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As we saw in Chapter 1, the numbers in a batch often bunch together. If we compare
two related batches of numbers, the principal bunch in one batch may well have
higher numbers in general than the principal bunch in the other batch. We say that
such batches have different levels or centers. It is convenient to use a numerical
index of the level for such comparisons. The several such indexes in common use
are traditionally referred to as measures of central tendency.

THE MEAN

The most familiar index of the center of a batch is the mean, outside statistics
more commonly referred to as the average. Calculation of the mean is just as
we all learned in elementary school: the sum of all the numbers in the batch is
divided by the number of numbers in the batch. Since this is such a familiar cal-
culation, it provides a good opportunity to introduce some mathematical notation
that is particularly useful in statistics. The equation expressing the calculation of the
mean is

X = ∑x
n

where x represents each number in a batch, individually, n is the number of x’s, and
X is the mean or average of x (pronounced “x bar”).

R.D. Drennan, Statistics for Archaeologists, Interdisciplinary Contributions
to Archaeology, DOI 10.1007/978-1-4419-0413-3 2,
c© Springer Science+Business Media, LLC 2004, 2009

17



18 CHAPTER 2

Table 2.1. Weights of Flakes Recovered from Two Bell-Shaped Pits

Flake weights (g) Back-to-back stem-and-leaf plot

Pit 1 Pit 2 Pit 1 Pit 2

9.2 11.3 6 28
12.9 9.8 27
11.4 14.1 26
9.1 13.5 25

28.6 9.7 24
10.5 12.0 23
11.7 7.8 22
10.1 10.6 21
7.6 11.5 20

11.8 14.3 19
14.2 13.6 18
10.8 9.3 17

10.9 16
15

X 12.33 11.42 2 14 13
Md 11.10 11.30 13 56

9 12 0 X
X 874 11 35 Md
Md 851 10 69

21 9 378
8

6 7 8

The Greek letter ∑ (capital sigma) stands for “the sum of” and is a symbol
used frequently in statistics. ∑x simply means “the sum of all the x’s.” Formulas
with Σ may seem formidable, but, as we have just seen, Σ is simply shorthand for
a relatively simple and familiar calculation. Σ is virtually the only mathematical
symbol used in this book that is not common in basic algebra.

Table 2.1 presents some data on weights of flakes recovered from two bell-shaped
storage pits in the same site. The back-to-back stem-and-leaf plot reveals that the
flakes from Pit 1 bunch together between about 9 and 12 g, with one outlier at 28.6 g
(to which we probably do not want to pay too much attention). The flakes from Pit
2 also bunch together, although the peak is more spread out and may even have a
slight tendency to split into two. The center of the batch of flakes from Pit 2 would
appear to be a little higher on the whole than for those from Pit 1. For the flakes from
Pit 1, the mean (calculated by summing up all 12 weights and dividing the total by
12) is 12.33 g. For Pit 2, the mean (calculated by summing up all 13 weights and
dividing the total by 13) is 11.42 g. Both means are indicated in their approximate
positions along the stem in the stem-and-leaf plot.
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We can be fairly happy with the mean as an index of the center for Pit 2; it does
point to something like the center of the main bunch in the batch, as seen in the stem-
and-leaf plot. When we look at Pit 1, however, we have cause for concern. The mean
seems to be well above the center of the main bunch in the batch. It is “pulled up”
quite strongly by the high outlier at 28.6 g, which has a major impact on the sum of
the weights. Since we just observed that the Pit 1 batch has a somewhat lower level
than the Pit 2 batch, it is alarming that the mean for Pit 1 is actually higher than
the mean for Pit 2. A comparison of means for these two batches would suggest
that flakes from Pit 1 tended to weigh more than those from Pit 2 – a conclusion
exactly opposite to the one we arrived at by examining the stem-and-leaf plot. In this
instance, the mean is not behaving very nicely. That is, it is not providing a useful
index of the center of the Pit 1 batch for the purpose of comparing that batch to the
Pit 2 batch. There are ho hard-and-fast rules for judging when the mean is behaving
nicely enough to use as an index of center. It is finally a question of subjective
judgment that requires careful exploration of batches with stem-and-leaf plots, real
understanding of what we want an index of center to do, and practice.

THE MEDIAN

If the mean does not behave nicely because of the shape of a batch, the median may
be a more useful index of center. The median is simply the middle number in the
batch (if the batch contains an odd number of numbers) or halfway between the two
middle numbers (if it contains an even number of numbers). The stem-and-leaf plot
is useful for finding the median, because it makes it easy to count in from either
the top or the bottom to the middle number. It is especially easy to do this if the
leaves have been placed in numerical order on each line of the stem-and-leaf plot.
The alternative to the stem-and-leaf plot, the histogram, cannot be used for finding
the median because, while the histogram represents the overall shape of the batch,
it does not contain the actual numbers.

To find the median weight of flakes from Pit 1, we first count the number of
flakes. Since there are 12 (an even number), the median will be halfway between the
middle two numbers. The middle two numbers will be the sixth and seventh, count-
ing in from either the highest or lowest number. For example, counting leaves in the
stem-and-leaf plot for Pit 1 from the bottom or lowest number, we have the first five
numbers: 7.6, 9.1, 9.2, 10.1, and 10.5; then the sixth and seventh numbers: 10.8 and
11.4. Alternatively, counting leaves from the top or highest number, we have the
first five numbers: 28.6, 14.2, 12.9, 11.8, and 11.7; then the sixth and seventh: 11.4
and 10.8, the same as before. Halfway between 10.8 and 11.4 is 11.1. So the median
weight of flakes from Pit 1 is 11.10 g (Md = 11.10g).

For Pit 2, there are 13 flakes, so the median will be the middle number, or the
seventh in from either the highest or lowest. Counting leaves from the top gives us
the first six numbers: 14.3, 14.1, 13.6, 13.5, 12.0, and 11.5; then the seventh: 11.3.
Counting leaves from the bottom gives us the first six numbers: 7.8, 9.3, 9.7, 9.8,
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10.6, 10.9; then the seventh: 11.3, exactly as before. Thus the median weight of
flakes from Pit 2 is 11.30 g (Md = 11.30g).

Medians for both batches are indicated on the stem-and-leaf plot in Table 2.1, and
both indicate points that are visually more satisfying indications of the centers of
the two batches. Comparing the levels of the two batches according to their medians
also seems more reasonable than our attempt to use their means for this purpose.
The median weight of flakes in Pit 2 is slightly higher than that for Pit 1, which is
indeed the conclusion we came to based on observation of the general pattern of the
stem-and-leaf plot.

OUTLIERS AND RESISTANCE

It might seem surprising that the mean and the median behave so differently in this
example. After all, both are fairly widely used indexes of the level of a batch. And
yet, comparing the two batches in this example by means and by medians gave
opposite conclusions about which batch had a higher center. Clearly, it is the mean
of the flakes from Pit 1 that seems strange. Its peculiarly high position is attributable
entirely to the effect that the one high outlier (the flake that weighs 28.6 g) has on
the calculations. While it pulls the mean up substantially, this outlier, in contrast,
has no effect whatever on the median. If instead of weighing 28.6 g, this flake had
weighed 12.5 g, the median flake weight for Pit 1 would not have changed at all.
The heaviest flake is simply the first number that we count past to reach the middle
of the batch, which remains in exactly the same place, irrespective of how high the
highest value is. In fact, the median does not depend at all on the actual values of the
numbers in either the upper half or the lower half of the batch. As long as there is
no change that moves a number from the upper half to the lower half or vice versa,
the median remains exactly the same.

This is one example of a general principle. The mean of a batch is strongly
affected by any outliers that may be present. The median is entirely unaffected
by them. In statistical jargon, the median is very resistant. The mean is not at all
resistant.

ELIMINATING OUTLIERS

The mean has special properties that make it a particularly useful index of the
center of a batch, but outliers can present a serious problem by making the mean
a very inaccurate index. It would be nice to eliminate outliers if we could, and,
as it turns out, often we can. In the first place, we should always examine out-
liers carefully. Sometimes they indicate errors in data collection or recording. This
possibility was already broached in Chapter 1, where it was suggested that the
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extraordinarily large post hole in the example in Fig. 1.1 might have been the result
of an error in measurement or in data recording. Such an error could be corrected
by reference to photographs and drawings of the excavation, thus eliminating the
outlier.

Even if it turns out that an outlier is, indeed, a correct value, it still may be
desirable to eliminate it. As a classic example of such a situation, consider the mail
order clothing firm of L.L. Pea, Inc., specializing (of course) in the famous Pea coat.
L.L. Pea employs ten shipping clerks, nine of whom are each paid $8.00 per hour
while the tenth earns $52.00 per hour. The median wage in the L.L. Pea shipping
room, then, is $8.00 per hour, while the mean wage is $12.40 per hour. Once again,
the mean has been raised substantially by an outlier, while the median has been
entirely unaffected. A careful check of payroll records reveals that it is, indeed, true
that nine shipping clerks are paid $8.00 per hour while one earns $52.00 per hour. It
also reveals, however, that the highly paid clerk is Edelbert Pea, nephew of L.L., the
founder of the company, who spends most of his “working” hours in the company
cafeteria anyway. If our interest is in the wages of shipping clerks, there is clearly
no reason to include young Edelbert among our data. We are much better off simply
to eliminate him as not truly a case of what we want to study and use the data for
the other nine shipping clerks.

It is often sensible to eliminate outliers in just such a manner. If a good reason
can be found aside from just the aberrant number in the data (as in the instance
of Edelbert Pea), we can feel quite comfortable about eliminating outliers. In the
example batch in Table 2.1 for Pit 1, perhaps we would note that the unusually heavy
flake was of a very different form from all the rest or of a very different raw material.
In this last case, we might reduce our batch to obsidian flakes, say, rather than all
flakes, in order to eliminate a single very heavy chert flake. Even if such external
reasons cannot be found to justify it, a distant outlier can be eliminated simply on
the basis of its measurement. There are, however, other treatments that take care of
outliers without making it seem that somehow we are fudging our data by leaving
out cases we don’t like.

THE TRIMMED MEAN

The trimmed mean systematically removes extreme values from both upper and
lower ends of a batch in a balanced fashion. In considering the level of a batch,
it is the central bunch of numbers that matters most. It is not uncommon for the
highest and lowest numbers to straggle away from this bunch in an erratic man-
ner, and it is important not to be confused by such unruly behavior on the part of
a few numbers. The trimmed mean effectively avoids such confusion by simply
eliminating some proportion of the highest and lowest numbers in the batch from
consideration.

For example, we might calculate a 5% trimmed mean of the flake weights from
Pit 1 in Table 2.1. For a 5% trimmed mean, we eliminate the highest 5% of the batch
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and the lowest 5% of the batch. There are 12 numbers in this batch, so we remove
5% of 12 numbers from each end. Since 0.05×12 = 0.60, and 0.60 rounds up to 1,
we remove one number from the top and one number from the bottom. (In deciding
how many numbers to remove for the trimmed mean we always round up.) In this
case, then, we remove the highest number (28.6) and the lowest number (7.6) from
the batch. After removing the highest and lowest numbers, we have a trimmed batch
of ten numbers (nT = 10). The trimmed mean is simply the ordinary mean of the
remaining ten numbers, once the highest and lowest have been removed. For Pit 1
the 5% trimmed mean, XT , is the sum of the remaining numbers divided by nT (that
is, 10), or 11.17 g. For Pit 2, a 5% trimmed mean also requires eliminating a single
number from each end of the batch (0.05× 13 = 0.65, which rounds up to 1). The
total of the remaining numbers is divided by nT (that is, 11), for XT = 11.48g.

We can see that the trimmed mean, unlike the ordinary mean, is resistant to the
effect of outliers. In this example, the 5% trimmed means are quite similar to the
medians. They would lead us to conclude that flakes in Pit 2, in general, weigh
slightly more than flakes in Pit 1, just as observation of the stem-and-leaf plot makes
us know we should conclude.

In the 5% trimmed mean calculated above, 5% is the trimming fraction. The
trimming fraction can be adjusted to fit the needs of a particular situation. Custom-
arily, the trimming fraction is some multiple of 5% (5%, 10%, 15%, etc.). The most
frequently used trimming fractions are probably 5% and 25%. The 25% trimmed
mean is sometimes called the midmean because it is the mean of the middle half of
the numbers (one-fourth of the numbers having been eliminated from the top of the
batch and one-fourth from the bottom).

As one final example, a 25% trimmed mean of the flake weights from Pit 1 in
Table 2.1 requires elimination of the three highest and the three lowest numbers
(0.25× 12 = 3). The mean of the remaining six numbers is 11.05 g. For the flake
weights from Pit 2, a 25% trimmed mean requires removal of four numbers from the
top and bottom (0.25×13= 3.25, which rounds up to 4). The mean of the remaining
five numbers is 11.26 g. Just as with the 5% trimmed mean, the undesirable effects
of outliers have been avoided entirely; and the comparison of means shows that Pit
2 flakes are, in general, slightly heavier than Pit 1 flakes.

Statpacks

Any statistics package will determine the mean and median for a batch of num-
bers. Not very many, however, provide the trimmed mean as a defined option.
What you are likely to have to do to get your statpack to calculate a trimmed
mean is do the trimming yourself. You could simply omit the numbers to be
trimmed when entering the data initially or you could delete those cases (or
code them as missing data by whatever provision your statpack makes for han-
dling missing data). Then your statpack can easily calculate the mean of the
remaining numbers.
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It is worth noting that the median could be thought of as the ultimate in trimmed
means, the 50% trimmed mean. Removing the upper half of the batch and the lower
half of the batch leaves nothing but the midpoint, or median.

WHICH INDEX TO USE

The median, the mean, and the trimmed mean are all numerical indexes of the center
of a batch. The question thus arises, which one should we use? This question has
no simple answer. Sometimes it is better to use the mean, sometimes the median,
sometimes the trimmed mean. It depends on the characteristics of the batch in ques-
tion and on what you intend to do with the numerical index of the center once you
have it. The mean is the most familiar, and that is an advantage worth considering,
since just about anyone feels comfortable if you tell them what the mean of a batch
of numbers is. If the batch does not have outliers that make the mean a deceptive
value, then it may well be the best choice. The median is slightly less familiar, but
it is highly resistant, and so it is used fairly often for batches with outliers. The
trimmed mean is considerably less familiar to most archaeologists, but it combines
advantages of mean and median in some respects.

As we will see in later chapters, the mean has some special properties that make
it highly useful in statistics. It is thus often tempting to use the mean, even when
the batch has outliers that affect it. The trimmed mean can be put to work in at
least some of the same ways the mean can, however, without interference from
outliers. That is what makes the trimmed mean worth discussing, even though it
is more complicated to calculate than either the mean or the median and less well
known among archaeologists. The median, unfortunately, cannot be used in these
special ways. Even though it is quite straightforward and useful for the initial task
of comparing batches, then, the median will not be as important to us farther along
in this book as the mean and the trimmed mean.

BATCHES WITH TWO CENTERS

Sometimes examination of a stem-and-leaf plot makes it clear that a batch contains
two or more quite distinct bunches, as discussed in Chapter 1. We will call such
batches two-peaked or multi-peaked. (The metaphor of the peak is derived from the
histogram, where a bunch of numbers resembles a hill or peak, but it is easy enough
to think of a stem-and-leaf plot in these terms as well.)

Table 2.2 provides the areas (in square meters) of structures excavated at the
Black-Smith sites. The stem-and-leaf plot shows that these structures form two sep-
arate groups on the basis of their areas. There are large structures, mostly from about
15 to 21m2, and small structures, from about 3 to 7m2. It would make little sense to
talk about the center of this batch because it clearly has two centers. If it makes little
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Table 2.2. Floor Areas of Structures at the
Black-Smith Sites

Area (m2) Stem-and-leaf plot

18.3 26 8
18.8 25
16.7 24
6.1 23 4
5.2 22

21.2 21 2
19.8 20 07
4.2 19 128

18.3 18 33789
3.6 17 59

20.0 16 27
7.5 15 03

15.3 14
26.8 13 6
5.4 12

18.7 11
6.2 10
7.0 9

20.7 8
18.9 7 05
19.2 6 1277
6.7 5 244689

19.1 4 259
23.4 3 6
4.5

16.2
5.6

17.5
5.9
6.7
4.9

17.9
15.0
13.6
5.4
5.8

sense to talk about its center, then it makes even less sense to calculate a numeri-
cal index of its center. If we tried it, the results would be nonsense. The mean, for
example, of the batch in Table 2.2 would be 12.95m2. This value falls in between
the two distinct groups, characterizing no structures at all. At 15.15m2, the median
would also fail to characterize the center of anything meaningful. We would thus
never even calculate these two values.
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The first thing to do if you see a two-peaked batch in a stem-and-leaf plot is
separate it into two different batches – before calculating any indexes of center.
This is not some mysterious rule that must be memorized. It is simply the only
practice that makes sense to anyone who keeps firmly in mind what indexes of
center are doing and how they behave. In a case like this, one must think that there
are basically two different kinds of structures represented, perhaps houses and grain
bins. Other information concerning these structures could be examined for evidence
relevant to such a notion. In any event, before further quantitative analysis the batch
must be broken into two batches, and the large structures treated separately from
the small structures. We would make the break at about 10 or 11m2 in the middle
of the large gap visible in the stem-and-leaf plot. The 16 small structures that are
less than 10m2 have a mean area of 5.67m2 (and an almost identical median area of
5.70m2). The 20 large structures have a mean area of 18.77m2 (and, once again, an
almost identical median area of 18.75m2). For both small structure areas and large
structure areas, then, either the mean or the median would provide meaningful and
useful indexes of the center. (Locate them along the stem in the stem-and-leaf plot,
and you will see that they are indeed in the center of the main bunch of numbers for
each sub-batch.) Breaking a two-peaked batch into two batches has made it possible
to calculate numerical indexes of the centers of the two batches that make sense.

Batches like the one in Table 2.2 are often referred to loosely as bimodal, after the
term mode which refers to the single most common category in a stem-and-leaf plot
or histogram. Sometimes the mode is used as an index of the center of a batch. In
Table 2.2, the mode would be at about 5m2, where six structures fall. This, clearly, is
something like the center of the batch of small structures, but it won’t do as an index
of the center of the entire batch. There is a secondary mode at about 18m2, where
five structures fall. This is something like the center of the batch of large structures.
Only if exactly the same number of structures fell at 5m2 and at 18m2 would this
batch truly have two modes. Strictly speaking, it has a mode and a secondary mode
rather than two modes. Nevertheless, such multipeaked batches are often referred to
as bimodal.

PRACTICE

1. Look back at the data on scraper lengths given in Tables 1.9 and 1.10. Calculate
appropriate indexes of center to put a finer point on the comparison you have
already made with a stem-and-leaf plot between Pine Ridge and the Willow Flats
scraper lengths. Try out the mean, the median, and a trimmed mean (with what-
ever trimming fraction you think is most appropriate). Which index of center
makes most sense for the comparison of scraper lengths between the two sites?
Why? (Note that comparisons of levels must be based on the same index. You
shouldn’t compare the mean for one batch to the median for another.) Summa-
rize the comparison of scraper lengths you have made between the two sites. That
is, what has all this told you about scraper lengths at the two sites?
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2. Using the data from Tables 1.9 and 1.10 once again, do the same for flint scrapers
and chert scrapers, disregarding which site the scrapers came from. Try the mean,
the median, and the trimmed mean again. Which index makes most sense for
comparing the lengths of scrapers made of different raw materials? Why? How
would you summarize all together the comparisons you have made between flint
and chert scrapers and between the Willow Flats site and Pine Ridge Cave?
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Some batches of numbers are very tightly bunched together while others are much
more spread out. This property is referred to in exploratory data analysis as spread
(or in more traditional statistical terms as dispersion), and it is often an informative
characteristic of a batch to which you should pay attention. Just as it is convenient
to have a numerical index for the level or center of a batch, it is also convenient to
have a numerical index for the spread, or dispersion, of a batch. Once again there
are several different numerical indexes that behave differently and are thus used in
different circumstances.

THE RANGE

The simplest index of the spread of a batch is its range. The range in statistics
is exactly what it is in everyday conversation: the difference between the lowest
number and the highest number in the batch. Table 3.1 presents the same exam-
ple numbers we discussed in the previous chapter. The range for the weights of
flakes recovered from Pit 1 is the difference between 28.6 and 7.6 g, or 21.0 g
(28.6g− 7.6g = 21.0g). The range for the weights of flakes recovered from Pit
2 is the difference between 14.3 and 7.8 g, or 6.5 g (14.3g−7.8g = 6.5g).

We notice immediately that the range suffers from the same problem that the
mean suffers from: it is not at all resistant. In fact, it is even less resistant than
the mean. Not only is it strongly affected by outliers, it may well depend entirely
on outliers. Examination of the stem-and-leaf diagram reveals how misleading the
range is in this instance. The two batches here have rather similar spreads, but we
would probably say that the flake weights from Pit 2 are more spread out than those
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Table 3.1. Weights of Flakes Recovered from Two Bell-Shaped Pits

Flake weights (g) Back-to-back stem-and-leaf plot

Pit 1 Pit 2 Pit 1 Pit 2

9.2 11.3 6 28
12.9 9.8 27
11.4 14.1 26
9.1 13.5 25

28.6 9.7 24
10.5 12.0 23
11.7 7.8 22
10.1 10.6 21
7.6 11.5 20

11.8 14.3 19
14.2 13.6 18
10.8 9.3 17

10.9 16
15

X̄ 12.33 11.42 2 14 13
Md 11.10 11.30 13 56

9 12 0
Range 21.0 6.5 74 11 35
Midspread 3.7 3.7 851 10 69

21 9 378
8

6 7 8

of Pit 1 because the central bunch (which is always the most important part of the
batch) is more dispersed along the stem. Nevertheless, the range for Pit 1 is much
greater, entirely because of the one very high outlier in the Pit 1 batch. Although
the range is simple to calculate and easily understood by everyone, it is likely to be
very misleading unless all outliers can be removed. It is not much used as an index
of spread.

THE MIDSPREAD OR INTERQUARTILE RANGE

The midspread is the range of the middle half of a batch. The highest 25% of
the numbers and the lowest 25% of the numbers are thus disregarded. It could be
thought of as a sort of trimmed range, thinking back to the trimmed mean discussed
in Chapter 2.

In practice the midspread is found by locating the quartiles and subtracting the
lower quartile from the upper quartile. The upper quartile is something like the
median of the upper half of the batch and the lower quartile is something like
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the median of the lower half of the batch, although the rules used for finding the
quartiles differ slightly from those used for finding the median. (In exploratory data
analysis the quartiles are often called the hinges.) To find the quartiles, first divide
the number of numbers in the batch by 4. If the result is a fraction, round it up to the
next whole number. Then count in that many numbers from the highest number in
the batch to arrive at the upper quartile and from the lowest number in the batch to
arrive at the lower quartile.

For example, there are 12 flakes from Pit 1 for which weights are given in
Table 3.1. We divide 12 by 4 and get 3. The upper quartile is the third num-
ber from the top of the stem-and-leaf, or 12.9 g. The lower quartile is the third
number from the bottom of the stem-and-leaf, or 9.2 g. The midspread is then
12.9g− 9.2g = 3.7g. For Pit 2, we have a batch of 13 weights; (13/4) = 3.25,
which we round up to 4. The upper quartile is the fourth number from the top of the
stem-and-leaf, or 13.5 g. The lower quartile is the fourth number from the bottom of
the stem-and-leaf, or 9.8 g. The midspread is thus 13.5g−9.8g = 3.7g.

The midspread gives us better results for this example than the range, indicating
that both batches are spread out to the same degree (a midspread of 3.7 g for both
batches). This is at least closer to the mark than using a numerical index that shows
the Pit 1 batch to be much more spread out than the Pit 2 batch.

The procedure for finding the midspread also reveals why it is sometimes called
the interquartile range (at least by those who never use two syllables when five
will do). The midspread is simply the range between the quartiles, and interquartile
range is the traditional term for it. The midspread is used more in exploratory data
analysis than in traditional statistics, and it works particularly well with the median
to give us a quick indication of the level and spread of a batch.

THE VARIANCE AND STANDARD DEVIATION

The variance and the standard deviation are based on the mean. They are consider-
ably more cumbersome to calculate than the range or the midspread, and they lack
some of the immediately intuitive meaning that the range and midspread have. They
have technical properties, however, that make them extraordinarily useful, and so
they will be of considerable importance to many of the following chapters.

The basic concept on which the variance is based is that of difference from the
mean. Clearly the vast majority of numbers in a batch are likely to be rather different
from the mean of the batch. We can easily see how different any number in a batch
is from the mean by subtracting the mean from it. The first two columns of Table 3.2
illustrate this procedure for all the numbers in the batch of weights of flakes from Pit
2 in Table 3.1. As is logical, the higher numbers in the batch have positive deviations
from the mean (because they are above the mean), and the lower numbers have
negative deviations from the mean (because they are below the mean). The numbers
at the extreme ends of the batch, of course, deviate quite strongly from the mean in
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Table 3.2. Calculating the Standard Deviationof Flake Weights from Pit 2 (Table 3.1)

Deviations from mean Squared deviations from mean

x (g) x−X
(
x−X

)2

14.3 2.88 8.29
14.1 2.68 7.18
13.6 2.18 4.75
13.5 2.08 4.33
12.0 0.58 0.34
11.5 0.08 0.01
11.3 −0.12 0.01
10.9 −0.52 0.27
10.6 −0.82 0.67
9.8 −1.62 2.62
9.7 −1.72 2.96
9.3 −2.12 4.49
7.8 −3.62 13.10

X = 11.42 ∑(x−X) = −0.06 ∑
(
x−X

)2 = 49.02
(sum of squares)

s2 = ∑(x−X)2

n−1
=

49.02
12

= 4.09

s =
√

s2 =
√

4.09 = 2.02

either positive or negative direction. The more spread out a batch is, the more strong
deviations from the mean there are.

If we want to summarize these deviations numerically, it might occur to us to
take the mean of the deviations. This won’t do, however, because we can see that
the deviations must always add up to 0; hence, their mean will always be 0. Indeed,
a different way to think of the mean is to consider it a “balance point” that makes
these deviations add up to 0. (You may notice that the second column of Table 3.2
actually adds up to −0.06 rather than 0. This is a consequence of rounding error,
which commonly occurs. All the deviations are rounded off to two digits following
the decimal point, and in this case by pure chance a little more rounding down has
occurred than rounding up.)

What we are interested in, as an index of spread, is the set of deviations from the
mean without their signs. We could simply drop the signs and add up the absolute
values of the deviations, but it turns out to be preferable to get rid of the signs
by squaring the deviations from the mean. (The squares of the deviations from the
mean are, of course, all positive, as squares must all be.) This calculation is shown
in the third column of Table 3.2. It is this third column that we sum up. This sum is
sometimes referred to as the sum of the squared deviations from the mean or simply
the sum of squares.

This sum of squares will, other things being equal, be larger for a larger batch
of numbers than for a smaller batch because a larger batch has more deviations to
add up. To arrive at an index that is not affected by the size of the batch but only
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by its spread, what we need is something like the average squared deviation from
the mean. Instead of dividing the sum of squares by the number of numbers in the
batch, however, we divide it by one less than the number of numbers in the batch.
We do this for purely technical reasons to make the result more useful in future
chapters where we take batches of numbers to be samples from larger populations.
The equation for the variance, then, is

s2 = ∑(x−X)2

n−1

where s2 is the variance of x, X is the mean of x, and n is the number of numbers in
the batch of x.

Table 3.2 provides an example of the calculations that correspond to this equa-
tion. The variance has a rather arbitrary character compared to the range or the
midspread. The value of the variance is not as easy to relate intuitively to the values
in the batch as was the case with the range or midspread. We can at least remove the
confusing effect of squaring the deviations by taking the square root of the variance.
The result is s, the standard deviation:

s =
√

s2 =

√
∑(x−X)2

n−1

The standard deviation, unlike the variance, is at least expressed in the same units
as the original batch. Thus it is appropriate to think of the standard deviation of the
weights of flakes from Pit 2 as not just 2.02, but 2.02 g. If we relate the standard
deviation to the stem-and-leaf plot in Table 3.1, we see that the standard devia-
tion delineates the portion of the stem within which most of the flake weights fall.
That is, most weights are within 2.02 g above or below the mean of 11.42 g, which
is to say, most of the weights are between 9.40 (11.42g− 2.02g = 9.40g) and
13.44 g (11.42g + 2.02g = 13.44g). These two numbers (9.40 and 13.44 g) pro-
vide an approximation of the limits of the main bunch of numbers. That is what it
means to say that most of the flake weights are within one standard deviation of the
mean. Only a few fall farther than one standard deviation from the mean, that is,
farther than 2.02 g from the mean. We can (and will) specify much more about this
way of using the standard deviation in later chapters. For the moment, suffice it to
say that the standard deviation often provides just this kind of indication about the
spread of a batch.

The standard deviation does not behave so satisfactorily for the flake weights
from Pit 1. Table 3.3 shows the calculation of the standard deviation for this batch.
When we first compared these two batches of numbers (the weights of flakes from
Pits 1 and 2) on the basis of the stem-and-leaf plots in Table 2.1, we noted that the
flake weights from Pit 1 were (except for the high outlier) more closely bunched
up than those from Pit 2. The variance and the standard deviation for flake weights
from Pit 1, however, are much larger than those for Pit 2, indicating a much larger
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Table 3.3. Calculating the Standard Deviation of Flake Weights from Pit 1 (Table 3.1)

Deviations from mean Squared deviations from mean

x (g) x−X
(
x−X

)2

28.6 16.27 264.71
14.2 1.87 3.50
12.9 0.57 0.32
11.8 −0.53 0.28
11.7 −0.63 0.40
11.4 −0.93 0.86
10.8 −1.53 2.34
10.5 −1.83 3.35
10.1 −2.23 4.97
9.2 −3.13 9.80
9.1 −3.23 10.43
7.6 −4.73 22.37

X = 12.33 ∑(x−X) = −0.06 ∑
(
x−X

)2 = 323.33
(sum of squares)

s2 = ∑(x−X)2

n−1
=

323.33
11

= 29.39

s =
√

s2 =
√

29.39 = 5.42

spread for the flakes from Pit 1 – exactly opposite the conclusion the stem-and-leaf
plot clearly indicates.

Table 3.3 shows very clearly why the variance and the standard deviation are so
large for Pit 1: the value for the one heaviest flake deviates very strongly from the
mean. That one flake is alone responsible for such a high sum of squares and thus
for such a high variance and standard deviation. Clearly, like the mean, the variance
and the standard deviation are not at all resistant to the effects of outliers. Using
the variance or the standard deviation as a numerical index of the spread of a batch,
then, is not a good idea at all if the batch has outliers.

Table 3.3 also provides a convenient illustration of why the mean lacks resistance
along the lines of observations made in Chapter 2. Think of the mean as the balance
point of a see-saw. The high outlier is like a person far out at one end of the see-saw.
In order to make the see-saw balance, the mean must be moved substantially toward
that end so that most of the numbers are on the other side. In that position it is far
off to one side of the center of the main bunch of numbers. It was precisely this
undesirable effect that we complained about in Chapter 2.

THE TRIMMED STANDARD DEVIATION

The basic idea of the trimmed standard deviation is exactly like that of the trimmed
mean: outliers are excluded from the sample so that they will not have an undue
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Table 3.4. Calculating the 5% Trimmed Standard Deviation
of Flake Weights from Pit 1 (Table 3.1)

Original batch Winsorized batch Deviations from mean Squared deviations from mean

x (g) xW (g) xW −XW
(
xW −XW

)2

28.6 14.2 2.95 8.70
14.2 14.2 2.95 8.70
12.9 12.9 1.65 2.72
11.8 11.8 0.55 0.30
11.7 11.7 0.45 0.20
11.4 11.4 0.15 0.02
10.8 10.8 −0.45 0.20
10.5 10.5 −0.75 0.56
10.1 10.1 −1.15 1.32

9.2 9.2 −2.05 4.20
9.1 9.1 −2.15 4.62
7.6 9.1 −2.15 4.62

XW = 11.25 ∑(xW −XW ) = 0.00 ∑
(
xW −XW

)2 = 36.16
(sum of squares)

s2
W = ∑ (xW −XW )2

n−1
=

36.16
11

= 3.29

sT =

√
(n−1)s2

W

nT −1
=

√
(12−1)3.29

(10−1)
= 2.01

effect on the result. Calculation of the trimmed standard deviation, however,
becomes more involved. Instead of simply reducing the size of the batch by trim-
ming off numbers at the top and bottom, we must maintain the size of the batch by
replacing trimmed numbers with the numbers next in line for trimming. Table 3.4
shows this process for calculating a 5% trimmed standard deviation of the batch of
flake weights from Pit 1. When, in Chapter 2, we calculated the 5% trimmed mean
of this same batch, we trimmed the single highest and lowest number from the batch.
This time, we replace the highest number with the next highest number (the high-
est number that remained in the batch after trimming). Thus 28.6 g becomes 14.2 g.
Similarly, we replace the lowest number with the next lowest number (the lowest
number that remained in the batch after trimming). Thus 7.6 g becomes 9.1 g.

The new batch that results is a Winsorized batch. The Winsorized variance is
calculated simply as the ordinary variance of this Winsorized batch. Note, though,
that the mean involved in calculating the Winsorized variance is the mean of the
Winsorized batch (which is not the same as the trimmed mean) and that the trimmed
standard deviation is not simply the square root of the variance of the Winsorized
batch. The trimmed standard deviation is derived from the Winsorized variance by
the following equation:

sT =

√
(n−1)s2

W

nT −1
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Statpacks

Midspreads and standard deviations are pretty common fare in statpacks, and
statpacks are truly helpful here because calculating a standard deviation with
a calculator is time consuming (unless your calculator has a special key for
doing it automatically). Trimmed standard deviations, however, are much less
often provided for in statpacks. Just as in calculating a trimmed mean with your
statpack, you are likely to have to adjust the batch yourself first. In this case
instead of replacing extreme values with missing data, you replace extreme
values with the adjacent nonextreme value in the data. Once this modification
has been made, the batch has been Winsorized, and the variance your statpack
calculates on these numbers is the Winsorized variance, which you can con-
vert into the trimmed standard deviation with your calculator, as illustrated in
Table 3.4. Be sure not to forget this last step!

where sT is the trimmed standard deviation, n is the number of numbers in the
untrimmed batch, s2

W is the variance of the Winsorized batch, and nT is the number
of numbers in the trimmed batch.

Table 3.4 shows the full calculation of the trimmed standard deviation for the
flake weights from Pit 1. Comparison of the calculation columns for Tables 3.3
and 3.4 shows quite clearly how the trimmed standard deviation avoids the over-
whelming effect of outliers.

Just as the trimmed mean can be calculated for various trimming fractions, so
can the trimmed standard deviation. In Chapter 2 we calculated a 25% trimmed
mean of the flake weights from Pit 1 by trimming the three highest and the three
lowest numbers from the batch. Calculation of the 25% trimmed standard deviation
would begin with the creation of a Winsorized batch of 12 numbers in which the
three highest numbers were replaced with the fourth highest and the three lowest
numbers were replaced with the fourth lowest. From there on the calculation of the
variance of the Winsorized batch and the trimmed standard deviation follow exactly
the same path we have just taken for the 5% trimmed standard deviation. When a
trimmed mean and standard deviation are used, the trimming fraction should always
be specified.

WHICH INDEX TO USE

The range, the midspread, the standard deviation, and the trimmed standard devi-
ation are all numerical indexes of the spread of a batch. Just as we asked when to
use which index of the center of the batch, we must ask when to use which index
of spread. The answer parallels that given in Chapter 2. The range is very widely
understood but so badly affected by outliers that it is not often of much use. The mid-
spread has been emphasized in exploratory data analysis. It is not as familiar as it
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should be to archaeologists, but it is easy to find and of wide utility for basic descrip-
tive purposes. Its resistance to the effects of outliers makes it particularly attractive.
The standard deviation is quite widely familiar (at least the term is, whether or not
many archaeologists are really at home with the concept or not). Its statistical prop-
erties, like those of the mean, will serve us well in the rest of this book. It is of such
importance that we will spend some effort on techniques to overcome its poor resis-
tance to the effects of outliers. Some of these techniques are based on the trimmed
standard deviation. Indexes of center and spread work together in pairs: the median
with the midspread, the mean with the standard deviation, or the trimmed mean with
the trimmed standard deviation (both with the same trimming fraction). Using the
median together with the standard deviation, for example, is like wearing one white
sock and one brown sock – only worse.

Table 3.5. Areas of Bronze Age Sites
Near Nanxiong

Site area (ha)

Early Bronze Age Late Bronze Age

1.8 10.4
1.0 5.9
1.9 12.8
0.6 4.6
2.3 7.8
1.2 4.1
0.8 2.6
4.2 8.4
1.5 5.2
2.6 4.5
2.1 4.1
1.7 4.0
2.3 11.2
2.4 6.7
0.6 5.8
2.9 3.9
2.0 9.2
2.2 5.6
1.9 5.4
1.1 4.8
2.6 4.2
2.2 3.0
1.7 6.1
1.1 5.1

6.3
12.3
3.9
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PRACTICE

Imagine you have conducted a regional survey of a small valley north of Nanxiong
and have carefully measured the areas of the surface scatters that indicate the Bronze
Age sites you encountered. The areas (in hectares) are given in Table 3.5.

1. Begin to explore these two batches of numbers with a back-to-back stem-and-leaf
plot.

2. Continue your exploration by calculating the median, the mean, and the 10%
trimmed mean for each batch and then the index of spread that corresponds to
each of these indexes of level. Which pair of indexes makes most sense to use
here? Why?

3. Based on the stem-and-leaf plots and the indexes of level and spread, what obser-
vations would you make about changes in site size from Early Bronze Age to Late
Bronze Age near Nanxiong?
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We have already compared batches with back-to-back stem-and-leaf plots, but there
are quicker and more effective tools for graphically comparing batches. The numer-
ical indexes of the center and spread of a batch that we have discussed in the last two
chapters provide the basis for such tools. A standard way of plotting some of these
indexes in exploratory data analysis is called the box-and-dot plot (or the box-and-
whisker plot). The box-and-dot plot could, in theory, be based on any of the indexes
of center and spread, but in practice the median and the midspread are used. This
is such standard practice that a box-and-dot plot is automatically taken to represent
the median and midspread, and this convention should not be violated.

THE BOX-AND-DOT PLOT

Construction of a box-and-dot plot begins in exactly the same way as construction
of a stem-and-leaf plot: with the establishment of a scale along which the numbers
in the batch will lie. Figure 4.1 presents a stem-and-leaf plot of post hole diame-
ters from the Smith site (taken from Tables 1.7 and 1.8). To the right the stem is
converted into a scale for drawing a box-and-dot plot. A horizontal line is placed
next to 17.2 cm on this scale to represent the median. Two more lines at 18.8 and
15.7 cm represent the upper and lower quartiles. These three lines are framed with
two vertical lines to form a box with a line across it near its center. This box graph-
ically represents the midspread, that is, the central half of the numbers – those that
fall between the two quartiles. The box provides a clear, clean picture of the most
important central bunch of numbers in the batch, one that is more quickly perceived
than the stem-and-leaf plot.

R.D. Drennan, Statistics for Archaeologists, Interdisciplinary Contributions
to Archaeology, DOI 10.1007/978-1-4419-0413-3 4,
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Figure 4.1. Box-and-dot plot of post hole diameters (in cm) from the Smith site.

We can include more detail in the box-and-dot plot, and at the same time provide
more precise definition of other important features of a batch. We have, for example,
already discussed outliers, numbers that fall far outside the central bunch and are
generally a nuisance as far as several otherwise very useful numerical indexes of
center and spread are concerned. It is often quite helpful to simply eliminate outliers,
but we are frequently confronted with borderline cases – numbers that lie beyond
the central bunch but not so far outside it as to make us certain that they do not
belong with the batch.

The box-and-dot plot provides a graphical approach to identifying outliers con-
sistently and signaling their presence, by suggesting a rule of thumb to distinguish
between the central bunch of numbers and outliers. According to this rule of thumb,
an outlier is any number that lies more than one and a half times the length of the
box beyond either end of the box. We can think of this in purely graphical terms. We
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could measure the box in a box-and-dot plot as drawn on paper. If the box is 1 in.
long, then we would say that any number falling more than 1.5 in. above the top
of the box or below the bottom of the box is an outlier. Further, any number falling
more than twice this far from the end of the box is a far outlier. These distances are
indicated with lines in Fig. 4.1.

The same result can be achieved mathematically. Since the length of the box is the
midspread, the distance that defines outliers is 1.5 times the midspread (1.5×3.1 =
4.65cm in the example in Fig. 4.1). Since the top of the box represents the upper
quartile, the position of the defining line for high outliers on the number scale is the
upper quartile plus 1.5 times the midspread (18.8+4.65 = 23.45cm in the example

Rules of Thumb

Practical statistics is filled with rules of thumb that are efforts to patch the gaps
between nice neat principles and much messier real life. Outliers create just
such a gap. We considered the case of Edelbert Pea (the boss’s nephew) as an
example of an outlier. He was easy to identify as an outlier because he made
$52.00 an hour while all the other shipping clerks made $8.00 an hour. But
what if Edelbert made only $8.50 an hour? And what if he had worked at L.L.
Pea for three years as a shipping clerk, while all the other shipping clerks who
made $8.00 an hour had less than six months’ experience? He no longer seems
such an outlier. In fact, he begins to sound like a good example of exactly the
kind of variation we would like to include in our study of shipping clerks’
wages. But where would we draw the line? If Edelbert made $12.00 an hour
would he be an outlier? If he made $20.00? In seeking to draw a line at the
point where Edelbert’s wages make him an outlier, we’re basically trying to
do the impossible. It makes no sense to pretend to be able to say, for example,
that if he made as much as $14.73 an hour he would not be an outlier, but if he
made $14.74 he would be. The judgment is just much fuzzier than that. On the
other hand, if we’re going to analyze shipping clerks’ wages we have to either
include Edelbert or exclude him. There is no middle ground. “Maybe” simply
does not lead to any course of action we can pursue. It is in precisely such
situations that statisticians make up rules of thumb – to provide systematic
guidance where the best answer is “maybe” but the only useful answers are
“yes” and “no.”

Saying that a number is an outlier if it falls more than 1.5 midspreads
outside either quartile of its batch is a rule of thumb. It provides us with a
systematic way of identifying outliers in a batch according to a clearcut rule.
But it would be hard to justify choosing exactly 1.5 midspreads rather than 1.6
or 1.4 because the choice, finally, is somewhat arbitrary. Indeed, there is some
variation from one statistics book (or one computer program) to the next in the
exact rule of thumb used for identifying outliers. The same is true of the other
rules of thumb that we will discuss as we go on through this book.
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in Fig. 4.1). Since the bottom of the box represents the lower quartile, the position of
the defining line for low outliers is the lower quartile minus 1.5 times the midspread
(15.7−4.65 = 11.05cm in the example in Fig. 4.1).

In the same way, the positions of the defining lines for far outliers can be estab-
lished mathematically. The line defining far high outliers is twice as far above
the upper quartile as the line defining outliers. That is to say, instead of 1.5 times the
midspread beyond the quartiles, the far outlier defining line falls at three times the
midspread beyond the quartiles (18.8 + 9.3 = 28.1cm and 15.7− 9.3 = 6.4cm in
Fig. 4.1).

Thus the areas above and below the box in the box-and-dot plot are each divided
into three zones. Numbers that fall in the nearest zone above or below the box are
called adjacent values. These numbers are outside the central half of the batch but
are still considered part of the main bunch of numbers. In the next zone away from
the median come outliers, and in the farthest zone are far outliers. Ordinarily these
zones are not indicated by lines the way they are in Fig. 4.1. Instead, they are distin-
guished by different symbols representing the numbers that fall in them. The highest
and lowest adjacent values are indicated with X’s, as shown in Fig. 4.1. These X’s,
then, represent the extremes of the main bunch of numbers (excluding all outliers).
Outliers are all indicated individually on the plot as hollow dots, and far outliers are
all indicated individually as solid dots. The batch represented in Fig. 4.1 has only
one outlier (8.4 cm) and no far outliers, so there is a single hollow dot and no solid
dots. These conventions about X’s, hollow dots, and solid dots stand for the labels
and lines drawn to the right of Fig. 4.1, so such labels and defining lines do not gen-
erally appear when box-and-dot plots are drawn. As is the case with rules of thumb,
the exact conventions used to indicate outliers and far outliers in box-and-dot plots
vary from one book or program to the next.

The box-and-dot plot makes it easy to compare several batches. In Chapter 1, we
compared the batch used for the example in Fig. 4.1 to another batch of post hole
diameters with a back-to-back stem-and-leaf plot (Table 1.7). Figure 4.2 compares
the same two batches with two box-and-dot plots instead. The box-and-dot plot for
post hole diameters at the Smith site is exactly the same as in Fig. 4.1 (except that it
is now on a longer scale). The box-and-dot plot for post hole diameters at the Black
site is made in exactly the same manner, but using the numbers listed in Table 1.1
for the Black site. The one extremely large post hole qualifies not only as an outlier,
but as a far outlier, since it lies more than three times the length of the box from the
box’s upper end. It is thus shown as a solid dot.

When we look at the box-and-dot plots in Fig. 4.2, we quickly reach the same
conclusion we reached looking at the back-to-back stem-and-leaf plot of these same
numbers in Table 1.7. At each site there is a post hole that does not seem to represent
the same kind of phenomenon as the rest of the post holes – an extremely large
post hole at the Black site and an extremely small post hole at the Smith site. In
general, post holes at the Smith site are larger than post holes at the Black site by a
margin of 5 or 6 cm. The box-and-dot plot shows us these patterns even more clearly
than the back-to-back stem-and-leaf plot because the box-and-dot plot is a simpler,
more quickly perceived way of representing the basic features of each batch. The
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Figure 4.2. Box-and-dot plot comparing post hole diameters (in cm) at the Black–Smith sites.

box-and-dot plot can also be extended easily to the comparison of a larger number
of separate batches simply by adding additional boxes and dots to the same scale.
The back-to-back stem-and-leaf plot cannot be extended very conveniently to the
comparison of more than two batches.
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REMOVING THE LEVEL

When we compare two or more batches of numbers, as in Fig. 4.2, probably the most
noticeable characteristic of each batch is its level or center. If we want to compare
other features of the batches, it is convenient to remove the conspicuous effect of
their differing levels. We do this by reducing the levels of both batches to zero.

Figure 4.3 shows this graphically. We have simply slid both box-and-dot plots
down the scale so that the center of each (that is, the median) lines up with the
zero point on the scale. The same result can also be achieved mathematically by
subtracting the median of a batch from each number in the batch. For example, we
take all the post hole diameters from the Smith site in Table 1.6, and subtract the
median of Smith site post hole diameters (17.2 cm) from each one, as shown in
Table 4.1. The result is a new set of numbers that represent how much each post
hole is larger or smaller than the median size. Post holes whose diameter is larger
than the median are represented by positive numbers and post holes whose diameter
is smaller than the median are represented by negative numbers. We could arrive
at the Smith site box-and-dot plot with the level removed (in Fig. 4.3) by making
a box-and-dot plot of this new batch of numbers. The result would be exactly the
same as graphically sliding the box-and-dot plot made previously down the scale
until its median arrived at zero. (If you do not immediately see why this is so, the
best way to understand is to try it out for yourself.)

Having removed the levels from these two batches of numbers we can no longer
compare them in regard to level. The process of removing the level is to artificially
set the center of both batches at zero. With the conspicuous effect of differences in
level removed, however, we very quickly notice that the two batches differ in regard
to spread. Disregarding the outliers and far outliers, we see that the adjacent values
in both batches are similarly spread out on the number scale. The most central bunch
of numbers, however (the middle half as represented by the box), is more spread out
for the Smith site post holes than for the Black site post holes. This difference was
certainly visible in the previous box-and-dot plot (Fig. 4.2), but it is considerably
more conspicuous now that the two boxes have been lined up at their middles by
removing the levels.

REMOVING THE SPREAD

Just as we removed the level from a batch by reducing its center to zero, we can
remove the spread from a batch by reducing its spread to one. This must be accom-
plished mathematically; it cannot be done graphically, as in the case of removing the
level by sliding the box down the number scale. Once the level has been removed
mathematically, however, by subtracting the median, we remove the spread by divid-
ing by the midspread. Table 4.2 continues where the calculations in Table 4.1 left off
with the Smith site post hole diameters. The first number in the batch, for example,
in Table 4.1 represents a post hole 20.5 cm in diameter. When the level is removed
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Figure 4.3. Box-and-dot plots of post hole diameters (in cm) at the Black–Smith sites with levels
removed.

from this number, we see that this post hole diameter is 3.3 cm larger than the
median. Continuing with the calculation in Table 4.2, we see that this 3.3 cm divided
by 3.1 cm (the midspread) is 1.06. This result, 1.06, means that the post hole diam-
eter in question is above the median by an amount equal to a little bit more than
one midspread. In the box-and-dot plot (Fig. 4.1), this post hole would lie about the
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Table 4.1. Removing the Level from
Smith Site Post hole Diameters by
Subtracting the Median (17.2 cm)

20.5cm − 17.2cm = 3.3 cm
17.2cm − 17.2cm = 0.0 cm
15.3cm − 17.2cm = −1.9cm
15.9cm − 17.2cm = −1.3cm
18.3cm − 17.2cm = 1.1 cm
17.9cm − 17.2cm = 0.7 cm
18.6cm − 17.2cm = 1.4 cm
14.3cm − 17.2cm = −2.9 cm
19.4cm − 17.2cm = 2.2 cm
16.4cm − 17.2cm = −0.8 cm
18.8cm − 17.2cm = 1.6 cm
15.7cm − 17.2cm = −1.5cm
18.9cm − 17.2cm = 1.7 cm
16.8cm − 17.2cm = −0.4cm
8.4cm − 17.2cm = −8.8cm

length of the box above the median (that is above the center line of the box). Since
this post hole provides the highest adjacent value, it is, in fact, located in Fig. 4.1 as
the X above the box, and the center of this X does, indeed, lie about the length of
the box above the box’s center line.

Removing the level and spread from both batches of numbers, the post hole
diameters from the Black site and from the Smith site, and making yet another
box-and-dot plot of the result, gives us Fig. 4.4. The centers of both batches are
still at zero, but now the boxes representing the middle half of each batch are the
same length. That length, of course, is one, since the box length always represents
the midspread, and removing the level and spread has the effect of setting the center
at zero and the spread at one. We thus cannot use Fig. 4.4 to compare the batches in
regard to either level or spread. The feature that becomes most conspicuous at this
point is shape, especially symmetry. Clearly, the post hole diameters from the Black
site tend to spread out downward from the median more than upward. Remember
that one-quarter of the numbers in the batch fall between the median and the top of
the box and one-quarter fall between the median and the bottom of the box. The one-
quarter of the numbers immediately below the median at the Black site are clearly
more spread out than the one-quarter immediately above the median, which clump
closer to the median. The Smith site post hole diameters, on the other hand, have a
more symmetrical distribution, although its middle half spreads upward a little more
than it does downward. We will discuss shape and symmetry in more detail in the
next chapter.

It is worth noting that there is an easier way to draw a box-and-dot plot with the
level and spread removed. We have just subtracted the median from all the numbers
in the batch and divided all the resulting numbers by the midspread to arrive at a new
batch. In this batch we found the median, upper and lower quartiles, outliers, etc. so
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Table 4.2. Removing the Spread from Smith Site Post hole Diameters by Dividing by the
Midspread (3.1 cm) after the Level Has Been Removed (Compare to Table 4.1)

3.3 cm / 3.1 cm = 1.06
0.0 cm / 3.1 cm = 0.00

−1.9 cm / 3.1 cm = −0.61
−1.3 cm / 3.1 cm = −0.42

1.1 cm / 3.1 cm = 0.35
0.7 cm / 3.1 cm = 0.23
1.4 cm / 3.1 cm = 0.45

−2.9 cm / 3.1 cm = −0.94
2.2 cm / 3.1 cm = 0.71

−0.8 cm / 3.1 cm = −0.26
1.6 cm / 3.1 cm = 0.52

−1.5 cm / 3.1 cm = −0.48
1.7 cm / 3.1 cm = 0.55

−0.4 cm / 3.1 cm = −0.13
−8.8 cm / 3.1 cm = −2.84

as to draw a new box-and-dot plot from scratch. We could simply have applied this
treatment to each of the five numbers required to define the box-and-dot plot (the
median, the upper and lower quartiles, and the upper and lower extreme adjacent
values). These five values, with the level and spread removed, produce the same
box-and-dot plot as the same five values determined afresh from a complete new
batch with the level and spread removed from all the numbers. To finish the graph
requires only subtracting the median from each outlier and dividing the result by the
midspread so as to locate outliers on the new number scale.

UNUSUALNESS

This new number scale is a very interesting scale. It is no longer a scale of cen-
timeters as the previous number scales have been, but rather, in effect, a scale of
unusualness. It locates each number in the batch according to just how central or
how peripheral that number is in terms of the batch to which it belongs. Unusu-
alness is not an inherent property of a thing but rather a statement of how a thing
relates to the group of which it is a member. If a thing falls well within the central
bunch of things in its group, then it is not very unusual. If a thing falls in a more
peripheral position, relative to the central bunch of things in its group, then it is
more unusual. In a group of professional basketball all-stars, a person 6’-6” tall is
not very unusual. In a group of university professors, however, a person 6’-6” tall
is very unusual. Removing the level and spread from a batch of numbers gives us a
scale along which we can express unusualness in a standard and systematic manner.
For this reason the traditional statistical term for this procedure is standardizing.
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Figure 4.4. Stem-and-leaf and box-and-dot plots of post hole diameters at the Black–Smith sites
with levels and spreads removed.

The number scale in Fig. 4.4 expresses how far each number in each batch
departs from the median for that batch in terms of the midspread for that batch.
The first number in Table 4.1, for example, is 20.5 cm, which represents a post hole
3.3 cm larger than the median diameter for the Smith site. This post hole measure-
ment becomes 1.06 in the standardized batch (Table 4.2), meaning that its diameter
is slightly more than 1 midspread above the median. The second measurement in
Table 4.1, 17.2 cm is the median. Thus its difference from the median is 0.0 cm or
0.00 midspreads. The third measurement, 15.3 cm, falls 1.9 cm below the median
and becomes -0.61 in the standardized batch. It is thus 0.61 midspreads below the
median value. The first post hole, then (20.5 cm in diameter), is more unusual than
the third post hole, because it falls farther out toward the periphery of the batch.



COMPARING BATCHES 47

Statpacks

As in the case of stem-and-leaf plots, there are many statpacks that draw box-
and-dot plots. Their conventions for indicating outliers may vary from those
used in this book, but as long as you know what they are, that should not pose
a problem. Some programs draw box-and-dot plots vertically, the way they are
drawn in this book, although sometimes the lower numbers are higher on the
screen, and the higher numbers, lower on the screen in contrast to the figures
here. Some programs draw the plots horizontally. None of this makes any dif-
ference, of course, to the interpretation of the plots. Usually such programs
automatically choose a scale for the plots, releasing your time and energy for
other more important tasks. If your program does not automatically produce
box-and-dot plots of several batches all at the same scale for comparing sev-
eral batches, you may need to look up how to take active control of determining
the scale to be used. Clearly, box-and-dot plots of different batches cannot be
compared to each other unless they are drawn to the same scale.

The easiest way to make box-and-dot plots with the level or level and spread
removed, of course, is also with a statpack. Usually the procedure you need to
follow is to transform the numbers in the original batch by subtracting the
median from each (and dividing the result by the midspread if you want to
remove the level and the spread) to create a new batch (or variable). Almost
all statpacks make it easy to do such a thing. Then you can make a box-and-dot
plot of the new batch.

This standardized number scale permits comparisons of unusualness from one
batch to another. For example, the first post hole in Table 4.3, with a diameter of
9.7 cm, is 1.4 cm smaller than the median diameter at the Black site. The 15.7-cm
post hole at the Smith site (fourth from the bottom in Tables 4.1 and 4.2) is 1.5 cm
smaller than the median diameter in its batch. It might seem that this latter post hole
is more unusual since it is farther from the center of its batch in centimeters. It is,
however, in a batch that is just more spread out in general. At the Black site a post
hole 1.4 cm smaller than the median lies 0.67 midspreads away from the median. At
the Smith site a post hole 1.5 cm smaller than the median lies only 0.48 midspreads
away from the median. The post hole with a diameter of 9.7 cm is thus more unusual
for the Black site than is the post hole with a diameter of 15.7 cm for the Smith site.

Perhaps the context in which we most frequently encounter such unusualness
scales is in standardized testing. Elementary school test results are often expressed
in terms of how far above or below average a score is for a particular grade level. The
percentiles in which college entrance examinations are commonly expressed also
provide such information. A student who scores in the 75th percentile knows that
about 75% of those taking the test had lower scores, while about 25% had higher
scores. If the batch in question is symmetrical, the 75th percentile is equivalent
to a score of about 0.5 on the unusualness scale we have been discussing. This is
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Table 4.3. Removing the Level and Spread from Black Site Post hole Diameters by
Subtracting the Median (11.1 cm) and Dividing by the Midspread (2.1 cm)

(9.7 cm – 11.1 cm) / 2.1 cm = −0.67
(9.2 cm – 11.1 cm) / 2.1 cm = −0.90

(12.9 cm – 11.1 cm) / 2.1 cm = 0.86
(11.4 cm – 11.1 cm) / 2.1 cm = 0.14

(9.1 cm – 11.1 cm) / 2.1 cm = −0.95
(44.6 cm – 11.1 cm) / 2.1 cm = 15.95
(10.5 cm – 11.1 cm) / 2.1 cm = −0.29
(11.7 cm – 11.1 cm) / 2.1 cm = 0.29
(11.1 cm – 11.1 cm) / 2.1 cm = 0.00

(7.6 cm – 11.1 cm) / 2.1 cm = −1.67
(11.8 cm – 11.1 cm) / 2.1 cm = 0.33
(14.2 cm – 11.1 cm) / 2.1 cm = 1.48
(10.8 cm – 11.1 cm) / 2.1 cm = −0.14

because when a batch is standardized by subtracting the median and dividing by the
midspread, a score of 0.5 means above the median by half a midspread. A number
that is half a midspread above the median is, of course, the upper quartile (at least
in a symmetrical batch). And the upper quartile is the number above which lie 25%
of the numbers in the batch.

STANDARDIZING BASED ON THE MEAN
AND STANDARD DEVIATION

Expressing the unusualness of a number in terms of its centrality or peripheralness
in its own batch is a critically important concept in statistics. Much of the remainder
of this book is built on this concept of unusualness. In this chapter we have focused
on removing the level and spread using the median and midspread as the numer-
ical indexes of level and spread. We have done this because the box-and-dot plot
based on the median and midspread provides a particularly easy graphical illustra-
tion of the procedure and its implications. It is more common and ultimately much
more useful to use the mean and standard deviation, however, because these indexes
have some especially attractive mathematical properties. The basic principles and
the calculations are an exact parallel to what we have just discussed. To standardize
a batch using the mean and standard deviation, you subtract the mean of the batch
from every number in the batch and divide the result by the standard deviation of
the batch. The resulting batch is often referred to as a batch of standard scores or z
scores. The z scores tell how many standard deviations above the mean (for positive
z scores) or below the mean (for negative z scores) each number in the original batch
falls.
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PRACTICE

1. Continue to explore the areas of sites near Nanxiong given in Table 3.5 by making
box-and-dot plots of Early and Late Bronze Age site areas. How do the levels of
the two batches compare?

2. Now compare Early and Late Bronze Age site areas by drawing box-and-dot
plots with the levels removed. How do the spreads of the two batches compare?

3. Now compare Early and Late Bronze Age site areas by drawing box-and-dot
plots with the levels and spreads removed. How do the two batches compare in
terms of symmetry?

4. The largest Early Bronze Age site is 4.2 ha; the largest Late Bronze Age site is
12.8 ha. Which of these sites is more unusual in terms of its batch? Why? Use the
median and the midspread of each batch to provide a score for the unusualness
of each of these sites. Use the mean and standard deviation of each batch to do
the same thing. Do these scores confirm your assessment of which site is more
unusual in its batch?
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The shape of a batch refers to the way in which the numbers are distributed along the
number scale, apart from level and spread. The traditional statistical term for shape
is distribution. There are two principal aspects to the shape of a batch: number of
peaks and symmetry. We have already discussed batches with multiple peaks and
some of the reasons why they must be divided before analysis, so we will proceed
directly to the second aspect.

SYMMETRY

Once we have a batch with a single peak, we are in position to use numerical indexes
of level and spread. One use to which we can put these numerical indexes is in
removing the level and spread so as to evaluate symmetry more carefully. A batch
may be symmetrically distributed about its single peak. In a symmetrical batch,
about half the numbers fall above the peak, about half the numbers fall below the
peak, and the numbers above and below the peak stretch away from the peak to
similar degrees. That is, the numbers on one side of the peak are no more closely
bunched up near the peak than are those on the other side of the peak.

Table 5.1 lists a batch of measurements of volumes of bell-shaped storage pits
and illustrates the symmetry of the batch with a stem-and-leaf plot. The stem-and-
leaf plot, in fact, shows perfect symmetry. The distribution of numbers above the
peak is a perfect mirror image of the distribution of numbers below the peak. The
median of this batch is 1.35m3, and its mean is 1.34m3. Such close agreement
between median and mean is characteristic of batches with symmetrical distribu-
tions, and both these numerical indexes of level fall right at the central peak on the
stem-and-leaf plot. In short, both behave very well in a symmetrical single-peaked
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Table 5.1. Volumes of Bell-Shaped
Storage Pits at the Buena Vista Site

Volume (m3) Stem-and-leaf plot

1.23 16 5
1.48 15 15
1.55 14 0568
1.38 13 24589
1.10 12 1349
1.02 11 02
1.29 10 2
1.32
1.35
1.65
1.39
1.40
1.12
1.46
1.24
1.34
1.21
1.45
1.51

batch. They give us exactly the index of the center that matches the pattern that is
so clear in the stem-and-leaf plot.

It is unusual to find the perfect symmetry of Table 5.1 in real-world batches of
numbers, especially in such small batches as this one. We would be willing to accept
a batch this small as symmetrical even if the pattern were considerably less than
perfect. Judgments about symmetry are subjective, and we will discuss the process
of making them more fully below.

Table 5.2 lists another batch of measurements of volumes of bell-shaped storage
pits from a different site. As the stem-and-leaf plot shows, however, this batch is
not nearly so symmetrical. Most of the numbers are above the peak, and they tend
to stray far above the peak. In contrast, the numbers below the peak are few and lie
quite close to the peak. This is an asymmetrical, or skewed, distribution. Batches can
be skewed upward as this one is, or downward if the values tend to stray toward the
lower numbers. For discussing symmetry it is especially convenient to draw stem-
and-leaf plots with lower numbers at the bottom and higher numbers at the top –
like the ones in this book – so that the values in an upwardly skewed shape stray
upward on the plot. If your statpack draws them the other way, just remember that
when we talk about upward skewness we mean a shape that strays toward the higher
numbers, not necessarily toward the top of the stem-and-leaf plot.

Numerical indexes of the center do not behave well at all for a skewed distri-
bution. The median for this batch is 1.29m3, and the mean is 1.35m3. These two
indexes differ more than did the median and mean for the batch in Table 5.1. More
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Table 5.2. Volumes of Bell-Shaped
Storage Pits at the Buenos Aires Site

Volume (m3) Stem-and-leaf plot

1.22 20 3
1.64 19
1.16 18 4
1.07 17
1.50 16 4
1.84 15 0
1.37 14 03
1.15 13 27
1.29 12 269
1.32 11 1567
2.03 10 47
1.17
1.04
1.43
1.11
1.40
1.26

important, both fall too high on the number scale to accurately reflect the clear sin-
gle peak at about 1.1m3. The effect of a skewed distribution on numerical indexes
is quite similar to the effect of outliers, as discussed in Chapter 2. Indeed, it is some-
times difficult to tell whether we are looking at a stem-and-leaf plot containing
outliers or one showing a skewed distribution. Even the median, highly resistant
to the effects of outliers, is affected by a skewed distribution since skewing consists
not just of a few aberrant measurements but rather of a pervasive tendency in the
shape of the batch.

Since we need a numerical index of the level and spread of a batch in order to
begin virtually any statistical analysis, such asymmetrical shapes present us with
a serious impediment. Sometimes using the trimmed mean and trimmed standard
deviation can help, but it is really the effect of outliers that these indexes eliminate
nicely. More fundamental remedies are usually called for before working with a
badly asymmetrical shape.

TRANSFORMATIONS

We have already seen that we can perform at least some kinds of arithmetic opera-
tions on all the numbers in a batch to produce a new batch that is more amenable to
certain kinds of examination. For example, we subtracted the median or the mean
from all the numbers in a batch to produce a new batch with the level removed. This
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had the effect of setting the center to a standard value (zero), while the spread and
shape of the batch remained the same. Then we divided all numbers in the zero-level
batch by the midspread or the standard deviation to remove the spread. This had the
effect of setting the spread to a standard value of one, while the shape of the batch
remained the same. Transformations are a way of removing the shape of a batch or
setting it to a standard shape (single-peaked and symmetrical).

The operations of removing the level and spread are related to each other: first
we remove the level, then the spread. We do not remove the spread from a batch
without removing the level first. Transformations of shape, however, are indepen-
dent of removing level and spread. Such transformations are usually performed on
batches without removing the level or spread, although they could also be applied
after removal of level and spread. Figure 5.1 illustrates the effects that several com-
monly used transformations have on the shape of a batch. Each batch of numbers
is accompanied by a stem-and-leaf plot and by a box-and-dot plot with the level
and spread removed. The box-and-dot plots provide the most sensitive indication of
symmetry in the original batch and in its various transformations.

x x log(x)
x

1
–

1

x2
– x2 x3 x4

1.230 1.109 0.207 –0.813 –0.661 1.513 1.861 2.289
1.480 1.217 0.392 –0.676 –0.457 2.190 3.242 4.798
1.550 1.245 0.438 –0.645 –0.416 2.403 3.724 5.772
1.380 1.175 0.322 –0.725 –0.525 1.904 2.628 3.627
1.100 1.049 0.095 –0.909 –0.826 1.210 1.331 1.464
1.020 1.010 0.020 –0.980 –0.961 1.040 1.061 1.082
1.290 1.136 0.255 –0.775 –0.601 1.664 2.147 2.769
1.320 1.149 0.278 –0.758 –0.574 1.742 2.300 3.036
1.350 1.162 0.300 –0.741 –0.549 1.823 2.460 3.322
1.650 1.285 0.501 –0.606 –0.367 2.723 4.492 7.412
1.390 1.179 0.329 –0.719 –0.518 1.932 2.686 3.733
1.400 1.183 0.336 –0.714 –0.510 1.960 2.744 3.842
1.120 1.058 0.113 –0.893 –0.797 1.254 1.405 1.574
1.460 1.208 0.378 –0.685 –0.469 2.132 3.112 4.544
1.240 1.114 0.215 –0.806 –0.650 1.538 1.907 2.364
1.340 1.158 0.293 –0.746 –0.557 1.796 2.406 3.224
1.210 1.100 0.191 –0.826 –0.683 1.464 1.772 2.144
1.450 1.204 0.372 –0.690 –0.476 2.103 3.049 4.421
1.510 1.229 0.412 –0.662 –0.439 2.280 3.443 5.199

Stem-and-leaf plots:

16 5 12 59 5 0 –6 1 –3 7 2 7 4 5 7 4
15 15 12 0123 4 14 –6 99865 –4 87642 2 4 3 7 6
14 0568 11 566888 3 0234789 –7 4321 –5 765321 2 23 3 0124 5 28
13 24589 11 0114 2 12689 –7 865 –6 8650 2 011 2 5677 4 458
12 1349 10 56 1 019 –8 311 –7 1 8899 2 134 3 023678
11 02 10 1 0 2 –8 9 –8 30 1 77 1 899 2 1348
10 2 –9 1 –9 6 1 555 1 134 1 156

–9 8 1 23
1 0

Box-and-dotplots with levels and spreads removed:

Figure 5.1. The effect of transformations on the shape of the batch of measurements from
Table 5.1.
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Logarithms

The logarithm of a number is the power to which some base must be raised
to produce the number. For example, the base-10 logarithm of 1000 is 3 since
103 = 1000. The base-10 logarithm of 100 is 2, since 102 = 100. The base-
10 logarithm of 10 is 1, since 101 = 10. We do not usually raise numbers to
fractional powers in simple mathematics, but it can be done. Since 102 = 100
and 103 = 1000,102.14 must be greater than 100 and less than 1000. In fact,
102.14 = 137.2, so the base-10 logarithm of 137.2 is 2.14. One of the vexing
chores of introductory statistics always used to be learning to use a table of log-
arithms. Fortunately, technology has made logarithm tables obsolete, and we
can now assume that logarithm transformations will be done with computers
or calculators.

The numbers of the third column of Figure 5.1 are actually natural log-
arithms, or base e logarithms. The mathematical constant e has a value of
approximately 2.7182818. Its useful characteristics in theoretical mathemat-
ics are not of importance to us here, but the logarithms used in many statpacks
are base-e logarithms. Thus the numbers in the third column are the powers
to which e must be raised to produce the numbers in the original batch. The
first number in the original batch, for example, is 1.230. Since 2.7182818.207 =
1.230, the natural logarithm of 1.230 is .207, and .207 appears first in the third
column.

Looking first at the original batch of numbers (x in Fig. 5.1), the stem-and-leaf
plot shows perfect symmetry (as it did in Table 5.1). The box-and-dot plot confirms
this impression.

The transformed batch in the second column of Fig. 5.1 is produced by taking
the square root of each of the numbers in the original batch. (See for example, the
first number:

√
1.230 = 1.109.) This is commonly referred to as the square root

transformation. The stem-and-leaf plot and the box-and-dot plot for the square root
transformation reveal that this new batch has a recognizable tendency to stray down-
ward from its center. (Compare the midspread box or the two extreme adjacent
values to those of the original batch in the box-and-dot plots.) The effect of the
square root transformation is always to produce a new batch more strongly skewed
downward than the original batch, just as we see in this case.

The transformed batch in the third column of Fig. 5.1 is produced by finding
the logarithm of each of the numbers in the original batch. As the box-and-dot
plots show, this logarithm transformation, or log transformation for short, is skewed
downward even more strongly than is the square root transformation. Like the square
root transformation, it produces a batch with a more downward skewness than the
original batch. The effect of the log transformation in this regard is even stronger
than the effect of the square root transformation.
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The transformed batch in the fourth column of Fig. 5.1 is produced with the
negative reciprocal transformation (−1/x). The negative reciprocal of the first
number in the batch (1.230) is −1/1.230 = −0.813. Like the other transforma-
tions discussed, it produces a transformed batch with a more pronounced downward
skewing than the original batch. Its effect is even stronger than that of the other
transformations, as can be seen in the box-and-dot plots at the bottom of Fig. 5.1.

The fifth column of Fig. 5.1 shows an even stronger effect in the same direc-
tion. This transformation (−1/x2) produces downward skewness to an even greater
degree. Using the first number again, as an example of the calculation,−1/1.2302 =
−0.661. We could continue this progression indefinitely with transformations cre-
ating stronger and stronger downward skewness: −1/x3, −1/x4, etc.

Beginning in the sixth column, Fig. 5.1 illustrates transformations that produce
the opposite effect. The square transformation is simply x2. (For the first number in
the batch, 1.2302 = 1.513.) The upward straying effect of the numbers in this small
batch after applying the square transformation is barely noticeable.

The cube transformation in the seventh column, however, is stronger, and the
upward straying of numbers in this transformed batch is easily recognized in the
box-and-dot plot. The calculation in this case is simply to raise the original number
to the next higher power than in the previous transformation. (For the first number,
1.2303 = 1.861.) Even stronger, and in the same positive direction, is the skewing
effect of the x4 transformation in the last column of Fig. 5.1. As with the earlier
sequence of transformations producing downward skewing, we could continue this
sequence indefinitely to higher and higher powers.

CORRECTING ASYMMETRY

We have just seen how a series of transformations can change the shape of a batch.
In this example we started with a batch the shape of which was already symmetrical,
and progressively skewed it farther and farther, first in the downward direction, and
then in the upward direction. Once we understand them, the effects of the various
transformations can be put to good use in changing the shapes of batches that are
difficult to work with in the first place because their distributions are not symmet-
rical. When a transformation producing upward skewing is applied to a batch with
downward skewness, the result may be a symmetrical shape.

Precisely the transformations we have just discussed are often used to “correct”
asymmetrical shapes. We can use the experience gained in the previous example
to list these common transformations and their effects. Table 5.3 summarizes the
experience gained from examining the graphs in Fig. 5.1. Or, to put it another
way, Fig. 5.1 graphs the practical impact of applying the transformations listed in
Table 5.3. Table 5.3 can be used to select an appropriate transformation to apply to
an asymmetrical batch like the one in Table 5.2. This batch has a very pronounced
tendency to stray upward, so we will need one of the transformations from the lower
half of Table 5.3 – transformations that correct upward skewness. The effects of all
four of these transformations are illustrated in Fig. 5.2.
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Table 5.3. Transformations for Correcting Asymmetry

x4 Stronger effect
x3 Strong effect Produce upward skewness, that is, correct downward skewness
x2 Mild effect
x No effect√

x Weak effect
log(x) Mild effect Produce downward skewness, that is, correct upward skewness
1
x Strong effect
1
x2 Stronger effect

We easily identified the shape of the batch in the stem-and-leaf plot in Table 5.2
as upwardly skewed. It may be difficult, however, to decide whether a few numbers
that stray far from the central bunch represent an upwardly skewed distribution or
genuine outliers. The rules of thumb for identifying outliers in box-and-dot plots
label the highest two values in the original batch as outliers, as can be seen in the
first column of Fig. 5.2. Nevertheless, these rules of thumb, as discussed in Chap-
ter 4, are only arbitrary ways to simplify a complicated relationship between straying
numbers and the batch of which they may or may not be a meaningful part. Another
approach is to see what effect transformations have on possible outliers.

The weakest transformation for correcting upward straying is the square root
transformation, illustrated in the second column of Fig. 5.2. In the transformed
batch, the nearer of the two outliers in the untransformed batch no longer qualifies
as an outlier; and the box representing the midspread comes closer to being centered
on the median. Even disregarding the one outlier still identified, the adjacent values
clearly stray farther up than down. The square root transformation produced a less
asymmetrical batch, but stronger action is necessary.

The next stronger transformation is the log transformation, illustrated in the
third column of Fig. 5.2. In this batch, the median is very close to the center of
the midspread. The highest value is still identified as an outlier, but disregarding
it, the adjacent values still stray considerably farther upward than downward.
The stem-and-leaf plot shows this upward skewness quite clearly. A still stronger
transformation is at least worth trying in this instance.

The fourth column in Fig. 5.2 illustrates the effect of the negative reciprocal
transformation. The midspread box has now slipped below the middle of the num-
ber scale, but the adjacent values still stray farther upward than downward. Most
conspicuous, the last remaining outlier no longer qualifies for that status according
to the usual rules of thumb. When outliers disappear under the effect of transfor-
mations that are also improving the general symmetry of the distribution, it is an
indication that they should not be eliminated as outliers but rather treated as stray-
ing members of the batch. In such cases, the use of an appropriate transformation
is a preferable treatment to correct both asymmetry and apparent outliers. Since the
adjacent values continue to stray upward in such a pronounced fashion, it is worth
investigating one more transformation with a yet stronger effect.
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xx log(x)
1
x2−

1.220 1.105 0.199 –0.820 –0.672
1.640 1.281 0.495 –0.610 –0.372
1.160 1.077 0.148 –0.862 –0.743
1.070 1.034 0.068 –0.935 –0.873
1.500 1.225 0.405 –0.667 –0.444
1.840
 

1.356 0.610 –0.543 –0.295
1.370 1.170 0.315 –0.730 –0.533
1.150 1.072 0.140 –0.870 –0.756
1.290 1.136 0.255 –0.775 –0.601
1.320 1.149 0.278 –0.758 –0.574
2.030 1.425 0.708 –0.493 –0.243
1.170 1.082

 
0.157 –0.855 –0.731

1.040 1.020 0.039 –0.962 –0.925
1.430 1.196 0.358 –0.699 –0.489
1.110 1.054 0.104 –0.901 –0.812
1.400 1.183 0.336 –0.714 –0.510
1.260 1.122 0.231 –0.794 –0.630

Mean: 1.353 1.158 0.285 –0.764 –0.600
Median:1.290 1.136 0.255 –0.775 –0.601
Stem-and-leaf plots: 

Box-and-dot plots with levels and spreads removed: 

20 3 14 3 7 1 –4 9 –2 4
19 13 6 6 1 –5 4 –3 70
18 4 13 5 0 –6 71 –4 94
17 12 8 4 1 –7 986310 –5 731
16 4 12 03 3 246 –8 7662 –6 730
15 0 11 578 2 0368 –9 640 –7 643
14 30 11 124 1 0456 –8 71
13 27 10 5788 0 47 –9 3
12 269 10 24
11 1567
10 47

x
1−

Figure 5.2. Using transformations to correct upward skewness in the batch from Table 5.2.

The fifth column in Fig. 5.2 shows the results of the −1/x2 transformation. The
midspread is now less centered on the median than in the previous transformed
batch, but the adjacent values have reached a more symmetrical distribution. The
stem-and-leaf plot shows about as symmetrical a pattern as it is reasonable to expect
in a real-world batch of numbers this small. The decision between the last two trans-
formations is difficult. Both have succeeded in eliminating outliers. The adjacent
values look more symmetrical in the −1/x2 transformation, while the midspread
looks more symmetrical in the −1/x transformation. We might reasonably use the
more symmetrical appearance of the stem-and-leaf plot for the −1/x2 transforma-
tion to break the tie and opt for the transformed batch in the last column as the most
symmetrical, but either of these batches is symmetrical enough to analyze. That is to
say, either batch is symmetrical enough that the mean and standard deviation would
be accurate and useful indexes of center and spread.

Transformations often seem an arcane statistical ritual performed more for super-
stitious reasons than anything else. Their purpose, however, is simply to provide
a batch of numbers whose shape makes it possible for the mean and standard
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Figure 5.3. Transformation rulers: a “normal” ruler (above); a ruler that would give length mea-
surements with a square transformation (center); the same square transformation ruler with tick
marks every five units instead of every 1/5 of the length (bottom).

deviation to be useful indexes of the center and the spread. The mean and stan-
dard deviation are fundamental to many of the techniques discussed farther on
in this book, and if the mean and standard deviation are not telling us the truth
about the center and spread of the batch, then those other techniques will not
work well. Transformation can be thought of as measuring with special rulers.
Fig. 5.3 shows three rulers. At the top is a “normal” ruler that we might use
to measure the length of some object. In the middle is a “square transformation
ruler.” If we measured the same object with this ruler, the result would be the
square of the “normal” measurement. The bottom ruler is a square transforma-
tion ruler just like the middle ruler, except that the tick marks, instead of being
evenly spaced along the ruler, are placed every five units. This shows the way the
units of measurement are distributed differently along the square transformation
ruler than they are along the “normal” ruler, and may provide a better common-
sense feel for just how it is that the square transformation shifts numbers along the
scale to change the shape of a batch. The same is true of all the other transfor-
mations we have discussed. Using them amounts to nothing more than measuring
with a peculiar ruler. Although it certainly seems strange at first thought, there
is no reason that we couldn’t use rulers like the square transformation rulers in
Fig. 5.3. We would just have to measure everything we wanted to compare with
the same peculiar ruler. That is exactly what we are doing when we transform a
batch of numbers – we are measuring with a peculiar ruler, and we must use the
same peculiar ruler (or transformation) on all the batches we want to be able to
compare.

THE NORMAL DISTRIBUTION

The single-peaked symmetrical shape we have been pursuing with transformations
in this chapter has the essential characteristics of the (in)famous normal distribution.
Actually, the normal distribution implies some other more specific characteristics,
but in practical terms, a batch that is single peaked and symmetrical can be taken
as close enough to a normal distribution to apply statistical techniques suitable for
batches that are normally distributed.
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The requirement of normality in the distributions of batches that are to be ana-
lyzed in certain ways is no deep mathematical mystery. It is not a question of abiding
by some secret and sacred principle understandable only to the high priests of
statistics. Understanding the importance of the normal distribution begins with such
simple and intuitively intelligible notions as the ways in which numerical indexes
of level and spread work on asymmetrical batches. We have seen that these numer-
ical indexes simply do not produce sensible results when applied to a batch that is
not single peaked and symmetrical. This is the starting point for understanding why
some statistical techniques must only be applied to normal distributions. Many of
them begin by characterizing the batch to be analyzed with the mean and standard
deviation. If these numerical indexes do not provide accurate and meaningful mea-
sures of the center and spread of the batch, then no technique that takes them as a
starting point can be expected to produce accurate and meaningful results.

To summarize, then, if we wish to study a batch of numbers that is not single
peaked and symmetrical, we must often take special action. This consists, first, of
splitting a batch with multiple peaks into multiple separate batches, each with a sin-
gle peak. Second, we can use transformations to make the shape of a single-peaked
batch more symmetrical and/or deal with any outliers we observe. These initial data
preparation steps are important to the success of many statistical techniques and
must not be overlooked. Analysis of a batch of numbers should always begin by
exploring the batch with a stem-and-leaf plot, and taking whatever corrective action
may be indicated to deal with multiple peaks, asymmetrical shapes, and outliers.

Picking the best transformation to correct asymmetry is a question of subjective
judgment. It requires a bit of practice to look at the distributions produced by dif-
ferent transformations and decide which is most symmetrical. These judgments are
especially difficult in small batches of numbers where displacing a single number
in the stem-and-leaf plot can have a strong effect on the apparent symmetry. It is a
good idea not to be too strongly swayed by appearances that could be changed if
only one or two numbers in the batch were slightly different. It is better, instead,
to concentrate more heavily on major trends that would only be altered if many
numbers were changed.

Picking the best transformation is also a process of trial and error. Although
Table 5.3 might help you guess which transformation to try, it is almost always
necessary to try several transformations and look at the results (by examining stem-
and-leaf and box-and-dot plots of the transformed batches) in order to decide which
produces the most symmetrical shape. Compromises are often required, especially
when transformations are being applied to two or more batches that eventually are
to be compared. The same transformation may not produce the most symmetrical
shape for each of the batches involved, but the same transformation must be applied
to all the batches if they are to be compared after transformation.

An alternative to correcting asymmetry through transformations is to use statisti-
cal techniques based not on the mean and standard deviation but on other indexes –
like the trimmed mean and trimmed standard deviation – that are more resistant
to the effects of outliers and asymmetry. Such approaches will be discussed where
relevant in the following chapters. Generally, if the presence of outliers presents a
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problem for the use of means and standard deviations, use of the trimmed mean and
standard deviation is a good solution. If pervasive asymmetry in the distribution is
the problem, applying an appropriate transformation is more effective.

PRACTICE

1. Look carefully at the shapes of the batches of areas of Early and Late Bronze Age
sites near Nanxiong from Table 3.5. In the practice questions from Chapters 3 and
4, you have already made stem-and-leaf and box-and-dot plots of these batches.
Does either batch have a skewed shape? If so, is it skewed upward or downward?

2. If either Early or Late Bronze Age site areas are skewed, use your statpack to
experiment with transformations to correct the asymmetry. Which transforma-
tion would you choose for each batch individually? Why? Which transformation
would you use for both if you intended to compare the transformed batches?
Why?
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The batches of numbers that we have discussed in Chapters 1–5 have all consisted
of a set of measurements of some kind. There is a fundamentally different kind of
batch that we must discuss before continuing with the second section of this book.
This other kind of batch results from observations of characteristics that are not
measured exactly, but instead are grouped into different categories. Archaeologists
are quite accustomed to the notion of categorizing things. We usually discuss it
under the heading of typology, and the definition of typologies (or sets of categories)
for artifacts is widely recognized as a fundamental initial step in description and
analysis. Much has been written about the “correct” way to define pottery types in
particular. Our concern here is not how to define categories, but rather what to do
with the result once we have defined them and counted up how many things there
are in each one. When we classify the ceramics from a site as Fidencio Coarse,
Atoyac Yellow-White, and Socorro Fine Gray, we are dealing in categories. When
we count the number of flakes, blades, bifaces, or debitage from a site, we are also
dealing in categories. When we add up the number of cave sites and open sites in
a region, we are once again dealing in categories. When we divide the sites in a
region into large sites, medium-sized sites, and small sites, we are still once more
dealing in categories. Data recorded in terms of such categories comprise batches
just as do data recorded as true measurements (for example, in centimeters, grams,
hectares, etc.).

Table 6.1 provides an example of such categorical information for a set of 140
pottery sherds. One observation made about each sherd is the site where it was
recovered. There are three categories here: the Oak Grove site, the Maple Knoll
site, and the Cypress Swamp site. A second observation concerns incised decora-
tion, with two categories: each sherd is either incised or unincised. This may seem
an unusual way to present such information, and indeed it is. The presentation is
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Kinds of Data

Some statistics books begin with a chapter about different kinds of data as if
the recognition of a standard set of several fundamentally different kinds of
data were the rock upon which all statistical analysis was built. The “funda-
mentally” different kinds, however, are defined in different ways by different
authors, and many books don’t make much of such distinctions at all. There
are almost as many sets of terms as there are authors, and some of the same
terms are used in contradictory ways by different authors. The point is that
there are a number of characteristics of batches of numbers that vary. You can
analyze batches with certain characteristics in one way, but batches that lack
those characteristics can be analyzed in a different way. The most important
distinction made in this book is between what are here called measurements
and categories.

Measurements are things like lengths, widths, areas, weights, and so on—
quantities we measure along a scale of appropriate units. True measurements
come in fractional values as well as whole-number values (difficult numbers
to work with like 3-13/16 inches, or much easier numbers to work with like
9.68 cm), and there is, in principle at least, an infinite number of potential
values along the scale. Measurements, as the term is used in this book, can
also include numbers of things, like number of inhabitants in different regions,
number of artifacts in different sites, and so on. Measurements can also be
derived from other measurements arithmetically. Densities of artifacts in dif-
ferent excavation units, for example, are measurements derived by dividing
the number of artifacts encountered in each excavation unit by the volume of
deposit excavated to arrive at the number of artifacts per cubic meter for each
excavation unit. In exploratory data analysis, measurements are sometimes
called amounts (measurements along a scale) and counts (counted numbers
of things) and balances (which can have positive and negative values). Mea-
surements are made along what are sometimes called ratio scales or interval
scales. A ratio scale has a meaningful zero point, as, for example, a length
or weight. An interval scale has an arbitrary zero point, which prevents some
kinds of manipulations. The usual example of a scale with an arbitrary zero
point is temperature. The fact that the zero point is arbitrary means that you
really can’t say that 60◦ is twice as hot as 30◦ (on either Fahrenheit or Celsius
scales, although you can do such things with the temperature scale measured
from absolute zero).

Categories are essentially groups of things, and we count the number of
things in each group. We ordinarily work with sets of categories that are mutu-
ally exclusive and exhaustive. That is, each thing in the set of things we are
studying must fit into one category and only one category. Pottery types are a
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common kind of category in archeology, and we recognize that pottery types
need to be defined so that each sherd can be placed in one and only one type.
Colors represent another set of categories. We may sort things out as red, blue,
or green. If we find bluish-green things, we may need to add a fourth category
to the set. Categories are sometimes called nominal data. If the categories can
logically be arranged in a specific order, then they form ordinal data or ranks.
Pottery types do not have this property. Categories like large, medium, small,
and tiny do; we recognize that to say small, large, tiny, medium is to put these
categories out of order. If there are very many categories in the set, ranks begin
to act like true measurements in some ways.

The most important distinction between kinds of data for the organiza-
tion of thoughts in this book is between what we will call measurements
and categories, but we will also consider some special treatments that can be
applied to ranks—treatments that relate strongly to things we can do with true
measurements.

cumbersome and tells us virtually nothing about patterns. In an instance like this,
we would much more likely present the information as a tabulation, and that is what
we will do shortly. It is often convenient to manage categorical information in the
manner in which it is presented in Table 6.1, however, especially with computers.
Thus it is important to recognize Table 6.1 as one means of organizing the same
information we will see in more familiar form in the following tables. Table 6.1
is the most complete and detailed way of recording this information and the most
similar to the way in which batches of measurements were initially presented in
previous chapters.

Table 6.2 presents the information about where the sherds were recovered in a
more compact, familiar, and meaningful way. This simple tabulation of frequencies
(or counts) and proportions (or percentages) immediately tells us something about
how much pottery came from where – something that was not at all apparent in
Table 6.1. More pottery came from Oak Grove than any other site and less from
Maple Knoll. Table 6.3 performs the same task for the information about decoration
for the same 140 sherds. Most of the sherds are unincised, but the difference in
proportions between incised and unincised is not extreme.

In effect, Table 6.1 contains sets of related batches, like the related batches that
have been discussed in previous chapters. In this case, we could divide the sherds
into three related batches, as in Table 6.2: sherds from the Oak Grove site, sherds
from the Maple Knoll site, and sherds from the Cypress Swamp site. Or we could
divide them in a different way into two related batches, as in Table 6.3: incised
sherds and unincised sherds. Each set of categories is simply one way of dividing
the whole set of sherds into different batches. We might well want to compare the
first three batches (the sherds from each of the three sites) in regard to the other
set of categories (incised decoration). Table 6.4 extends the tabulations of Tables 6.2
and 6.3 to accomplish this comparative goal, by simultaneously dividing the sherds
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Table 6.1. Information about 140 Pottery Sherds

Oak Grove Unincised Maple Knoll Unincised Cypress Swamp Incised

Maple Knoll Incised Oak Grove Incised Cypress Swamp Unincised

Cypress Swamp Unincised Oak Grove Unincised Cypress Swamp Unincised

Cypress Swamp Incised Oak Grove Unincised Oak Grove Incised

Cypress Swamp Incised Maple Knoll Incised Oak Grove Unincised

Cypress Swamp Unincised Cypress Swamp Unincised Maple Knoll Incised

Cypress Swamp Incised Cypress Swamp Unincised Maple Knoll Unincised

Oak Grove Incised Oak Grove Incised Oak Grove Incised

Oak Grove Unincised Oak Grove Unincised Oak Grove Unincised

Maple Knoll Unincised Maple Knoll Unincised Maple Knoll Incised

Oak Grove Incised Cypress Swamp Incised Cypress Swamp Incised

Oak Grove Unincised Cypress Swamp Incised Cypress Swamp Unincised

Maple Knoll Incised Oak Grove Incised Oak Grove Incised

Maple Knoll Unincised Oak Grove Unincised Oak Grove Unincised

Cypress Swamp Unincised Maple Knoll Unincised Oak Grove Unincised

Cypress Swamp Incised Cypress Swamp Unincised Maple Knoll Incised

Oak Grove Unincised Cypress Swamp Incised Cypress Swamp Unincised

Maple Knoll Incised Oak Grove Incised Cypress Swamp Incised

Maple Knoll Unincised Oak Grove Unincised Oak Grove Incised

Cypress Swamp Incised Maple Knoll Unincised Oak Grove Unincised

Oak Grove Incised Cypress Swamp Unincised Maple Knoll Unincised

Oak Grove Unincised Cypress Swamp Incised Maple Knoll Incised

Maple Knoll Unincised Oak Grove Unincised Oak Grove Incised

Cypress Swamp Unincised Maple Knoll Incised Oak Grove Unincised

Oak Grove Incised Cypress Swamp Unincised Cypress Swamp Incised

Oak Grove Unincised Oak Grove Unincised Cypress Swamp Unincised

Maple Knoll Incised Maple Knoll Incised Cypress Swamp Unincised

Maple Knoll Unincised Cypress Swamp Unincised Oak Grove Incised

Oak Grove Incised Cypress Swamp Incised Oak Grove Unincised

Oak Grove Unincised Oak Grove Incised Maple Knoll Unincised

Maple Knoll Incised Oak Grove Unincised Cypress Swamp Incised

Cypress Swamp Incised Oak Grove Unincised Oak Grove Incised

Cypress Swamp Unincised Maple Knoll Incised Oak Grove Unincised

Oak Grove Incised Cypress Swamp Unincised Oak Grove Unincised

Oak Grove Unincised Oak Grove Incised Maple Knoll Incised

Maple Knoll Incised Oak Grove Unincised Cypress Swamp Unincised

Maple Knoll Unincised Oak Grove Unincised Oak Grove Incised

Cypress Swamp Unincised Maple Knoll Incised Oak Grove Unincised

Maple Knoll Incised Cypress Swamp Unincised Maple Knoll Unincised

Cypress Swamp Unincised Oak Grove Incised Cypress Swamp Unincised

Oak Grove Incised Oak Grove Unincised Cypress Swamp Incised

Oak Grove Unincised Maple Knoll Incised Cypress Swamp Unincised

Maple Knoll Unincised Cypress Swamp Incised Oak Grove Incised

Cypress Swamp Unincised Cypress Swamp Unincised Oak Grove Unincised

Maple Knoll Incised Oak Grove Incised Maple Knoll Incised

Oak Grove Incised Oak Grove Unincised Maple Knoll Unincised

Oak Grove Unincised Maple Knoll Incised
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Calculating Percentages and Rounding Error

We have noted rounding error before, but Tables 6.2 and 6.3 provide an oppor-
tunity to clear up this little mystery completely. We know that 140 sherds
are 100%, and the percentages in Table 6.3 add up to 100.0, but the per-
centages of the three categories in Table 6.2 add up to only 99.9%. In both
tables the percentages have been rounded off to one digit following the deci-
mal point. For Table 6.3, the full calculations of the percentages are 64 / 140 =
.4571428571428571428. . . and 76 / 140 = .5428571428571428571. . .

Both of these numbers will continue to repeat the same sequence of
digits (. . . 142857. . . ) forever. The division will never come out even, no
matter how far out it is carried. To change .4571428571428571428. . . and
.5428571428571428571. . . from ordinary decimal fractions into percent-
ages, of course, we multiply them by 100: 45.71428571428571428. . . % and
54.28571428571428571. . . %. (And while we’re on the subject, it is worth
emphasizing that 0.45 and 45.0% are the same number. There is a big dif-
ference between 0.45 and 0.45%—0.45 means .45 out of 1.00 or 45 out of
100 or 4,500 out of 10,000 [that is, almost half], but 0.45% means 0.45 out
of 100 or 45 out of 10,000 [or far less than half]. It is essential to be care-
ful with a decimal point and the % symbol.) Clearly the percentages we have
here must be rounded off. If we want one digit after the decimal place in
the percentage, 45.71428571428571428. . . % rounds down to 45.7% and we
lose the extra .01428571428571428. . . %, and 54.28571428571428571. . . %
rounds up to 54.3%. In rounding this number up we have actually added
.01428571428571428. . . to it, which is exactly the amount that we lost in
rounding the other percentage down. Since one percentage has been raised
by the same amount that the other has been lowered by, the amounts cancel
each other out when we add the percentages together, and the total is 100.0%.

In Table 6.2, however, all three percentages turn out to round down:

• 59/140 = .42142857142857. . . which rounds down to .421 (or 42.1%),
losing .042857142857. . . %;

• 37/140 = .26428571428571. . . which rounds down to .264 (or 26.4%),
losing .028571428571. . . %; and

• 44/140 = .31428571428571. . . which rounds down to .314 or 31.4%,
losing .028571428571. . . %.

If we add up what we have lost in rounding all three percentages down, we
get almost exactly the 0.1% that is missing from the 99.9% total of the three
rounded off percentages:

(.042857142857. . . % + .028571428571. . . % + .028571428571. . . %
= .099999999999. . . %)
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Precisely the same thing can happen in the other direction if more is gained by
rounding some percentages up than is lost by rounding others down. Thus the
total of a set of percentages can be slightly more than 100%. Sometimes, doing
percentage calculations with more decimal digits of precision will remove
rounding error. In a case like this example, however, where the quotient of
the division repeats infinitely, it doesn’t matter how far out we carry the cal-
culations. They will never come out exactly even. Sooner or later we have to
round off, and accept a little rounding error.

Table 6.2. Sherds from Three Sites

Oak Grove Maple Knoll Cypress Swamp Total

Frequency 59 37 44 140
Proportion 42.1% 26.4% 31.4% 99.9%

Table 6.3. Pottery Decoration

Incised Unincised Total

Frequency 64 76 140
Proportion 45.7% 54.3% 100.0%

Table 6.4. Incised and Unincised Sherds from Three Sites

a. Frequencies
Oak Grove Maple Knoll Cypress Swamp Total

Incised 25 21 18 64
Unincised 34 16 26 76

Total 59 37 44 140

b. Column Proportions
Oak Grove Maple Knoll Cypress Swamp Average

Incised 42.4% 56.8% 40.9% 45.7%
Unincised 57.6% 43.2% 59.1% 54.3%

Total 100.0% 100.0% 100.0% 100.0%

c. Row Proportions (not useful in this instance)
Oak Grove Maple Knoll Cypress Swamp Total

Incised 39.1% 32.8% 28.1% 100.0%
Unincised 44.7% 21.1% 34.2% 100.0%

Average 42.1% 26.4% 31.4% 99.9%
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by site and by incised decoration. Such a tabulation is sometimes called a cross
tabulation or two-way table, because it divides the entire set of sherds into categories
in two different ways simultaneously. In this kind of table there are also two different
ways to use percentages in comparing these batches.

COLUMN AND ROW PROPORTIONS

Following the frequencies in the two-way table are column proportions (Table 6.4b).
Each of the column proportions is a proportion of the total number of sherds at
the corresponding site, so the proportions for each site add up to 100% (within
rounding error). These proportions are similar to those in Table 6.3, but now they
are calculated separately for each of the three sites. The average column proportions
at the extreme right of Table 6.4b are not simply the averages of the individual site
proportions. They are actually the same as the proportions in Table 6.3. That is, they
are the proportions for the complete set of sherds considering all sites together.

Column proportions are useful for comparing columns to each other – in this
instance comparing the three sites to each other with regard to their relative pro-
portions of incised and unincised sherds. The assemblage of sherds from the Maple
Knoll site stands out in regard to incised pottery, since 56.8% of the sherds from the
Maple Knoll site are incised. At the Oak Grove and Cypress Swamp sites, incised
pottery is considerably less abundant, amounting to 42.4% and 40.9% of the sherds
at the two sites, respectively.

Table 6.4c provides row proportions for the table. These are proportions, not of
the total number of sherds from each site, but rather of the total number of sherds in
each decoration category (incised and unincised). This is not the way we would want
to calculate proportions in this instance. The highest proportion for incised sherds,
for example, in Table 6.4c is for the Oak Grove site, but this is at best uninteresting,
and at worst misleading. The highest proportion for unincised sherds is also at the
Oak Grove site. These high proportions simply reflect the fact that we made a larger
collection at the Oak Grove site than at any other (59 sherds, as opposed to 37
and 44 at the other sites, as seen in Table 6.4a). As a consequence we came home
with more incised sherds and more unincised sherds than from either of the other
sites. The prevalence of incised decoration in the assemblage at the Maple Knoll
site (reflected meaningfully in the column proportions) is completely obscured in
the row proportions because of the probably entirely meaningless circumstance that
the collection from Oak Grove consists of more sherds.

We could, of course, have set the two-way table up the other way in the first
place, with rows corresponding to sites and columns to decoration categories instead
of columns corresponding to sites and rows to decoration categories. If we had done
that, then we would have wanted row proportions, not column proportions. Whether
to choose row proportions or column proportions for a particular table seems
intuitively obvious to many people, but not to everyone. Occasionally there is a
situation in which either row proportions or column proportions might be meaning-
ful, depending on which point needs to be made. In the prototypical archaeological



70 CHAPTER 6

situation of calculating proportions of different artifact categories so as to com-
pare the assemblages from different regions, sites, features, strata, and the like, it
is always proportions that add up to 100% for each assemblage that we want – not
proportions that add up to 100% for each artifact category.

PROPORTIONS AND DENSITIES

Proportions are used in a wide variety of contexts, but one context in particular
arises over and over again in archaeology: comparing the proportions of different
categories in artifact or ecofact assemblages from different contexts or locations.
Such comparisons can obviously not be based on the frequencies or counts of artifact
categories directly, since we are likely to have many more artifacts from some places
than others. A very large number of, say, deer bones from one stratum does not
necessarily mean a faunal assemblage especially rich in deer bone; it might mean
only a stratum which yielded an especially large amount of bone. Archaeologists
have sometimes said that such assemblages must be “standardized” in order to be
compared. By this they mean that the varying quantities of things from the different
units we want to compare must somehow be equalized. It is better not to call this
“standardization” because in statistics this word is already used to mean something
else (as discussed in Chapter 4). But it’s true, the effect of large numbers of things
from some places and small numbers of things from other places must somehow be
set aside in order to compare them.

Especially when the assemblages being compared come from different excava-
tion units (strata, features, and the like), archaeologists have often calculated the
densities of different categories of things by dividing the number recovered by the
volume of excavated deposits from which they were recovered. Total densities of
artifacts or ecofacts can sometimes be useful, but they do not usually provide a
very good basis for comparing the composition of different assemblages to each
other. Table 6.5 provides an example to illustrate this point. It details results from
five different excavation units in different locations within an archaeological site.
As can be seen in the second column, Units 1, 2, and 5 represent relatively small
amounts of excavated deposit, quite likely because only a small test excavation was
carried out in these locations. Unit 3 was only slightly larger. Unit 4, however,

Table 6.5. Proportions and Densities

Excavation Volume Total Total Decorated Sherds
Unit Excavated Sherd Sherd Number % Total Density % Total

Number Density Decorated Assemblage

1 2.3m3 213 93/m3 18 17% 7.8/m3 9%
2 1.7m3 193 114/m3 16 15% 9.4/m3 8%
3 5.1m3 39 8/m3 20 19% 3.9/m3 51%
4 21.2m3 1483 70/m3 37 36% 1.7/m3 3%
5 1.6m3 433 271/m3 13 13% 8.1/m3 3%
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represents substantially more excavation, and, not surprisingly, far more sherds were
recovered from Unit 4 than from any other (the third column).

As the fourth column in Table 6.5 shows, the densities of artifacts in the deposits
excavated also varied substantially, from extremely dense for Unit 5 to extremely
sparse for Unit 3. As a consequence, although Unit 3 represents the second largest
volume of excavated deposit, it yielded the smallest number of sherds. The fact that
sherds of whatever variety were very dense in Unit 5 may well reflect very intensive
utilization of that location by the site’s ancient inhabitants.

If our attention turns to comparison of the composition of the ceramic assem-
blages of these five locations, however, the fact that some excavation units were
very large, and some very small, gets in the way. So does the fact that sherd densi-
ties were very high in some units and very low in others. No one would suggest that
Unit 4 stands out for the prevalence of decorated sherds simply because more dec-
orated sherds were recovered there. It seems self-evident that the large number of
decorated sherds recovered there (37) are attributable to the large size of the excava-
tion unit. The proportions in the sixth column tell us nothing more. That 36% of the
decorated sherds recovered came from Unit 4 reveals nothing more than that Unit
4 was a large excavation. These proportions are not meaningful, as discussed in the
previous section.

In very similar fashion, the densities of decorated sherds in the seventh column
provide a very misleading view of where decorated ceramics were most prevalent.
Units 1, 2, and 5 all have quite high densities of decorated sherds, but this is telling
us nothing more than that these units have high densities of all kinds of sherds (look
at the fourth column).

It is the last column that says what needs to be said about where decorated ceram-
ics were most prevalent. These are proportions that add up to 100% for the sherds
in each excavation unit’s assemblage. The salient fact is that over half the sherds
recovered from Unit 3 were decorated, whereas fewer than 10% were in all the other
units. Clearly, ceramics were much more decorated at this location than at the other
four locations. The effects of differing excavated volumes and of differing sherd
densities are set aside effectively for comparison by these proportions. Calculating
densities of decorated sherds does not accomplish this aim. For comparing assem-
blages with regard to their constituent categories of things, then, we want to look at
the categories as proportions of the assemblages they come from.

BAR GRAPHS

The bar graph, a relative of the histogram, provides a familiar way to show propor-
tions graphically. Both bar graphs in Fig. 6.1 illustrate the column proportions we
have just discussed. They differ only in the way the bars are grouped. The bar graph
at the left groups together the three bars representing the proportions of incised
sherds at each of the three sites, and then does the same for the unincised sherds.
The bar graph at the right groups together the two bars representing the proportions
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Figure 6.1. Bar graph of proportions of incised and unincised sherds at the Oak Grove, Maple
Knoll, and Cypress Swamp sites.

of incised and unincised sherds at each site. Most often, when we draw bar graphs
representing the proportions of artifacts in different categories at archaeological
sites, it makes sense to group all the bars for one site assemblage together, as in
the bar graph at the right in Fig. 6.1. Each group of bars then represents visually the
makeup of a single assemblage, reflecting the basis on which the proportions were
calculated (percentages of the different categories within each assemblage). This
is usually the most effective way to present the differences between assemblages
of artifacts, which is what we are most likely interested in. This configuration of
bars calls attention to the fact that the assemblages from Oak Grove and Cypress
Swamp are quite similar, but the assemblage of Maple Knoll differs because of its
high proportion of incised sherds.

Many computer programs make it easy to produce bar graphs that are visually
much more arresting than those in Fig. 6.1. We can consider the somewhat more
complex example of proportions of eight ceramic types (A–H) at four sites (Oak
Grove, Maple Knoll, Cypress Swamp, and Cedar Ridge). These are illustrated in
Fig. 6.2 in the same way that the proportions of incised and unincised sherds from
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Figure 6.2. Bar graph of proportions of eight ceramic types in the assemblages from the Oak
Grove, Maple Knoll, Cypress Swamp, and Cedar Ridge sites.

Figure 6.3. Pseudo three-dimensional bar graphs representing the same proportions as Fig. 6.2, but
less clearly.

some of the same sites were illustrated in Fig. 6.1. The approximate proportion of
each type in each assemblage can be read relatively easily from Fig. 6.1. Beyond
this, a broad similarity of assemblage composition between the Oak Grove and
Cypress Swamp sites is apparent, while the Maple Knoll and Cedar Ridge ceramic
assemblages are rather different from this pattern, and from each other. The pseudo
three-dimensional effect of the bar graphs in Fig. 6.3 introduces visual clutter that
makes them more difficult to read than the simpler flat bar graphs of Fig. 6.2.The
stacked bars of Fig. 6.4 produce a cacophony of visual noise and convey very little
information. Carrying the bar graphs fully into three dimensions as in Fig. 6.5 almost
completely obscures anything they might have illustrated. Although pie charts are
often used to illustrate the proportions of the categories in a whole, Fig. 6.6 shows
how much more difficult they make it to recognize the patterns that are fairly obvious
in Fig. 6.2. Less is more.

CATEGORIES AND SUB-BATCHES

Categories enable us to break a batch down into sub-batches which can then be
compared to each other. The comparison may be of another set of categories, as
in the example in this chapter, or it may be of a measurement. If, for example, we
measured the approximate diameter of the vessel represented by each of the sherds
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Figure 6.4 Stacked bar
graph representing the same
proportions as Fig. 6.2, but
much less clearly.

Figure 6.5 Bar graph in
three dimensions making the
patterns visible in Fig. 6.2
impossible to see.

Figure 6.6. Pie charts representing the same proportions as Fig. 6.2, but very poorly.
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from Table 6.1, we could then break the batch of sherds into sub-batches according
to site and compare vessel diameters for the three sites. The tools needed for that
comparison are precisely those already discussed in Chapters 1–4. We could, for
example, draw three box-and-dot plots (one for the sub-batch representing each site)
all at the same scale to compare rim diameters of vessels at the three sites.

PRACTICE

1. Beginning to assess settlement distribution in the area around Al-Amadiyah, you
select 400 random points on the map of your study area and visit each one in the
field. You classify each of the 400 points according to its setting (alluvial valley
floor, rocky piedmont, or steeper mountain slopes), and you observe whether
there is any evidence of prehistoric occupation there. Your results are as follows:

• 41 points are in the alluvial valley floor. Of these, 14 show evidence of
prehistoric occupation, and 27 do not.

• 216 points are in the stony piedmont. Of these, 64 show evidence of prehis-
toric occupation, and 152 do not.

• 143 points are on the steeper mountain slopes. Of these, 20 show evidence of
prehistoric occupation, and 123 do not.

Use proportions and a bar chart to compare the three environmental settings
in regard to the density of prehistoric occupation your preliminary field work
found in each. Would you say that some zones were more filled than others by
prehistoric inhabitants? If so, which one(s)?

2. You continue your study at Al-Amadiyah by revisiting each of the 98 locations
that did show evidence of prehistoric occupation, and you measure the areal
extent of the surface scatters of artifacts that indicate the archaeological sites.
Your results are presented in Table 6.6. Use the environmental settings to sep-
arate the 98 locations into three separate batches, and use box-and-dot plots to
compare the three batches in regard to site area. Do site sizes appear to differ
from one setting to another? Just how?
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Table 6.6. Areas of Sites in Three Environmental Settings in
the Study Area at Al-Amadiyah

Site area (ha) Setting Site area (ha) Setting

2.8 Piedmont 2.5 Piedmont

7.2 Piedmont 2.0 Piedmont

3.9 Piedmont 8.8 Alluvium

1.3 Slopes 20.3 Alluvium

2.3 Piedmont 5.5 Piedmont

6.7 Piedmont 3.5 Piedmont

3.0 Piedmont 8.3 Piedmont

2.3 Piedmont 6.4 Piedmont

4.2 Piedmont 4.1 Piedmont

0.4 Slopes 0.8 Slopes

3.5 Piedmont 0.7 Slopes

2.7 Piedmont 7.7 Piedmont

19.0 Alluvium 5.8 Piedmont

6.0 Piedmont 2.9 Piedmont

4.5 Piedmont 4.8 Piedmont

2.9 Slopes 4.9 Piedmont

5.3 Piedmont 1.0 Slopes

4.0 Piedmont 2.3 Piedmont

3.3 Piedmont 1.5 Slopes

0.8 Slopes 9.3 Alluvium

7.7 Alluvium 2.9 Piedmont

2.6 Piedmont 1.1 Piedmont

1.5 Piedmont 0.8 Slopes

4.2 Piedmont 1.9 Piedmont

15.8 Alluvium 6.9 Piedmont

4.7 Piedmont 0.9 Slopes

2.1 Piedmont 9.8 Piedmont

1.4 Slopes 6.2 Alluvium

1.1 Slopes 7.4 Piedmont

8.1 Piedmont 3.6 Piedmont

4.2 Piedmont 3.2 Piedmont

1.2 Slopes 7.3 Piedmont

6.7 Alluvium 0.5 Slopes

8.5 Piedmont 2.1 Piedmont

3.0 Piedmont 0.7 Slopes

5.3 Piedmont 3.1 Piedmont

10.5 Alluvium 4.5 Piedmont

2.3 Piedmont 2.0 Slopes

4.1 Piedmont 17.7 Alluvium

10.2 Alluvium 5.7 Piedmont

9.3 Alluvium 5.2 Piedmont

3.4 Piedmont 2.2 Piedmont

7.7 Alluvium 0.5 Slopes

8.8 Piedmont 2.4 Piedmont

7.9 Piedmont 2.0 Piedmont

4.9 Alluvium 2.5 Piedmont

3.7 Piedmont 5.3 Piedmont

1.3 Slopes 0.3 Slopes

3.2 Piedmont 1.0 Slopes
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The notion of sampling is at the very heart of the statistical principles discussed in
this book, so it is worth pausing here at the beginning of Part II to discuss clearly
what sampling is and to consider some of the issues that the practice of sampling
raises in archaeology. Archaeologists have, in fact, been practicing sampling in one
way or another ever since there were archaeologists, but widespread recognition
of this fact has only come about in the past 20 years or so. In 1970 the entire lit-
erature on sampling in archaeology consisted of a very small handful of chapters
and articles. Today there are hundreds and hundreds of articles, chapters, and whole
books, including many that attempt to explain the basics of statistical sampling to
archaeologists who do not understand sampling principles.

Unfortunately, many of these articles seem to have been written by archaeolo-
gists who do not themselves understand the most basic principles of sampling. The
result has been a great deal of confusion. It is possible to find in print (in otherwise
respectable journals and books) the most remarkable range of contradictory advice
on sampling in archaeology, all supposedly based on clear statistical principles. At
one extreme is the advice that taking a 5% sample is a good rule of thumb for general
practice. At the other extreme is the advice that sampling is of no utility in archaeol-
ogy at all because it is impossible to get any relevant information from a sample or
because the materials archaeologists work with are always incomplete collections
anyway and one cannot sample from a sample. (For reasons that I hope will be clear
well before the end of this book, both these pieces of advice are wrong.) It turns
out that good sampling practice requires not the memorization of a series of arcane
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rules and procedures but rather the understanding of a few simple principles and the
thoughtful application of considerable quantities of common sense.

There is another way, too, in which a pause for careful consideration of sampling
principles can be useful to archaeologists. A lament about the regrettably small size
or the questionable representativeness of the sample is a common conclusion to
archaeological reports. Statisticians have put a great deal of energy into thinking
about how we can work with samples. Some of the specific tools they have devel-
oped could be used to considerably more advantage in archaeology than they often
have been in the past, and this book attempts to introduce several of them. More
fundamentally, though, at least some of the logic of working with samples on which
statistical techniques are based is equally relevant to other (nonstatistical) ways of
making conclusions from samples. Clear thinking about the statistical use of sam-
ples can pay off by helping us understand better other kinds of things we might do
with samples as well.

WHAT IS SAMPLING?

Sampling is the selection of a sample of elements from a larger population (some-
times called a universe) of elements for the purpose of making certain kinds of
inferences about that larger population as a whole. The larger population, then, con-
sists of the set of things we want to know about. This population could consist of
all the archaeological sites in a region, all the house floors pertaining to a particular
period, all the projectile points of a certain archaeological culture, all the debitage
in a specific midden deposit, etc. In these four examples, the elements to be studied
are sites, house floors, projectile points, and debitage, respectively. In order to learn
about any of these populations, we might select a smaller sample of the elements of
which they are composed. The key is that we wish to find out something about an
entire population by studying only a sample from it.

WHY SAMPLE?

It at first seems to make sense to say that the best way to find out about a population
of elements is to study the whole population. Whenever one makes inferences about
a population on the basis of a sample there is some risk of error. Indeed, sampling is
often treated as a second-best solution in this regard – we sample when we simply
cannot study the entire population. Archaeologists are almost always in precisely
this situation. If the population we are interested in consists of all the sites in a
region, almost certainly some of the sites have been completely and irrevocably
destroyed by more recent human activities or natural processes. This problem occurs
not only at the regional scale – rare is the site where none of the earlier deposits
have been destroyed or damaged by subsequent events. In this typical archaeological
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situation the entire population we might wish to study is simply not available for
study. We are forced to make inferences about it on the basis of a smaller sample,
and it does no good to just close our eyes and insist otherwise. The unavailability of
entire populations for study raises some particularly vexing issues in archaeology,
to which we will return later.

We might not be able to study even the entire available population because it
would be prohibitively expensive, because it would take too much time, or for other
reasons. One of the most interesting other reasons is that studying an element may
destroy it. It might be interesting to contemplate submitting an entire population of,
say, prehistoric corn cobs for radiocarbon dating, but we are unlikely to do so since
afterward there would be no corn cobs for future study of other kinds. We might
choose to date a sample of the corn cobs, however, in order to make inferences
about the age of the population while reserving most of its elements for other sorts
of study.

In cases where destructiveness of testing or limitations of resources, time, or
availability interfere with our ability to study an entire population, it is fair to say that
we are forced to sample. Precisely such conditions often apply in the real world, so
it is common for archaeologists to approach sampling somewhat wistfully – wishing
they could study the entire population but grudgingly accepting the inevitability of
working with a sample. Perhaps the most common situation in which such a decision
is familiar concerns determination of the sources of raw materials for the manufac-
ture of ceramics or lithics. At least some techniques for making such identifications
are well established, but they tend to be time consuming, costly, and/or destruc-
tive. So, while wishing to know the raw material sources for an entire population of
artifacts, we often accept such knowledge for only a sample from the population.

Often, however, far from being forced to sample, we should choose to sample
because we can find out more about a population from a sample than by studying
the entire population. This paradox arises from the fact that samples can frequently
be studied with considerably greater care and precision than entire populations can.
The gain in knowledge from such careful study of a sample may far outweigh the
risk of error in making inferences about the population based on a sample. This
principle is widely recognized, for example, in census taking. Substantial errors are
routinely recognized in censuses, resulting at least in part from the sheer magni-
tude of the counting task. When a population consists of millions and millions of
elements it is simply not possible to treat the study of each element in the popula-
tion with the same care taken with each element in a much smaller sample. As a
consequence, national censuses regularly attempt to collect only minimal informa-
tion about the entire population and much more detailed information about a much
smaller sample. It is increasingly common for the minimal information collected
by a census of the entire population to be “corrected” on the basis of a more care-
ful study of a smaller sample, although legislators may be opposed (either because
they just don’t understand the principles or because the corrections would be to the
political advantage of their opponents).

Archaeologists are frequently in a similar position. Certain artifact or ecofact
categories from even a modest-sized excavation may well number far into the
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thousands. Detailed characterization of lithic debitage, for example, can be a very
time-consuming process. We are likely to learn considerably more from a detailed
study of a sample of lithic debitage than from a cursory study of an entire population
of thousands of waste flakes. In such situations we should eagerly embrace effective
sampling techniques as an improvement over the study of entire populations.

HOW DO WE SAMPLE?

If the purpose of sampling is to make inferences about a population on the basis of a
smaller sample of elements selected from it, then it is important to select the sample
in such a way as to maximize the chance that it accurately represents the population
from which it is selected. Random sampling is a very effective way to maximize this
chance of accuracy, and we select samples randomly whenever possible.

We are all familiar with many ways to select samples randomly. The practices of
drawing straws, drawing names from a hat, and turning containers round and round
to spill out bingo numbers are all efforts at random selection. Such physical methods
seldom achieve true randomness, but a proliferation of governmental lotteries has
spawned a multitude of mechanical contraptions that select at least very nearly truly
random numbers (all in a manner designed to be engaging to the home audience
watching the drawing on television).

Perhaps the most common means of selecting a random sample is to number each
element in the population from which the sample is to be drawn (from 1 to however
many there are in the population). A list of random numbers then identifies the
elements that will make up the sample. The list of random numbers may come from
a computer program or it may come from a random number table like Table 7.1.

Suppose you want a list of ten random two-digit numbers (that is, numbers
between 00 and 99). Pick a number in the table to use as a starting point by closing
your eyes and stabbing your finger at the table. Your finger may land on the number
51 that appears in the third column of the fifth row. You could read off the next ten
numbers across the fifth row so that your ten random numbers would be 63, 43, 65,
96, 06, 63, 89, 93, 36, and 02. Or you could read down the third column for 34, 76,
59, 42, 82, 27, 23, 27, 38, and 95. Or you could read to the left on the fifth row,
for 50 and 51, and then drop down to the sixth row and read back across toward
the right to continue with 96, 65, 34, 00, 41, 60, 29, and 64. You can read in either
direction column-wise or row-wise from the starting point you select.

The principal rule for proper use of a random number table is never to use it in
exactly the same way twice. If you need a second sequence of random numbers,
close your eyes again and pick a new starting point, or read in a different direction
than you did the previous time (or both). You just do not want to use the same
sequence of random numbers over and over again; make a fresh start each time
you select a sample. (And watch out for calculators that claim to generate random
numbers. Some of them simply generate the same sequence of “random” numbers
every time you press the button.)
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Table 7.1. Random Numbers

50 79 13 18 85 26 80 01 74 73 44 03 81 25 58 14 74 59 91 56 48 88 67 99 04 91 80
17 97 55 39 91 18 43 28 73 68 74 25 62 87 14 53 69 21 35 22 37 12 45 85 14 74 75
38 48 77 82 81 82 47 75 62 63 44 62 38 12 64 22 93 81 52 10 62 45 07 53 74 39 93
76 87 58 73 88 35 35 16 46 31 38 60 51 36 31 55 34 69 09 34 67 60 31 73 10 37 43
51 50 51 63 43 65 96 06 63 89 93 36 02 25 02 47 75 46 02 50 01 72 55 10 56 69 09

96 65 34 00 41 60 29 64 23 61 71 94 61 38 48 70 10 91 48 83 73 02 93 32 08 69 07
91 22 76 00 63 04 07 14 17 18 60 19 11 75 72 86 97 67 69 98 09 11 98 17 52 99 69
28 99 59 78 92 33 29 54 62 17 78 29 57 52 54 74 64 14 20 47 00 94 97 43 46 33 07
81 53 42 15 05 38 14 09 83 44 66 04 06 10 42 14 28 62 75 62 28 49 00 75 52 48 09
32 95 82 45 22 67 42 78 47 47 19 89 18 84 62 24 49 82 40 00 97 99 13 75 46 75 18

59 25 27 06 30 60 19 87 34 27 10 04 94 28 21 59 82 96 16 68 69 74 36 58 19 90 19
01 41 23 34 37 75 30 24 21 41 34 04 18 18 74 66 91 46 27 09 99 91 20 19 33 59 60
34 58 27 03 62 01 58 59 98 01 86 10 12 08 74 52 23 66 42 85 72 02 49 45 22 60 68
61 33 38 19 16 16 71 71 61 23 70 21 57 63 95 14 91 04 47 37 98 26 77 37 95 34 20
91 75 95 57 13 78 90 20 21 42 56 54 36 71 43 42 17 99 06 54 58 81 33 64 92 26 61

40 66 19 64 53 15 27 39 11 28 71 36 65 70 23 34 43 27 89 67 31 31 12 85 80 73 35
80 55 13 01 99 94 72 29 87 73 06 68 87 97 33 27 62 51 52 33 17 72 90 06 72 37 11
45 87 71 15 94 31 09 98 88 64 20 05 11 84 10 14 91 15 80 68 26 56 03 22 10 08 18
19 30 96 02 25 42 68 26 34 79 50 41 64 32 71 90 43 20 91 68 04 07 38 05 30 34 26
60 38 33 50 59 24 73 82 64 65 28 09 32 04 76 63 81 96 83 68 90 52 43 68 89 44 57

22 94 75 27 41 32 86 21 91 49 13 71 57 56 28 12 40 56 03 54 54 47 92 27 29 18 91
25 23 23 20 26 36 48 13 17 54 42 97 63 86 42 64 65 01 69 49 32 87 79 24 49 96 79
59 51 80 91 35 81 29 17 19 19 71 29 76 87 03 97 67 52 21 47 29 20 01 39 33 37 45
05 40 65 66 23 54 23 94 43 44 09 08 81 12 79 58 01 74 81 60 89 70 89 43 37 53 90
61 99 79 13 20 09 56 58 07 59 70 46 32 86 47 36 81 20 89 89 98 71 94 37 88 72 58

24 34 19 08 05 18 51 49 14 30 48 09 47 94 63 12 04 80 76 38 53 09 37 03 04 06 53
29 48 01 18 37 83 94 16 20 37 09 53 63 72 89 96 74 35 13 21 80 77 54 24 09 72 15
65 78 94 61 74 72 11 71 52 15 71 62 98 87 73 39 41 82 12 98 31 83 67 01 86 03 52
04 24 77 46 63 39 03 10 85 10 79 39 08 17 74 64 84 20 43 21 22 46 26 73 51 41 17
73 71 88 69 64 06 08 26 63 51 35 45 66 52 78 38 85 11 80 39 30 86 85 48 44 46 43

88 59 20 63 92 58 52 12 02 37 13 31 42 52 34 77 50 18 09 17 48 46 41 32 83 26 01
84 82 52 27 55 25 20 16 11 66 94 25 04 94 55 79 03 65 61 21 49 97 72 46 56 26 52
82 26 26 52 50 21 63 86 14 11 69 21 98 97 03 68 59 09 98 34 50 58 38 79 03 64 69
81 52 82 82 86 08 45 99 54 14 71 46 14 01 68 33 59 29 71 09 23 37 84 04 92 61 34
90 95 02 61 36 94 98 81 54 90 60 64 84 49 23 92 30 99 69 65 65 47 54 73 17 81 21

37 78 13 13 55 40 07 53 92 98 82 64 01 11 08 94 91 84 83 55 46 30 96 74 13 54 30
01 87 88 82 01 76 59 28 87 03 73 69 22 99 27 30 62 73 02 34 82 30 59 37 27 95 50
02 96 02 54 62 25 36 56 61 38 80 15 93 30 11 34 67 53 81 83 54 83 86 47 64 43 03
40 53 25 64 31 38 89 14 23 54 33 86 58 03 94 57 03 68 78 38 14 20 09 42 82 84 06
46 81 46 18 47 75 70 20 70 33 15 43 73 67 61 05 55 50 03 15 86 55 91 52 73 90 95

69 72 68 17 87 22 62 08 49 40 32 38 25 71 59 29 67 81 23 68 36 49 94 65 15 03 72
26 24 90 53 49 35 91 07 60 74 61 62 06 07 67 95 99 56 28 56 02 52 61 94 81 14 33
68 17 38 10 48 60 81 73 25 34 55 76 40 84 05 23 55 96 20 60 74 08 03 42 51 81 07
06 51 06 07 44 30 86 12 69 99 16 51 10 05 54 16 07 18 16 24 26 09 97 30 57 50 11
45 52 21 16 03 36 28 32 27 25 44 46 14 17 81 29 86 97 59 12 03 67 28 83 33 03 64

54 72 12 20 91 87 53 87 29 39 84 26 59 80 66 44 84 84 63 77 81 31 48 92 45 99 33
72 65 08 37 37 55 91 23 02 22 51 88 94 32 45 09 14 81 31 14 27 26 61 93 41 52 08
47 20 65 40 51 39 78 88 88 71 45 86 03 08 99 61 16 56 47 08 54 89 79 29 24 91 42
94 79 42 62 56 17 34 45 56 84 96 09 56 22 13 14 87 21 97 66 60 48 64 56 41 45 92
40 03 28 30 16 77 79 10 05 94 90 35 08 03 11 91 56 83 42 23 20 08 44 82 13 47 70



84 CHAPTER 7

If you need one-digit numbers, you can treat each individual column of digits as
a separate column in the table. If you need four-digit numbers, you can treat pairs
of columns together as four-digit numbers. If you need three-digit numbers, you can
simply ignore the first or last digit in a four-digit number. The spaces dividing the
numbers into columns of two-digit numbers, in short, are entirely arbitrary, as are
the wider spaces grouping the columns by threes. Likewise, the extra space setting
off groups of five rows each is included only to make the table easier to read.

Suppose the population from which you wish to select a sample contains 536
elements, numbered from 001 to 536. You need a list of three-digit random numbers
between 001 and 536. You can select a list of numbers in exactly the manner just
described, except that you ignore any number less than 001 (that is, 000) or any
number greater than 536 (that is, 537–999). You simply skip past these inapplicable
numbers in the list and continue to select those in the relevant range until you have
as many as needed.

Sometimes the same number will appear more than once in a list of random
numbers. If this happens, you can follow either of two courses. The first is to ignore
multiple appearances of the same number and continue reading the random num-
ber table until you have as many numbers as you need without repetitions. This
is called sampling without replacement. (The name makes sense if you imagine
that you were actually drawing numbered slips from a hat without replacing the
slips in the hat for potential re-selection on subsequent drawings.) Sampling without
replacement is the course of action that seems to make intuitive good sense to many
people.

Sampling with replacement, however, turns out to be a little simpler mathemat-
ically, and the equations in this book are those for sampling with replacement.
In sampling with replacement, each time you draw a numbered slip from the hat
(speaking metaphorically), you write down the number and replace the slip in the
hat so that it could be drawn again in the future. The analogous procedure, when
sampling with a random number table, is to include repeated numbers in the sample
as many times as they appear in the list from the random number table. The data
for the corresponding elements, then, are included among the sample data as if each
occurrence in the sample were an entirely different element.

Suppose, for example, that we were sampling with replacement from a pop-
ulation of scrapers, in an effort to estimate the mean length of scrapers in the
population. The random numbers chosen from the table might be 23, 42, 13, 23, and
06. We would select the scrapers with the numbers 06, 13, 23, and 42 and measure
the length of each. We would, however, write down five length measurements, not
four, so as to include the length measurement for scraper number 23 twice. The
number of elements in the sample would also be five, not four. To re-emphasize,
it is this procedure, sampling with replacement, that the equations in this book are
appropriate for. Slightly different equations are technically necessary for sampling
without replacement, although in almost every practical instance it makes very little
meaningful difference in the results. It is, however, quite easy to adhere strictly to the
assumptions on which the formulas given in this book are based simply by including
the data from an element in the sample as many times as that element is selected.
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REPRESENTATIVENESS

The kind of sample selection we have just discussed is called simple random sam-
pling. The effect of using a table of random numbers is to give each individual
element in the population an equal chance of selection, and this is the most straight-
forward way to phrase the essential principle of simple random sampling. It is
because each individual element in the population has an equal chance of inclusion
in the sample that a random sample provides us with our best chance of obtaining a
sample that accurately represents the population.

The concept of representativeness is a slippery one, worth discussing more fully.
As noted at the beginning of this chapter, our aim in sampling is to make inferences
about a population of elements based on a sample from that population. We take
that sample to represent the population, so the representativeness of the sample is of
critical importance. The problem is that, without studying the entire population, we
can never be absolutely certain that the sample represents it accurately. If we intend
to study the entire population, of course, there is no need to worry about the repre-
sentativeness of a sample. It is only if we do not intend to study the entire population
that we must worry about the representativeness of a sample, but that is precisely
the situation in which we cannot provide any guarantee of representativeness. It is
this difficulty that much of the rest of this book is about. (Statistics books have more
in common with Joseph Heller’s Catch 22 than is often noticed.)

Some archaeologists seem to have the impression that if a sample has been
selected randomly, then it is guaranteed to be representative. Nothing could be far-
ther from the truth. Like samples not selected randomly, random samples represent
the populations from which they were selected sometimes quite accurately, some-
times with moderate accuracy, and sometimes very inaccurately. Random sampling,
while it does not provide a guarantee, does give us our best chance at a representa-
tive sample. Most important of all, random sampling provides a basis for estimating
how likely it is that our inferences about the population are wrong, and thus tells us
how much confidence we should place in these inferences.

DIFFERENT KINDS OF SAMPLING AND BIAS

Simple random sampling is, as its name implies, the simplest and most straightfor-
ward method of selecting a random sample. In most of the rest of this book, mention
of random samples refers to simple random samples. There are other somewhat
more complicated variants of random sampling. They are best dealt with after the
implications of simple random sampling are fully explored and understood, so we
will not discuss them in any detail here. It is important to recognize their existence
at this point, though, in order to understand the limits of applicability of the meth-
ods appropriate to simple random sampling that are the subjects of the following
chapters.
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When the population we wish to make inferences about can be readily divided
into different subpopulations, it is often advantageous to select subsamples sepa-
rately from each subpopulation. It may be the case that some subpopulations are
more intensively sampled than others. If so, an element in a subpopulation that is
more intensively sampled has a greater chance of inclusion in the overall sample
than an element in a subpopulation that is less intensively sampled. This violates the
fundamental principle of simple random sampling. When we select separate random
subsamples from different subpopulations, we call it stratified random sampling. An
instance in which we might apply stratified random sampling would be in selecting
samples of ceramic sherds for raw material sourcing from each of the eight known
households at an excavated site. Each household would be a sampling stratum, and
we would make inferences about where the ceramics in each household were made
based on independent samples. All eight samples might later be combined for pur-
poses of making inferences about where ceramics at the settlement as a whole were
made. Stratified random sampling is discussed in Chapter 16.

When the elements of the population we wish to make inferences about are not
available individually for selection, we often use sampling strategies based on spa-
tially defined selection units. If the population we are interested in, for example,
consists of the lithic artifacts in a particular site, we can likely select a simple ran-
dom sample of artifacts only if the site has already been excavated and the artifacts
are in a laboratory or museum where we can select sample members individually. If
the site has not been excavated we may nonetheless wish to obtain a random sample
of lithic artifacts from it.

This could be done by excavating small test pits in a number of different locations
to recover some of the artifacts that lie buried in the site’s deposits. If the locations of
those test pits were randomly selected (for example, by establishing a grid system
over the site area and randomly selecting which grid units to excavate), then the
resulting artifacts would still be a random sample of artifacts from the site. They
would not, however, be a simple random sample because the elements in the sample
(that is, lithic artifacts) were not individually selected. It was grid units that were
individually selected randomly, and so we do have a simple random sample of grid
units. But it is a population of lithic artifacts, not a population of grid units that we
wish to make inferences about in the present instance. Lithic artifacts were selected,
not individually, but rather in small groups or clusters, each cluster being those lithic
artifacts contained in the deposits in one excavated grid unit. We then have, not a
simple random sample of artifacts, but rather a cluster random sample of artifacts.
Cluster samples, like stratified samples, are within the reach of statistical tools – the
ones taken up in Chapter 17.

Several other terms have come to be used here and there in the archaeological
literature for nonrandom ways of selecting samples – “haphazard sampling,” “grab
sampling,” “judgmental sampling,” “purposive sampling,” and the like. These are
not well-established terms that have clear meanings with precise statistical impli-
cations. They refer to the explicit or implicit application of a variety of nonrandom
selection criteria. In some circumstances it may be justifiable to treat such samples
as if they were random samples, but such treatment must be applied with caution,
and specific justification for it is always required.
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For example, a surface collection made at an archaeological site is sometimes
described as a haphazard sample or a grab sample, probably meaning that field
workers walked around an area and picked up haphazardly an assortment of the
things they saw. The resulting sample is then sometimes used as a basis for making
inferences about the population from which this haphazard sample was selected,
presumably the entire set of artifacts on the surface of the site at the time. This
approach is likely to produce a sample that systematically misrepresents the popu-
lation in certain respects. For example, a haphazard surface collection of this sort
is likely to contain a higher proportion of large artifacts than the population did,
simply because they will be more noticeable. As a consequence, if the sample is
used to make inferences about the average size of artifacts on the surface of the site,
the inferences will be inaccurate. Similarly, if the sample is used to make inferences
about the proportions of different artifact classes on the surface of the site, classes of
artifacts that tend to be large will seem to be more abundant than they really were.

Much the same could be said about color and other characteristics that affect the
visibility of artifacts lying on the ground. Even more subtly, a haphazard surface
collection like this may have higher proportions of unusual things and correspond-
ingly lower proportions of common things than does the artifact population from
which it comes, as a consequence of a subconscious tendency to collect things that
strike the eye as especially different from most of the other things being seen.

This haphazard sample is biased because the elements in it were selected in a
way that makes the sample systematically different from the population in certain
respects. There is no statistical technique for eliminating such bias once the sample
has been selected. The appropriate statistical tool for avoiding sample bias is random
selection of the sample, and this tool must be used at the time the sample is selected.
It cannot be applied retroactively. Haphazard or grab samples are simply not the
same as random samples.

Judgmental or purposive samples are also likely to be biased. These terms tend
to refer to samples selected by looking over the range of elements in a population
and specifically deciding to include certain elements in the sample and exclude oth-
ers. Obviously, whatever the criteria involved in the selection, the resulting sample
will be biased with respect to those characteristics. Suppose, for example, that an
archaeologist wishes to study the residential remains at a site where the locations
of individual households are marked on the surface by small mounds. He or she
might decide to thoroughly excavate those mounds that show the highest densities
of artifacts on their surfaces on the theory that their excavation will produce greater
numbers of artifacts. The result, of course, will be a sample of house mounds with
a substantially higher number of artifacts than average for the site as a whole. Such
a sample could clearly not be used to make inferences about the average density of
artifacts in house mounds at the site.

Still more insidious are other possibly related factors. The higher artifact den-
sities that caused mounds to be included in the sample might be the result of, say,
the greater wealth of certain households and consequently more intensive disposal
of used and broken objects near them. Thus the sample might systematically mis-
represent the wealth of households at the site and therefore be biased in this regard
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as well. Inferences about the entire population in regard to such characteristics as
the proportions of different artifact or ecofact classes related to wealth would be
systematically erroneous.

Once again, the moral of the story is that random selection of the elements in a
sample is the only way to ensure that a sample is unbiased. Random samples are
the only ones that we can be sure are unbiased, because their method of selection
specifically avoids conscious and subconscious biases of the kinds just discussed.
Since bias refers to the systematic application of criteria that result in an unrepre-
sentative sample, we know that biased samples are unrepresentative in certain ways.
The reverse is not, however, true. That is, the absence of bias from random sam-
ples does not guarantee that each and every one will accurately represent its parent
population. We can never be entirely certain that a sample accurately represents
the population from which it was selected (unless we study the entire population).
Biased samples are known to be unrepresentative in some ways, but we do not know
that unbiased (that is, random) samples are “representative.” An archaeologist who
selects a sample randomly so as to know that it is “representative,” labors under a
serious misunderstanding of sampling principles. We can (and will in the next few
chapters) assess the probability that a random sample is unrepresentative, something
we cannot do except with random samples.

USE OF NONRANDOM SAMPLES

Most of the statistical tools discussed in this book require us to assume that we
are working with random samples. Most archaeological data, however, were (and
still continue to be) produced with nonrandom sampling procedures that result in
biased samples. This, on the surface, would suggest that statistical tools are not
applicable to most archaeological data. And this, indeed, is the conclusion at which
some archaeologists have arrived. The situation, however, is simultaneously both
more and less serious than this.

First the bad news. The difficulty of making inferences about populations from
samples we know to be biased is not unique to statistical means of making infer-
ences. We cannot reliably estimate the average size of artifacts on the surface of a
site from a collection that over-represents large artifacts. This is true whether our
means of inference are statistical or purely intuitive. We are simply unable to make
conclusions by any means about the average size of artifacts in the population on
the basis of such a sample. It is no solution to avoid statistical approaches and rely
strictly on subjective impressions or any other kind of inference, because all kinds
of inferences are affected in precisely the same way by sampling bias. Thus, the
need for unbiased samples does not derive from arcane rules of statistical inference.
It is fundamental to inference of any kind, and we ignore it only at our own peril,
whether we use statistical tools or not.

Now the good news. This is not another cautionary tale ending at the nihilistic
conclusion that reliable interpretation of archaeological remains is impossible. Too
many such tales have already appeared in the archaeological literature. Thorough
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understanding of the nature of sample bias and careful application of common
sense can make inferences about populations from samples possible. Moreover,
clear thinking about this issue, stimulated by efforts to apply statistical techniques,
can be carried over productively into the arena of nonstatistical inference making,
leaving us in position to make more reliable conclusions in other ways as well.

The effects of known or possible bias in sample selection can (and must) be
evaluated with particular reference to at least three specific ways in which biased
samples might still be used.

First, a sample that is biased in one respect is not necessarily useless for any
and all purposes since it may not be biased in other respects. If a case can be made
that the bias in sample selection is unrelated to some other characteristic of the
population, then the sample might be appropriate for making inferences about that
other characteristic.

Second, two samples selected with the same bias may still be usefully compared
even with regard to the characteristic involved in the selection bias. Here the case
that must be made is that the bias operated similarly enough in the selection of both
samples to have had a very similar impact on both. The two samples then might
be unrepresentative of their parent populations in precisely the same way, making
some kinds of conclusions from comparing them reliable.

Third, in some instances, useful comparisons may be made, even between sam-
ples selected with different biases related to the characteristic of interest. If a sample
from one population is selected with a bias in favor of some characteristic while a
sample from another population is selected with a bias against it, that characteristic
should be more abundant in the former sample. If comparing the two reveals that the
characteristic is actually less abundant in the former sample, this cannot be a con-
sequence of sampling bias, which would produce the opposite effect. This outcome
would sustain an inference that the population the former sample came from had
more of the characteristic of interest than the population the second sample came
from. The difference between the populations in this regard could be argued to be
even stronger than the difference observed between the samples.

Judgments in instances like these involve ad hoc reasoning more than the applica-
tion of general rules or principles, and the process is, perhaps, made clearest through
examples rather than abstract discussion.

Example: A Haphazard Surface Collection

In the instance of a haphazard collection of artifacts from the surface of a site, very
small artifacts are almost certainly not collected as frequently as larger ones are,
simply because they are considerably less noticeable. (If we want to be truly honest
about it, the same could surely be said of most artifact samples recovered from
screens during excavation.)

In the instance of a surface collection, we probably have no interest in infer-
ring anything about the average size of artifacts. It may be of considerable inter-
est, however, to estimate the proportions of different ceramic types in the parent
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population. If we can make the case that sherd size is unrelated to ceramic type, then
even a sample selected with bias in regard to sherd size can be used to make such
inferences reliably. Only if some ceramic types tended systematically to break into
substantially smaller pieces than others and therefore systematically to be under-
represented in the sample would sampling bias on account of size affect inferences
about the proportions of different ceramic types. The possibility of a relationship
between sherd size and ceramic type could be evaluated empirically before pro-
ceeding to use a haphazard artifact collection as the basis for such an inference.
Similarly, other possible kinds of bias resulting from haphazard sample selection
can be enumerated and their impacts on particular kinds of inferences that we are
interested in assessed.

Even if we determine that sample bias makes our inference about proportions
of different ceramic types suspect in this instance, this suspect inference might still
be usefully compared with similar inferences concerning other sites based on sam-
ples selected with the same biases. As long as the operation and strength of the
bias in sample selection can be supposed to be the same for all the samples, then
the inaccurate inferences may be, in effect, comparably inaccurate. A sample that
under-represents a particular type can be usefully compared to another sample that
under-represents the same type to the same extent. Comparisons are quite often the
ultimate objective in working with type proportions anyway. It likely has no particu-
lar meaning to us that a particular type comprises, say, exactly 30% of the ceramics
on the surface at some site – only that this 30% is greater than the figure of 15%
obtained from another site. It usually makes no difference at all, finally, that the truly
accurate numbers might be 36% and 18%, respectively, instead of 30% and 15%.
For comparative purposes, then, sampling bias may, in effect, cancel itself out when
it affects all samples in the same way and to the same extent.

Even when biases are very different from one sample to another, some com-
parative conclusions might be drawn. Suppose a haphazard surface collection is
made carefully by archaeologists attempting to pick up all the artifacts they can see,
and 8% of the artifacts in the collection turn out to be fragments of small ceramic
figurines. No matter how careful the archaeologists were, this collection probably
contains some bias in favor of figurine fragments because their unusual shapes make
them easier to spot than many other artifacts. The proportion of figurine fragments in
the entire population of artifacts on the surface of the site is probably actually some-
what less than 8%. Another site is visited by archaeologists much less concerned
about sampling bias who casually pick up several bags of whatever artifacts hap-
pened to attract their attention. We would suspect a considerably stronger bias in
favor of figurine fragments in this latter collection, but the proportion of figurine
fragments here turns out to be 3%. The proportion of figurine fragments in the
entire population of artifacts on the surface of this second site is probably actually
substantially below 3%.

With this outcome, it is extremely likely that the first site really does have a
larger proportion of figurine fragments on its surface than the second does. The
biases operating in selecting samples (which is what the surface collecting really
amounts to) were not the same. If the two sites actually had the same proportion of
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figurine fragments on their surface, surely the second sample would have contained
a higher proportion of them than the first. But the second sample actually contained
a lower proportion – a difference between the two samples that could not possibly
have been produced by the sampling bias, which would have had the opposite effect.
The higher proportion of figurine fragments in the first sample must have been pro-
duced by a real difference between the two sites with regard to the proportions of
figurine fragments on their surfaces, and this difference is surely even greater than
the difference between 8% and 3%. In other words, “somewhat less than 8%” (from
above) differs from “substantially below 3%” (also from above) by even more than
the 5% that separates 8% from 3%.

The ability to make comparative inferences about populations in this last instance
depends on the outcome. If the second collection had contained 15% figurine frag-
ments, we would not be able to conclude much. It would be entirely possible that
the difference between the two samples was the result of nothing more than the
stronger sampling bias in favor of figurine fragments in the second sample. In order
to arrive at the point of making the conclusions that might be made in these circum-
stances, one has to be willing to set aside (temporarily) worries about sampling bias,
go ahead and compare the percentages, and then think again about sampling bias in
light of the results. Sometimes that final thinking will lead to the conclusion that the
comparison tells us nothing reliable; at other times it may lead to conclusions we
can make with considerable confidence.

Example: A Purposive Obsidian Sample

Many archaeologists have been faced with a sampling decision in regard to raw
material sourcing. Obsidian artifacts, for example, from many parts of the world
can be linked to sources of raw material through chemical fingerprinting. The nec-
essary analyses, however, are so expensive that it is usually possible to identify only
a portion of the obsidian recovered from a site. In this situation some archaeologists
have looked over all the obsidian obtained from the site and selected as many pieces
as they can afford to analyze, intentionally including artifacts of as many different
colors and appearances as possible. The justification for this procedure has usu-
ally been that it provides the greatest chance of including material from the largest
possible number of different sources since material from different sources may dif-
fer visually as well as chemically. Since some sources may be represented by only
a few pieces in a large population, there is a very good chance that those sources
might not turn up at all in a random sample of modest size – hence the interest in
including in the sample for analysis pieces of very unusual appearance.

The sample selection is thus biased, systematically over-representing in the sam-
ple artifacts of unusual appearance. If there is, indeed, some relation between
appearance and source location, this bias makes the sample irretrievably inappro-
priate for making actual estimates of the proportions of the artifacts that were made
with materials from the different sources. To see why, one can imagine drawing a
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sample of 4 marbles from a jar with 97 black marbles, 1 blue marble, 1 red marble,
and 1 green marble. Clearly the best representation of the full range of different col-
ors in the population can be achieved by purposely selecting a sample consisting of
one marble of each color. That sample, however, could not then be used to estimate
the proportions of different colored marbles in the jar. Observing that the sample
consisted of 25% black, 25% blue, 25% red, and 25% green would lead directly to
the inference that the proportions in the population were also 25% of each color, but
we know the real proportions to be 97% black, 1% blue, 1% red, and 1% green. The
proportions in the sample were determined not really by any characteristic of the
population but rather entirely by the biased sampling procedure.

A sample of obsidian artifacts selected in such a way for source analysis simply
cannot be used to make inferences about the proportions of material acquired from
different sources, no matter how useful it may be for obtaining as long a list as
possible of different sources exploited. Comparisons with samples from other sites
selected according to similar principles are impossible, since even the directions of
the biases introduced cannot be guessed at. They would favor little-utilized sources,
but we would never know which those were. Such a sample might be used for other
inferences insofar as it is possible to argue that the bias in sample selection does
not relate to these other inferences. For example, the sample might be used to study
whether material from different sources tended to be worked in different ways. The
selection bias would, superficially at least, not appear to relate to this issue.

Conclusions on Bias

The only way to be absolutely certain that sampling bias has no effect on inferences
made, of course, is to be certain that sample selection is entirely free from bias.
Random sampling is the appropriate technique for avoiding bias in sample selection
and should be applied whenever possible (even when statistical means of making
inferences are not contemplated). To the extent that the case can be made, however,
that bias in the selection of already existing samples does not affect the specific
inferences being made, then we can use those samples. And that means quite liter-
ally to the extent that the case can be made – to that extent; no more and no less.
Like so many other things in life, sampling bias is not a matter of black or white but
of varying shades of gray. Clear, careful thinking may convince us that the risk of
sample bias, insofar as a particular inference is concerned, is minimal, even though
the sample at hand is egregiously biased in other regards. If we can postulate a num-
ber of specific ways that bias might affect the inferences we are interested in and
then empirically rule out all these possibilities, then the case for disregarding bias
(and treating an existing sample as if it were a random sample for a particular pur-
pose) may be quite convincing. If, in contrast, we simply ignore the possibility of
such problems, then any inferences made must be viewed with suspicion.

This is not a perspective on sampling bias that is often expressed in the archaeo-
logical literature or elsewhere, and it certainly runs counter to the rules laid down in
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many statistics textbooks – particularly those of the cookbook persuasion. Statistics
books that emphasize memorizing rules (the “Ours not to reason why” approach)
are likely to forbid the application of most of the techniques discussed in this book
to any sample not strictly randomly selected (by which they mean with a table of
random numbers or similar procedure to preclude bias). This would mean that these
techniques could not be applied to the vast majority of archaeological data now in
existence. Worse yet, since, as we have seen above, sampling bias affects not just
statistical inferences but any kind of inferences from samples to populations, we
would not be in position to make any inferences at all from these data.

Most of those who adopt such a stringent position will probably not be much
attracted to archaeology, and will not be reading this book. Archaeologists who do
see things this way will continue to write cautionary tales emphasizing that we can
make few, if any, interesting conclusions from archaeological information. The rest
of us will just continue to do the best we can with what the archaeological record
provides. (It has been pointed out by others that archaeology falls not among the
hard sciences, but instead among the difficult sciences.) This last group should take
advantage of the proper techniques of random sample selection to guard against
sampling bias to the maximum extent possible. When we cannot do this (as, for
example, to learn what can be learned from previously selected samples), we must
use our wits to assess the nature and strength of the impact sampling bias may have
on particular inferences. Sometimes we will make inferences that must be taken
with caution because some impact from sampling bias cannot be ruled out. If these
inferences prove interesting, they may justify further data collection to see if they
hold up even with unbiased samples.

THE TARGET POPULATION

The previous discussion may imply that adoption of strict random sampling proce-
dures could resolve the issue of sampling bias in archaeology once and for all by
avoiding it entirely. An even stronger view, sometimes argued in the archaeological
literature, is that sampling bias is best avoided by abandoning sampling altogether
in favor of studying entire populations. Neither of these solutions, however, will
work in archaeology because the target population that we wish to make inferences
about is seldom fully available either to study in its entirety or to select a sample
from.

At a regional scale, at least some sites in any region are likely to be unavailable
for study because they have been covered by modern urban concentrations, obscured
by recent sedimentation, carried away by erosion, or otherwise destroyed or made
inaccessible. Thus even a regional survey that is complete in the sense of systemat-
ically covering the entire surface of the region does not have access to the complete
population of sites that we need to study. A sample selected by the strictest ran-
dom sampling procedures remains, not a sample of all the archaeological sites ever
left, but a sample of those sites that remain accessible for selection. Similarly, at a
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smaller scale, the vast majority of archaeological sites are not intact and completely
preserved but are only partial, with some sectors destroyed or inaccessible to study.
Thus, whether we study entire archaeological populations or random sample them,
the populations truly available for study or sampling do not precisely correspond to
the populations we wish to make inferences about.

Random sampling puts us in position to make inferences about the population the
sample was drawn from, and, of course, study of an available population provides
us with conclusions about that available population. If the available population,
however, was only the part of an important site that had not been washed away
by the adjacent river, we are faced with the difficult question of how to attempt to
characterize the entire meaningful site. There is no simple and straightforward solu-
tion to this difficulty, just as there is no simple and straightforward solution to the
problem of making inferences from biased samples. The most common response
by archaeologists to this difficulty is simply to ignore it. This response is clearly
conceptually inadequate, although a number of famous archaeologists have built
successful careers on it. Another common response is to pretend that the missing
part of the site contained what we hoped to find but didn’t find in the part that
remains. This is just plain unconvincing.

Fundamentally the difficulty of not being able to study or sample from the pop-
ulation we are truly interested in parallels the problem of sampling bias. The
population available to be studied or sampled is, in effect, itself a sample from the
target population – one selected by quite possibly very biased procedures (what-
ever processes destroyed or made inaccessible the portion we cannot now study).
It is because archaeologists are so frequently in this position that they are forced
to sample in one way or another. Often the entire population available for study is
already a sample. We thus cannot escape the complexities of sampling and the issue
of sampling bias, no matter how we try.

Whether we select samples ourselves, work with data from samples other people
selected, or study entire available populations, we still must wrestle the sampling
bias problem to ground as best we can if we propose to do archaeology at all. This
means using our understandings of sampling and sampling bias to say as much about
the representativeness of a sample as possible, using statistical tools presented in
this book and/or using nonstatistical and probably ad hoc reasoning applicable to
specific instances.

Even when we can apply random sampling procedures to an available population
that corresponds well to the target population about which we wish to make infer-
ences, avoiding sampling bias with random selection does not guarantee a represen-
tative sample, as discussed above. It only gives us the best chance of a representative
sample and enables us to assess the probabilities of its unrepresentativeness.

In any of these cases, then, some of the inferences we make about entire popu-
lations from the samples we can study will be correct and some will be incorrect.
Some will be incorrect because the population from which we could select a sam-
ple did not represent very accurately the population about which we wish to know.
Some will be incorrect because the sample we study does not accurately represent
the population from which it was selected. Although related, these are two different
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sources of error. The first must be dealt with on an ad hoc basis with cleverness
and common sense. Random sampling and the statistical tools discussed in the next
few chapters can help us with the second by telling us roughly what percentage of
our inferences are incorrect for this reason. We cannot, however, determine specifi-
cally which ones are incorrect. Without these tools we can say even less. If we are
careful and diligent, most of our conclusions will be correct, but it is unrealistic to
hope to make correct inferences 100% of the time, no matter how careful we are
to eliminate sampling bias (and other inaccuracies). Finally, confidence in our ulti-
mate conclusions is best reinforced by finding consistent patterns in the majority of
multiple independent inferences. When such consistent patterns are recognized, it
should make us willing to set aside inconsistent inferences as possible consequences
of sampling error (of either of the two kinds mentioned above).

To those who are concerned that I have taken here too cavalier an attitude toward
the importance of random sampling in statistical (or other) inference, I can only say
that I see no other way to proceed in most of the situations that practicing archae-
ologists must actually face. The course advocated here is to try to rule out all the
likely ways in which a sample may be biased. If it seems likely that a sample may be
unbiased, then it is worth setting our quite proper worries about sampling bias aside
for the moment at least and going ahead to see what inferences about the population
our sample may lead to. If it does lead to interesting inferences about the popula-
tion, then our worries about sampling bias must return as the proverbial grains of
salt with which our conclusions are taken. If we are fairly confident that the sample
we are working with can be taken to be unbiased, then we can be fairly confident
about the conclusions concerning a population that we make on the basis of that
sample. If we think the sample we are working with might be biased, then whatever
conclusion we arrive at about a population on the basis of that sample must be taken
with a correspondingly large grain of salt.

Practitioners of most other disciplines do not find these issues as troublesome
as archaeologists do, because they are usually interested in studying target pop-
ulations that are much more accessible for study than those of the archaeologist.
They can often afford to ignore results from samples that may be biased and simply
go back to the field or laboratory for a more carefully selected sample. Much of
the sampling bias in archaeological samples, however, is not so easily avoided. We
must learn, then, to avoid sample bias whenever we can (as by selecting truly ran-
dom samples) and to live and work productively alongside it when we must. When
the discrepancies between our real target population and the population actually
available to be sampled are truly large, excessive finickiness about sample selection
procedures begins to be like straightening deck chairs on the Titanic. We need to be
careful and thoughtful in deciding when straightening deck chairs is a worthwhile
activity and when our attention would better be directed to the lifeboats.

Much of this discussion anticipates the statistical techniques discussed in Chap-
ters 8–10 and may not make too much sense to those who do not already have some
inkling of them. The issues raised will come up again repeatedly in this book, how-
ever, and the discussion in this chapter lays out the reasons for approaching them in
the way that we will. We will return to them in the last chapter as well.
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PRACTICE

1. Imagine that you have made an intensive surface collection at the Keeney Knob
site. The following Saturday night you happen to meet someone who used to
own a farm at Stony Point. Later on, he lets you study the large collection of
lithic artifacts he made on his farm before they built the shopping center and
obliterated all trace of the archaeological site. You immediately recognize that
the lithics from Stony Point are precisely contemporaneous with the ones you
have collected at Keeney Knob, and you are eager to compare the artifacts from
the two sites. First, you would like to know whether the Keeney Knob and Stony
Point lithic assemblages have similar or different proportions of projectile points.
Of the artifacts in your surface collection from Keeney Knob, 14% are projectile
points; of the collection from Stony Point, 82% are projectile points. Second, you
are interested in the raw materials from which projectile points were made at the
two sites. Of the Keeney Knob projectile points, 23% are obsidian, and 77% are
chert; of the Stony Point projectile points, 6% are obsidian, and 94% are chert.
You recognize, however, that you have a potential problem of sampling bias in
making use of these comparisons. How would you assess this problem and what
would you do about it? Can you make any use at all of these comparisons? Can
you be more confident about conclusions from one of them than from the other?
Why?

2. You have data from haphazard surface collections at a series of neolithic sites in
the Velika Morava River valley. They were made during a field season in 1964 by
a research team, doing what experienced archaeologists usually do to sites, before
the area was flooded by a reservoir, ending all possibility of further archaeolog-
ical research. If your hypothesis about the beginnings of grain cultivation in the
region is correct, the sites in river bank locations should have substantially larger
proportions of stone hoes than the sites set back from the river. What worries
about sampling bias would you have to face in using the data from the 1964
Velika Morava survey to investigate your hypothesis? How would you face these
worries? How much confidence would you place in conclusions you arrived at
about the proportions of stone hoes at different sites in this region, based on the
1964 survey? Why?
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The discussion in Chapter 7 dealt with the fact that sometimes random samples
represent the populations from which they are drawn very accurately and sometimes
they don’t. Random selection is no guarantee of representativeness. Random sample
selection does, however, make it possible to apply some very powerful tools for
assessing how likely it is that a sample is unrepresentative to a particular degree.
This is because, with the unbiased samples that random selection produces, we can
say something about how often particular degrees of unrepresentativeness occur, on
average.

ALL POSSIBLE SAMPLES OF A GIVEN SIZE

In order to understand this we must consider the many possible different random
samples that can be drawn from a single population. Table 8.1 contains the mea-
surements (in cm) of the diameters of 17 post holes from excavations at a single
site. The measurements have been arranged in ascending order to make them easier
to examine. We will consider these 17 measurements a population of measurements
from which we wish to draw a sample. This is, of course, an exceedingly small-scale
example. Samples themselves are likely to consist of far more than 17 measure-
ments, and the populations from which the samples are drawn are even larger. But
this small example enables us to see in operation principles that it would be almost
impossible to observe in an example of large enough scale to be more realistic.

This population, then, consists of 17 post holes, whose diameters have been
measured. We will use the capital letter N to indicate the number of elements in
a population, thus, for this example N = 17. The mean post hole diameter for the 17
post holes in the population is 13.53 cm, and we will use μ (the Greek lower-case
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Table 8.1. Diameter Measurements for aSmall Population of Post holesa

Post hole number Diameter (cm) Post hole number Diameter (cm)

1 10.4 10 13.2
2 10.7 11 13.7
3 11.1 12 14.0
4 11.5 13 14.3
5 11.6 14 15.0
6 11.7 15 16.4
7 12.2 16 18.4
8 12.6 17 20.3
9 12.9

aN = 17; μ = 13.53cm; σ = 2.73cm

letter mu) to stand for the mean of the population. Thus μ = 13.53cm. The standard
deviation of a population is represented by σ (the Greek lower-case letter sigma),
so in this example σ = 2.73cm.

We will begin by considering the smallest possible sample, a sample of 1. The
lower-case letter n represents the number of elements in a sample, just as N rep-
resents the number of elements in a population. We will consider all the possible
samples of 1 (n = 1) that could be drawn from this population of 17 post holes
(N = 17). It is easily seen that there are 17 possible different samples of 1 that
might be selected. We might randomly select post hole No. 1, or No. 2, or No. 3, . . .
or No. 17. Whichever sample of 1 we happened to select, we could calculate the
mean post hole diameter in that sample and use it to estimate the mean post hole
diameter for the entire population. Our best guess for the population mean is always
the sample mean. In order to distinguish these two means in equations we use μ to
stand for the population mean as in Table 8.1 and X to stand for the sample mean.
Thus, the best estimate of μ is always X .

If our sample consisted of post hole No. 1, we would guess that the mean post
hole diameter in the population was 10.4 cm, since 10.4 cm is the mean of a sample
consisting of the single observation 10.4 cm. If our sample consisted of post hole
No. 2, we would guess that the population mean was 10.7 cm, and so on. From the
17 different samples of 1 that we might select we could make 17 different guesses at
the population mean. Some of these guesses would be very close (as for the samples
consisting of post hole No. 10 or post hole No. 11). Other guesses would be much
farther off (as for the samples consisting of post hole No. 1 or post hole No. 17).
This example shows clearly that some samples represent the population from which
they are drawn relatively accurately, and others do not.

The largest possible error in estimating the population mean occurs when the
sample of 1 consists of post hole No. 17. On the basis of this sample we would
guess that the population mean was 20.3 cm, an error of 6.77 cm. This is certainly
a regrettably large error. Moreover, such a maximum error will occur fairly often in
drawing samples of 1. Fully 1/17 (5.9%) of the total number of different samples of
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1 that could be drawn from this population would consist of post hole No. 17. Thus,
if we were to select samples of 1 repeatedly from this population, 5.9% of these
samples would consist of post hole No. 17 and cause us to make such an erroneous
guess at the population mean. Sampling in this way, then, we would make an error
as large as 6.77 cm, 5.9% of the time.

If we needed to estimate the mean post hole diameter in this population with an
error no greater than 3.0 cm, we could figure out how often we would succeed and
how often we would fail in this example. Of the 17 possible samples of 1 that we
might select, three samples would result in estimates of the population mean with
an error greater than 3.0 cm, and 14 samples would result in estimates with an error
of 3.0 cm or less. (The samples consisting of post hole No. 1, post hole No. 16, and
post hole No. 17 would have means different from the known population mean by
more than 3.0 cm.) Thus, 82.4% of the samples of 1 would provide us with estimates
as accurate as we needed, but 17.6% of them would not.

If we selected samples of 1 over and over again, then, 82.4% of the time we would
get a sample yielding an acceptably accurate estimate of the population mean, and
17.6% of the time we would get a sample yielding an unacceptably inaccurate esti-
mate. (At least this is the case if each of these different samples is equally likely to
occur, which, of course is true if the samples are randomly selected.) These percent-
ages translate directly into probabilities for any single instance of drawing a sample
of 1. That is, if 82.4% of the samples of 1 that we might draw would yield an accept-
ably accurate estimate of the population mean, then the probability of arriving at an
acceptably accurate estimate in any single instance of drawing a sample of 1 would
be 82.4% (or 0.824).

Stating the probability of occurrence of a single event in this manner means noth-
ing more than stating the percentage of occurrence of that single event in a long
sequence of repeated trials. We are accustomed to making such statements as, for
example, when we say that the probability that a tossed coin will turn up heads is
50%. In saying this, we mean that when we toss a coin repeatedly, 50% of the time
the result is heads. On a single toss the result will be either heads or tails, not half
heads and half tails, but the probability of heads on a single toss is 50% because
in repeated trials, 50% of the time the result will be heads and 50% of the time the
result will be tails. This way of talking about probabilities is largely a matter of com-
mon sense and well established in common speech, but its importance to statistics
is such that it merits explicit statement here.

In the example of drawing samples of 1 from a population of 17 post holes, then,
we would achieve successful (that is, acceptably accurate) results 82.4% of the time.
We would fail to attain the accuracy needed 17.6% of the time. If this success rate
were not high enough, common sense tells us that we might do better with a larger
sample.
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ALL POSSIBLE SAMPLES OF A LARGER GIVEN SIZE

Suppose we selected samples of two post holes each from the population of 17 post
holes. The range of possible results here is much larger. Our sample of 2 might con-
sist of post hole No. 1 and post hole No. 1. (We are sampling here with replacement
as discussed in Chapter 7.) Or our sample might consist of post hole No. 1 and post
hole No. 2; or of post hole No. 1 and post hole No. 3; or of post hole No. 2 and
post hole No. 3; and so on. In all there are 153 possible different samples of two
post holes that could be selected from the population of 17 post holes (with replace-
ment). If the samples were randomly selected, each of these 153 possible different
samples of 2 would be equally likely to occur on any given drawing.

Of these 153 possible different samples of 2, some, of course, would give us
estimates of the population mean with the level of accuracy we need (an error no
greater than 3.0 cm) and some would not. It is not too difficult to determine which
ones. The sample consisting of post hole No. 1 and post hole No. 1 would give a
mean diameter of 10.4 cm, more than 3.0 cm in error. The next smallest possible
sample mean would come from the sample consisting of post hole No. 1 and post
hole No. 2. Here the mean diameter for the sample would be 10.55 cm. This is
2.98 cm less than the true population mean, so the error is acceptably small. There
is, then, only one possible sample of 2 that would give an estimate of the population
mean more than 3.0 cm too small.

At the other end of the scale sample means more than 3.0 cm higher than the
population mean would be produced by all of the following samples of 2:

Post holes No. 17 and No. 17 (X = 20.30cm)
Post holes No. 17 and No. 16 (X = 19.35cm)
Post holes No. 17 and No. 15 (X = 18.35cm)
Post holes No. 17 and No. 14 (X = 17.65cm)
Post holes No. 17 and No. 13 (X = 17.30cm)
Post holes No. 17 and No. 12 (X = 17.15cm)
Post holes No. 17 and No. 11 (X = 17.00cm)
Post holes No. 17 and No. 10 (X = 16.75cm)
Post holes No. 17 and No. 9 (X = 16.60cm)
Post holes No. 16 and No. 16 (X = 18.40cm)
Post holes No. 16 and No. 15 (X = 17.40cm)
Post holes No. 16 and No. 14 (X = 16.70cm)

All the remaining possible samples of 2 that we might select would yield means
no more than 3.0 cm different from the true population mean and would thus be
acceptably accurate.

In sum, then, of the 153 possible different samples of 2 that we might select from
the population of 17 post holes, 1 sample would yield an unacceptably low esti-
mate of the population mean, 12 samples would yield unacceptably high estimates
of the population mean, and 140 samples would yield acceptably accurate estimates
of the population mean. Thus 140/153 (91.5%) of the time we would achieve suc-
cessful (that is, acceptably accurate) results, and 8.5% of the time we would fail to
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achieve acceptable accuracy in estimating the population mean. Our probability of
success on any given sample selection, then, is substantially greater with samples of
2 (acceptable accuracy 91.5% of the time) than it is with samples of 1 (acceptable
accuracy 82.4% of the time). Samples of 2 that give unacceptably inaccurate results
are more unusual than are samples of 1 that give unacceptably inaccurate results.
Thus it is less likely that any particular random sample of 2 that we might select
would give us unacceptably inaccurate results than was the case for samples of 1.
The probability that any particular random sample of 2 yields unacceptably inac-
curate results is 8.5% (or 0.085) in contrast to the probability of 17.6% (or 0.176)
that any particular random sample of 1 would yield unacceptably inaccurate results.
This is because such unrepresentative samples are more unusual among all possible
samples of 2 than among all possible samples of 1.

If we extend the example to samples of 3, the same trend continues. There are
2,601 possible different samples of 3 that we might select from the population of
17 post holes. Of these, the following would yield estimates of the population mean
more than 3.0 cm too low:

Post holes No. 1, No. 1, and No. 1 (X = 10.40cm)
Post holes No. 1, No. 1, and No. 2 (X = 10.50cm)

In addition, the following samples of 3 would yield estimates of the population mean
more than 3.0 cm too high:

Post holes No. 17, No. 17, and No. 17 (X = 20.30cm)
Post holes No. 17, No. 17, and No. 16 (X = 19.67cm)
Post holes No. 17, No. 17, and No. 15 (X = 19.00cm)
Post holes No. 17, No. 17, and No. 14 (X = 18.53cm)
Post holes No. 17, No. 17, and No. 13 (X = 18.30cm)
Post holes No. 17, No. 17, and No. 12 (X = 18.20cm)
Post holes No. 17, No. 17, and No. 11 (X = 18.10cm)
Post holes No. 17, No. 17, and No. 10 (X = 17.93cm)
Post holes No. 17, No. 17, and No. 9 (X = 17.83cm)
Post holes No. 17, No. 17, and No. 8 (X = 17.73cm)
Post holes No. 17, No. 17, and No. 7 (X = 17.60cm)
Post holes No. 17, No. 17, and No. 6 (X = 17.43cm)
Post holes No. 17, No. 17, and No. 5 (X = 17.40cm)
Post holes No. 17, No. 17, and No. 4 (X = 17.37cm)
Post holes No. 17, No. 17, and No. 3 (X = 17.23cm)
Post holes No. 17, No. 17, and No. 2 (X = 17.10cm)
Post holes No. 17, No. 17, and No. 1 (X = 17.00cm)
Post holes No. 17, No. 16, and No. 16 (X = 19.03cm)
Post holes No. 17, No. 16, and No. 15 (X = 18.37cm)
Post holes No. 17, No. 16, and No. 14 (X = 17.90cm)
Post holes No. 17, No. 16, and No. 13 (X = 17.67cm)
Post holes No. 17, No. 16, and No. 12 (X = 17.57cm)
Post holes No. 17, No. 16, and No. 11 (X = 17.47cm)
Post holes No. 17, No. 16, and No. 10 (X = 17.30cm)
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Post holes No. 17, No. 16, and No. 9 (X = 17.20cm)
Post holes No. 17, No. 16, and No. 8 (X = 17.10cm)
Post holes No. 17, No. 16, and No. 7 (X = 16.97cm)
Post holes No. 17, No. 16, and No. 6 (X = 16.80cm)
Post holes No. 17, No. 16, and No. 5 (X = 16.77cm)
Post holes No. 17, No. 16, and No. 4 (X = 16.73cm)
Post holes No. 17, No. 16, and No. 3 (X = 16.60cm)
Post holes No. 17, No. 15, and No. 15 (X = 17.70cm)
Post holes No. 17, No. 15, and No. 14 (X = 17.23cm)
Post holes No. 17, No. 15, and No. 13 (X = 17.00cm)
Post holes No. 17, No. 15, and No. 12 (X = 16.90cm)
Post holes No. 17, No. 15, and No. 11 (X = 16.80cm)
Post holes No. 17, No. 15, and No. 10 (X = 16.63cm)
Post holes No. 17, No. 14, and No. 14 (X = 16.76cm)
Post holes No. 16, No. 16, and No. 16 (X = 18.40cm)
Post holes No. 16, No. 16, and No. 15 (X = 17.73cm)
Post holes No. 16, No. 16, and No. 14 (X = 17.27cm)
Post holes No. 16, No. 16, and No. 13 (X = 17.03cm)
Post holes No. 16, No. 16, and No. 12 (X = 16.93cm)
Post holes No. 16, No. 16, and No. 11 (X = 16.83cm)
Post holes No. 16, No. 16, and No. 10 (X = 16.67cm)
Post holes No. 16, No. 16, and No. 9 (X = 16.57cm)
Post holes No. 16, No. 15, and No. 15 (X = 17.07cm)
Post holes No. 16, No. 15, and No. 14 (X = 16.60cm)

Thus 2 of the 2,601 possible samples of 3 would yield unacceptably low esti-
mates and 48 would yield unacceptably high estimates. The acceptable accuracy
rate would be 2,551/2,601; or 98.1%. The probability of selecting a random sample
of 3 from this population of post holes that would yield an unacceptably inaccu-
rate estimate of the population mean, then, is only 1.9% (or 0.019). This is because
random samples of 3 with sample means so different from the mean of the pop-
ulation from which they were selected are fairly unusual (representing only 1.9%
of the possible samples). It is thus very likely (not certain but very likely) that any
particular sample of 3 that we might select from the population would represent the
population with the accuracy we decided was needed in this example.

We could continue this example by considering the 44,217 possible different
samples of 4 that could be selected, but the point should by now be clear. The
larger the random sample is, the greater the chance that it represents the popula-
tion from which it is selected with acceptable accuracy. Other things being equal,
it is the size of the sample that governs its likely representativeness. Larger sam-
ples are more often representative of their parent populations than small samples.
But, as has been emphasized above, large samples provide no guarantee of repre-
sentativeness. The most unrepresentative sample of 3 in this example consists of
post hole No. 17 selected three times. This sample is just exactly as unrepresenta-
tive as the most unrepresentative sample of 1 (consisting of post hole No. 17). But
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such unrepresentative samples occur far less frequently among larger samples than
among smaller samples.

The number of errors of more than 3.0 cm in estimating the mean in the popula-
tion of 17 post hole diameters also depends on the spread of the population. If there
are many post holes much larger or much smaller than the mean, then the num-
ber of samples producing unacceptably inaccurate results increases. If this does not
initially make sense to you, go back to the example population given in Table 8.1
and change post holes 1, 2, and 3 to 9.0 cm, 9.4 cm, and 9.8 cm, respectively. Start
counting up how many samples of 1, 2, and 3 there would be with means more than
3.0 cm different from 13.53 cm. The bigger the spread in the population, the more
samples there will be whose means are not acceptably close to the true population
mean (for any given definition of “acceptably close”).

The chance of making badly erroneous inferences about populations on the basis
of samples, then, is less with larger samples, although a small risk of serious error
remains even with large samples. The chance of making badly erroneous inferences
about populations on the basis of samples is also less when the population is homo-
geneous (a batch with a small spread) and greater when the population is highly
variable (a batch with a larger spread). In this specific example, in which we know
exactly what the population is like, and we established (even if arbitrarily) what
“acceptable” accuracy was, we could easily figure the percentages of samples that
would yield acceptable and unacceptable results. What we need now is a means of
generalizing the observations that we made in this specific example.

THE “SPECIAL BATCH”

The key to general application of the specific observations we made in the example
above lies in a very special batch of numbers. This “special batch” consists of the
means of all the possible different samples of a given size that could be drawn from
a given population. Let’s consider this in terms of the previous example.

For a sample size of 1 (that is, for n = 1), there are 17 different random samples
that could be selected from our example population of 17 post holes. Each of the
17 samples has its own sample mean (X). The special batch would consist of these
17 sample means. We found earlier that 17.6% of these 17 sample means were
more than 3.0 cm different from the real population mean, and they were therefore
classified as unacceptably unrepresentative samples. Unacceptably unrepresentative
samples of 1 were thus a bit unusual, making up only 17.6% of the special batch,
but we would not call them extremely rare. The clear majority of the samples of 1
that we could select from this population would represent it with sufficient accuracy
for our present purposes, but an uncomfortably large proportion of the samples of 1
we might select would be unacceptably inaccurate.

For n = 2, there are 153 different random samples that could be selected from our
example population of 17 post holes. Each of these 153 samples has its own sample
mean (X). The special batch would consist of these 153 sample means. Samples so
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unrepresentative that their means differed by more than 3.0 cm from the population
mean were more unusual in terms of this special batch, making up only 8.5% of the
possible samples of 2 that could be selected from this population.

For n = 3, there are 2,601 different random samples that could be selected from
our example population of 17 post holes. Each of these 2,601 samples has its own
sample mean (X). The special batch would consist of these 2,601 sample means.
Unacceptably unrepresentative samples were even more unusual among samples of
3, making up only 1.9% of the special batch.

And we could go on. For a given population and for any given sample size, there
is a special batch consisting of the means of all the different samples of that size
that could be selected randomly from that population. This special batch, then, con-
sists of all the possible results we could obtain in estimating the given population’s
mean on the basis of a sample of the given size. And this special batch is the key to
determining just how unusual it would be to draw an unacceptably unrepresentative
sample of a certain size from the given population. The unusualness of an unaccept-
ably unrepresentative sample (in terms of the special batch) enables us to specify the
probability that any specific sample of a given size that we might randomly select
from a given population will be unrepresentative.

THE STANDARD ERROR

We have just been using the notion of unusualness in very much the same way we
used it in Chapter 4 – unusualness of a number in terms of the batch of numbers
to which it belongs. Since the numbers we have been discussing are the means
of samples of particular sizes, the comparison batch has been the batch consisting
of all the means of samples of a given size from a given population, that is, the
special batch. In Chapter 4 we talked about more general tools for evaluating the
unusualness of a number in terms of its batch, tools based on numerical indexes
of the level and spread of the batch. We could use just such tools in this effort to
discuss unusualness of sample results in terms of the special batch. In order to do
so we would need to know the level and spread of the special batch. We could, of
course, find out the level and spread of the special batch by selecting all possible
samples of a given size and working directly with the batch, but this is obviously
preposterous. It would be considerably more work than just studying whatever we
wanted to study in the whole population, and so sampling would offer no advantage.
It turns out that there are much easier ways to find out about the special batch.

It can be shown mathematically that the mean of the special batch is the same as
the mean of the population from which the samples were drawn. This, of course, is
quite apparent in the case of samples of 1. The special batch, for samples of 1, is
exactly the same batch of numbers as the population, since each sample is the same
as one number in the population. The mean of the population, then, has to be the
same as the mean of the special batch. It turns out that this is true even when n > 1
(that is, even when the sample size is greater than 1).
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If we can say that the mean of this special batch is the same as the mean of the
population from which the samples are drawn, then we can say that the mean of the
means of all the possible samples of a given size that can be drawn from a given
population is the same as the mean of that population. These two statements are
synonymous because the special batch is the means of all the possible samples of a
given size that can be drawn from a given population.

You can actually think this through fairly easily for yourself if you want to, with-
out need of formal mathematical proofs. If we select all possible samples of any
given size, each number in the population occurs an equal number of times in all
the samples taken together (however many times that may be – it depends on the
sample size). The mean of all the sample means is also the mean of all the numbers
in all the samples, taken as one immense undivided batch. Since all numbers in the
population occur the same number of times in all the samples taken together, this
immense batch is simply the original population reduplicated many times over, and
its mean will be the same as the mean of the original population. Each number has
simply been added in many times, but then the total has been divided by a much
larger number, reflecting precisely how many times each number has been added in.

It can also be shown mathematically that the standard deviation of the special
batch is the standard deviation of the given population divided by the square root
of the number of elements in the sample. The truth of this is, once again, obvious
when the sample size is 1. The standard deviation of the special batch is the standard
deviation of the population divided by the square root of 1 (the sample size). Since
the square root of 1 is 1, the standard deviation of the special batch is the same
as the standard deviation of the population when the sample size is 1. This is not
surprising, since the special batch is the same as the population when the sample
size is 1. This same relationship, however, between the standard deviation of the
special batch, the sample size, and the standard deviation in the population holds
true for any given sample size.

The standard deviation of the special batch is such an important number that it
has its own special name. It is the standard error. The standard error, then, is the
standard deviation of the batch consisting of the means of all the different samples
of a given size that could be selected from a given population. The equation for
standard error is

SE =
σ√

n

where SE = standard error, and σ = standard deviation of the population, and n =
number of elements in the sample.

We are now in position to specify a numerical index of level and a numerical
index of spread for the special batch so as to discuss the unusualness of particular
samples in a general and efficient way. The numerical indexes we have specified,
however, are two that we have seen behave very badly in previous chapters. Neither
mean nor standard deviation is at all resistant to the effect of outliers or asymmetry.
Here we are in luck, however, because, for samples of relatively large size, it can also
be shown mathematically that the shape of the special batch is normal. Since normal



106 CHAPTER 8

shapes are single peaked and symmetrical, we know that the mean and standard
deviation will be useful numerical indexes of level and spread, and we do not have
to worry about the fact that they are not resistant. Relatively large sample size, in
this instance, can be taken to mean more than about 30. This characteristic of the
special batch (having a normal shape for relatively large sample size) is also of
pivotal importance. It is called the central limit theorem.

To summarize, in this section we have conceived of a special batch of numbers
that consists of the means of all the different samples of a given size that could
be drawn from a given population. This special batch is known in more formal
statistical terminology as the sampling distribution of the mean, but we will continue
to refer to it here simply as the special batch. Three properties of the special batch
have been noted. First, the mean of the special batch is the same as the mean of the
population from which the samples are selected. Second, the standard deviation of
the special batch, known as the standard error of the sample, is σ

/√
n. And third,

the shape of the special batch is normal as long as the sample size is over about 30.
These three properties of the special batch give us rather complete information

about its characteristics. Without having to actually select and manipulate all pos-
sible samples of a given size, we can determine the level (mean), spread (standard
deviation), and shape (single peaked, symmetrical, normal) of the special batch. In
the next chapter we will put the special batch and its characteristics to general use
in assessing the unusualness of particular samples.
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The major difficulty in putting the properties of the special batch discussed in Chap-
ter 8 to use is that we had to know a good deal about the population from which the
sample was drawn in order to specify the characteristics of the special batch. We
knew that the mean of the special batch was the same as the mean of the popula-
tion and that the standard deviation of the special batch (that is, the standard error
of the sample) was the standard deviation of the population divided by the square
root of the number in the sample. In real life, however, we do not know either the
mean or the standard deviation of the population from which our sample is drawn.
Indeed those are precisely the things we are trying to estimate on the basis of a sam-
ple. Thus we must find a way to use the special batch without first knowing these
characteristics of the entire population.

In this chapter we will extend the notion of unusualness of a sample to apply to
the more realistic situation in which, instead of having one population and all the
possible samples from it, we have one sample and consider the possible populations
it might have come from. We will start by asking the question, “How unusual would
it be for the sample we actually have to come from a population with a particu-
lar mean?” And we will proceed to ask that question about a number of different
possible parent populations for our sample.
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GETTING STARTED WITH A RANDOM SAMPLE

Let’s suppose that we have a random sample of 100 projectile points drawn from a
much larger population of projectile points, whose mean length we wish to know.
This random sample of 100 projectile points has a mean length of 3.35 cm and a
standard deviation of 0.50 cm. Such a situation may occur in real life when, for
example, we have surveyed a region intensively and made systematic surface col-
lections at all the sites encountered. To keep the logic simpler, let’s suppose that
study of these collections revealed occupation of the region during only a single
prehistoric period. We decide to take all the projectile points recovered in these col-
lections (100 points altogether) as a random sample from the population consisting
of all the projectile points made by the prehistoric inhabitants of the region during
the single period during which the region was occupied.

Our sample is not technically a random sample, but we might decide to treat it
as one, at least for estimating the mean projectile point length in the population. In
order to make this decision we would need to consider the collecting procedures
used in the field as well as the processes by which projectile points are brought
to the surfaces of sites and become available for collection. These latter processes
include the full range of things that happen to projectile points from the time they are
discarded to the time they are found. If, in considering all these processes, we can
find no reason to believe that projectile points of different lengths will be affected
in substantially different ways (or at least that whatever such effects may be, they
apply equally to this sample and to other samples with which we wish to compare
this sample), then we would proceed to treat this sample as a random sample with
respect to projectile point length. The legitimacy of any conclusions we make about
projectile point length in the population, of course, is dependent on this decision.
We must recognize the possibility in using these conclusions that, at some time in
the future, they might be invalidated if we were to discover that the sample had been
biased with respect to projectile point length in some way we had not thought of.

This procedure may seem risky, but, as discussed in Chapter 7, the only alterna-
tive is simply not to make conclusions about projectile point length in the larger
population. Whatever statements we make about, say, Late Woodland projectile
points in general are based on precisely such logic, whether those statements are
statistical in nature or purely subjective impressions. Archaeologists have always
made such general statements about large and vaguely defined populations on the
basis of samples not randomly selected. And such statements, even when statistics
have been in no way involved, are based on treating the sample at hand as if it
were not biased even when we cannot show conclusively that bias is absent. This
approach is no more risky when it serves as the foundation for statistical statements
than when it serves as the foundation for subjective impressions. Indeed it is less
risky. This is because the statistical techniques we are about to apply only assume
that the sample is unbiased; they do not assume that it accurately represents the
population from which it came, only that it is not systematically biased. Subjec-
tive generalizations assume not only that the sample upon which they are based is



CONFIDENCE AND POPULATION MEANS 109

unbiased, but also that the sample provides completely accurate representation – a
stronger assumption, and one much more difficult to justify.

Archaeologists are not the only scientists in this situation. We are all comfort-
able using such figures as the mean heights of adult males and adult females in the
United States. We seldom even think about where such figures come from. Clearly
they do not involve measuring the heights of all adult males and all adult females
in the country. The figures are based on a much smaller sample. Even that is not
technically a random sample of all adult males and all adult females in the coun-
try. It was a sample from a much smaller subpopulation that was simply taken to
accurately represent the larger population. No one ever actually assigned numbers
to every adult male and every adult female in the United States, randomly selected
a sample, and set out to measure every individual in the sample. Much smaller and
more accessible populations were taken to accurately represent the nation’s popula-
tion at large after careful consideration and elimination of the ways in which such
populations might be biased samples.

In exactly the same way, archaeologists do not need to be able to number sequen-
tially and randomly select a sample from all the projectile points made in a particular
period in a particular region in order to characterize this large and vaguely defined
population. Archaeologists can (and must) argue that the projectile points lying on
the surface at a given moment are an unbiased subgroup of that larger population
(with respect to certain characteristics at least) and that the 100 projectile points
recovered on survey are an unbiased sample from that subgroup. This is the way
sampling of such large and vaguely defined populations is customarily done in many
disciplines. The conclusions produced are reliable only to the extent that the assump-
tion that the sample is unbiased can be justified. If this is in doubt, then this doubt
remains as a doubt about the validity of the conclusion reached.

As long as we have digressed from the topic at hand to such a lengthy discus-
sion of the real-life implications of the assumptions of sampling, we might as well
specify one terminological point as well. Large and vaguely defined populations
like the one we are dealing with here are referred to in statistics as infinite popu-
lations. This does not mean that they are truly infinite, just that they are very large
and not precisely defined. (We will see as we continue to discuss the notion of infi-
nite populations that infinity is a much smaller thing to a statistician than to an
astronomer.)

WHAT POPULATIONS MIGHT THE SAMPLE
HAVE COME FROM?

Once we’ve satisfied ourselves that we are willing to treat the sample we have as if it
were a random sample (at least for purposes of argument), we can begin to consider
what kind of population the sample might have come from. Recall that our sample
of 100 projectile points had a mean length of 3.35 cm and a standard deviation of
0.50 cm. For large populations and large samples, the sample mean is the same as
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the population mean more often than it is any other one figure. Similarly, the sample
standard deviation is the same as the population standard deviation more often than
it is any other one figure. Thus our best estimate is that the population of projectile
points from which this sample was selected has a mean length of 3.35 cm and a
standard deviation of 0.50 cm.

We know, however, that samples do not always have exactly the same mean as
their parent populations, so we wonder just how much confidence we should have in
this estimate. Put another way, just how likely is it that this estimate is incorrect? Put
more fully, just how likely is it that this estimate is incorrect by enough to matter?
The addition of that last phrase is an important practical matter of precision. We
almost certainly do not need to worry about the possibility that the real population
mean might be 3.350000001cm as opposed to 3.350000000cm. This difference of
0.000000001cm is clearly not enough to matter. It is almost certainly well beyond
the capability of our measuring instruments to even detect such a difference. But the
point is that we do not seek infinite precision even if it were possible – it wouldn’t
matter. Being incorrect by enough to matter is what we have to worry about. Prob-
ably 0.01 cm or even 0.1 cm is not enough to worry about. Maybe even 0.4 cm or
0.5 cm is not a large enough error in estimating the population mean to worry us
seriously.

The question of necessary precision is not one of applying statistical rules of
precision. Rather it is a substantive question involved with why we want to know
what the mean length of projectile points in this population is. For statistical pur-
poses, then, we take whatever decision is made about necessary precision as a given
because that decision is based on substantive concerns outside the realm of statistics.
For example, our reason for wanting to know the mean length of projectile points in
our region may be to compare this length with the mean length for another region in
an effort to determine something about differences in hunting practices. In this case,
a difference of 0.1 cm would likely not be taken as meaningful in that it would seem
too small to be reflecting a meaningful difference in hunting practices. A difference
of 0.5 cm might, on the other hand, be meaningful, if a substantive case could be
made for what, specifically, it would indicate.

Turning back to the sample that we have, we have already guessed that it most
likely came from a population with a mean length of 3.35 cm (the same as the sample
mean). But we know that there is no guarantee that it came from such a population.
Our sample might have come from a population with a mean length greater or less
than 3.35 cm, possibly even from a population with a mean length much greater or
less than 3.35 cm. We can begin to think about how likely this is by considering
various specific populations from which our sample might have come. For each
specific population we imagine that our sample might have come from, we will
need to think of the special batch consisting of the means of all possible samples of
100 from that population.

For starters, let’s imagine our sample might have come from a population with a
mean length of 3.25 cm. How unusual would it be to get a sample like ours (that is,
with a mean of 3.35 cm and a standard deviation of 0.50 cm) from a population with
a mean of 3.25 cm? What would the special batch consisting of the means of all
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possible samples of 100 from a population with a mean of 3.25 cm look like? We
know that the mean of this special batch would be the same as the population mean,
that is, 3.25 cm. We know that the shape of this special batch would be approxi-
mately normal because of the central limit theorem and because 100 is a fairly large
sample. We only lack knowledge of the spread of the special batch, but we know
that the spread of the special batch is given by the equation

SE =
σ√

n

Since we have no better recourse, we will continue to use the standard deviation
of the sample (0.50 cm) as our best estimate of the standard deviation in the parent
population. Thus

SE =
0.50cm√

100
=

0.50cm
10

= 0.05cm

Figure 9.1 illustrates the special batch consisting of the means of all the possible
samples of 100 that could be drawn from a population with a mean of 3.25 cm and
a standard deviation of 0.50 cm. This is simply a histogram, like those discussed
in Chapter 1. Clearly, samples with means close to 3.25 cm are much more com-
mon than are samples with means far from 3.25 cm. Figure 9.2 illustrates this same
special batch in a more common and useful manner. Instead of a histogram with spe-
cific intervals represented by vertical bars, the heights of the bars are represented by
a smooth curve joining the center points of the tops of the bars. This allows us to use
the horizontal scale as the truly continuous measurement scale that it is instead of
breaking it up into awkward intervals. The height of the curve above any point along
the horizontal scale, then, represents the frequency with which samples with a par-
ticular mean occur, in just the same way that the height of a bar on the corresponding

Figure 9.1. The special batch consisting of the means of all the possible samples of 100 that could
be selected from a population with a mean of 3.25 cm and a standard deviation of 0.50 cm.
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Figure 9.2. The special batch for samples of 100 from a population with a mean of 3.25 cm and a
standard deviation of 0.50 cm.

histogram represents the frequency of occurrence of samples with a mean falling in
a particular interval. Representing the shape of a batch with a normal distribution in
this way is so common in statistics that the entire concept is often referred to in a
kind of shorthand as the “normal curve.”

For a given mean (in this case 3.25 cm) and a given standard deviation (in this
case the standard error, which is the standard deviation of the special batch, or
0.05 cm) there is one and only one specific normal distribution, and Fig. 9.2 is it.
Figure 9.2 is thus a picture of the special batch consisting of the means of all pos-
sible samples of 100 that can be selected from a population with a mean of 3.25 cm
and a standard deviation of 0.50 cm. We can use this picture to place our sample,
with a mean of 3.35 cm, in context with all other possible samples. The position
of our sample in this distribution is indicated in Fig. 9.2. At the point correspond-
ing to our sample, the normal curve is fairly low, indicating that samples with a
mean of 3.35 cm do occur among the possible samples of 100 from a population
with a mean of 3.25 cm, but they do not occur very frequently – not nearly as fre-
quently, for example, as samples with means closer to 3.25 cm. Our sample is fairly
unusual, then, in the context of all the possible samples from a population with a
mean of 3.25. It is therefore possible, but not very likely, that our sample came from
a population with a mean of 3.25 cm.

We can do the same thing for other populations from which our sample might
possibly have come. For instance, how likely is it that our sample came from a
population with a mean length of 3.20 cm? Figure 9.3 illustrates the special batch
consisting of the means of all possible samples of 100 that could be selected from a
population with a mean of 3.20 cm and a standard deviation of 0.50 cm. The level of
the normal curve at the point corresponding to our sample in Fig. 9.3 is extremely
low. Thus our sample, with its mean of 3.35 cm, would be extremely unusual among
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Figure 9.3. The special batch for samples of 100 from a population with a mean of 3.20 cm and a
standard deviation of 0.50 cm.

Figure 9.4. The special batch for samples of 100 from a population with a mean of 3.30 cm and a
standard deviation of 0.50 cm.

samples of 100 selected from a population with a mean of 3.20 cm. It is therefore
very unlikely (although not entirely impossible) that our sample came from such a
population.

How likely is it that our sample came from a population with a mean of 3.30 cm?
Figure 9.4 illustrates the special batch consisting of the means of all possible sam-
ples of 100 that could be selected from a population with a mean of 3.30 cm and
a standard deviation of 0.50 cm. The level of the normal curve at the point cor-
responding to our sample in Fig. 9.4 is fairly high. Thus there are a good many
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Figure 9.5. The special batch for samples of 100 from a population with a mean of 3.35 cm and a
standard deviation of 0.50 cm.

samples like ours among those possible to select from a population with a mean of
3.30 cm. Therefore it is relatively likely that our sample could have come from such
a population.

Finally, Fig. 9.5 illustrates the special batch corresponding to the population with
a mean of 3.35 cm – the population that is a more likely parent population for our
sample than any other single population. We could imagine continuing to try out
many more possible parent populations in this way and constructing a new curve
from the results of these trials. This new curve would indicate how likely it was that
each of the possible parent populations was indeed the population from which our
sample was drawn. It turns out that if we carried out this procedure, the curve we
would construct would have exactly the same parameters as the curve illustrated in
Fig. 9.5. In effect what we have done is to turn the logic of the curve in Fig. 9.5
inside out to produce the curve in Fig. 9.6.

Figure 9.5, again, represents the special batch composed of the means of all the
possible samples of 100 that could be selected from a population with a mean of
3.35 cm and a standard deviation of 0.50 cm. It thus represents the unusualness of
the various samples that could be selected from this population and therefore the
probability of selecting any one of them from this population. Figure 9.6, on the
other hand, represents the means of the possible populations that a sample of 100
with a mean of 3.35 cm and a standard deviation of 0.50 cm might have been drawn
from and therefore the probability that this sample was selected from any particular
one of them. This batch, represented in Fig. 9.6, has exactly the same level, spread,
and shape as the special batch that we have been discussing. That is, just like the
familiar special batch, this second batch has a mean that is the same as the sample
mean; it has a standard deviation that is σ/

√
n or the standard error; and its shape is

normal.
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Figure 9.6. The batch consisting of the means of the populations from which a sample of 100
with a mean of 3.35 cm and a standard deviation of 0.50 cm might have come. The majority of the
means lie within 1 standard error of the sample mean, but a substantial number of means are larger
or smaller than this.

CONFIDENCE VERSUS PRECISION

We can look at Fig. 9.6 and quickly say that a good many of the populations that our
sample might have come from have means between 3.30 cm and 3.40 cm. (These
are the populations that fall within 1 standard error of the mean of our sample.)
According to the shape of the special batch, however, a good many of the possible
populations have means outside that range. Thus we are only moderately confi-
dent that the population our sample came from has a mean between 3.30 cm and
3.40 cm. We say this because populations with means less than 3.30 cm or greater
than 3.40 cm are relatively numerous among the possible populations. It would not
strain credulity at all to imagine selecting a sample with a mean of 3.35 cm and a
standard deviation of 0.50 cm from a population with a mean less than 3.30 cm or
greater than 3.40 cm. Figure 9.6 shows us that such a thing would happen with some
frequency. Thus our sample probably came from a population with a mean between
3.30 cm and 3.40 cm, but there is a very real chance that it might not have. It means
the same thing to say, “The probability is moderate that our sample came from a
population with a mean of 3.35cm±0.05cm.”

Suppose we are not satisfied with the lack of confidence we have in the statement
that the population our sample came from probably has a mean between 3.30 cm and
3.40 cm. We can speak more confidently, but only by reducing the level of precision
of our statement. We could say that the population our sample came from has a mean
between 3.25 cm and 3.45 cm, and be somewhat more confident that our statement
is true. This statement is illustrated by Fig. 9.7, where the clear majority of the
possible populations have means that fall between 3.25 cm and 3.45 cm. It seems
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Figure 9.7. The batch consisting of the means of the populations from which a sample of 100 with
a mean of 3.35 cm and a standard deviation of 0.50 cm might have come. The vast majority of the
means lie within 2 standard errors of the sample mean.

quite likely that our sample comes from a population with a mean somewhere in
this range. Relatively few of the possible populations fall outside the range. Thus
it would be fairly unusual to select a sample like ours (with a mean of 3.35 cm and
a standard deviation of 0.50 cm) from a population with a mean less than 3.25 cm
or greater than 3.45 cm. The probability that our sample came from a population
with a mean less than 3.25 cm or greater than 3.45 cm is low. Correspondingly, the
probability that our sample came from a population with a mean between 3.25 cm
and 3.45 cm is high. Thus we might say something like, “There is a high probability
that our sample came from a population with a mean of 3.35cm± 0.10cm.” This
statement indicates greater confidence than the statement at the end of the previous
paragraph, but it is a less precise statement.

The twin notions of confidence and precision are familiar to us in common col-
loquial speech, although we usually don’t think of them directly. If I intend to make
quite sure I will arrive for an appointment at a precise time, I might say, “I will
be there at 4 o’clock.” Customs of punctuality vary, but I am not likely to say that
unless I feel quite confident that I will arrive within about 5 minutes of 4 o’clock. If
my arrival depends on how heavy traffic is en route, I am more likely to say, “I will
be there about 4 o’clock,” a less precise statement, indicating that I might be 10 or
15 minutes early or late. If I envision still more imponderable interference with my
schedule, I might say, “I will be there sometime around 4 o’clock,” indicating still
less precision, perhaps between 3:30 and 4:30.

I could communicate similar messages by varying the confidence implied in my
statements. Instead of saying “I will be there about 4 o’clock,” I could say, “I will
probably be there at 4 o’clock.” The former statement encourages the listener to
think of a period of 20 minutes or so during which my arrival can be expected. The
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latter statement instead encourages the listener to imagine the precise moment of
4 o’clock, but not to have too much confidence that I will be present then. The
two statements convey very similar messages, but I might use them in different
contexts. If I am going to a meeting with a colleague, which will begin when I arrive,
I would say “I will be there about 4 o’clock,” thinking of the range of time during
which the meeting can be expected to begin. If, on the other hand, I am going to a
lecture scheduled to start at 4 o’clock whether I am there or not, I would say, “I will
probably be there at 4 o’clock,” imagining how likely it is that I will be present at the
precise time the lecture can be expected to begin. It is usually a trade-off between
speaking with precision and speaking with confidence. Other things being equal, the
more precision we speak with, the lower our confidence; and the more confidence
we speak with, the less precise our statements. Only in unusual circumstances am I
able to say, “I will be there at 4 o’clock sharp,” emphasizing that I am speaking with
both high confidence (“I will”) and high precision (“4 o’clock sharp”). At the other
end of the scale is both low confidence and low precision: “I’ll see if I can be there
sometime around 4 o’clock.”

The statistical statements we are making about the kind of population our sample
came from work in exactly the same way. We can either indicate very high confi-
dence that the population has a mean in a somewhat imprecise range of values or
indicate a population mean with greater precision but lower confidence that we’re
correct. Figure 9.8 continues the progression begun in Figs. 9.6 and 9.7. It illustrates
a still less precise statement, but one that can be made with great confidence. Almost
all the possible populations that a sample like ours (of 100 elements with a mean
of 3.35 cm and a standard deviation of 0.50 cm) could come from have means that
fall in the range between 3.20 cm and 3.50 cm. Very few of the possible populations
have means less than 3.20 cm or greater than 3.50 cm. It would be quite unusual to

Figure 9.8. The batch consisting of the means of the populations from which a sample of 100 with
a mean of 3.35 cm and a standard deviation of 0.50 cm might have come. Only a few means are
more than 3 standard errors from the sample mean.
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select a sample of 100 with a mean of 3.35 cm and a standard deviation of 0.50 cm
from a population with a mean less than 3.20 cm or greater than 3.50 cm. Thus it is
very unlikely that our sample came from a population with a mean less than 3.20 cm
or greater than 3.50 cm. It is very likely that our sample came from a population with
a mean between 3.20 cm and 3.50 cm. We could say, “The probability is very high
that the population our sample came from has a mean of 3.35cm± .15cm.”

PUTTING A FINER POINT ON PROBABILITIES
– STUDENT’S t

The notions of approximate probabilities we have been using thus far can be
extended to much more precise and useful ways of assessing probabilities on the
basis of how unusual a particular result would be in the context of all the possi-
ble results. We have used the approximate height of the normal curve (and thus the
shaded areas enclosed by it in Figs. 9.6, 9.7, and 9.8) to judge roughly how unusual
(and thus how improbable) it would be for our sample to have been selected from
populations with means falling in different ranges. These ranges of possible means
are called error ranges or confidence intervals. They are most often expressed as a
“±” quantity following the mean. Figure 9.6 illustrates an error range of ±1 stan-
dard error; Fig. 9.7 illustrates an error range of ±2 standard errors; and Fig. 9.8
illustrates an error range of ±3 standard errors. We concluded earlier that we are
very confident that the mean of the population our sample came from lies within
the ±3 standard error range (Fig. 9.8); we are fairly confident that the mean of the
population our sample came from lies within the ±2 standard error range (Fig. 9.7);
and we have only modest confidence that the mean of the population our sample
came from lies within the ±1 standard error range (Fig. 9.6).

The exact levels of confidence we have in these three statements of differing
precision can be found by calculating the exact areas “under the normal curve” in
Figs. 9.6, 9.7, and 9.8. Student’s t distribution provides us with these exact areas.
The key to use of Student’s t is in numerical indexes of level and spread (in this case
the mean and standard deviation) used to measure the unusualness of a particular
number in a batch. The relevant batch is the special batch, whose mean is the same
as the mean of our sample and whose standard deviation is the standard error of
our sample. (Be sure not to confuse the standard deviation of the sample or of the
population with the standard deviation of the special batch. The standard deviation
of the special batch is the standard error of the sample.) Student’s t, then, provides
a detailed description of the shape of the special batch for us to use.

Figure 9.7, for example, illustrates an error range (3.35cm±0.10cm) consisting
of 2 standard errors. We already recognized that it is very likely that the population
our sample came from has a mean that falls within this error range. Table 9.1 allows
us to say just what we mean by “very likely” in the following manner. First we
must determine the row of the table to use, based on the size of the sample. The
left-hand column indicates the degrees of freedom, which are equivalent to one less
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Table 9.1. Student’s t Distribution

Confidence 50% 80% 90% 95% 98% 99% 99.5% 99.8% 99.9%
.5 .8 .9 .95 .98 .99 .995 .998 .999

Significance 50% 20% 10% 5% 2% 1% .5% .2% .1%
.5 .2 .1 .05 .02 .01 .005 .002 .001

Degrees of freedom
1 1.000 3.078 6.314 12.706 31.821 63.637 127.32 318.31 636.62
2 .816 1.886 2.920 4.303 6.965 9.925 14.089 22.326 31.598
3 .765 1.638 2.353 3.182 4.541 5.841 7.453 1.213 12.924
4 .741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 .727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 .718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 .711 1.415 1.895 2.365 2.998 3.499 4.020 4.785 5.408
8 .706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 .703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 .700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.537
11 .697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 .695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 .694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 .692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 .691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 .690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 .689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 .688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 .688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 .687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 .686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 .686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 .685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 .685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 .684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
30 .683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 .681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 .679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 .677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
∞ .674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

(Adapted from Table 3 in Introduction to Contemporary Statistical Methods by Lambert
H. Koopmans (Boston, MA: Duxbury Press, 1987)
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than the number of elements in the sample (n−1). For the moment, we will just take
this notion of degrees of freedom (often abbreviated d. f .) on faith. For our sample,
n−1 = 99. There is no row corresponding exactly to 99 degrees of freedom, so we
will use the row for 120 d. f ., which comes closest. We are looking for the exact
level of confidence associated with an error range of 2 standard errors, so we read
across that row looking for 2. In the fourth column we find 1.98 (which we’ll take
as close enough to 2 for the moment).

The fourth column is headed 95% confidence. This means that 95% of the pos-
sible populations (represented by the shaded area “under the normal curve” in
Fig. 9.7) that our sample could come from lie within 1.98 standard errors of the
mean of our sample. Thus, when we say that it is “very likely” that our sample came
from a population with a mean of 3.35cm±0.10cm, what we mean more precisely
is that there is about a 95% probability that our sample came from such a popula-
tion. We are 95% confident that our sample came from a population with a mean of
3.35cm±0.10cm. We are not certain that our sample came from a population with
a mean of 3.35cm±0.10cm, but the probability that this is the case is 95%.

Since the probability that our sample came from a population with a mean
between 3.25 cm and 3.45 cm is 95%, the probability that it came from a popula-
tion with a mean less than 3.25 cm or greater than 3.45 cm is 5%. (This has to be
true since the probability that it came from one or the other of these groups is 100%.)
Since a normal shape is symmetrical, this 5% is evenly distributed in both “tails” of
the distribution. There is a 2.5% probability that our sample came from a population
with a mean less than 3.25 cm and a 2.5% probability that our sample came from
a population with a mean greater than 3.45 cm. When we provide an error range of
about 2 standard errors, then, as we have done here, we are speaking at a 95% con-
fidence level. This follows directly from the observation that a number that falls 2
standard deviations or more away from the mean in its batch is a very unusual num-
ber in terms of its batch. Specifically, only about 5% of the numbers in a normally
distributed batch fall this far from the mean.

Every error range (or confidence interval) expressed in terms of standard errors
corresponds to a specific confidence level. (The terms confidence interval and con-
fidence level are too close for comfort, considering that they refer to two rather
different concepts. Thus the term error range is used here in preference to confi-
dence interval.) An error range of ±3 standard errors, as illustrated in Fig. 9.8, cor-
responds to approximately 99.8% confidence. Reading across the row in Table 9.1
that corresponds to 120 d. f ., as we did before, and looking for 3 brings us to the
next-to-last column, where 3.160 is relatively close to 3. This column is headed
99.8% confidence. Thus when we concluded, on the basis of Fig. 9.8 that it is very
likely that our sample comes from a population with a mean of 3.35 cm ± 0.15 cm,
that “very likely” actually meant a probability of around 99.8%. There is only about
a 0.2% probability that the population our sample came from has a mean less than
3.20 cm or greater than 3.50 cm. Once again, since a normal shape is symmetrical,
that means about a 0.1% probability that the population our sample came from has a
mean less than 3.20 cm and about a 0.1% probability that it has a mean greater than
3.50 cm.
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Finding the confidence level associated with a 1 standard error range is a little
more difficult with Table 9.1. Reading across the row for 120 d. f ., and looking
for 1, we see values that skip from 0.677 to 1.289. The confidence level corre-
sponding to a 1 standard error range thus falls between these two columns. The
columns are headed 50% confidence and 80% confidence. For a large sample such
as this, the confidence level corresponding to a 1 standard error range actually is
about 66%.

ERROR RANGES FOR SPECIFIC CONFIDENCE LEVELS

In some circumstances when we express inferences about population means as error
ranges, we simply use 1 standard error as the error range. This has become the
normal practice with radiocarbon dates, to choose an example with which archae-
ologists are comfortable – even those most uneasy about statistics. The error ranges
given with radiocarbon dates are understood by convention to be 1 standard error
(and we are accustomed to calling them “error ranges” rather than the more statisti-
cally traditional “confidence intervals”). These ranges are arrived at by application
of precisely the principles we have just discussed to the sample of emitted subatomic
particles counted in the laboratory. We can thus apply exactly the same kinds of
statements we have just been making about radiocarbon dates. We are moderately
confident that the date of death of the carbon atom population from which came the
sample that decayed while in the laboratory counter falls within the 1 standard error
range specified. More accurately, the probability that the real date of the carbon falls
within that range is 66%. This still leaves quite a substantial risk that the real date
falls outside that range. If we double the usual range (to arrive at 2 standard errors),
we are stating the date less precisely (with an error range twice as large), but we
can be 95% confident that the real date falls within that larger range. These ranges,
of course, as we have all been warned since we first read introductory textbooks,
refer only to the risk of error resulting from the process of measuring the quantity
of carbon 14, and are in addition to whatever loss of confidence results from risks
like mistaken context, contamination, and the like.

It is worth noting that the standard practice widely accepted by archaeologists in
radiocarbon dating is an example of precisely the argument made in Chapter 7 and
earlier in this chapter for using samples not strictly randomly selected as a basis for
inferences about populations we are interested in. Radiocarbon date error ranges are
based on a random sample of carbon 14 atoms (those that decay while the specimen
is in the counter). But this sample is drawn from a population of carbon 14 atoms
rolled up in an aluminum foil packet in the field through no rigidly random sampling
procedure. And the inference made about that population of atoms on the basis of a
random sample from it is readily extended to characterize something much broader
than that aluminum foil packet. If we are responsible about it, we always bear in
mind the risks of mistaken context, contamination, and so on that might invalidate
the extension of that inference to the phenomenon we are really interested in, but
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we do not let the mere existence of such risks paralyze our use of a very powerful
dating technique. We can follow just such procedures with many other kinds of
samples as well – recognizing the possibility that they may be biased samples from
the populations we are really interested in, but that it is worth going ahead and
studying them anyway because the possibility of such bias may never be absolutely
eliminated.

The 1 standard error range, in any event, has considerable precedent behind it in
archaeology because it is the standard for radiocarbon dating. Sometimes an error
range of 2 standard errors is used when an author is willing to speak less precisely in
exchange for higher levels of confidence. Providing error ranges in this way has one
principal disadvantage. The corresponding confidence levels are not entirely self-
evident. We found earlier that, in the case of our example sample of 100 projectile
points, a 1 standard error range corresponds to about 66% confidence. In the same
case a 2 standard error range provides 95% confidence, and a 3 standard error range
provides about 99.8% confidence.

These confidence levels can be used as rules of thumb, but they do not hold
true if the sample under consideration is small. Suppose our sample had consisted
of only six projectile points. We would have needed to use the row in Table 9.1
for 5 d. f .(n−1). In this row, we find a t value of approximately 2 in the col-
umn corresponding to 90% confidence rather than the 95% confidence we found
before.

To provide error ranges at a fixed level of confidence irrespective of sample size
it is necessary to use the t table to determine exactly how many standard errors are
required for the desired confidence level. In the case of the sample of 100 projectile
points with a mean length of 3.35 cm and a standard deviation of 0.50 cm, we might
want to express our estimate of the mean projectile point length in the population
with an error range at the 90% confidence level. To do this we find the standard error
(as before):

SE =
σ√

n
=

0.50cm√
100

=
0.50cm

10
= 0.05cm

Then we use the t table (Table 9.1) to determine how many standard errors corre-
spond to 90% confidence for a sample of 100. For n = 100, d. f . = 99, so we use the
row for 120 d. f . The value in the column for 90% confidence is 1.658, which means
that for a sample of this size an error range of 1.658 standard errors corresponds to
a 90% confidence level. We thus multiply the standard error (0.05 cm) by 1.658 to
arrive at an error range of ±0.08cm. We then say that we are 90% confident that our
sample came from a population with a mean of 3.35cm±0.08cm. If our sample had
consisted of 12 projectile points instead of 100, we would have had to use the row
in the table for 11 d. f ., and we would have needed to use an error range of 1.796
standard errors instead of 1.658. Calibrating error ranges to a specific confidence
level in this manner eliminates any possible confusion arising from differing sample
sizes, and is generally to be recommended.
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Be Careful How You Say It

When you estimate the mean of a population on the basis of a sample and
provide an error range for the estimate, it is essential to specify the confi-
dence level as well. Virtually the only exception to this rule is for radiocarbon
dates where the convention of providing error ranges of ±1 standard error is
firmly established. The conclusion reached in the example discussed at length
in the text might, for example, be stated, “We estimate, on the basis of our
sample, that the projectile points used by the inhabitants of our region during
the one prehistoric period when the region was occupied had a mean length
of 3.35cm± .08cm (at the 90% confidence level).” Alternatively, we might
say, “Our sample indicates 90% confidence that the mean length of projectile
points in our region was 3.35cm± .08cm.” It is not incorrect to say, “Our sam-
ple indicates 90% confidence that the mean length of projectile points in our
region was between 3.27 cm and 3.43 cm.” It is probably better, however, to
express the error range as a ± figure associated with the mean. Stating only
the maximum and minimum values of the range encourages some people to
think that all values within that range are equally likely estimates, and that
values outside the range are not possible. We know, however, that the mean
itself is the single most likely estimate, and that there is some possibility that
the “correct” population value actually lies outside whatever error range is
expressed.

FINITE POPULATIONS

The example that we have used throughout this chapter involves a sample selected
from a large and vaguely defined population – an infinite population in statistical
terms. If the population is small and the sample is a substantial fraction of it, we can
take mathematical advantage of an observation that makes intuitive good sense as
well. It seems intuitively obvious that, if our sample of 100 projectile points comes
from a total population of 120 projectile points, then there is less uncertainty in our
estimate of the mean length in the population than if the sample of 100 comes from
an effectively infinite population of projectile points. In this case at least, what seems
true by common sense can be shown to be true mathematically as well. Whenever
the population is finite we can include the finite population corrector in the equation
for the standard error, thus:

SE =
σ√

n

√
1− n

N

where σ = the standard deviation in the population (represented by the standard
deviation in the sample as before), n = the number of elements in the sample, and
N = the number of elements in the population.
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This will be recognized as the same equation used before for the standard error
with the addition of the term

(√
1−n /N

)
. If the sample is a very large por-

tion of the population, the finite population corrector makes the standard error
smaller (hence the error range narrower and precision greater). For example, if
we select a sample of 100 from a population of 120, n = 100, N = 120, and√

1−n / N =
√

1− (100/ 120 = 0.408. Whatever the standard error would other-
wise have been in such an instance, the addition of the finite population corrector
makes it only. 408 as large (multiplies it by 0.408). On the other hand, if the sam-
ple of 100 is selected from a population of 10,000, n = 100, N = 10,000, and√

1−n / N =
√

1− (100/ 10,000 = 0.99. Multiplying whatever the standard error
would otherwise have been by 0.99 clearly has very little effect on it.

The question arises, then, of when to apply the finite population corrector and
when not to. It can always be applied when the number of elements in the population
is known. If the population is very large compared to the size of the sample, it will
not have much impact on the standard error. If you always use the finite population
corrector when N is known, however, it will do its work whenever the sample is a
large enough part of the population for it to make a difference. You cannot, of course,
apply the finite population corrector when you do not know how many elements are
in the population (that is, when the population is, for statistical purposes, infinite).

A COMPLETE EXAMPLE

The discussion of confidence levels and error ranges up to this point has made the
whole process seem much more involved and complicated than it really is. This
is a consequence of picking the process apart piece by piece to understand why it
works the way it does. It is now time to work through an example without all the
explanation to show that the procedure of estimating the mean of a population from
a sample is really pretty straightforward.

Imagine that we have selected a random sample of 25 bowl rim sherds from the
total of 53 bowl rim sherds recovered from a particular house in an excavated village
site. We wish to estimate the mean bowl rim diameter in the population of 53 rim
sherds on the basis of measurements made on the 25 rim sherds in the sample, and
we wish to state our estimate at the 95% confidence level. The measurements are
provided in Table 9.2. The stem-and-leaf plot in Table 9.2 confirms that the shape
of this batch is roughly single peaked and symmetrical (as least as much as can be
expected in a sample this small), so it seems reasonable to use the mean as an index
of the center.

The mean of the 25 measurements is 14.79 cm, so the most likely single value for
the mean rim diameter in the population of 53 rim sherds is 14.79 cm. The standard
deviation in the sample is 3.21 cm so the standard error is

SE =
σ√

n

√
1− n

N

=
3.21cm√

25

√

1− 25
53
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Table 9.2. Rim Diameter Measurements for a
Sample of 25 Rim Sherds

Diameter (cm) Stem-and-leaf plot

7.3
9.3

11.6
11.8 21 0
12.2 20
12.5 19 45
12.9 18 8
13.3 17 37
13.4 16 25
13.8 15 678
14.0 14 0489
14.4 13 348
14.8 12 259
14.9 11 68
15.6 10
15.7 9 3
15.8 8
16.2 7 3
16.5
17.3
17.7
18.8
19.4
19.5
21.0

X = 14.79cm
σ = 3.21cm

=
3.21cm

5

√
28
53

= 0.64cm
√

0.53

= 0.47cm

Since we need to state our estimate at the 95% confidence level, we must find the
value of t corresponding to the 95% confidence level and n−1 degrees of freedom.
In the row of Table 9.1 for 24 d. f . and the column for 95% confidence, we find the
t value 2.064. The error range we state, then, must be 2.064 standard errors. Since
the standard error is 0.47 cm, the error range becomes 2.064(0.47cm) = 0.97cm.
We can thus state that we are 95% confident that the mean rim diameter for the 53
sherds recovered from this house is 14.79cm±0.97cm.
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HOW LARGE A SAMPLE DO WE NEED?

If we know just what we need to find out before we select a sample, we are in
position to determine how large a sample we need in order to achieve our objective.
We accomplish this by applying the same reasoning used throughout this chapter,
but doing it backward. That is, we decide in advance what confidence level we wish
to speak at and how large an error range is acceptable. Then we determine how large
a sample will be needed to meet those goals. The one quantity we must guess at is
the likely magnitude of the standard deviation in the sample. Such a guess can be
difficult to make in practice although it might be based on study of similar known
samples.

For example, suppose we wish to estimate the mean thickness of sherds at a
site with an error range no more than ±0.5mm at a confidence level of 95%. We
have measured sherd thicknesses before for collections from a number of sites in
the region, and we find that the standard deviation in a sample of sherds is usually
somewhere around 0.9 mm. We are willing to take the sherds visible on the surface
to represent the sherds present in the site, and we want to send our field assistant to
collect a sample of sherds randomly from the surface of the site. So as not to waste
time, we would like to say in advance just how large a sample will be necessary.
The error range (ER), of course, is t times the standard error, or

ER = t

(
σ√

n

)

If we solve this formula for n, we get

n =
( σ t

ER

)2

We have previously found the standard deviation in such samples to be about
0.9 mm, so we can use this value for σ . Since we do not yet know the sample size,
we will use the row of Table 9.1 for ∞ d. f . to obtain a t value of 1.960 for a 95%
confidence level. We want ER to be 0.5 mm. Thus

n =
(

(0.9mm)(1.960)
0.5mm

)2

=
(

(1.764mm)
0.5mm

)2

= 3.5282

12.447

We would tell our field assistant to select a sample of 12 or 13 sherds.
To show that this approach works, assume our field assistant returned with a

sample of 13 sherds with a mean thickness of 7.3 mm and a standard deviation of
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The Sample Size, the Sampling Fraction, and Rules of Thumb

The equations we have used in this chapter make clear that sample size is
a very important issue. By sample size, statisticians ordinarily mean n, the
number of elements in the sample. They do not nearly so often find it useful to
think of sample size in terms of the sampling fraction (n /N, the fraction of the
population included in the sample). They do not find it useful in the first place
because so often samples are drawn from infinite populations (at least ones
that are large and not enumerated). If we do not know how many elements
are in the population we are sampling from, we clearly cannot begin to say
what the sampling fraction is. In the second place, the number of elements in
the sample has much greater impact on the results of our calculations than the
sampling fraction has. (If you do not believe this, try some experiments with
the equations in this chapter, and you will see that it is true.)

This means that when we begin to think about whether a sample is adequate
for achieving our aims we must think less in terms of sampling fraction and
more in terms of the number of elements in the sample. This shows one of
the widespread pieces of conventional wisdom about sampling in archaeology
to be a serious misconception. It has often been suggested that a good rule of
thumb in sampling is to select a 5% sample. The principles discussed in this
chapter make it quite clear that this is not a good rule of thumb. Sometimes a
5% sample will be insufficient; other times it will be far more than necessary;
if the population is of undetermined size it will be inconceivable.

0.9 mm (as expected). The error range for a 95% confidence level would be

ER = t

(
σ√

n

)

With a sample size of 13, we find that t for 12 d. f . and 95% confidence is 2.179, so

ER = 2.179

(
0.9mm√

13

)

= 2.179

(
0.9mm
3.606

)

= 2.179(.250mm)
= 0.54mm

Thus we would conclude that the mean thickness of sherds at the site in question
is 7.3mm± 0.5mm at the 95% confidence level. We have achieved our goal of
estimating the thickness with an error range of no more than about 0.5 mm at the
95% confidence level.
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Thinking about the confidence and precision we need in making specific esti-
mates is one sound way to approach the always vexing question of how large a
sample is needed. Following this approach, of course, requires deciding specifically
what we want to find out, how precise our results need to be, and how confident
we want to be of our conclusions. These parameters are not absolutes. They vary
from one situation to the next. What is sufficient precision in one context may be
hopelessly imprecise in another. And what is sufficient confidence for some pur-
poses may be altogether inadequate for others. If we cannot state our aims clearly
enough to at least approximate how large a sample may be needed to achieve them,
however, it is probably premature to be selecting a sample. We should go back and
think harder about exactly what we are trying to find out.

ASSUMPTIONS AND ROBUST METHODS

The use of most of the tools discussed in this and subsequent chapters requires
making some assumptions. These will be discussed at the close of each chapter.
Most of the techniques are already fairly robust. That is, they can be applied to
samples that only approximately meet the assumptions. And there are things we can
do even with samples that violate the assumptions drastically.

Once we have decided that we are willing to treat a batch of numbers as a random
sample from a larger population we wish to know about, the only assumption we
must make in order to estimate the population mean and attach error ranges to it
in the manner described here is that the special batch must have an approximately
normal distribution. The central limit theorem tells us that this will always be the
case for large samples (that is, larger than 30 or 40 elements). When working with
a smaller sample, it is wise to look at the stem-and-leaf plot to check for a roughly
symmetrical and single-peaked shape. If a small sample has a single-peaked and
roughly symmetrical shape, then we can count on its special batch to have a normal
shape. If a small sample has a badly skewed shape we might try to correct this with
transformations, but this is not very useful for estimating means because we would
wind up estimating something like the mean of the logarithm of the measurement
in the population, and such a quantity is not very easy to relate to what we want to
know.

Looking at a stem-and-leaf plot should always be the initial step anyway, even
with a large sample. This is because the sample might have outliers or a badly
skewed shape that would make the mean and standard deviation meaningless as
numerical indexes of level and spread, as discussed in Chapters 2 and 3. If a sample
has outliers or a badly skewed shape, then the population the sample was selected
from probably does too. In such a case, the mean will likely not be a good index
of center for the population, and is thus not what we want to estimate. If the prob-
lem is outliers, the trimmed mean is a better index of the center. If the problem is
skewness, then the median is a better index of the center. In such cases, it makes
sense to estimate, not the regular mean of the population, but the trimmed mean or
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the median of the population instead. Estimating the trimmed mean is dealt with
below because it is a natural extension of estimating the mean, which we have just
discussed. Estimating the median requires such a different approach that it is left for
a separate chapter.

The best estimate of the trimmed mean of the population is simply the trimmed
mean of the sample. Error ranges for different confidence levels can be provided
for this estimate of the trimmed mean of the population following exactly the same
procedures used to provide error ranges for estimates of the regular mean. The only
difference is that, instead of using the sample size, the mean, and the standard devi-
ation, their values are replaced in all equations with the trimmed sample size, the
trimmed mean, and the trimmed standard deviation. Otherwise, everything about the
calculations remains the same.

Table 9.3 lists a small sample of projectile point weights. The stem-and-leaf plot
shows upward skewness and/or high outliers. The mean of this sample is 47.45 g,
which falls too far above the center of the principal bunch of values to be a very
useful index. If the sample is like this, the population probably is too. The trimmed
mean would be a much more meaningful index of the center of such a shape. A
15% trimming fraction would eliminate the three high outliers which are causing
most of the difficulty. The 15% trimmed mean, then, is 37.9 g, which falls where an
index of the center of this batch should fall. The variance of the Winsorized batch

Table 9.3. Weights of a Small Sample of
Projectile Points

Weight (g) Stem-and-leaf plot

96
37 15 6
28 14
34 13
52 12
18 11
21 10 8
39 9 6

156 8
43 7
44 6
19 5 25
30 4 347

108 3 014799
55 2 1488
24 1 89
28
47
39
31
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Be Careful How You Say It

If you estimate the trimmed mean for a population rather than the regular mean,
you must make it very clear what you’ve done. Be sure to refer to what you’ve
estimated as the “trimmed mean,” never just the “mean,” and specify the trim-
ming fraction as well. Just as with estimates of the regular mean, the confidence
level for which the error range was calculated must be given too. For the exam-
ple in the text, we might say, “On the basis of our sample, we estimate that the
15% trimmed mean weight of projectile points is 37.9g± 8.2g at the 95%
confidence level.”

is 137.19, so the trimmed standard deviation is 14.16 (see Chapter 3). The standard
error, then, is

SE =
σ√

n
=

14.16√
14

= 3.8g

For an error range at the 95% confidence level, we would multiply the standard
error by the value of t for 13 d. f .(nT −1). The 95% confidence error range, then,
is ±8.2g (that is, 3.8× 2.160). Estimating the trimmed mean instead of the regu-
lar mean for this population is not only more meaningful (it avoids the effects of
the high outliers) but also more precise. The error range for 95% confidence that
we would have to provide for an estimate of the regular mean would be ±16.1g.
This is because the outliers that are eliminated by trimming would cause the regular
standard deviation of the sample to be quite large. Consequently the standard error
and the 95% confidence error range would be quite large as well. Estimating the
trimmed mean, then, pays off double in this instance – it is a more sensible index
of the center for these numbers, and its estimate comes with a much smaller error
range.

PRACTICE

1. You have tested a newly reported neolithic site at Châteauneuf-sur-Loire. You
decide that you are justified in working with the artifacts from your test pits as if
they were a random sample of the utilized flakes in the site. The lengths of the
flakes are given in Table 9.4. Estimate an appropriate numerical index of center
for length of utilized flakes in the site on the basis of this sample. Provide an error
range for this estimate at the 95% confidence level. State in one clear sentence
what this estimate and its error range mean.

2. You decide that the estimate that you have made for utilized flake length at
Châteauneuf-sur-Loire is not precise enough. You would like an estimate with
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Table 9.4. Lengths (in cm) of 40 Utilized Flakes
from Châteauneuf-sur-Loire

4.7 6.8 3.5 5.9 6.5
4.1 6.2 6.0 7.8 8.8
8.0 9.3 8.3 8.1 7.4
3.2 6.9 5.5 4.3 8.5
9.7 7.3 4.3 4.7 6.3
7.5 4.5 4.8 3.0 7.0
5.7 3.9 5.6 6.1 5.3
5.0 5.4 6.1 5.1 2.6

Table 9.5. Diameters (in m) of 44 Mesolithic
Hearths at Berwick-upon-Tweed

0.91 0.75 1.03 0.82 2.13
0.51 0.80 0.66 0.93 0.66
0.76 0.90 0.76 0.95 0.62
1.64 0.58 0.96 0.56 1.93
0.85 0.60 0.74 0.78 0.68
0.88 0.70 0.64 0.89 0.80
0.72 2.47 0.62 0.98 0.74
0.77 0.84 0.86 1.08 0.93
0.69 1.00 0.84 0.83

Table 9.6. Zinc (in Parts Per Million) for 14 Obsidian
Blades from a Prehistoric House at Huancabamba

53 49 41 59 74
37 66 33 48 57
60 55 82 22

an error range for 95% confidence that is only half as large as the one you just
calculated, so you return to the site for more fieldwork in order to obtain a larger
sample. How large a sample of utilized flakes will you need to achieve your aim?

3. You have excavated a mesolithic site at Berwick-upon-Tweed and found a
remarkable number of well-formed hearths. Their diameters are given in
Table 9.5. Using this set of hearths as a random sample of hearths at the site,
estimate an appropriate numerical index of center for hearth diameters at the site
as a whole. Provide an error range for this estimate at the 99% confidence level.

4. You have excavated the complete and well-preserved remains of a single prehis-
toric household at Huancabamba, and the artifacts recovered include 37 obsidian
blades. In order to compare this assemblage with others and with different obsid-
ian raw material sources, you wish to know the mean zinc content in the chemical
composition of these 37 blades. Since zinc occurs in very small amounts, it is
quite expensive to measure, so even though the entire assemblage is small, you
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treat it as a population from which you select a random sample of 14 blades to
analyze. The quantity of zinc found in each blade (in parts per million) is given
in Table 9.6. Estimate the mean number of parts per million of zinc in the popula-
tion of 37 blades. Provide an error range for your estimate at the 90% confidence
level. State the meaning of this estimate and its error range in a single clearly
constructed sentence.
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Classical statistical theory provides powerful tools for estimating population means
from samples and for establishing error ranges for desired confidence levels, and
these were presented in Chapters 8 and 9. If outliers in a sample interfere with
using the mean, the same tools can be applied to estimate the trimmed mean. If the
asymmetrical shape of a sample (skewness) interferes with using the mean, trans-
formations can be applied as a correction, and this makes it possible to proceed with
significance testing, as we will see in Chapters 11–15. While this works fine for sig-
nificance testing, it puts the measurements on a scale that is not intuitive and makes
it difficult to talk about them straightforwardly. It would just not be at all easy to
talk meaningfully about estimates of, say, the mean logarithm of site area in two
periods. The median may be a more useful index of center in such a case, and the
best estimate of the median in a population is the median in the sample. There is,
however, no abstract theoretical basis for establishing error ranges for this estimated
median at any particular confidence level because there is no theoretical way to
determine the center, spread, or shape of the special batch (or sampling distribution)
of the median as there is for the mean. The contribution of exploratory data analy-
sis to this difficulty was to recognize that the special batch can be approximated by
resampling, or repeatedly selecting samples from the sample itself.

The back-to-back stem-and-leaf plot of Early and Late Classic period site areas
in Table 10.1 provides a prime example. The 113 Early Classic site areas range
from less than 1 ha to 211 ha, and the 95 Late Classic ones from less than 1 ha to
101 ha. As is often the case with site areas, these batches straggle upward, and some
of the higher values in at least the Early Classic batch might well be identified as
outliers. Although the very largest sites occurred in the Early Classic, if we focus
on the main bunch of numbers we see that in general it is Late Classic sites that are
somewhat larger. The change is not dramatic, but it shows in the box-and-dot plot
in Fig. 10.1. The median, the lower and upper quartiles, and the extreme adjacent
values are all higher for the Late Classic. High outliers, however, are less numerous
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Table 10.1. Back-to-Back
Stem-and-Leaf Plot of Early and Late

Classic Period Site Areas

Early Late

1 21
20
20
19
19
18
18
17
17
16
16
15

4 15
14
14
13

0 13
12
12
11

4 11
9 10

10 1
9 59

03 9 3
8

33 8
9 7 556

7 34
5557 6 588
2234 6 000
7889 5 5667

00244 5 00123
567899 4 566889

01112233 4 0012233
566789 3 556679

00112344 3 001344
555567889 2 55667889
02222344 2 00112234
55567788 1 55677788999

001111112234 1 0122344
566666677888999 0 67888899

001134 0 0344
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Figure 10.1. Box-and-dot plots comparing Early and Late Classic period site areas.

and less extreme in the Late Classic. These are exactly the circumstances in which
the mean is likely to be misleading, and this is indeed the case. The mean site area
for Early Classic is 36.3 ha; for Late Classic, it is 35.7 ha, suggesting that the center
of the batch has shifted down, not up. For both batches, the mean is higher on the
scale than the visible center of the batch in the stem-and-leaf plot. Just as we might
expect, the median provides a better index of center for both batches. The median
site area for Early Classic is 28.2 ha; for Late Classic, it is 30.6 ha, showing the
upward shift that we see in the stem-and-leaf and box-and-dot plots. For summing
up the comparison, then, it is satisfying to say that the median site area has increased
from 28.2 ha to 30.6 ha.

If these two batches of measurements are to be taken as samples from the popula-
tions we really need to talk about, however, we may want to make estimates for the
population with error ranges at a particular confidence level. As we have seen, using
the mean is unsatisfactory. The trimmed mean would be an improvement, especially
in removing the numerous outliers from the Early Classic batch, but the real problem
would still remain, since it concerns the fundamental shape of both batches, which
is skewed upward. Transformations would make significance testing possible, but it
would lead to an unwieldy comparison of, say, the negative reciprocals of site areas
between the two periods. Resampling makes it possible to put error ranges with the
medians in a case like this.
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THE BOOTSTRAP

The most commonly used resampling technique is the bootstrap. It consists of
taking the sample batch as if it were a population and repeatedly selecting new
samples from the sample. The new samples are selected randomly and typically are
samples of the same size as the original sample batch. They differ from the origi-
nal sample batch only in that sampling with replacement will produce new samples
that vary by randomly omitting different cases and including other cases multiple
times. In performing the bootstrap, at least 1,000 resamples are usually selected.
The median of each resample is found, and a batch accumulates that consists of the
medians of all the resamples. This batch can be used to accomplish the same thing
that the special batch makes it possible to do for means. That is, it can be treated as
the sampling distribution of the median.

When estimating the mean, we know that the special batch has a normal shape
(as long as the sample is more than 30 or 40), and we can calculate its mean and its
standard deviation. Then, with the mean and standard deviation of the special batch,
we can figure out how unusual it would be to get a sample like the one we have
from a population with a mean rather different from the mean of our sample, as we
saw in Chapters 8 and 9. The special batch for the median, however, consisting of
the medians of all the resamples cannot be counted upon to be single peaked and
symmetrical. In fact, for medians, it is almost always very asymmetrical and often
has multiple peaks. The histogram in Fig. 10.2, for example, shows the distinctly
two-peaked and asymmetrical shape of the batch consisting of the medians from

Figure 10.2. Histogram of the site area medians for the 10,000 resamples from the Early Classic
period sample.
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10,000 resamples from the Early Classic site area batch from Table 10.1. The mean
and standard deviation would be poor indexes of center and spread for this batch, so
they would not provide us with a useful approach to unusualness within the batch.
The median of this batch of 10,000 resample medians, though, is 28.2 ha, the same
as the median of the original sample and a good index of the center of the special
batch as well.

We saw in Chapter 4 that percentiles, familiar to students from the reports of
standardized tests, are a way of characterizing unusualness, and it is percentiles
that provide the most useful way to approach unusualness in a very non-normal
batch like the one in Fig 10.2. This special batch can be taken to represent the set of
medians of populations our sample might have come from. In order to find an error
range for, say, a 90% confidence level to attach to the median of 28.2 ha, we would
look in this batch of 10,000 resample medians for the 5th and 95th percentiles. That
is, the middle 90% of resample medians would represent the range within which
we would be 90% confident that the median of the population lies. We would, then,
want to find the number below which 5% of the medians fall, and the number above
which 5% of the medians fall, leaving 90% of the resample medians between these
two numbers. Since 5% of the 10,000 medians would be 500, we would want the
500th and 9,500th numbers in the batch (either counting up from the lowest or down
from the highest). For this special batch these two numbers are 24.6 and 35.0 ha.

Finally, then, we would estimate the median site area for the innumerably large
population of all Early Classic sites in our region as 28.2 ha. And we would be
90% confident that the median in this population lies between 24.6 ha and 35.0 ha.
As is usual with bootstrapped error ranges for the median, the error range is not
symmetrical. It runs from 3.6 ha below the median of 28.2 ha to 6.8 ha above it and
thus cannot be expressed as a ± figure. An error range for any particular confidence
level can be determined by selecting appropriate percentiles. An error range for the
95% confidence level lies between the 2.5th and 97.5th percentiles; for the 98%
confidence level, between the 1st and 99th percentile; and for the 99% confidence
level, between the 0.5th and 99.5th percentile.

Statpacks

Resampling approaches like the bootstrap have been somewhat slow to appear
in statpacks, but their presence is getting more common. Finding an error range
for the median with the bootstrap is still likely, however, to involve more than
simply selecting that option from a single menu. It may involve choosing an
option to perform resampling, selecting the bootstrap as the resampling tech-
nique to be used, setting how many resamples are to be chosen (usually at least
1,000), and specifying that the median is the desired statistic. The statpack is
then likely to save the medians from all the resamples in a new data file, within
which you will need to find the appropriate percentiles to establish the size of
the error range for the desired confidence level.
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The bootstrap may seem as magical a notion as pulling yourself up by your
bootstraps, and that is exactly how it got its name. It does not derive from abstract
mathematical logic. Repeated experimentation, however, has shown that the boot-
strap provides a very good assessment of error ranges for different confidence levels.
It can be used to find error ranges for means, too, even though the classic theoreti-
cally derived approach makes this unnecessary. For example, the mean of the batch
of Early Classic site areas is not a very good index of center, as noted earlier, but it
can be estimated for the population this sample comes. If we do this by the standard
approach discussed in Chapter 9, we estimate that the mean Early Classic site area
in the population is 36.3ha±60ha (at the 95% confidence level).

If we make this estimate by bootstrapping, we produce a batch consisting of the
means of 10,000 resamples. This special batch is single peaked and symmetrical,
just as the central limit theorem tells us the special batch of the mean should be for
a sample this large. The mean of the 10,000 resample means is 36.3 ha, providing
us with exactly the same estimated mean for the population as classical theory did.
Since the batch is single peaked and symmetrical, we can use the mean and standard
deviation to deal with unusualness, and again we arrive at an error range of ±6.0ha
for the 95% confidence level. The two results will not always agree this perfectly.
Rounding error and other factors will produce slight variations if the calculations
are carried out to enough decimal digits of precision, just as will happen if the exact
same calculation is done on calculators operating at different levels of precision.

In addition to the bootstrap, there is a second resampling approach, called the
jackknife. The jackknife is just like the bootstrap except that the resamples are
selected slightly differently. Instead of selecting, with replacement, a large number
of resamples the same size as the original sample, jackknife resamples are produced
by omitting each case from the original sample in turn, one by one. Thus the resam-
ples are smaller by one case than the original sample, and there are only as many
of them as there are cases in the original sample. The jackknife is somewhat less
robust than the bootstrap and less often used.

PRACTICE

1. Look back at the data on Late Bronze Age sites from Nanxiong in Table 3.5. In
the practice questions there, you will have recognized that this batch is asymmet-
rical and not suitably characterized by the mean. The median, however, provides
a good index of center for it. Treat this batch of site areas as a sample from a
larger population of Late Bronze Age sites, and estimate the median site area in
that population. Use the bootstrap to provide an error range for your estimate at
the 90% confidence level. State in one clear sentence what this estimate and its
error range mean.
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Chapters 7–10 dealt with making estimates about a population on the basis of a
sample when the observation of interest was a measurement whose mean or median
in the population we wished to estimate. In Chapter 6 we discussed a different kind
of observation, one based on categories rather than measurements. If the observation
of interest involves a set of categories rather than a measurement, it of course makes
no sense to think in terms of the center of a batch or its spread. Rather, we approach
the batch in terms of proportions. When we observe categories in a sample, then, our
basic thought about the population from which the sample was selected concerns the
proportions of the different categories in the population, not the mean or median of
anything.

The estimation of a population proportion on the basis of a sample is quite similar
to the estimation of a population mean on the basis of a sample, so in this chapter we
will treat proportions as an extension of the principles applied to means in the previ-
ous three chapters. Suppose that we examine the raw materials used to manufacture
the projectile points in the sample of 100 projectile points discussed in Chapter 9.
We may find that, of the 100 points, 13 are made of obsidian. Since the number in
the sample is 100, the proportion of points made of obsidian in the sample is 13/100
or 13.0%. What does this tell us about the large and vaguely defined population that
the sample of 100 points came from? Just as with means, the sample proportion is
the likeliest single value for the proportion in the population from which the sample
was selected. Thus, the best estimate of the population proportion, based on this
sample, is 13.0%.

Just as it is possible that a sample may have a different mean than the popu-
lation it came from, it is possible to select a sample with a proportion of 13.0%
obsidian projectile points from a population with a proportion of obsidian projectile
points different from 13.0%. Thus we would like to attach an error range for a given

R.D. Drennan, Statistics for Archaeologists, Interdisciplinary Contributions
to Archaeology, DOI 10.1007/978-1-4419-0413-3 11,
c© Springer Science+Business Media, LLC 2004, 2009

139



140 CHAPTER 11

confidence level to this estimate just as we did to estimates of population means.
We can use the standard error for this purpose in the case of proportions as well.
The only difficulty is that calculation of the standard error of the mean was based
on the standard deviation in the sample, and there is no obvious intuitive meaning
to the concept of the standard deviation of a proportion. It can be shown mathemat-
ically, however, that there is a very simple equivalent of the standard deviation for
proportions:

s =
√

pq

where s = standard deviation of the proportion, p = the proportion expressed as a
decimal fraction, and q = 1− p.

In our example, the proportion of obsidian projectile points in the sample,
expressed as a decimal fraction, is 0.130 and q = 1− p = 1−0.130 = 0.870. Thus

s =
√

pq =
√

(0.130)(0.870) =
√

0.1131 = 0.3363

This standard deviation of a proportion does connect in a commonsense way with
the standard deviation of the mean. We know that a small standard deviation
indicates a batch with a small spread, and that such a batch can also be called
highly homogeneous. A homogeneous batch with regard to proportions would be
a batch with a very large (or very small) proportion of the category of interest.
If 99% of the projectile points were made of obsidian, this very homogeneous
batch would have a low standard deviation:

√
pq =

√
(0.99)(0.01) =

√
0.0099 =

0.0994. A batch with 1% obsidian and 99% nonobsidian projectile points would,
of course, yield the same result. The most heterogeneous possible batch in this
regard would have 50% obsidian projectile points, and its standard error would be√

pq =
√

(0.50)(0.50) =
√

0.2500 = 0.50. The more heterogeneous batch thus has
the larger standard deviation, just as it should.

This standard deviation is used in calculating the standard error by exactly the
same procedure used for means. Since σ , the population standard deviation, is
unknown, we use the sample standard deviation, s, in the equation

SE =
σ√

n
=

0.3363√
100

=
0.3363

10
= 0.03363

The standard error of the proportion in our example, then, is 0.034 or 3.4%. We can
use this as a 1 standard error range attached to the estimated proportion and say that
the population proportion is 13.0% ± 3.4%, or between 9.6% and 16.4%. As usual
with a 1 standard error range, we would be about 66% confident that the proportion
in the population our sample was selected from fell between 9.6% and 16.4%.

To adjust the error range thus obtained to the specifically desired confidence
level, we would use Student’s t distribution (Table 9.1) to determine t for the given
number of degrees of freedom and confidence level and multiply the standard error
by that value. To adjust the error range in this example to a 95% confidence level, we
would use the row in Table 9.1 for 120 d. f . (the closest available to n−1 = 99 d. f .)
and find in the 95% confidence column that t = 1.98. Multiplying the standard error
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by 1.98 yields (0.034)(1.98) = 0.067. Thus, at a 95% level of confidence, we would
estimate that the proportion of obsidian projectile points in the population from
which our sample was selected is 13.0% ± 6.7% (or between 5.3% and 19.7%).
This means, of course, that there is only a 5% chance of selecting a sample like ours
(that is, a sample of 100 with a proportion of 13.0% obsidian projectile points) from
a population with a proportion of obsidian projectile points less than 5.3% or greater
than 19.7%.

The finite population corrector can be applied to the calculation of the standard
error of a proportion just as with a mean. For example, suppose that in the complete
excavation of a village site occupied for a relatively short period of time, we identify
the remains of 24 houses. In the cases of 17 of the 24 houses, the remains are well
enough preserved to enable us to determine the locations of the entrances. Of these
17 houses, 6 had their entrances facing south. After careful consideration of possible
sources of bias, we decide that we will treat the 17 houses as a random sample from
the population of 24 houses originally built at the site. We thus estimate that 6/17, or
35.3%, of the houses at the site had their entrances facing south. The standard error
of this proportion will be

SE =
σ√

n

√
1− n

N

where σ = s =
√

pq.
Thus,

SE =
√

pq√
n

√
1− n

N
=

√
pq
n

(
1− n

N

)

=

√(
(0.353)(0.647)

17

)(
1− 17

24

)

=
√

(0.0134)(1−0.7083)
= 0.0625

If we wish to speak at a 90% confidence level, then we multiply this standard error
by 1.746 (t for 90% confidence and 16 d. f . is 1.746 according to Table 9.1) to get
an error range at the 90% confidence level of 0.1091. We can thus conclude that,
of the 24 houses at the site, 35.3% ± 10.9% (or between 24.4% and 46.2%) had
their entrances facing south. Since this is a finite population we can also convert
this estimated proportion (and its attached error range) into numbers of houses for
the entire population. Multiplying the lower extreme of the error range (24.4%) by
the number of houses in the population (24) gives us 5.9 houses, and multiplying the
upper extreme of the error range (46.2%) by the number of houses in the population
(24) gives us 11.1 houses. Thus we can say that we are 90% confident that some 6 to
11 houses at the site had their entrances facing south.

In this example, the sample – and, for that matter, the population from which it
was selected – is so small that these statistical results may not seem very helpful.
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After all, we already knew there were at least six houses with their entrances fac-
ing south; there were 6 known south-facing entrances in the sample. And we knew
there could not be more than 13 south-facing entrances. There were only 7 houses
whose entrances were undocumented. If they all faced south, together with the 6
in the sample, that would make 13. If we already knew that the number of houses
with south-facing entrances had to be between 6 and 13, what have we gained by
saying that we have 90% confidence that the number of houses with south-facing
entrances at this site is between 6 and 11? More than anything else, we have gained
an awareness that our sample is quite small for saying anything very precise about
the overall population with much confidence. For at least some purposes, this sam-
ple would simply be too small to tell us what we need to know, even though it
was a 71% sample. (A sample of 17 houses represents 71% of the population of 24
houses.) A sample of 17 is, in statistical terms, a very small sample, no matter how
large a proportion of the population it is. If we are working with a sample this small,
there is an uncomfortably large risk that whatever proportions we find in it may be
quite different from the proportions in the population from which it was selected.
Whatever conclusions we derive from this sample about the population from which
it was selected cannot be terribly precise or certain, even though they still do con-
stitute our best guess about the population as a whole. Calculation of an error range
for a specified confidence level, in this case, tells us that our best guess really is not
very good, and that is important to know before we go on to use this observation as
evidence for or against someone’s theory.

HOW LARGE A SAMPLE DO WE NEED?

We can also put such knowledge to use in considering in advance roughly how large
a sample we may need for a particular purpose, just as we can when estimating
population means. The equation is the same:

n =
( σ t

ER

)2

and we use
√

pq for σ just as we did above. For example, suppose we wish to
know how large a random sample of sherds we must collect from a site in order to
estimate the proportions of the various pottery types in its ceramic assemblage with
error ranges no wider than ±5% at the 95% confidence level. We must make some
guess at the proportions we may actually need to estimate in order to arrive at σ . If
we have no idea, then we can use the most conservative guess of 50% since error
ranges turn out to be widest when the proportion is 50%. To the extent that the actual
proportions we get differ from 50%, then the error ranges will be even narrower than
we require. Using 50%,

√
pq =

√
(0.50)(0.50) = 0.50, so we use 0.50 for σ . The

value of t for 95% confidence and ∞ d. f . (since we do not yet know what n will be)
is 1.96. Thus
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n =
(

(0.50)(1.96)
0.05

)2

= 384.16

We should, then, collect a random sample of some 384 sherds.
If we do so, and discover that 192 of the sherds are of a particular ceramic type,

then that type represents 192/384 or 50.0% of the sample. We estimate that the type
comprises 50.0% of the total ceramic assemblage at the site (the population from
which the sample was selected). The standard error of this proportion is

SE =
σ√

n

and we use
√

pq for σ . Thus

SE =

√
(0.50)(0.50)√

384

0.50
19.5959

= 0.0255

For an error range at the 95% confidence level, we multiply this standard error by
the value of t for 95% confidence and ∞ d. f ., since 383 d. f . falls far beyond 120, the
last row of Table 9.1 before ∞. The 95% confidence level error range, then, is 1.96
standard errors: 0.050 or 5.0%. Thus we estimate that this ceramic type composes
50.0% ± 5.0% of the sherds at the site, and we have achieved the level of confidence
and the precision that we required of our sample.

If another pottery type was represented by only 14 sherds in the sample, then we
would estimate that it makes up 3.6% of the sherds at the site. In this case we would
achieve greater precision at the same level of confidence because the standard error
for this smaller proportion would be smaller:

SE =

√
(0.036)(0.964)√

384
=

0.1863
19.5959

= 0.0095

Multiplying this standard error of 0.0095 by t for ∞ d. f . and 95% confidence yields
(0.0095)(1.96) = 0.019 or 1.9%. We could conclude with 95% confidence that this
second pottery type represented 3.6% ± 1.9% of the ceramic assemblage at the site.

The difficulties of outliers and asymmetrical shapes that sometimes pose prob-
lems in the analysis of measurements and in the estimation of population means
simply do not arise with categories and the estimation of population proportions.
Thus it is not necessary to consider robust methods here.

PRACTICE

1. In systematic surface collection at the site of Mugombazi you recovered 342
flaked stone artifacts. After careful consideration of possible sources of sampling
bias, you decide you will take these 342 as a random sample of the flaked stone
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in the site. Of the 342 flaked stone artifacts in the sample, 55 are identified as
gravers. Estimate the proportion of gravers in the flaked stone assemblage at the
site. Provide an error range for your estimate at the 99% confidence level. In one
clearly constructed sentence, express this estimate, providing all the information
your reader would need to know to make full use of it.

2. Not far south of Mugombazi lies another extremely large lithic scatter at Bwana
Mkubwa. You intend to make a surface collection in such a manner as to have a
random sample of the flaked stone at the site. Your aim is to estimate the propor-
tions of different categories of flaked stone artifacts in the overall flaked stone
assemblage, and you want estimates for which the error ranges (at a 90% confi-
dence level) are never more than ±5%. How large a sample of artifacts should
you select?

3. You proceed to Bwana Mkubwa and make the surface collection as planned
(except, of course, for the incident with the rhinoceros). To keep your mind off
the pain, and to kill time while waiting in the emergency room, you have an initial
look at the artifacts. It turns out that fully 45% of the flaked stone in the sample
consists of debitage. Estimate the proportion of debitage in the flaked stone of
the site as a whole. Provide an error range for your estimate at a 90% confidence
level. State your results in a single clear sentence. Is the error range at least as
small as the ±5% you wanted? If not, go back, figure out what went wrong, and
try again. (This time, please watch out for the wildlife.)
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Up to now we have concentrated on single batches of numbers and on using single
batches of numbers as samples for purposes of making inferences about the popu-
lations from which they were selected. The principles discussed in Chapters 7–11,
however, can also be applied to the task of comparing batches, which we began to
explore in Chapter 4.

Figure 12.1 compares two batches of numbers. These batches are the areas (in
square meters) of house floors for two periods (Formative and Classic). After careful
consideration of possible sources of bias we decide to work with these two batches
as if they were random samples, taking each as a sample of house floors for its
period. The sample for the Formative period consists of 32 house floors, and the
sample for the Classic period consists of 52 house floors. We begin to explore the
two samples with a back-to-back stem-and-leaf plot at the left in Fig. 12.1. This
plot reveals that both samples are single peaked and symmetrical enough that the
mean would be a useful index of their levels. Neither is a perfect single-peaked and
symmetrical shape, but both are quite as single peaked and symmetrical as one has
any right to expect in relatively small batches of numbers like this.

The impression gained from the back-to-back stem-and-leaf plot is confirmed by
the box-and-dot plot in the center of Fig. 12.1. The box-and-dot plot in addition pro-
vides a clear view of the fact that the center of the sample of house floors from the
Classic period is higher than the center of the sample of floors from the Formative
period. That is, Classic period houses, with a median area of 26.3m2, were in gen-
eral somewhat larger than Formative period ones, with a median area of 24.3m2.
(This remains a useful thing to say, even though there is considerable overlap in
house size between the two periods and even though the smallest house of all dates
to the Classic period – both of which facts are evident in the stem-and-leaf plot and
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Figure 12.1. Comparison of Formative and Classic period house floor areas (in square meters).

Table 12.1. Comparison of Formative and
Classic Period House Floor Samples

Formative Classic

n = 32 floors 52 floors
Md = 24.3m2 26.3m2

X = 23.8m2 26.3m2

Midspread = 4.1m2 6.7m2

s = 3.4m2 4.5m2

SE = 0.60m2 0.63m2

in the box-and-dot plot.) The Classic period sample has a slightly larger spread than
the Formative period sample does, although the two samples are not too different in
this regard.

Table 12.1 provides the specific figures that compare the two samples in terms of
level and spread. Whether we compare medians or means, Classic period house
floors seem somewhat larger. And whether we compare midspreads or standard
deviations, Classic house floor areas show a slightly larger spread.

Combining these observations (of the sort we made in comparing batches in
Chapter 4) with what we know of the behavior of random samples (see Chapters 7–
9) might lead us to wonder whether the differences we observe between these two
batches are “real” or whether they are just the result of the simple fact that sam-
ples do not always very accurately represent the population from which they were
selected. We know that if we selected a number of random samples from exactly
the same population we would get considerable variation from one to the next. Such
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random variation between samples is often referred to as the vagaries of sampling.
In comparing Formative and Classic period house floor areas, might we be seeing
nothing more than this kind of random variation between samples? We know, of
course, that these two samples did not actually come from the same population –
one is a sample from Formative period house floors, and the other is from Classic
period house floors. We often say that we imagine, though, that two such samples
might have come from the same population, by which we really mean that the two
samples might have come from two populations that have the same mean. If our
two samples actually came from two populations with identical means, then the
mean area of Formative and Classic house floors was the same. Since the means
of our two samples are different, we would certainly guess that the means of the
populations they were drawn from were different. Nevertheless, based on our previ-
ous discussion of the behavior of random samples, we recognize that there is some
possibility that both samples could have been drawn from populations with means
of, say, 25.0m2. If this were actually the case, then we would attribute the differ-
ences we observe in our samples of Formative and Classic period house floors to
the vagaries of sampling. We would not take them to indicate a change in house
floor area between the Formative and Classic periods. In Chapter 9 we dealt with
this sort of question for one sample at a time by establishing error ranges for various
confidence levels, but now we have two samples, which makes the situation more
complicated. We can, nevertheless, approach the question in exactly the same way,
taking each sample and its parent population in turn.

Table 12.2 provides estimates of Formative and Classic period house floor size
for three different confidence levels. These estimates and their attached error ranges
were calculated following exactly the procedures presented in Chapter 9. The two
samples were treated independently, and error ranges for 80% confidence, 95% con-
fidence, and 99% confidence were calculated separately on the basis of each sample.
These error ranges are presented graphically at the right in Fig. 12.1. Such graphs
can be referred to as bullet graphs (because the representation of error ranges looks
ever so slightly like a bullet). A bullet graph makes it easy to compare the two sam-
ples not only in terms of their means but also in terms of the confidence implications
of their various error ranges. The thickest error bar represents the error range for
the 80% confidence level. This is the most precise estimate and, correspondingly,
the one in which our confidence is lowest. The medium thickness error bar repre-
sents the error range for the 95% confidence level. This error range is wider, but
our confidence in this less precise estimate is higher. Finally, the thinnest error bar

Table 12.2. Comparison of Formative and Classic Period
House Floor Samples

Mean area
Confidence level Formative Classic

80% 23.8±0.8m2 26.3±0.8m2

95% 23.8±1.2m2 26.3±1.3m2

99% 23.8±1.6m2 26.3±1.7m2
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represents the 99% confidence level error range, still less precise and thus worthy of
still higher confidence.

Note that this is not simply a different way of drawing a box-and-dot plot,
although both bullet graph and box-and-dot plot represent centers and involve
spreads. The box-and-dot plot in the middle of Fig. 12.1 simply represents some
characteristics of the two samples, while the bullet graph at the right represents some
implications that the two samples have about the populations they were selected
from. Note also that the scale of the bullet graph is different from the scale of the
stem-and-leaf plot and the box-and-dot plot. Even the longest (99% confidence)
error bars in the bullet graph are actually substantially shorter than the midspreads
indicated in the box-and-dot plot. The scale is enlarged for the bullet graph so that
the lengths of the error bars can be seen clearly and compared. If the bullet graph
were drawn at the same scale as the box-and-dot plot, the error bars would be so
short that they would not be easy to see.

Comparing the two periods on the basis of the error bars at the right of Fig. 12.1
yields the same results that the previous comparisons did with regard to level. Clas-
sic period house floors were larger on average than Formative period house floors.
This graph, however, also helps us to answer the question about how likely it is that
the differences between samples are nothing more than the random variation from
one sample to the next that has to be expected even with no real difference between
the populations from which the samples are selected.

We estimate that the mean house floor area during the Formative period was
23.8m2 ± 0.8m2 at the 80% confidence level. That is, it is not very likely that our
Formative sample came from a population with a mean less than 23.0m2 or greater
than 24.6m2. Our estimate for Classic period house floors is a mean of 26.3m2.
This is substantially outside the 80% confidence level error range for the Formative
period. Thus there is less than a 20% chance that the Formative period sample came
from a population with a mean as large as 26.3m2. The Classic period mean is
also well outside the 95% confidence level error range for the Formative and even
outside the 99% confidence level error range for the Formative. The error range for
the Formative at the 99% confidence level reaches only to 25.4m2, still below the
26.3m2 mean for the Classic. Thus there is less than a 1% chance that the Formative
period sample came from a population with a mean of 26.3m2. The probability,
then, is less than 1% that we would get a sample like our Formative period one from
a population like the Classic period population seems to be.

We would arrive at the same conclusion if we made the comparison in the reverse
direction by considering how likely it is that a sample like the Classic period one
could be selected from a population of house floors like the Formative population
seems to have been. The estimated mean for the Formative period falls well outside
not only the 80% confidence level error range for the Classic period but also the
95% confidence level error range and the 99% confidence level error range as well.

Extending these one-way comparisons to a simultaneous two-way comparison
graphically is only approximate. That is, we have seen that there is less than a 1%
chance either of getting the Classic period sample from a population with a mean
as low as the Formative period sample’s or of getting the Formative period sample
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from a population with a mean as high as the Classic period sample’s. There remains
the question of how likely it is that we could get these two samples from the same
population (that is, from two populations with the same mean). It is this question
that requires a two-way comparison that depends simultaneously on the standard
errors of both samples. In order for us to say that the probability of getting the two
samples from a single population is less than 1%, the mean of each must lie not
just at, but beyond the 99% confidence level error range for the other. Just how far
beyond depends on how unequal the standard errors of the two samples are. If the
mean of each sample lies beyond the 99% confidence level error range for the other,
however, it is very unlikely that the two samples came from populations with the
same mean. The more relevant way to state the implication of this conclusion, of
course, is that it is very unlikely that Formative and Classic period house floors had
the same mean area. And this, finally, is the conclusion illustrated by the bullet graph
in Fig. 12.1, since the mean of each sample lies well beyond the 99% confidence
level error range for the other.

Thus the bullet graph in Fig. 12.1 reveals quickly to the eye that Formative period
house floors are, on average, some 2.5m2 smaller than Classic period house floors
and that this difference is very unlikely to be the result of the vagaries of sampling.
That is, the graph tells us that the sizes and characteristics of the two samples upon
which it is based are such as to give us considerable confidence in saying that there
was a change in house floor size from Formative to Classic period.

CONFIDENCE, SIGNIFICANCE, AND STRENGTH

It would be more traditional statistical phrasing to say that the difference between
Formative and Classic period house floor sizes is very significant. The statistical
concept of significance is the mirror image of the concept of confidence as we have
been using it. Confidence refers to the probability that the results we are stating are
not attributable just to the vagaries of sampling. Significance, on the other hand,
refers to the same concept from the opposite perspective – the probability that the
results we are stating are attributable just to the vagaries of sampling. It is the same
thing to say that we have over 99% confidence that there was a difference between
house floor areas in the Formative and Classic periods, or to say that there is less
than a 1% chance that the difference between our two samples is due to nothing more
than the vagaries of sampling. This second way of saying it involves the significance
probability, which is below 1%. The sum of the probability that corresponds to the
level of confidence and the probability that corresponds to the level of significance
is always 100%. Positive results in statistics, then, correspond to high confidence
probabilities and, at the same time, to low significance probabilities. We are, to
repeat, very confident that house floor areas are different in the two periods, which is
the same as saying that the difference in house floor area between the two periods is
very significant. Very high confidence corresponds to a very high confidence prob-
ability; very high significance corresponds to a very low significance probability,
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since this is the probability that the results we are interested in are nothing more
than the vagaries of sampling.

Both confidence and significance are concepts with quite clear and precise mean-
ings in statistics (even if statisticians approach their definitions in many different
ways). The notion of confidence in statistics corresponds pretty well to the collo-
quial use of the word “confidence.” In common speech we say we are “confident”
about something when we really do not think we are wrong. Paradoxically, the very
act of saying that we are confident recognizes the possibility that we might be wrong
at the same time that it classifies that possibility as a remote one. (If we really have
no doubt at all about a fact, we usually just state it without even bothering to men-
tion that we are quite confident of it.) The colloquial use of “significance,” however,
is rather different from its statistical use, and it is important not to confuse the two.
We are likely to find something “significant,” in colloquial speech, if it is important
or meaningful. In statistics, however, “significant,” like “confident,” refers directly
to the possibility that the conclusions we are stating are wrong – that is, the possi-
bility that they represent nothing more than the normal variation to be expected in
the random sampling process (that is, the vagaries of sampling).

The conclusion we arrived at in this example (that Classic houses were larger
than Formative ones) may or may not be meaningful or important, but it is very
significant. Whether it is meaningful or important is a substantive issue involved
with what our interpretation of the result might be. The issue of meaningfulness
or importance is an entirely separate one from that of confidence or significance.
Staying purely in the realm of statistics, the closest we come to the issue of mean-
ingfulness or importance is in the statistical concept of strength. In the comparison
we have just made, the notion of strength is quite simple. The strength of the differ-
ence in house floor area between Formative and Classic is simply the magnitude of
the difference, 2.5m2 – the amount by which Formative period house floors appear
to differ in area from Classic period ones on average.

We are highly confident in identifying this difference; we know that it is very
significant – both statements meaning only that the difference we observe in our
samples is not at all likely to be just the result of the vagaries of sampling. It is
extremely likely that mean house floor size really was greater in the Classic than in
the Formative. Whether this result is meaningful or important, however, has to do
with why we are interested in this information in the first place. Perhaps we suspect
a shift from nuclear family structure in the Formative to extended family structure
in the Classic, and we reason that one way this might be evidenced in the archae-
ological record is in an increase in mean house floor area. We have found a very
significant increase in mean house floor area, but it provides little support for our
idea because the increase is too small (2.5m2) to be seen as an indicator of the need
to provide more house space for substantially larger families. Both Formative and
Classic period houses are, in general terms, relatively small even for nuclear family
groups, and a change of only 2.5m2 is difficult to relate convincingly to a shift from
households of perhaps four or five people to much larger households. Thus the result
of our example investigation, while highly significant, was not strong enough to be
important or meaningful, at least in this hypothetical interpretive context.
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COMPARISON BY t TEST

The comparison between two samples that we have just made on the basis of bullet
graphs of error ranges can also be approached as a significance test problem. This
approach is entirely compatible with the comparison as we have already made it –
it simply provides a different, and perhaps complementary, perspective on the sit-
uation. The t test also makes a comparison that is simultaneously two way in the
sense referred to above. The t test enables us to pool all the information from both
samples into a single statement of the probability that both could be selected from
the same population. Since in such situations we are likely to know that the two
samples were, in fact, selected from different populations, this statement is really
shorthand for saying “the probability that the two samples were selected from two
populations with the same mean.”

The two-sample t test evaluates the difference in means between the two samples
in light of the pooled standard deviations from both samples. It is as if we calculated
error ranges for the two based on the standard deviations from both together so
that no matter whether we compared the first to the second or the second to the
first, the results would be the same. The equation for accomplishing this at first
seems formidable, but evaluating it is really quite a simple process of plugging in
familiar values. First, the pooled standard deviation for the two samples is given by
the expression

sP =

√
(n1 −1)s2

1 +(n2 −1)s2
2

n1 + n2 −2

where sP = the pooled standard deviation for the two samples, n1 = the number
of elements in the first sample, n2 = the number of elements in the second sample,
s1 = the standard deviation in thefirst sample, and s2 = the standard deviation in the
second sample.

Calculating this quantity for the Formative and Classic period house floor area
samples used in the example above produces

sP =

√
(32−1)(3.4)2 +(52−1)(4.5)2

32 + 52−2

=

√
(358.36 + 1032.75)

82√
16.9648

= 4.12m2

This pooled standard deviation for the two samples falls between the standard devi-
ation of 3.4m2 for the Formative sample and the standard deviation of 4.5m2 for the
Classic sample – which makes intuitive good sense. The pooled standard deviation
is then the basis for a pooled standard error SEP:
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SEP = sP

√
1
n1

+
1
n2

For the Formative and Classic house floor example,

SEP = 4.12

√
1

32
+

1
52

= 4.12
√

0.0505

= 0.93m2

Knowing the pooled standard error enables us to say how many pooled standard
errors the difference between sample means represents:

t =
X1 −X2

SEP

where X1 = the mean in the first sample; and X2 = the mean in the second sample.
For the house floor area example,

t =
23.8−26.3

0.93
= −2.69

The observed difference in house floor area between the two samples, then, is 2.69
pooled standard errors. We know already that such a large number of standard errors
is associated with high statistical confidence, and thus with the low probability val-
ues that mean great significance as well. To be more specific, this t value can be
looked up in Table 9.1. The number of degrees of freedom is n1 + n2 −2, or in this
example 32+52−2 = 82. Thus we use the row for 60 d. f ., which is the closest row
to 82. Ignoring the sign for the moment, we look for 2.69 in this row. It would fall
between the columns for 1% and 0.5% significance. Thus the probability that the
difference we observe between the two samples is just due to the vagaries of sam-
pling is less than 1% and greater than 0.5%. We could also say that the probability
of selecting two samples that differ as much as these do from populations with the
same mean value is less than 1%. Yet another way to express the same thought is
that we are more than 99% confident that average house floor areas differed between
the Formative and Classic periods. This is, of course, entirely consistent with the
conclusion that was already apparent in Fig. 12.1 and that we have discussed earlier.

The sign of the t value arrived at indicates the direction of the difference. If
the second population has a lower mean than the first, t will be positive. If the
second population has a higher mean than the first, t will be negative. The strength
of the difference is still indicated simply by the difference in means between the two
samples, as it has been all along: 2.5m2.
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Be Careful How You Say It

When presenting the result of a significance test, it is always necessary to say
just what significance test was used, and to provide the resulting statistic, and
the associated probability. For the example in the text, we might say, “The
2.5m2 difference in mean house floor area between the Formative and Classic
periods is very significant (t = −2.69, .01 > p > .005).” This one sentence
really says everything that needs to be said. No further explanation would be
necessary if we were writing for a professional audience whom we can assume
to be familiar with basic statistical principles and practice. The “statistic” in
this case is t, and providing its value makes it clear that significance was eval-
uated with a t test, which is quite a standard technique that does not need
to be explained anew each time it is used. The probability that the observed
difference between the two samples was just a consequence of the vagaries
of sampling is the significance or the associated probability. Ordinarily p
stands for this probability, so in this case we have provided the information
that the significance is less than 1%. This means the same thing as saying that
our confidence in reporting a difference between the two periods is greater
than 99%.

If, instead of performing a t test, we simply used the bullet graph to com-
pare estimates of the mean and their error ranges, as in Fig. 12.1, we might
say “As Fig. 12.1 shows, we can have greater than 99% confidence that mean
house floor area changed between Formative and Classic periods.” The notion
of estimates and their error ranges for different confidence levels is also a very
standard one which we do not need to explain every time we use it. Bullet
graphs, however, are less common than, say, box-and-dot plots, so we cannot
assume that everyone will automatically understand the specific confidence
levels of the different widths of the error bars. A key indicating what the
confidence levels are, as in Fig. 12.1, is necessary.

In yet another approach, perhaps the most direct of all, we could simply
focus on the estimated difference in means and say, “we are 95% confident
that house floor area increased by 2.5m2 ± 1.9m2 from the Formative to the
Classic, but this change is not strong enough to connect convincingly to much
increase in family size.”

In an instance like the example in the text, a bullet graph and a t test are
alternative approaches. Using and presenting both in a report qualifies as sta-
tistical overkill. Pick the one approach that makes the simplest, clearest, most
relevant statement of what needs to be said in the context in which you are
writing; use it; and go on. Presentation of statistical results should support the
argument you are making, not interrupt it. The simplest, most straightforward
presentation that provides complete information is the best.
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The pooled standard error from the t test also provides us with an even more
direct way to go at the fundamental issue of both the strength and the significance of
the difference in means. It enables us to make an estimate of the difference between
the means of the two populations involved and to put an error range with that esti-
mate. The best estimate of the difference between the means of the two populations
is simply the difference between the means of the two samples. The pooled stan-
dard error from the t test is 0.93m2, and, as usual, this would be an error range for
about 66% confidence. With the help of the t table, we can convert this into an error
range for 95% confidence in the usual way. The value of t from the table for 82
d. f . and 95% confidence is 2.000, so this is the number of standard errors needed
for a 95% confidence error range. Thus, (2.00)(0.93) = 1.86, and we can be 95%
confident that the difference in means between Formative and Classic period house
floor areas is 2.5m2±1.9m2, that is between 0.6m2 and 4.4m2 larger in the Classic
period. This estimate gives us perhaps the most useful of all the ways of presenting
the results of all these analyses: we are 95% confident that house area increased by
2.5m2±1.9m2 from the Formative to the Classic – a change, but not a large enough
change to connect convincingly to much increase in family size.

THE ONE-SAMPLE t TEST

Occasionally we are interested in comparing a sample not to another sample but
to some particular theoretical expectation. For example, we might be interested in
investigating whether a particular prehistoric group practiced female infanticide.
One line of evidence we might pursue would be sex ratios in burials. Suppose we
had a sample of 46 burials, which we were willing to take as a random sample of
this prehistoric population except for infants intentionally killed, whose bodies we
think were disposed of in some other way. On theoretical grounds we would expect
this sample of burials to be 50% males and 50% females, unless sex ratios were
altered by some practice such as female infanticide. (Actually there might be reason
to expect very slightly different proportions from 50:50 on theoretical grounds, but
that does not really affect what concerns us here.) After careful study of the skeletal
remains, we determine that 21 of the 46 burials were females and 25 were males.
The proportions are thus 45.7% female and 54.3% male. This lower proportion of
females in our sample might make us think that more females were killed in infancy
than males, but we wonder how likely it is that we could select a random sample
of 46 with these proportions from a population with an even sex ratio. We could
calculate the error ranges for various levels of confidence, as we did in Chapter 11.
For a proportion of 45.7% females, in a sample of 46, the standard error would be

SE =
√

pq√
n

=

√
(0.457)(0.543)√

46
=

0.498
6.782

= 0.073
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For, say, an 80% level of confidence, we would look up the value of t for 80%
confidence and 45 degrees of freedom. We would multiply the standard error by
this t value: (0.073)(1.303) = 0.095. We would thus be 80% confident that our
sample of 46 burials was drawn from a population with 45.7%±9.5% females (or
between 36.2% and 55.2% females). The theoretical expectation of 50% females is
well within this 80% confidence level error range, so there is something over a 20%
chance that the divergence from even sex ratios that we observe in our sample is
only the result of sampling vagaries.

To be more precise about it with a one-sample t test, we would simply use the
standard error and the t table in a slightly different way. The observed propor-
tion of females in our sample is 45.7%, or 4.3% different from the expected 50:50
ratio. This difference of 0.043 (that is, 4.3%) represents 0.589 standard errors since
0.043/0.073 = 0.589. Looking for this number of standard errors on the row of
the t table corresponding to 40 degrees of freedom (the closest we can get to 45
degrees of freedom) would put us slightly to the left of the first column in the body
of the table (the one that corresponds to 50% significance). There is something over
a 50% chance, then, of getting a random sample of 46 with as uneven a sex ratio as
this from a population with an even sex ratio. This means that it is uncomfortably
likely that the uneven sex ratios we observe in our sample are nothing more than the
vagaries of sampling. We might also say, “The difference we observe between our
sample and the expected even sex ratio has extremely little significance (t = .589,
p > .5).” These results would not provide much support for the idea of female infan-
ticide. At the same time they would not provide much support to argue that female
infanticide was not practiced since there is also an uncomfortably large chance that
this sample could have come from a population with an uneven sex ratio. In short,
given the proportions observed, this sample is simply not large enough to enable us
to say with much confidence whether the population it came from had an even sex
ratio or not.

THE NULL HYPOTHESIS

Significance tests are often approached by practitioners of many disciplines as a
question of testing hypotheses. In this approach, first a null hypothesis is framed. In
the example of Formative and Classic house floor areas, the null hypothesis would
postulate that the observed difference between the two samples was a consequence
of the vagaries of sampling. An arbitrary significance level would be chosen for
rejecting this hypothesis. (The level chosen is almost always 5%, for no particularly
good reason.) And then the t test would be performed. The result (t =−2.69, 0.01 >
p > 0.005) is a significance level that exceeds the usual 5% rejection level. (That is,
the probability that the difference is just due to the vagaries of sampling is even less
than the chosen 5% threshold.) Thus the null hypothesis (that the difference is just
random sampling variation) is rejected, and the two populations are taken to have
different mean areas.
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The effect of framing significance tests in this way is to provide a clear “yes” or
“no” answer to the question of whether the observation tested really characterizes
the populations involved rather than just being the result of sampling vagaries. The
problem is that statistics never do really give us a “yes” or “no” answer to this
question. Significance tests may tell us that the probability that the observation is
just the result of sampling vagaries is very high or moderate or very low. But as
long as we are making inferences from samples we are never absolutely certain
about the populations the samples represent. Significance is simply not a condition
that either exists or does not exist. Statistical results are either more significant or
less significant. We have either greater or lesser confidence in our conclusions about
populations, but we never have absolute certainty. To force ourselves either to reject
or accept a null hypothesis is to oversimplify a more complicated situation to a
“yes” or “no” answer. (Actually many statistics books make the labored distinction
that one does not accept the null hypothesis but rather “fail to reject” it. In practice,
analysts often treat a null hypothesis they have been unable to reject as a proven
truth – more on this subject later.)

This practice, of forcing statistical results like “maybe” and “probably” to become
“no,” and “highly likely” to become “yes,” has its clearest justification in areas like
quality control where an unequivocal “yes” or “no” decision must be made on the
basis of significance tests. If a complex machine turns out some product, a quality
control engineer may test a sample of the output to determine whether the machine
needs to be adjusted. On the basis of the sample results, the engineer must decide
either to let the machine run (and risk turning out many defective products if he or
she is wrong) or stop the machine for adjustment (and risk wasting much time and
money if he or she is wrong). In such a case, statistical results like “the machine
is probably turning out defective products” must be converted into a “yes” or “no”
answer to the question of stopping the machine. Fortunately, research archaeologists
are rarely in such a position. We can usually (and more informatively) say things like
“possibly,” “probably,” “very likely,” and “with great probability.”

Finally, following the traditional 5% significance rule for rejecting the null
hypothesis leaves us failing to reject the null hypothesis when the probability that
our results are just the vagaries of sampling is only 6%. If, in the house floor exam-
ple, the t value had been lower, and the associated probability had been 6%, it would
have been quite reasonable for us to say, “We have fairly high confidence that mean
house floor area was greater in the Classic period than in the Formative.” If we had
approached the problem as one of attempting to reject a null hypothesis, however,
with a 5% rejection level, we would have been forced to say instead, “We have failed
to reject the hypothesis that house floor areas in the Formative and Classic are the
same.” As a consequence we would probably have proceeded as if there were no dif-
ference in house floor area between the two periods when our own statistical results
had just told us that there was a 94% probability that there was such a difference.

In some disciplines, almost but not quite rejecting the null hypothesis at the
sacred 5% level is dealt with by simply returning to the lab or wherever and studying
a larger sample. Other things being equal, larger samples produce higher confi-
dence levels, and higher confidence levels equate to lower significance probabilities.
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Table 12.3. Summary of Contrasting Approaches to Significance Testing in the Context
of the House Floor Area Example

Significance testing as an effort to Significance testing as an effort to
reject the null hypothesis (not evaluate the probability that our
recommended here). results are just the vagaries of

sampling (the approach followed
in this book).

The questions asked:
The difference observed between the How likely is it that the difference
Formative and Classic house floor observed between Formative and Classic
samples is nothing more than the house floor samples is nothing more
vagaries of sampling. True or false? than the vagaries of sampling?

Example answers for different possible significance levels:
p = .80 True. Extremely likely.
p = .50 True. Very likely.
p = .20 True. Fairly likely.
p = .10 True. Not very likely.
p = .06 True. Fairly unlikely.
p = .05 False. Fairly unlikely.
p = .01 False. Very unlikely.
p = .001 False. Extremely unlikely.

Almost but not quite rejecting the null hypothesis, then, can translate into “There is
probably a difference, but the sample was not large enough to make us as confident
as we would like about it.” In archaeology, however, it is often difficult or impossible
to simply go get a larger sample, so we need to get all the information we can from
the samples we have. For this reason, in this book we will approach significance
testing not as an effort to reject a null hypothesis but instead as an effort to say just
how likely it is that the result we observe is attributable entirely to the vagaries of
sampling.

Table 12.3 summarizes the differences between a null hypothesis testing approach
to significance testing and the more scalar approach advocated in this book. The
approach followed here can, of course, be thought of as testing the null hypothesis
but not forcing the results into a “yes” or “no” decision about it. It we are willing
to take a more scalar approach, though, there is no advantage in plunging into the
confusion of null hypothesis formulation, rejection, and failure to reject. In partic-
ular, Table 12.3 emphasizes how potentially misleading is the answer “true” when
applied to a full range of probabilities concerning the null hypothesis that can more
accurately be described as ranging from “extremely likely” to “fairly unlikely.”

Pregnancy tests have only two possible results: pregnant and not pregnant. Sig-
nificance tests are simply not like that; their results run along a continuous scale
of variation from very high significance to very low significance. While some
users of statistics (poker players, for example) find themselves having to answer



160 CHAPTER 12

“yes” or “no” questions on the basis of the probabilities given by significance tests,
archaeologists can count themselves lucky that they are not often in such a situation.
We are almost always able to say that results provide very strong support for our
ideas, or moderately strong support, or some support, or very little support. Forcing
significance tests simply to reject or fail to reject a null hypothesis, then, is usually
unnecessary and unhelpful in archaeology and may do outright damage by being
misleading as well. In this book we will never characterize results as simply “sig-
nificant” or “not significant” but rather as more or less significant with descriptive
terms akin to those in Table 12.3. Some statistics books classify this procedure as
a cardinal sin. Others find it the only sensible thing to do. The fact is that nei-
ther approach is truth revealed directly by God. Archaeologists must decide which
approach best suits their needs by understanding the underlying principles, not by
judging which statistical expert seems most Godlike in revealing his or her “truth.”

STATISTICAL RESULTS AND INTERPRETATIONS

It is easy to accidentally extend levels of confidence or significance probabilities
beyond the realm to which they properly apply. Either one is a statistical result that
takes on real meaning or importance for us only when interpreted. In the example of
Formative and Classic period house floors used throughout this chapter, our interest,
as suggested earlier, may be investigating a possible shift from nuclear families in
the Formative to extended families in the Classic. Given the samples we have in this
example, we find that houses in the Classic were larger, on average, than houses
in the Formative. We also find that this difference is very significant (or that we
have quite high confidence that it is not just the result of sampling vagaries, which
means the same thing). This does not, however, automatically mean that we have
quite high confidence that nuclear family organization in the Formative changed to
extended family organization in the Classic. The former is a statistical result; the
latter is an interpretation. How confident we are in this latter interpretation depends
on a number of things in addition to the statistical result. For one thing, already
mentioned early in this chapter, despite the high significance of the size difference
between Formative and Classic house floors, the strength or size of the difference
(2.5m2±1.9m2) is not very much – at least not compared to what we would expect
from such a change in family structure. There might be several other completely
different kinds of evidence we could bring to bear as well. It would only be after
weighing all the relevant evidence (among which our house floor area statistical
results would be only one item) that we would be prepared to assess how much con-
fidence we have in the suggested interpretation. We would not really be in position to
put a number on our confidence in the interpretation about family structure, because
it is an interpretation of the evidence, not a statistical result. We would presumably
need to weigh the family structure interpretation against other possible interpreta-
tions of the evidence. While statistical evaluation of the various lines of evidence
is extremely helpful in this process, its help comes from evaluating the confidence
we should place in certain patterns observable in the measurements we make on the
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samples we have, not from placing probabilities directly on the interpretations them-
selves. These interpretations are connected sometimes by a very long chain of more
or less convincing logical links and assumptions to the statistical results obtained by
analyzing our samples.

ASSUMPTIONS AND ROBUST METHODS

The two-sample t test assumes that both samples have approximately normal shapes
and roughly similar spreads. If the samples are large (larger than 30 or 40 elements)
violations of the first assumption can be tolerated because the t test is fairly robust.
As long as examination of a box-and-dot plot reveals that the midspread of one
sample is no more than twice the midspread of the other, the second assumption can
be considered met. If the spreads of the two samples are more different than this,
then that fact alone suggests that the populations they came from are different, and
that, after all, is what the two-sample t test is trying to evaluate.

If the samples to be compared contain outliers, the two-sample t test may be
very misleading, based as it is on means and standard deviations, which will be
strongly affected by the outliers, as discussed in Chapters 2 and 3. In such a case
an appropriate approach is to base the t test on the trimmed means and trimmed
standard deviations, also discussed in Chapters 2 and 3. The calculations for the t
test in this case are exactly as they are for the regular t test except that the trimmed
sample sizes, the trimmed means, and the trimmed standard deviations are used
in place of the regular sample sizes, the regular means, and the regular standard
deviations.

If the samples to be compared are small and have badly asymmetrical shapes,
this can be corrected with transformations, as discussed in Chapter 5, before per-
forming the t test. The data for both samples are simply transformed and the t test is
performed exactly as described above on the transformed batches of numbers. It is,
of course, necessary to perform the same transformation on both samples, and this
may require a compromise decision about which transformation produces the most
symmetrical shape simultaneously for both samples.

For samples with asymmetrical shapes, of course, estimating the median in the
population instead of the mean makes good sense, and putting error ranges with esti-
mates of the median with the bootstrap was discussed in Chapter 10. The median and
those error ranges could be used instead of the mean as the basis for a bullet graph
like the one in Fig. 12.1 for a graphical comparison. Yet another kind of graph adds
error ranges to the box-and-dot plot, which we already examined for comparing the
medians of batches in Chapter 4. The notched box-and-dot plot in Fig. 12.2 com-
pares the batches of Early and Late Classic site areas from the bootstrap example in
Chapter 10. The notches in each box have their points at the estimated population
median and their ends at the top and bottom of its error range.
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Figure 12.2 A notched box-
and-dot plot comparing Early
and Late Classic site areas.

The error ranges represented in notched box plots are usually not just the 95 or
99% confidence error ranges that we have used for bullet graphs. Often they rep-
resent a specially contrived error range a bit like the pooled standard error from
the t test. If the upper limit of one error range just reaches the level of the lower
limit of the other error range, then the probability that the two samples came from
populations with the same median is roughly 5%. If the error ranges for the two
batches represented by the notches do not overlap, then we can be over 95% confi-
dent that the two samples came from populations with different medians. It is this
kind of error range that appears in the notched box-and-dot plots in Fig. 12.2, and
so the comparison works a bit differently than the comparison in the bullet graph in
Fig. 12.1, which has been drawn to represent straightforward error ranges for par-
ticular confidence levels. Both bullet graphs and notched box-and-dot plots indicate
our confidence that there is a difference between the two populations only approxi-
mately, but they do it differently. For bullet graphs, the focus is not on whether the
ends of the 95% confidence error ranges overlap, but on whether the estimated mean
for one population falls beyond the error range for the other, and vice versa.

In Fig. 12.2, the notches overlap quite substantially, and this lets us know that
we are quite substantially less than 95% confident that median site area changed
from Early to Late Classic. This result would not encourage us to spend much
time pondering what caused the slight increase in median site area seen in the Late
Classic sample, because, with such low confidence that there was any difference
at all between these two populations, we might very well be seeking a reason for
something that had not even occurred.
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PRACTICE

You have just completed extensive excavations at the Ollantaytambo site. You select
a random sample of 36 obsidian artifacts from those recovered at the site for trace
element analysis in an effort to determine the source(s) of the raw material. You real-
ize that you really should investigate a whole suite of elements, but the geochemist
you collaborate with gives you only the data for the element zirconium before he
sets off down the Urubamba River in a dugout canoe, taking with him the remainder
of the funds you have budgeted for raw material sourcing. There are two visually
different kinds of obsidian in the sample – an opaque black obsidian and a streaky
gray obsidian – and you know that such visual distinctions sometimes correspond
to different sources. The data on amounts of zirconium and color for your sample of
36 artifacts are given in Table 12.4.

1. Begin to explore this sample batch of zirconium measurements with a back-to-
back stem-and-leaf diagram to compare the black and gray obsidian. What does
this suggest about the source(s) from which black and gray obsidian came?

2. Estimate the mean measurement for zirconium for gray obsidian and for black
obsidian in the populations from which these samples came. Find error ranges for
these estimates at 80%, 95% and 99% confidence levels, and construct a bullet
graph to compare black and gray obsidian. How likely does this graph make it
seem that gray and black obsidian came from a single source?

Table 12.4. Zirconium Content for a Sample of Gray and Black Obsidian
Artifacts from Ollantaytambo

Zirconium Zirconium
content (ppm) Color content (ppm) Color

137.6 Black 136.2 Gray
135.3 Gray 139.7 Gray
137.3 Black 139.1 Black
137.1 Gray 139.2 Gray
138.9 Gray 132.6 Gray
138.5 Gray 134.3 Gray
137.0 Gray 138.6 Gray
138.2 Black 138.6 Black
138.4 Black 139.0 Black
135.8 Gray 131.5 Gray
137.4 Black 142.5 Black
140.9 Black 137.4 Gray
136.4 Black 141.7 Black
138.8 Black 136.0 Gray
136.8 Gray 136.9 Black
136.3 Gray 135.0 Gray
135.1 Black 140.3 Black
132.9 Gray 135.7 Black
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3. What, exactly, have you calculated the probabilities of in Question 2? What,
exactly, are the populations you have characterized? What are the logical links
necessary to use this evidence in support of the conclusion you want to make
about obsidian sources?

4. Approach Question 2 using a t test. How strong and significant is the difference
in zirconium content between black and gray obsidian? What is your estimate
of that difference with an error range at the 95% confidence level? State the
conclusions derived from your t test in a single clear sentence as if you were
reporting it in a paper.
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In Chapter 12 we took two approaches to comparing the means of two samples. The
first approach involved using each sample separately to estimate the mean of the
population that the sample came from. We then attached error ranges for several
confidence levels to these estimates and drew a picture of the whole thing with a
bullet graph (Fig. 12.1). This approach is easily extended to the comparison of any
number of samples. In this chapter we will use another fictitious example consisting
of 127 Archaic projectile points from the Cottonwood River valley. After consid-
ering possible sources of bias we decide to work with these as a random sample
from the large and vaguely defined population of Archaic projectile points from the
Cottonwood River valley.

We are interested in whether, during the Archaic period, there was much change
in hunting of large and small animals in the Cottonwood River valley. We reason
that large projectile points are more involved in hunting large animals and small
projectile points are more involved in hunting small animals. We can divide the
127 projectile points into three groups: Early, Middle, and Late Archaic, and we
decide to compare the weights of projectile points in these three periods. One way
to organize these data for this sample is shown in Table 13.1. Here two observations
are recorded for each of the 127 projectile points: the weight (in grams) and the
period (Early, Middle, or Late Archaic). Our two variables, weight and period, are
of different kinds. Weight, of course, is a measurement, and period is a set of three
categories.

R.D. Drennan, Statistics for Archaeologists, Interdisciplinary Contributions
to Archaeology, DOI 10.1007/978-1-4419-0413-3 13,
c© Springer Science+Business Media, LLC 2004, 2009
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Table 13.1. Data on Weight and Period for a Sample of Archaic Period Projectile Points
from the Cottonwood River Valley

Weight Archaic Weight Archaic Weight Archaic Weight Archaic
(g) Subperiod (g) Subperiod (g) Subperiod (g) Subperiod

54 Early 68 Early 63 Middle 69 Middle
39 Early 68 Early 52 Middle 80 Middle
49 Early 85 Early 44 Middle 78 Middle
65 Early 49 Early 73 Middle 69 Middle
54 Early 21 Early 70 Middle 34 Late
83 Early 24 Early 56 Middle 39 Late
75 Early 50 Early 46 Middle 40 Late
45 Early 52 Early 61 Middle 45 Late
68 Early 62 Early 49 Middle 37 Late
47 Early 44 Early 51 Middle 32 Late
57 Early 61 Early 61 Middle 31 Late
19 Early 30 Early 70 Middle 60 Late
47 Early 52 Early 51 Middle 58 Late
58 Early 56 Early 42 Middle 45 Late
76 Early 63 Early 73 Middle 50 Late
50 Early 53 Early 51 Middle 40 Late
67 Early 79 Early 74 Middle 41 Late
52 Early 50 Early 40 Middle 38 Late
40 Early 54 Early 67 Middle 59 Late
58 Early 51 Early 51 Middle 37 Late
42 Early 59 Early 59 Middle 28 Late
43 Early 60 Early 68 Middle 37 Late
58 Early 48 Early 63 Middle 31 Late
28 Early 40 Early 64 Middle 40 Late
59 Early 50 Early 78 Middle 34 Late
43 Early 69 Early 62 Middle 37 Late
45 Early 71 Middle 78 Middle 44 Late
60 Early 64 Middle 57 Middle 47 Late
27 Early 59 Middle 59 Middle 54 Late
64 Early 65 Middle 31 Middle 36 Late
73 Early 54 Middle 69 Middle 48 Late
70 Early 65 Middle 32 Middle

COMPARISON WITH ESTIMATED MEANS
AND ERROR RANGES

We can use the three period categories to separate the sample of 127 projectile
points into three samples – one consisting of the 58 Early Archaic points, one of
the 42 Middle Archaic points, and one of the 27 Late Archaic points. If we were
willing to treat the 127 projectile points as a random sample from the Archaic pro-
jectile points of the Cottonwood River valley, then we can be equally willing to treat
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Table 13.2. Comparison of Weights of Projectile Points for
Archaic Subperiods

Early Middle Late All Archaic

n = 58 42 27 127
X = 53.67 g 60.45 g 41.56 g 53.34 g
s = 14.67 g 12.15 g 8.76 g 14.42 g

SE = 1.93 g 1.88 g 1.69 g 1.28 g
s2 = 215.21 147.62 76.74 207.94

the 58 Early Archaic points as a random sample of the Early Archaic points of the
Cottonwood River valley, the 42 Middle Archaic points as a random sample of the
Middle Archaic projectile points of the Cottonwood River valley, and the 27 Late
Archaic points as a random sample of the Late Archaic points of the Cottonwood
River valley. If we do this, then we have reorganized a single batch of numbers into
three batches of numbers that can be compared just as we compared the two batches
of numbers in Chapter 12.

Table 13.2 provides numerical indexes (sample size, mean, standard deviation,
standard error, and variance) for each of these three smaller samples. Using the
standard errors and Table 9.1 we can provide estimated mean weights for each of
the three populations these samples came from and present the whole comparison
graphically as in Fig. 13.1. The Early Archaic and Middle Archaic samples are large
enough that we can count on a special batch with a normal shape. The Late Archaic
sample is a bit small for us to count on a normal shape for the special batch, so
we look at the stem-and-leaf plot for Late Archaic in Fig. 13.1 to make sure that
the sample itself has a fairly normal shape (which it does). The box-and-dot plot
makes clear that Middle Archaic projectile points tend to be the heaviest and Late
Archaic projectile points the lightest, with Early Archaic projectile point weights
falling in between. The ranges of all three certainly overlap, however, especially
those of Early Archaic and Middle Archaic. At the far right in Fig. 13.1, the bullet
graph of estimated population means with error bars for confidence levels of 80%,
95%, and 99% makes it clear that the differences between the three samples we have
are very highly significant. None of the error ranges for 99% confidence includes
the estimated mean of any of the other populations. We are thus more than 99% con-
fident that the differences we observe between samples are not just a consequence
of the vagaries of sampling. It is extremely likely instead that such different samples
came from parent populations that differed from each other.

Figure 13.1 demonstrates once again that box-and-dot plots and bullet graphs are
two different things. The boxes representing the midspreads for the three periods
overlap substantially, while the error ranges for 80%, 95%, and 99% confidence do
not. Since these two kinds of plots are similar in appearance and since both deal with
the spreads of batches in one way or another, it is easy to overlook the fundamental
difference between the two. While it is true that the error ranges in the bullet graph
in Fig. 13.1 are based, in part, on the spread of each batch, they are not simply a
graphical representation of that spread. They rely as well on the sample sizes and are
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Figure 13.1. Comparison of projectile point weights by period.

thus a picture not of the spreads of the three sample batches but rather of the spreads
of the corresponding special batches, as discussed in Chapter 8. As a consequence,
the bullet graphs have useful implications concerning the parent populations that the
box-and-dot plots do not have.

COMPARISON BY ANALYSIS OF VARIANCE

Estimating means and attaching error ranges to each estimate provides a good way
to compare each sample with each other sample, and a bullet graph literally draws
the overall picture. In terms of significance, this overall picture is summed up in the
question, “How likely is it that we could get three samples with means and standard
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deviations like these from a single parent population?” Another way to say it would
be, “What is the probability that samples as different as these three could be pro-
duced from the same population just through the vagaries of sampling?” When we
speak of a “single parent population” or the “same population” in these questions,
we are speaking metaphorically, since we know the three samples came from three
different populations, one of Early Archaic projectile points, one of Middle Archaic
projectile points, and one of Late Archaic projectile points. Hypothesizing here that
they may have come from the “same population” is simply shorthand for inquiring
how likely it is that the three populations these three samples came from had the
same mean. Thus, the significance question we are asking amounts to, “How likely
is it that Early Archaic, Middle Archaic, and Late Archaic projectile point popula-
tions all had the same mean weight, and that our three samples differ just because
random samples, even from the same population, do differ from each other?”

We answered such a question with a two-sample t test in Chapter 12, but this test
cannot easily be extended to more than two samples. For three or more samples,
the technique of choice is analysis of variance, often abbreviated ANOVA. As the
name implies, analysis of variance relies on variance as the key to answering the
significance question in this situation. (Remember that the variance of a batch is
simply the square of the standard deviation.) The variances (s2) of all three separate
subsamples and of the entire sample of 127 are given in Table 13.2.

Analysis of variance assumes that the samples are drawn from populations with
normal shapes. We examine the stem-and-leaf plots for the three separate subsam-
ples in Fig. 13.2, and we see the fundamentally single-peaked and symmetrical
shape that we need to see for each of the subsamples. Analysis of variance also
assumes that the spreads (specifically the variances) of the populations are approx-
imately equal. The box-and-dot plots in Fig. 13.1 provide an easy way to judge
the spreads of the samples, as do the figures for the variances given in Table 13.2.

Figure 13.2. Stem-and-leaf plots of projectile point weights by subperiod where all subperiod
groups have similar means.
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Here the largest variance is almost three times as big as the smallest. Comparing
midspreads in the box-and-dot plots yields a similar observation. This difference in
spreads is pressing the limits of analysis of variance’s ability to withstand violation
of its basic assumptions. As long as the largest variance is no more than three times
the smallest, though, we are willing to go ahead and perform analysis of variance,
especially if the samples involved are not too small.

Figure 13.2 illustrates one possible result of a comparison of weights for the three
subsamples of projectile points from different parts of the Archaic period. Note
that Fig. 13.2 does not really illustrate the data presented in Table 13.1. Instead, it
illustrates one pattern that we might have seen. This pattern has been created by
maintaining the real shapes of all three subsamples but shifting their centers so that
they fall much closer together for purposes of discussion only. The stem-and-leaf
plots in Fig. 13.2 are drawn with letters standing for the different subperiods in order
to make it possible to see what happens when the three subsamples are combined,
as at the extreme right.

When we compare the overall sample of 127 projectile points in Fig. 13.2 to the
individual subsamples, we observe several things. First, in this result, all three sub-
samples look pretty much the same. All three have centers in about the same place.
All three have roughly similar spreads. Second, the spread of the overall sample
of 127 projectile points is similar to the spreads of the individual subsamples. And
third, the center of the overall sample of 127 projectile points is quite similar to the
centers of the individual subsamples. Despite some minor differences in shape, all
four stem-and-leaf plots are fairly similar. The sharpest difference is that the peak
in the stem-and-leaf for the overall sample is considerably higher than the peaks for
the individual subsamples. This should not be surprising, since the overall sample
has considerably more projectile points, but a spread not really larger than those of
the individual subsamples. Consequently they mount up higher at the peak.

A different possible result of such a comparison is illustrated in Fig. 13.3, and this
figure does, in fact, accurately reflect the data in Table 13.1. Comparing Fig. 13.3
with Fig. 13.2 reveals the nature of the differences. First, the three subsamples no
longer look pretty much the same. Their spreads continue to be roughly similar, but
their centers are clearly in different places. Second, the spread of the overall sample
is larger in Fig. 13.3 than in Fig. 13.2. It is no longer as close to the spreads of the
individual subsamples as it was in Fig. 13.2. While the Early Archaic subsample
has the largest spread, and this continues to be comparable to the spread in the
overall sample, the Middle Archaic and Late Archaic subsamples to have noticeably
narrower spreads than the overall batch. And third, the center of the overall sample,
while similar to the center in the Early Archaic subsample, is distinctly lower than
the center in the Middle Archaic subsample and distinctly higher than the center in
the Late Archaic subsample.

In sum, Fig. 13.3 shows that, as the centers of the subsamples vary from each
other, greater variation is introduced into the overall sample when the three sub-
samples are combined. Figure 13.2 illustrates a situation where all three subsamples
might well have been selected from populations with the same means. Figure 13.3
illustrates a situation where it is considerably more likely that the three subsamples
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Figure 13.3. Stem-and-leaf plots of projectile point weights by subperiod for the data presented in
Table 13.1.

were selected from populations with different means. Analysis of variance finds the
key to assessing these probabilities in a comparison between the variance observed
between subsamples on the one hand and the variance observed within subsamples
on the other. These two variances, between groups and within groups, are calculated
very much like the variances of ordinary batches of measurements.

Recall the equation for variance from Chapter 3:

s2 =
∑

(
x−X

)2

n−1

The numerator of this fraction, ∑
(
x−X

)2
, is often referred to as the sum of squares

since it consists of the sum of the squares of the deviations from the sample mean
of all the elements in the sample. The denominator, n−1, is actually the number of
degrees of freedom, a term we did not use in Chapter 3, but which we have come
across since.

To calculate the between groups variance needed for analysis of variance we
must determine what the relevant sum of squares is and what the relevant number of
degrees of freedom is. The between groups sum of squares is

SSB = ∑ni
(
Xi −X.

)2

where SSB = the between groups sum of squares, ni = the number of elements in
the ith group (or subsample), Xi = the mean in the ith group (or subsample), and
X . = the mean of all the groups (taken together).
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In our example, there are three groups or subsamples, so i refers, in turn, to each
of the three groups, whose numerical indexes are given in Table 13.2. Thus

n1 = 58 (the number of Early Archaic projectile points);
n2 = 42 (the number of Middle Archaic projectile points);
n3 = 37 (the number of Late Archaic projectile points;
X1 = 53.67g (the mean Early Archaic projectile point weight);
X2 = 60.45g (the mean Middle Archaic projectile point weight);
X3 = 41.56g (the mean Late Archaic projectile point weight);
X . = 53.34g (the grand mean projectile point weight, that is, the mean of the

total sample including all periods).

Consequently,

SSB = 58(53.67−53.34)2+ 42(60.45−53.34)2+ 27(41.56−53.34)2

= 6.32 + 2123.19 +3746.75

= 5876.26

The relevant number of degrees of freedom for this between groups sum of squares
is one less than the number of subsamples. For this example, there are three sub-
samples, so there are two degrees of freedom. Dividing the between groups sum of
squares by the number of degrees of freedom, we get

s2
B =

SSB

d. f .
=

5876.26
2

= 2938.13

This figure is the between groups variance, often referred to as the between groups
mean square. It is the way we express the spread observed between the means of
the different groups for analysis of variance.

Analysis of variance seeks to compare the between groups variance just calcu-
lated to the within groups variance. This within groups variance, like the between
groups variance, involves dividing a sum of squares by the relevant number of
degrees of freedom. It amounts to pooling the separate variances of the subsam-
ples. The within groups sum of squares is obtained simply by multiplying each
subsample’s variance by one less than the number in the subsample and adding up
the results for all the subsamples:

SSW = ∑ (ni −1)s2
i

where SSW = the within groups sum of squares, ni = the number of elements in
the ith group (or subsample) as before, and s2

i = the variance of the ith group (or
subsample).

Finding the variances of the subsamples in Table 13.2 gives us the following
values for s2

i : s2
1 = 215.21, s2

2 = 147.62, and s2
3 = 76.74. Consequently, in our

example,
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SSW = (58−1)(215.21)+ (42−1)(147.62)+(27−1)(76.74)
= 12266.97 + 6052.42 +1995.24

= 20314.63

The relevant number of degrees of freedom for this within groups sum of squares is
the overall sample size minus the number of subsamples. In our example, the overall
sample size is 127, and there are three subsamples, so the within groups number of
degrees of freedom is 124. Dividing the within groups sum of squares by the number
of degrees of freedom, we get

s2
W =

SSW

d. f .
=

20314.63
124

= 163.83

This figure is the within groups variance, often referred to as the within groups mean
square. It is the expression of the spread to be observed within the various groups
needed for analysis of variance.

Once the between groups variance and the within groups variance are calculated,
the analysis of variance is almost complete. It only remains to express these two
variances as a ratio:

F =
s2

B

s2
W

This F ratio in our example comes to

F =
2938.13
163.83

= 17.93

The F ratio can then be looked up in a table providing probabilities associated with
the different values of F . The probability associated with an F ratio of 17.93 for
2 degrees of freedom between groups and 124 degrees of freedom within groups
is 0.0000001. This means that there is only one chance in ten million of randomly
selecting three subsamples with the means and standard deviations that these have
from three populations whose means are the same. There is, then, a vanishingly
small probability that the differences observed between these three samples are
simply a consequence of the vagaries of sampling. Our results are extremely sig-
nificant. We have extremely high confidence that projectile points from different
periods really do have different mean weights.

Table 13.3. Example Computer Output for the Analysis of
Variance Example in This Chapter

ANALYSIS OF VARIANCE

SOURCE SUM OF SQUARES DF MEAN SQUARE F PROBABILITY
BETWEEN GROUPS 5880.6 2 2940.30 17.94 0.0000001
WITHIN GROUPS 20321.8 124 163.89
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STRENGTH OF DIFFERENCES

In addition to discussing the significance of the differences we observed in the
mean weights of projectile points from different parts of the Archaic, we should
discuss the strength of these differences. The strength of the differences amounts
to nothing more complicated than the differences of means between the subsam-
ples. Late Archaic projectile points are the lightest, on average, with a mean 12.11 g
below that of Early Archaic points, which are, in turn, 6.78 g lighter than Middle
Archaic ones. Thus the sharpest contrast is the 18.89 g that separate the mean for
Middle Archaic points from the mean for Late Archaic points. These are, of course,

Statpacks

Having gone through the lengthy calculations in the text, we must recognize
that calculating an analysis of variance by hand is largely an outmoded tech-
nique. Although there are computational shortcuts that make it easier, and
many statistics books provide detailed instructions for these shortcuts, there
is not much reason to perform an analysis of variance now except with a com-
puter. (One reason, though, would be if outliers made you want to perform
it with trimmed means and standard deviations.) The ease of performing an
analysis of variance with a statpack makes it even more important to under-
stand what one is about, and what the resulting numbers mean. The point of
the example is to help make clear how analysis of variance works, more than
to provide instructions for how to do it.

The details of performing an analysis of variance vary from one statpack
to another. Most will want the data organized as they are in Table 13.1. The
Archaic subperiod in that table may be called a grouping variable or indepen-
dent variable and the weight may be called a dependent variable. The output
will likely list the between groups and within groups sums of squares, degrees
of freedom, and mean squares. The F ratio will be provided, along with its
associated probability. Table 13.3 shows an example of one statpack’s output
for the analysis of this example. This output is from SYSTAT R©, and you will
note that the numbers are slightly different from those in the text. This is a
consequence of rounding error. Statpacks customarily keep track of figures
throughout the calculations to many more decimal places than is possible with
an ordinary calculator, and thus they produce results with greater precision,
although there is no substantive difference in conclusions. Since statpacks also
calculate the associated probability with much more accuracy than even a very
long and detailed F table can provide, and since the need to performing an
analysis of variance by hand does not often arise, this book does not include
an F table.
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the differences whose significance we have been evaluating, first by comparing
estimated means and error ranges in a bullet graph and later through analysis of
variance. Both strength and significance can be seen in Fig. 13.1, and that is a clear
advantage of such a presentation. It is easy to identify there exactly which subsam-
ples are heavy and which are light and by approximately how much. In fact, most of
what we need to say about these numbers is most easily seen in Fig. 13.1. For most
purposes in archaeology, a bullet graph is much simpler and more straightforward
than an analysis of variance. If it is important to put a single probability figure on
the entire pattern of subsamples, however, analysis of variance is available.

Whether the results of our analysis are meaningful depends on both significance
and strength but in different ways. If there is very little significance, then there is
little point in discussing the meaning of the differences observed, because there is
too high a probability that we would simply be discussing the random differences
between three samples selected from indistinguishable populations. If there is mod-
erate to high significance, then the strength or magnitude of the differences is worth
discussing, at least tentatively, because it seems likely that there is a “real” differ-
ence to be discussed. If the significance level is very high, then it is worth engaging
in serious discussion of the strength of the differences. Even though the significance
level is extremely high in our example, this does not automatically make the results
meaningful. It makes them very likely to be “real,” but many “real” things are trivial.
Whether this difference means anything depends on the substantive issues that we
are investigating. If smaller projectile points were, indeed, used for hunting smaller
animals, then our results might be used to support an interpretation that smaller ani-
mals were most hunted in the Late Archaic and larger animals were most hunted
in the Middle Archaic, with the Early Archaic falling somewhere in between. This,
then, would imply a shift from smaller toward larger and then back toward smaller
game. Whether the 10–20 g involved in mean weight differences is large enough
to be meaningful in this context is a substantive rather than statistical evaluation.
And, of course, as always, we would want to look at other completely different lines
of evidence relevant to the issue, such as site locations, faunal remains, and many
others.

As discussed in Chapter 12, significance and strength are two importantly dif-
ferent concepts. Significance is, in some sense, the more “purely” statistical of the
two, while strength usually sets us on the path toward the substantive interpreta-
tion of the statistical results. Only when relatively high significance is combined
with strong enough results to have substantive meaning do our statistical results
have much importance. Highly significant results may have little meaning because
they are very weak, and very strong results may have little importance because their
significance level is low.
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DIFFERENCES BETWEEN POPULATIONS VERSUS
RELATIONSHIPS BETWEEN VARIABLES

Analysis of variance can also be thought about from a rather different perspective.
Instead of focusing on the differences between several populations in mean values
of some measurement, we could focus on the analysis of variance as an investigation
of the relationship between two variables. In the example above,the two variables
would be projectile point weight and period. In an analysis of variance, conceived
in this way, there are always two variables: one of them is a measurement, and the
other is a set of categories. It is the categorical variable that provides the basis for the
division of the overall sample into subsamples, one corresponding to each category.

The categorical variable is always considered the independent variable because
we simply take the division of the sample into subsamples based on these cate-
gories as a given. The measurement is called the dependent variable because we
speak as if it were determined, at least in part, by the categories. In the example
of Archaic projectile points from the Cottonwood River valley we found that Late
Archaic projectile points weighed less, on average, than Early Archaic ones. Thus
it seems reasonable to say that projectile point weight depends on period to some
extent. It is simpler in statistics to speak of the relationship in these terms, although
this implies nothing about the direction of causality in the real world. Indeed, it
makes little real sense even to talk about period as an independent variable that
“causes” projectile points to be larger or smaller. This is simply a convention of
statistical language, having little to do with real notions of causality.

It is often useful to think of variable relationships in predictive terms. If the two
variables – projectile point weight and period – are related to each other, then know-
ing the value of one for a particular case would help us to predict the value of the
other. If, before looking at a particular projectile point, we wished to predict its
weight, the best guess we could make would be the mean of the overall sample.
That guess would most often be closest to the real weight of the projectile point in
question. Given what we found out in the analysis of variance, however, we know
that it would help us make better predictions if we knew to what part of the Archaic
the projectile point pertained. If we knew that the point was Late Archaic, the best
prediction would be the mean of the Late Archaic subsample. This prediction would
more often be closer to the real weight than the prediction based on the overall sam-
ple mean. It is in this sense that we can say that knowing the period helps us to
predict the projectile point weight. (We could, of course, reverse direction and pre-
dict period from weight. It is a little more complicated to phrase, and so we don’t
usually find it convenient to speak that way, but the relationship is symmetrical in
that sense.)

If there were no relationship between projectile point weight and period, then
knowing one would not help us predict the other at all. Looked at from this view-
point, the significance question then becomes, “How likely is it that the relationship
between projectile point weight and period that we observe in this sample is simply
a consequence of sampling vagaries?” Yet another way to put it would be, “How



COMPARING MEANS OF MORE THAN TWO SAMPLES 177

Be Careful How You Say It

The following sentence provides a complete example of how the conclu-
sions from the example analysis of variance might be stated: “The difference
observed in mean weight of Early, Middle, and Late Archaic projectile points
in the Cottonwood River valley has extremely high significance (F = 17.93,
p = 0.0000001).” This tells the reader what you concluded in a meaningful
way; it says what significance test was used (because the F ratio is the result
of an analysis of variance); and it gives the resulting statistic together with the
significance level or associated probability. It would not be adequate simply
to say, “The difference observed in mean weights of Early, Middle, and Late
Archaic projectile points in the Cottonwood River valley is significant.” This
latter statement is not exactly incorrect, but it is certainly incomplete. It fails
to specify what significance test was used, and it gives no information what-
ever about how significant the results were. It perpetuates the not very useful
idea that being significant (like being pregnant) is a clearcut “yes” or “no”
condition.

If what we are interested in is more easily framed in terms of the rela-
tionship between two variables, then there is yet a different way to phrase
the overall conclusion to be drawn from the example analysis of variance:
“For Archaic projectile points from the Cottonwood River valley, the relation-
ship between weight and period has extremely high significance (F = 17.93,
p = .0000001).”

One subtlety of reporting significance probabilities from computer output is
to recognize what it means if your statpack reports a probability of 0.000. This
does not mean absolute certainty. It only means a probability less than 0.0005,
since anything greater than or equal to 0.0005 would round off to 0.001 and
anything less than 0.0005 would round off to 0.000. Your program may enable
you to ask it to show results to more decimal places so that you can see what
the probability really is. If not, it is better to say that the probability is less than
0.0005 instead of saying that the probability is 0.000.

likely is it that we would select a sample of this size with this strong a relationship
between weight and period from a population of projectile points in which the two
variables were unrelated?” The analysis of variance answers this question with the
F ratio and its associated probability. In our example, the answer to either question
is “Extremely unlikely,” corresponding to only one chance in ten million.

When the question we wish to ask is most naturally framed as one of relation-
ship between two variables rather than differences between populations, then the
analysis of variance can provide a convenient single answer to the question. When
the question is more naturally framed as one of differences between populations,
then the approach by way of estimating means for the different populations and
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attaching error ranges to the estimates (Fig. 13.1) is likely to be much more direct
and informative.

ASSUMPTIONS AND ROBUST METHODS

Estimating population means and attaching error ranges to them is strongly affected
by outliers. This problem can be corrected by estimating the trimmed mean and
attaching an error range to it, as discussed in Chapter 9, and these estimated means
and error ranges can be represented in a bullet graph. It all works exactly the same
way as for making estimates from single samples, no matter how many subsamples
are being compared. Each subsample is simply treated as an independent sample
from which to estimate a population trimmed mean. If the trimmed mean is esti-
mated from one subsample, however, the trimmed mean must be estimated from
all subsamples. Comparing a trimmed mean to a regular mean is a comparison of
apples and oranges. Estimating population means or trimmed means is, of course,
of dubious value if the subsamples have asymmetrical shapes. Estimating medi-
ans may make more sense, and error ranges for the estimates can be determined
with the bootstrap. The estimated means and their error ranges could be presented
graphically in bullet graphs or as notched box-and-dot plots.

Analysis of variance assumes that the samples are drawn from populations with
normal shapes, and that the spreads of the populations are approximately equal.
Means of checking the validity of these assumptions, relying largely on stem-and-
leaf plots and box-and-dot plots, were discussed at the beginning of the example
analysis above. These assumptions will be recognized as precise parallels to the
assumptions of the two-sample t test. If the spreads in the subsamples are very dif-
ferent, then that is, in itself, an indication that they did not come from identical
populations. If the shapes of the subsamples are very asymmetrical, then a trans-
formation that produces reasonably symmetrical shapes for all subsamples can be
applied before going ahead with analysis of variance.

If the subsamples to be compared contain outliers, the analysis of variance can
be based on the trimmed means and trimmed standard deviations, as discussed in
Chapters 2 and 3. Few computer programs provide this as an option in analysis of
variance, but it is not difficult to use most statistics packages to help you arrive at
the trimmed mean and trimmed standard deviation for each subsample. Once these
figures have been obtained, you have information analogous to that in Table 13.2,
which you can use to calculate the final steps in the analysis of variance by hand as
discussed in the text, simply using the trimmed mean and the trimmed standard devi-
ation squared wherever the regular mean and the regular standard deviation squared
are called for. (You will, of course, then need to go find an F table to look up the
probability associated with the statistic you produce. Many statistics books contain
this table.)
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Table 13.4. Data on House Floor Area for Five Sites Occupied During the Early, Middle, and
Late Neolithic Near Heiligenstadt

Floor Floor Floor
area Neolithic area Neolithic area Neolithic
(m2) Site Subperiod (m2) Site Subperiod (m2) Site Subperiod

19.00 Hlg001 Early 16.83 Hlg004 Early 18.66 Hlg002 Early
16.50 Hlg004 Middle 16.43 Hlg004 Middle 18.36 Hlg004 Middle
16.10 Hlg002 Late 13.04 Hlg002 Late 16.07 Hlg005 Late
19.20 Hlg001 Late 21.14 Hlg003 Middle 17.17 Hlg002 Middle
15.20 Hlg005 Middle 18.24 Hlg005 Early 17.17 Hlg003 Late
20.40 Hlg001 Middle 17.34 Hlg002 Late 20.47 Hlg003 Late
16.40 Hlg002 Early 14.84 Hlg004 Middle 23.57 Hlg003 Late
16.40 Hlg002 Late 17.34 Hlg005 Middle 22.77 Hlg001 Middle
16.40 Hlg002 Middle 21.64 Hlg001 Early 22.77 Hlg003 Late
15.40 Hlg005 Early 15.74 Hlg005 Early 15.87 Hlg005 Late
20.60 Hlg001 Middle 19.84 Hlg001 Middle 15.08 Hlg005 Middle
17.20 Hlg004 Middle 22.99 Hlg003 Early 18.28 Hlg001 Early
19.90 Hlg003 Late 15.94 Hlg002 Middle 15.78 Hlg004 Late
22.01 Hlg001 Late 23.05 Hlg003 Middle 16.98 Hlg004 Late
21.11 Hlg003 Early 24.15 Hlg001 Early 20.58 Hlg001 Early
16.51 Hlg002 Early 20.35 Hlg003 Middle 16.08 Hlg004 Early
22.71 Hlg003 Middle 18.95 Hlg004 Early 21.68 Hlg003 Middle
20.81 Hlg001 Late 16.85 Hlg002 Middle 15.09 Hlg005 Late
15.81 Hlg005 Late 19.95 Hlg003 Early 17.79 Hlg004 Late
16.52 Hlg004 Early 20.16 Hlg001 Early 17.09 Hlg004 Late
21.12 Hlg003 Late 19.16 Hlg003 Middle 21.69 Hlg001 Middle
18.22 Hlg001 Late 17.66 Hlg004 Early 21.69 Hlg001 Late
23.22 Hlg003 Early 15.26 Hlg001 Middle 20.69 Hlg003 Early
16.32 Hlg005 Late 16.26 Hlg005 Middle 24.99 Hlg003 Early
16.13 Hlg005 Early 19.46 Hlg002 Late
15.33 Hlg002 Early 15.46 Hlg005 Early

PRACTICE

You are interested in investigating variability in group mobility, which you think
is related to the size of the house that a family builds. You have excavated a
series of Neolithic houses at five different sites near Heiligenstadt. Each site is in a
different environmental setting, but each was occupied through all three parts of the
Neolithic that you can identify: Early, Middle, and Late. The information is given in
Table 13.4. A long Oktoberfest recess in your field seasons provides ample oppor-
tunity for deep consideration of issues of sampling bias, and you decide that you
will use the sample of house floors from each site as a random sample from a much
larger and vaguely defined population consisting of all house floors from environ-
mental settings like that of the site in question. Likewise, you will use the sample of
house floors from Early, Middle, and Late Neolithic as a random sample from the
large and vaguely defined population of all house floors of that period.
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1. Estimate the mean house floor area in each of the five environmental settings
represented by the five different sites. Draw a bullet graph comparing these five
populations in regard to estimated mean house floor area with error ranges for
80%, 95%, and 99% confidence levels. Does it appear that house sizes were
different in different environmental settings? Summarize what you can conclude
from your graph in one or two clear sentences.

2. Perform an analysis of variance to evaluate the relationship between house floor
area and site based on this sample of 76 house floors. Does it appear that there is
a relationship between environmental setting and house size? State the results of
your analysis in one clearly worded sentence.

3. Estimate the mean house floor area for the region in each part of the Neolithic
period. Draw a bullet graph comparing the Early, Middle, and Late Neolithic in
regard to house size with error ranges for 80%, 95%, and 99% confidence levels.
Does it appear that house size changed through time? Summarize what you can
conclude from your graph in one or two clear sentences.

4. Perform an analysis of variance to evaluate the relationship between house size
and period based on this sample of 76 house floors. Does it appear that there is a
relationship between house size and period? State the results of your analysis in
one clearly worded sentence.
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Sometimes we have a sample divided into subsamples as in the example in
Chapter 13, but the comparison we wish to make between the subsamples concerns
not the mean of some measurement but rather another set of categories. Such a com-
parison can be approached by estimating population proportions from the various
subsamples and attaching error ranges to the estimates. Then the estimated popula-
tion proportions with their error ranges can be compared to each other with a bullet
graph just as we did for means in Chapter 13.

COMPARISON WITH ESTIMATED PROPORTIONS
AND ERROR RANGES

Table 14.1 provides some information about the quantities of sherds of two different
vessel forms (bowls and jars) found at two sites (San Pablo and San Pedro). After
carefully considering issues of sampling bias we decide that the methods by which
these surface collections were made allow us to treat them as if they were random
samples from the large and vaguely defined populations consisting of all the sherds
at each site. We calculate the proportions of bowl and jar sherds in each sample
and use these proportions as estimates of the corresponding population proportions,
attaching error ranges to them on the basis of their standard errors, as discussed in
Chapter 11. The estimate for the San Pablo site is 60% bowl sherds and 40% jar
sherds, with a standard error of 9% for both. The estimate for the San Pedro site is
45% bowl sherds and 55% jar sherds, with a standard error of 8% for both.
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c© Springer Science+Business Media, LLC 2004, 2009

181

GLAUCO
Highlight



182 CHAPTER 14

Figure 14.1. Comparison of bowl and sherd proportions at the San Pablo and San Pedro sites..

These results are illustrated with a bullet graph in Fig. 14.1. Only the propor-
tions of bowl sherds are graphed, since the bullet graph for jar sherds would show
exactly the same contrast between the two sites in reverse. Based on these samples,
we would say that the San Pablo site has a higher proportion of bowl sherds than
the San Pedro site. Our confidence in this statement, however, would not be very
high. Comparing the error ranges for different levels of confidence reveals that the
estimated proportion for the San Pedro site falls well within the 99% confidence
error range for the San Pablo site, and vice versa. Thus our confidence that our
samples actually reflect a difference between the two sites (as opposed to reflecting
just the vagaries of sampling) is less than 99%. Continuing the comparison, we
note that the estimated proportion for the San Pedro site also falls within the 95%
confidence error range for the San Pablo site and vice versa. Thus our confidence
that our samples actually reflect a difference between the two sites is even less than
95%. The proportion for the San Pedro site does, however, fall outside the 80%
confidence error range for the San Pablo site and vice versa. Thus our confidence
that the observed difference reflects something more than just sampling vagaries is
somewhere between 80% and 95% – moderate but not very high confidence. The
difference might well be strong enough to be meaningful (a difference between 45%
and 60%), but the risk that the difference might reflect nothing more than the chance
variation between two relatively small samples from identical populations is higher
than we might like.

COMPARISON WITH CHI-SQUARE

We first approached the comparison of a measurement between two or more samples
by estimating population means (Chapters 12 and 13) and then turned to significance
tests that boiled the entire comparison down to a single probability value (the t test
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Table 14.1. Sherds of Different Vessel Forms from the San
Pablo and San Pedro Sites

Bowl sherds Jar sherds Total

San Pablo 18 12 30
San Pedro 18 22 40
Total 36 34 70

Table 14.2. Row Proportions of Sherds of Different Vessel
Forms from the San Pablo and San Pedro Sites

Bowl sherds Jar sherds Total

San Pablo 60.0% 40.0% 100.0%
San Pedro 45.0% 55.0% 100.0%
Average 51.4% 48.6% 100.0%

and analysis of variance). We have now, in similar fashion, approached the compari-
son of a set of categories between two samples by estimating population proportions.
In this instance, too, there is a significance test that sums the entire comparison up
in a single probability value. It is the chi-square test, named after the statistic that
it produces, χ2, represented by the Greek letter chi. The chi-square test works for
any number of categories into which the overall sample is divided and for any num-
ber of categories for which proportions are calculated. Thus, for proportions, unlike
means, there is no division between the two-sample case, where we used the t test
to compare measurements, and the multiple-sample case, where we used analysis of
variance for the same purpose.

Table 14.1 is easily recognized as the kind of table we worked with in Chapter 6.
It seems natural to look at this table in terms of row proportions, because the rows
are the two sites and it is the two sites that we want to compare to each other to
investigate whether, for example, a difference in activities between the two sites
might be reflected in different proportions of ceramic vessel forms. This is what we
have, in fact, already been doing in comparing bowl proportions between the two
sites. Table 14.2 provides these row proportions. We can see that the San Pablo site
has a higher-than-average proportion of bowls, while the San Pedro site has a lower-
than-average proportion of bowls – just what we concluded from Fig. 14.1. We could
represent these departures from average with bar graphs as we did in Chapter 6, but
this is such a simple comparison that it hardly seems necessary.

Chi-square is based on an assessment of these departures from average. This is
accomplished by constructing a table of expected values to compare with the table
of observed values (Table 14.1). If the average proportion of bowl sherds is 51.4%,
as indicated in Table 14.2, then we would, in some sense, expect both the San Pablo
and San Pedro sites to have 51.4% bowls. For the San Pablo site, this means 51.4%
of 30 sherds, or 15.42 bowl sherds. For the San Pedro site, 51.4% of 40 sherds is
20.56 bowl sherds. Correspondingly, we would expect both sites to have 48.6% jar
sherds. These expected values are shown in Table 14.3.
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Table 14.3. Expected Number of Sherds of Different Vessel
Forms from the San Pablo and San Pedro Sites

Bowl sherds Jar sherds Total

San Pablo 15.42 14.58 30
San Pedro 20.56 19.44 40
Total 36 34 70

Notice that the row and column totals (known together as the marginal totals)
stay the same (allowing for rounding error) in the table of expected values as they
were in the table of observed values. Indeed, it is the constant marginal totals upon
which the expected values are based. The short cut for computing the expected val-
ues, in fact, is to multiply the row total corresponding to a particular cell by the
column total corresponding to that cell and divide by the grand total for the table.
For example, to obtain the expected number of bowl sherds at the San Pablo site, we
could multiply the row total for that cell (30) by the column total for that cell (36)
and divide by the grand total (70) to obtain 15.43 – exactly what we obtained from
the row proportions (allowing for rounding error). We arrive at the same expected
values for the table no matter whether we use row proportions, column proportions,
or multiplication of marginal totals. This table of expected values provides the basis
for a summary statistic, χ2.

The χ2 statistic is really very like a standard deviation, in that it involves calcu-
lating deviations, squaring them, and summing them up. The deviations, however,
instead of being deviations from the mean, as they are for the standard deviation,
are observed deviations from expected values:

χ2 = ∑ (Oi −Ei)2

Ei

where Oi = the observed value for the ith cell of the table, and Ei = the expected
value for the ith cell of the table.

Our example is what is often referred to as a two-by-two table because it has
two rows and two columns. There are, therefore, four cells. We thus calculate the
quantity (Oi −Ei)2 / Ei for each of the four cells and sum up the four values:

χ2 =
(18− 15.42)2

15.42
+

(12−14.58)2

14.58
+

(18−20.56)2

20.56
+

(22−19.44)2

19.44
= 0.4317 + 0.4565+ 0.3188+0.3371

= 1.5441

This value, χ2 = 1.5441, is then looked up in Table 14.4 to determine the associated
probability. One need only determine the appropriate number of degrees of freedom,
which for χ2 is the product of one less than the number of rows in the table times
one less than the number of columns in the table. Since the table in our example
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Table 14.4. The Chi-Square Distribution

Confidence 50% 80% 90% 95% 98% 99% 99.9%
.5 .8 .9 .95 .98 .99 .999

Significance 50% 20% 10% 5% 2% 1% 0.1%
.5 .2 .1 .05 .02 .01 .001

Degrees of freedom

1 .455 1.642 2.706 3.841 5.412 6.635 10.827
2 1.386 3.219 4.605 5.991 7.824 9.210 13.815
3 2.366 4.642 6.251 7.815 9.837 11.341 16.268
4 3.357 5.989 7.779 9.488 11.668 13.277 18.465
5 4.351 7.289 9.236 11.070 13.388 15.086 20.517
6 5.348 8.558 10.645 12.592 15.033 16.812 22.457
7 6.346 9.803 12.017 14.067 16.622 18.475 24.322
8 7.344 11.030 13.362 15.507 18.168 20.090 26.125
9 8.343 12.242 14.684 16.919 19.679 21.666 27.877

10 9.342 13.442 15.987 18.307 21.161 23.209 29.588
11 10.341 14.631 17.275 19.675 22.618 24.725 31.264
12 11.340 15.812 18.549 21.026 24.054 26.217 32.909
13 12.340 16.985 19.812 22.362 25.472 27.688 34.528
14 13.339 18.151 21.064 23.685 26.873 29.141 36.123
15 14.339 19.311 22.307 24.996 28.259 30.578 37.697
16 15.338 20.465 23.542 26.296 29.633 32.000 39.252
17 16.338 21.615 24.769 27.587 30.995 33.409 40.790
18 17.338 22.760 25.989 28.869 32.346 34.805 42.312
19 18.338 23.900 27.204 30.144 33.687 36.191 43.820
20 19.337 25.038 28.412 31.410 35.020 37.566 45.315
21 20.337 26.171 29.615 32.671 36.343 38.932 46.797
22 21.337 27.301 30.813 33.924 37.659 40.289 48.268
23 22.337 28.429 32.007 35.172 38.968 41.638 49.728
24 23.337 29.553 33.196 36.415 40.270 42.980 51.179
25 24.337 30.675 34.382 37.652 41.566 44.314 52.620
26 25.336 31.795 35.563 38.885 42.856 45.642 54.052
27 26.336 32.912 36.741 40.113 44.140 46.963 55.476
28 27.336 34.027 37.916 41.337 45.419 48.278 56.893
29 28.336 35.139 39.087 42.557 46.693 49.588 58.302
30 29.336 36.250 40.256 43.773 47.962 50.892 59.703

(Adapted from Table 14 in Tables for Statisticians by Herbert Arkin and Raymond R. Colton
(New York: Barnes and Noble, 1963)

has two rows and two columns, the number of degrees of freedom is 1× 1 = 1.
Using the first row in the table, then, for one degree of freedom, we see that the χ2

value of 1.544 falls between the table values of 0.455 and 1.642. Thus the associ-
ated probability is between 50% and 20%. As with other significance tests, this is
the probability that the differences we observe (in this case between the two sites
in regard to proportions of sherds of different vessel forms) are a consequence of
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Degrees of Freedom

In the tables on which the chi-square statistic is based, the term degrees of
freedom makes some intuitive sense. There are, of course, numerous ways to
fill cell values into a table so that they add up to a given set of marginal totals.
In a two-by-two table, however, once a single cell value has been filled in,
the other three cell values are determined because there is only one value for
each of the other three cells that will make the given marginal totals add up
correctly. This is, in a sense, the one degree of freedom that a two-by-two table
has. For, say, a three-by-four table, there are six degrees of freedom (one less
than the number of rows times one less than the number of columns), and it
takes six cell values to completely determine such a table for a given set of
marginal totals. (Try this out on paper, and you’ll soon see just how it works.
There is no set of five cells or fewer in a three-by-four table whose values will
completely determine what the rest of the cell values must be to produce a
given set of marginal totals. It takes six.)

Thinking back to calculations of standard deviations in sample batches of
numbers and to the use of the t table reveals a related principle. For the t table,
the number of degrees of freedom is one less than the number in the sample.
If a sample batch has a given mean, then it is necessary to establish what all
the numbers but one are before the last number is constrained to a single value.
There is, of course, much more mathematical logic to this notion, but degrees
of freedom in using the t table, in using the chi-square table, and, for that
matter, dividing by (n–1) in calculating the standard deviation of a sample are
related to this notion.

the vagaries of sampling – that is to say, the probability that we could select two
samples with proportions as different as these from parent populations having iden-
tical proportions. The chi-square test, then, is designed to answer the question, “How
likely is it that we could select samples with proportions of bowl and jar sherds as
different as these if the two sites did not really differ in regard to bowl and jar sherd
proportions?”

In this example, our answer to the question is that there is somewhere between a
50% and a 20% risk that we could select samples as different as these if the two sites
did not really differ in regard to bowl and jar sherd proportions. This is a high enough
risk that our samples do not “really” indicate any difference between the two sites
that we would not regard this evidence as much support for the notion of a difference
in activities between the two sites. This is a slightly different conclusion than we
came to from the bullet graph in Fig. 14.1. By looking at the bullet graph, we decided
we would have between 80% and 95% confidence that there was a difference in bowl
and jar sherd proportions between the two sites. A confidence level between 80%
and 95% ought to translate into a significance probability between 20% and 5%,
but the chi-square test gave us a significance probability between 50% and 20%.
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Be Careful How You Say It

In conclusion to the chi-square example in the text, we can say “The difference
between the San Pablo site and the San Pedro site with respect to proportions
of bowl sherds and jar sherds is not very significant (χ2 = 1.544, .50 > p >
.20).” This statement makes clear just what differences were investigated; it
informs the reader what significance test was used, since χ2 is the result of
the chi-square test; and it provides the reader with the resulting statistic and its
associated probability.

It would not be adequate to conclude this significance test simply by say-
ing, “The San Pablo site and the San Pedro site do not differ significantly in
proportions of bowl and jar sherds.” In the first place, this latter statement does
not tell the reader what significance test was used or provide its specific results.
In the second place, it treats significance as a simple “yes” or “no” condition,
which is at the least an oversimplification. On this last score, the inadequate
statement even tends to mislead. The χ2 value obtained (1.544) actually falls
fairly close to the 20% significance column. Interpolating from the table, then,
the actual probability must be only slightly greater than 20%. Put another way,
the confidence we have that the two sites actually differ in bowl and jar sherd
proportions is somewhere near 80%. We should, then, be saying that there is
almost an 80% chance that the differences observed between the two samples
actually do reflect differences between the sites rather than just the vagaries
of sampling. The risk is still substantial (slightly over 20%) that nothing more
may be at work here than the random variation of samples, but it is certainly
more likely that there actually are differences in bowl and jar sherd proportions
between the two sites. The last thing we want to do on the basis of this signif-
icance test is to act as if we have established that the two sites have the same
proportions of bowl and jar sherds. This is why it is worth communicating that
the odds favor the conclusion that there is a difference between the sites, even
though there remains a worrisomely large risk that this may not be the case.

Under the influence of the near-sacred 5% significance level for rejecting or
failing to reject the null hypothesis (see Chapter 12), people are accustomed to
characterizing significance levels around 5% as “high.” When the significance
level reaches 1% or less, it is common to characterize it as “very high.” A sig-
nificance level around 20%, as in the example in the text, would usually be
called “low.” While it may seem that we’ve gone all the way from “very high”
to “low” while staying pretty much toward one end of the scale, it is reason-
able to think in such terms because, once the significance level goes far above
20%, the risk that the samples differ only because of the vagaries of sampling
is so great that the result merits little attention. A difference between samples
that is “highly significant” corresponds to “high confidence” that there is a dif-
ference. Note, though, that “high” significance corresponds to low associated
significance probabilities (say, 5% or less), and “low” significance corresponds
to high associated significance probabilities (say, around 20% or greater).
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This happened because the two approaches are not just mirror image applications
of the same principles. The error ranges in the bullet graph and the chi-square test
are taking slightly different approaches, and it is not surprising that they produce
slightly different results – yes, slightly different, because the two results are not
really as different as they seem. If we look carefully at the bullet graph, we can
see that the confidence we should have really is closer to 80% than to 95%. And
if we look carefully at the chi-square table, we see that our result really is much
closer to the 20% significance column than the 50% significance column. Thus, the
bullet graph suggests slightly greater than 80% confidence, while the chi-square test
suggests a significance slightly greater than 20%, so the two results do not in fact
disagree by very much.

MEASURES OF STRENGTH

Just as in the other situations we have discussed, the significance and the strength of
a result are different things. In this example, it is the significance level that gives us
serious pause. There is somewhere around a 20% probability that we could select
random samples and get the results that we got even if the two sites in fact had iden-
tical proportions of bowl and jar sherds. This is certainly far from reassuring. On the
other hand, it is more likely that the difference observed between the two samples
actually reflects a difference between the two sites. If this is the case, then the differ-
ence observed (15%) is probably strong enough to have a meaningful interpretation.
Unlike the t test and analysis of variance, several specific measures of strength of
results come along with the chi-square test’s measure of significance.

One of the most flexible and easiest to calculate is Cramer’s V :

V =

√
χ2

n(S−1)

where n = the number of elements in the sample (that is, the grand total for the
table), and S = the number of rows or the number of columns in the table, whichever
is smaller.

Thus, in our example,

V =

√
1.544
70(1)

= 0.15

It can be shown that V ranges from zero to one. It takes on a value of zero when
there is no difference at all between the observed values and the expected values,
and it takes on a value of one when the difference between observed and expected
values is as large as it can be. This latter would occur, for example, if the San Pedro
site had only bowl sherds and the San Pablo site had only jar sherds. Thus, the
closer V is to one, the stronger is the difference in proportions between the cate-
gories. (For a two-by-two table, V is the same as the difference between the observed
proportions – here a difference of 15% between 60% and 45% for bowl sherds or
55% and 40% for jar sherds.)
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For any table that has no more than two rows (or, alternatively, no more than
two columns), the value of S –1 will always be 1, and this term will have no effect
on the outcome. In this situation, V is equivalent to another measure of strength,
called φ (the Greek letter phi, which in statistics is usually pronounced “fee”). The
calculation of φ is quite simple: divide the χ2 score by the grand total of the table
and take the square root of the result. As long as the table is only two rows or only
two columns φ is limited to a range between zero and one and is exactly the same
thing as V . For tables with more than two rows or more than two columns, φ is
not very useful because its range becomes open ended. V can be thought of as a
modification of φ , expanding its utility to tables of any size. It is convenient simply
to use V for tables of any size, and to recall that when someone refers to φ for a
table of two rows or two columns it is the same thing as V .

THE EFFECT OF SAMPLE SIZE

Having obtained the results we did in the example chi-square test, we might decide
that the possibility of differences between the two sites is intriguing, and we might
want to explore it further. The very modest significance of the results, of course,
was in part attributable to the fact that our samples were relatively small. (It is more
likely that small samples will differ widely from the populations they are selected
from than that large samples will. Thus the likelihood of getting a large difference
between two small samples purely because of the vagaries of sampling is greater.)
We might thus decide to seek larger samples of sherds from the two sites. Table 14.5
provides some imaginary results of seeking larger samples. Now there are exactly
four times as many sherds, in exactly the same proportions as before. The strength
of differences in proportions, then, remains the same (15%). Table 14.2 provides
row proportions that are equally valid for the new result. The new expected values
(Table 14.6) are, likewise, four times the old expected values (Table 14.3).

Calculating the χ2 score, though, on the basis of the larger sample gives a very
different result:

χ2 =
(72− 61.71)2

61.71
+

(48−58.29)2

58.29
+

(72−82.29)2

82.29
+

(88−77.71)2

77.71
= 1.7158 + 1.8165+ 1.2867+1.3626

= 6.1816

Table 14.5. A Larger Sample of Sherds of Different Vessel
Forms from the San Pablo and San Pedro Sites

Bowl sherds Jar sherds Total

San Pablo 72 48 120
San Pedro 72 88 160
Total 144 136 280
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Table 14.6. Expected Numbers of Sherds of Different Vessel Forms from the San Pablo
and San Pedro Sites with a Larger Sample

Bowl sherds Jar sherds Total

San Pablo 61.71 58.29 120
San Pedro 82.29 77.71 160
Total 144 136 280

A χ2 score of 6.1816 for one degree of freedom is associated with a significance
level between 0.02 and 0.01. These results are highly significant. We might say,
based on this sample, that we are between 98% and 99% confident that there are
differences of bowl and jar sherd proportions between the San Pablo and San Pedro
sites. The very different character of this conclusion from the one we reached before
is attributable simply to sample size. Other things being equal, results from larger
samples are more significant than results from smaller samples. The strength of the
difference in proportions is still the same (a 15% difference between the sites in the
proportion of bowl or jar sherds). And V continues to be 0.15.

For very small samples, only very strong results turn out to be significant. For
larger samples even weaker results can be more significant. And for very large
samples, even very weak results can have extremely high significance. Strength of
results is most closely connected to meaning. It seems likely that the 15% difference
in bowl sherd proportion between these two sites reflects some difference in the use
of ceramic vessels at the two sites. Would a difference of only 5% have a similar
meaning? Of 1%? Of 0.1%? At some point we would surely say that the difference
in proportions was so weak that it meant little in terms of differences in ceramic
vessel use. And yet we could certainly acquire a sample large enough to find even
a tiny difference of 0.1% highly significant. It would clearly, however, not be worth
the effort of acquiring such a large sample because it would not (at least in this
regard) tell us anything useful. Large samples are not necessarily more informative
than smaller samples, because they may simply increase the statistical significance
of results that are too weak to be meaningful.

Precisely the same contrast between smaller and larger samples can, of course,
be seen in estimates of population proportions like those illustrated in Fig. 14.1.
The effect of the larger sample on that bullet graph would be to shorten the error
bars substantially so that the difference in bowl proportions (which would remain
the same) would be considerably more significant. If this does not seem intuitively
sensible to you, try it out for yourself. Make a revised bullet graph with error bars
calculated from the larger sample, and you will see just exactly how increasing the
number of elements in the sample narrows in the error ranges for any given level of
confidence.
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DIFFERENCES BETWEEN POPULATIONS VERSUS
RELATIONSHIPS BETWEEN VARIABLES

Just as analysis of variance can be thought of either as a study of differences between
populations or as an investigation of relationship between variables, so can a chi-
square test. In this instance, both variables are categorical. We would call the ones
in the example analysis something like “site,” with two categories (San Pablo and
San Pedro), and “vessel form,” also with two categories (bowls and jars). We have
found an association between these two variables – an association of some strength
but little significance. If we had framed the analysis as one investigating the relation
between two variables rather than the difference between two populations, then we
might conclude, “Vessel form proportions do differ somewhat from one site to the
other, but there is little significance to the relationship between site and vessel form
(χ2 = 1.544, .50 > p > .20, V = 0.15).”

As in Chapters 12 and 13, the bullet graph is an alternative to a significance test.
For many purposes, the bullet graph in Fig. 14.1 would be the clearest and most
straightforward way to present the observed differences between the San Pedro and
San Pablo samples and the confidence we have in those observations. It would
be statistical overkill to present such a bullet graph and then go on to present the
results of a chi-square test. (It would indeed be a waste of time to calculate both.)
They tell the same story. Pick the version that most serves the need at hand and
use it.

Chi-square tests usually get more and more difficult to interpret meaningfully as
the number of categories (and thus the number of rows and columns in the table)
increases. With so many cells, it is usually only a few that show big differences
between observed and expected values, and various techniques have been suggested
for homing in on which specific cells in a large table really have important dif-
ferences. They all boil down to comparing observed and expected values in some
way, and for this reason it is common to include tables of observed and expected
values to accompany chi-square results. It is often preferable to use bullet graphs
in such a case, since they portray the categories individually, with the separate
confidence/significance implications of each included in the graph.

ASSUMPTIONS AND ROBUST METHODS

The chi-square test does not involve means and standard deviations, so we have
none of the worries associated with these indexes of level and spread in batches
of true measurements. Thus assumptions concerning shapes are not made, and the
issue of outliers simply does not arise. The principal concern about the chi-square
test is that the sample be large enough for it to be a reliable approximation of the
real probabilities. Many different rules of thumb can be found concerning this in
different statistics texts. Some statisticians would like us not to use the chi-square
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Statpacks

When framing a chi-square analysis as a test of relationship between two vari-
ables and when the data on the two categorical variables are organized as they
are in Table 6.1, then computer statpacks are likely to be of considerable assis-
tance in performing chi-square tests. If the data are already in the form of a
table like that in Table 6.4 or Table 14.1, then calculation of the χ2 score is
probably more easily accomplished by hand. Most of the work is in counting
up the numbers for the table, and it is under the heading of cross tabulations
that many statpacks deal with chi-square. Just by way of comparison with the
example we calculated in this chapter, a chi-square test performed on the data
from Table 6.1 with a statpack indicates that the differences in proportions
of incised and unincised ceramics from site to site are of moderate strength
and little significance (χ2 = 2.493, p = 0.29, V = 0.133). The example from
Table 14.1 in this chapter yields the same results when performed with a stat-
pack that we already calculated by hand, except that, as usual with a statpack,
the associated probability is calculated more precisely, p = 0.214, confirm-
ing the rough interpolation we made from Table 14.4 that the significance
probability was between 20 and 50% but much closer to 20%.

test if any of the expected values in the table are less than 10. Others are much less
conservative and are willing to accept chi-square tests based on tables with expected
values as low as 1. A middle course, one that we will adopt here, is to insist that no
expected value be less than 1 and that no more than 20% of the expected values be
less than 5.

If these conditions are not met, and the table is a large one (that is, a table with
many rows and/or many columns), it is often feasible to combine categories for one
or both variables, so that there are fewer rows and/or fewer columns in the table.
With the same number of cases divided among fewer cells, the expected values, of
course, will be higher. Since we have adopted a relatively unconservative require-
ment for expected values, combining categories will ordinarily suffice to bring these
expected values up to acceptable levels.

If a two-by-two table has such low expected values that the results of the chi-
square test are unreliable, there is an alternative in the form of Fisher’s exact test.
This test is a direct calculation of the significance probability and there are no
requirements at all about how large the expected values need be. Indeed, expected
values do not even enter into its calculation. Fisher’s method for calculating the
exact significance probability for a two-by-two table is

p =
(A + B)!(C+ D)!(A +C)!(B + D)!

N!A!B!C!D!
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where A = the observed frequency in the upper left cell of the two-by-two table,
B = the observed frequency in the upper right cell of the two-by-two table, C =
the observed frequency in the lower left cell of the two-by-two table, and D = the
observed frequency in the lower right cell of the two-by-two table.

The mathematical use of the symbol ! may not be familiar. X ! (read “X factorial”)
means to multiply X sequentially by each positive integer less than X . For example,
5! = 5×4×3×2× 1 = 120. Or 9! = 9×8×7×6×5×4×3×2×1 = 362,880.
Calculating the probability for the example in Table 14.1 yields

p =
(18 + 12)!(18 + 22)!(18+18)!(12+22)!

70! 18! 12! 18! 22!
= 0.237

This is a calculation that most people will be willing to leave to their comput-
ers, but it does provide the exact significance probability for the example from
Table 14.1 – a probability for which the chi-square test gives only an approxima-
tion. Most important, Fisher’s exact test can be applied regardless of how low the
expected cell values are, and when the numbers are small, the calculations are less
formidable for those doing them by hand.

POSTSCRIPT: COMPARING PROPORTIONS
TO A THEORETICAL EXPECTATION

Sometimes one arrives at a question in data analysis quite similar to the question we
have been dealing with up to now in this chapter, but with one important difference.
Perhaps our sample can be divided up into a set of categories and we know what we
expect the proportions in those categories to be – based not on the proportions in
another set of categories into which our sample can be divided, but rather on some
different criterion. For example, suppose that we have results of regional survey in
three different environmental settings as given in Table 14.7. Since most of the ter-
ritory surveyed was in the river bottoms, we might expect to find most of the sites in
that setting, other things being equal. As Table 14.7 makes clear, however, the pro-
portions of sites in the three settings are quite different from what we might expect.
But is our sample large enough to give us much confidence in these differences from
our expectations?

At first glance, one might be tempted to answer this question with a chi-square
test beginning as in Table 14.8. Thinking about that table, however, should make
us pause. Table 14.8 does not really involve two variables that are two separate
sets of categories for dividing up the same sample in two different ways. Instead
it only involves one set of categories (the three environmental settings). Two differ-
ent things have been divided up according to this one set of categories – the 38 sites
and the 13.6km2 of surveyed area. It makes no sense at all to add up 38 sites and
13.6km2 and say that we have a sample of 51.6 (51.6 what?). Yet that is what we
would be doing if we simply used the numbers in Table 14.8 to calculate χ2.
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Table 14.7. Regional Survey in Three Environmental Settings

No. of
sites

% of total
sites

Area surveyed

Environmental setting km2 % of total

Remnant levees 19 50.0 3.9 28.7
River bottoms 12 31.6 8.3 61.0
Slopes 7 18.4 1.4 10.3
Totals 38 100.0 13.6 100.0

Table 14.8. An Incorrect Way to Tabulate Observed Values
from Table 13.7 for a Chi-Square Test

No. of sites Area surveyed (km2)

Remnant levees 19 3.9
River bottoms 12 8.3
Slopes 7 1.4

In this example, what we have is a sample of 38 sites. If we are willing to treat
this as a random sample of sites in the region, then we can compare the propor-
tions of sites in different settings to the theoretical expectation based on how the
territory surveyed to find the 38 sites was divided between the three different set-
tings. One way to do this would be to follow the approach discussed in Chapter 11
for estimating the proportions of sites in different settings and for attaching error
ranges to these estimates. This would tell us, for instance, that we can have 99%
confidence that our sample of 38 sites came from a population in which 31.6% ±
20.3% of the sites were located in the river bottoms. (You can calculate this yourself,
following the procedure in Chapter 11.) If prehistoric inhabitants showed no pref-
erence for any of these environmental settings, however, the proportion we would
have expected here was 61.0%, since 61.0% of the territory is in this zone. This
proportion is considerably higher than the top of the 99% confidence error range
(51.9%), and so we can say that it is extremely unlikely that our sample came from
a population with 61.0% sites in the river bottoms. Although we do find sites there,
it seems that the prehistoric inhabitants showed something of an aversion to settling
in the river bottoms. (Or possibly that recent sedimentation has covered more sites
in the river bottoms than elsewhere, resulting in a particular failure to discover such
sites on survey. This is a question of interpretation that statistical analysis of these
numbers will not help us with.)

If we want to know exactly how unlikely it is that our sample came from a pop-
ulation with 61.0% sites in the river bottoms, we could perform a one-sample t test,
as discussed in Chapter 12. This example is different from the example one-sample
t test in Chapter 12 only in that there are three categories involved rather than just
two. We could follow this approach to each of the three categories, determining



COMPARING PROPORTIONS OF DIFFERENT SAMPLES 195

whether the proportion estimated on the basis of our sample was greater or less
than we would expect and how likely it was that the difference observed could be
attributed to the amount of random variation ordinarily seen in samples the size of
ours. This would lead to a specific discussion of settlement preferences (or apparent
lack thereof) in regard to each of the three environmental settings.

We might want to treat the issue in a more comprehensive way, however, focusing
not on each individual category, but asking the more general question, “How likely
is it that this entire sample of 38 sites came from a population of sites in which there
was no preference for locating sites in any particular environmental setting?” We
can use a chi-square test to answer this question, but not in the way indicated in
Table 14.8. Instead, we use the information we have to determine expected numbers
of sites in each environmental setting as in Table 14.9. Since 28.7% of the surveyed
area was on remnant levees, we might expect 28.7% of the 38 sites found (10.9
sites) to be on remnant levees, and so on. We now have a one-variable tabulation –
observed and expected values for three categories. We can use these observed and
expected values to calculate χ2 just as before:

χ2 = ∑ (Oi −Ei)2

Ei

χ2 =
(19−10.9)2

10.9
+

(12−23.2)2

23.2
+

(7−3.9)2

3.9
= 6.0192 + 5.4069+ 2.4641

= 13.8902

Since there is only one row in this table (or one column – it makes no difference
whether the table is vertical or horizontal), the number of degrees of freedom is
one less than the number of categories. Here, there are three categories, so two
degrees of freedom. A value of 13.8902 for χ2 is just beyond the rightmost column
of Table 14.4 in the row for two degrees of freedom. The rightmost column is for sig-
nificance of .001. We could thus conclude, “It is extremely unlikely that this sample
of sites was selected from a population in which sites were evenly distributed across
environmental settings (χ2 = 13.8902, p < .001).” Or, “The difference between our
survey results and the expected results was very highly significant (χ2 = 13.8902,
p < .001).”

Table 14.9. Observed and Expected Numbers of Sites
for Chi-Square Test

No. of sites
Area surveyed Exp. Obs.

Remnant levees 28.7% 10.9 19
River bottoms 61.0% 23.2 12
Slopes 10.3% 3.9 7
Totals 100.0% 38 38
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PRACTICE

1. You have made surface collections at the Granger and Rawlins sites. Both col-
lections include the same kinds of pottery, and you want to investigate whether
the two sites differ in regard to the proportions of different pottery types. At the
Granger site, you collected 162 sherds of the type Serengeti Plain, 49 sherds of
the type Mandarin Orange, and 57 sherds of the type Zane Gray; from the Rawl-
ins site you have 40 sherds of Serengeti Plain, 43 sherds of Mandarin Orange, and
49 sherds of Zane Gray. After considering possible sampling biases, you decide
to use the collections as random samples from the populations consisting of all
the sherds in each site. Estimate the proportions of the three pottery types at each
site. Draw a bullet graph comparing the estimated proportions for the two sites
with error bars for the 80%, 95%, and 99% confidence levels. (Think carefully
about how to arrange the graph so that the error ranges you want to compare to
each other are most easily compared.) How confident are you that the two sites
differ in regard to proportions of ceramic types? Summarize the conclusions of
your graphical comparison in one or two sentences.

2. Approach the issues raised in Question 1 by evaluating the strength and signifi-
cance of the association between the variables site and pottery type. Summarize
your results in one sentence. How do these results compare with those obtained
in Question 1? What are the advantages and disadvantages of approaching these
issues with a chi-square test rather than by estimating population proportions?

Table 14.10. Temper and Surface Finish for Sherds from the Opelousas Site

Temper Surface Temper Surface Temper Surface

Sand Red Shell Plain Shell Red
Sand Red Sand Plain Shell Red
Sand Red Shell Red Sand Plain
Shell Plain Shell Plain Sand Plain
Sand Red Sand Red Sand Red
Sand Plain Shell Plain Sand Red
Sand Red Shell Red Sand Plain
Shell Plain Sand Red Sand Red
Shell Red Shell Red Shell Plain
Shell Red Shell Red Sand Red
Sand Plain Sand Plain Sand Red
sand Red Sand Red Sand Red
Sand Red Shell Plain Shell Red
Sand Plain Shell Red Shell Plain
Sand Plain Sand Red Shell Red
Shell Plain Sand Plain Shell Plain
Shell Plain Sand Plain
Shell Red Shell Plain
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3. From the Opelousas site you have recovered a pitifully small collection of eroded
sherds. You can’t tell much about them except that some are tempered with shell
and some with sand and that some were finished with a red slip while others
have plain surfaces. The complete data are given in Table 14.10. Investigate the
statistical significance and strength of any association between temper material
and surface finish with the sample that you have. Summarize the meaning of your
results in one clearly worded sentence.
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In Chapters 12 and 13 we investigated the relationship between a measurement vari-
able and a categorical variable. We took two approaches to this task. The first was
to estimate population means for the measurement variable in each of the cate-
gories of the categorical variable and attach error ranges to those estimates. The
second approach was to use either a two-sample t test (if only two categories were
involved) or an analysis of variance (if more than two categories were involved). In
Chapter 14 we investigated the relationship between two categorical variables. Once
again we took two approaches. The first was to estimate population proportions for
one of the variables in each of the categories of the other variable and attach error
ranges to those estimates. The second approach was to use a chi-square test to eval-
uate significance and Cramer’s V to evaluate strength of association. There remains
only to investigate the relationship between two measurement variables to complete
all the possible combinations, and that is the subject of this chapter. We will see
that one approach here is so powerful that we will not really consider alternative
approaches.

Table 15.1 provides an example set of data consisting of observations on 14
known sites of the Oasis phase in the Rı́o Seco valley. At each of the sites a system-
atic program of surface collection was undertaken to produce a sample of exactly
100 artifacts. After careful consideration of sources of bias we decide that we are
willing to work with this sample of sites as if it were a random sample. Similarly
considering sources of bias for the artifact collections, we decide we are willing
to treat each as if it were a random sample of artifacts on the surface. Since each
collection consists of 100 artifacts, the number of hoes in each is the percentage of
hoes in the collection, and simultaneously our best approximation of the percentage
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Table 15.1. Observations of Site Area and Number of Hoes in Collections of 100
Artifacts Made at Oasis Phase Sites in the Rı́o Seco Valley

Site area Number of hoes Site area Number of hoes
(ha) Per 100 artifacts (ha) Per 100 artifacts

19.0 15 12.7 22
16.4 14 12.0 12
15.8 18 11.3 22
15.2 15 10.9 31
14.2 20 9.6 39
14.0 19 16.2 23
13.0 16 7.2 36

of hoes in each population (that is, the population of artifacts on the surface at each
of the sites). In effect, of course, what we are dealing with here is a percentage, and
percentages like this make perfectly suitable measurement variables to study in this
way. What we want to investigate here is whether there is any relationship between
the area of the site, as indicated by the extent of artifacts visible on the surface, and
the number of hoes collected in the 100-artifact sample.

LOOKING AT THE BROAD PICTURE

As usual, drawing a plot that presents a picture of important aspects of the patterns
to be observed is a good way to begin. The relationship between two measurement
variables is best illustrated by a scatter plot (Fig. 15.1). Each x in the scatter plot
represents one of the sites, and its position is determined according to the area of
the site (in the horizontal direction) and the number of hoes in the collection of 100
artifacts (in the vertical direction).

Simple observation of this scatter plot begins to reveal something of the relation-
ship between these two variables. The points toward the left of the graph (that is,
with low values for site area) tend to fall fairly high on the graph (that is, they have
high values for number of hoes). The points farther toward the right of the graph
(that is, with high values for site area) tend to fall fairly low on the graph (that is
they have low values for hoes). This suggests a pattern of larger sites having rela-
tively fewer hoes per 100 artifacts and smaller sites having relatively more hoes per
100 artifacts.

In looking for patterns in scatter plots, especially if they are not very clear, it may
sometimes help to look at groups of points separately and think of the levels in these
sub-batches. For example, look at the points representing small sites (between 5 and
10 ha) in Fig. 15.1. There are only two such small sites, and both points fall very
high on the graph, indicating that both sites have very high numbers of hoes. The
center of this small batch of two sites is clearly quite high, perhaps around 37 hoes.
In fact, these two smallest sites have the largest numbers of hoes of all the sites.
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Figure 15.1. Scatter plot of number of hoes per 100 artifacts collected by site area.

Next look at the points in Fig. 15.1 that represent the middle-sized sites (between 10
and 15 ha). All these points fall lower on the graph than the points representing the
small sites. The center of this batch of middle-sized sites falls lower than the center
for the small sites, probably somewhere near 20 hoes. Clearly the middle-sized sites
have fewer hoes than the small sites. Finally, look at the points representing the
large sites (between 15 and 20 ha). The center of this batch is lower still, perhaps
around 15 hoes. The same pattern emerges from this more detailed examination of
the scatter plot that we saw on simple inspection: in general, the bigger the site, the
smaller the number of hoes per 100 artifacts.

This detailed way of looking at the scatter plot suggests one way we could
approach this problem. We could treat site area as three categories (small, medium,
and large) and estimate the mean number of hoes per 100 artifacts in each of these
categories. Then we could attach error ranges to these estimates and draw a bullet
graph to illustrate the overall patterns. Or we could perform an analysis of variance
– the other technique applicable to investigating the relationship between a measure-
ment and a set of categories. Measurement variables can always be converted into a
set of categories in this way, and sometimes it is useful to do so. There is, however, a
much more powerful way to approach the investigation of the relationship between
two measurements.

LINEAR RELATIONSHIPS

The easiest kind of relationship to describe between two measurements is a linear,
or straight-line, relationship. Such a relationship is called linear because it is repre-
sented by a straight line on a scatter plot. Perhaps the simplest possible relationship
between two measurements is when the one equals the other. If we let X represent
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Figure 15.2. Some plotted straight lines and the equations that correspond to them.

one of the measurements and Y represent the other, then the relationship of equiva-
lence is simply expressed by the equation Y = X . For any given value of X , there is a
corresponding value of Y , which is determined easily by the equation. For example,
when X = 5, then Y = 5; when X = −10, then Y = −10. The values of X and Y
are plotted on the graph in Fig. 15.2. (By convention we always use the horizontal
axis for X and the vertical axis for Y .) All the points representing pairs of X and Y
values that satisfy the equation Y = X , lie along the line labeled Y = X in Fig. 15.2
– a perfect straight-line relationship between X and Y .

The other lines in Fig. 15.2 also represent perfect straight-line relationships
between X and Y . They are labeled with the corresponding equations. The positions
of these lines can be determined experimentally. For example, the line that repre-
sents Y =−2X is defined by all the points that satisfy the equation Y =−2X . These
include X = 5, Y = −10; X = −7, Y = 14 and so on. The equations in Fig. 15.2 are
algebraic expressions of relationships between two measurements and the lines on
the graph are geometric expressions of the same relationships. Each equation com-
prises a complete description of the corresponding line. If this is at all unclear, it is a
good idea to experiment on your own with some equations and their corresponding
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Figure 15.3. More plotted straight lines and the equations that correspond to them.

graphs. Make up some values for X ; calculate the corresponding values for Y ; and
plot the points.

Comparison of the equations in Fig. 15.2 reveals one property of the relationship
between equations and lines. If Y simply equals X multiplied by some number, then
the relationship is represented geometrically by a straight line, and that straight line
passes through the origin of the graph. (The origin is the point where X = 0 and
Y = 0.) The number by which X is multiplied in the equation is called the coefficient
of X , and it is this coefficient that governs the slope of the line. If the coefficient of
X is positive, then the line rises as it moves from left to right. If the coefficient is
negative, then the line falls as it moves from left to right. The larger the absolute
value of the coefficient, the steeper the slope. That is, Y = 2X has a steeper slope
than Y = .5X ; and Y = −2X has a steeper slope than Y = −.5X . (In the equation
Y = X , of course, the coefficient of X is 1.)

Figure 15.3 illustrates the other principal characteristic of straight lines on a
graph – their positions relative to the origin. All the lines on the graph in Fig. 15.3
have the same slope – the coefficient of X is .5 in every case. They differ, however,
in the degree to which they are offset from the origin. These equations differ only
in having an additional term added to the product of X and its coefficient. The line
corresponding to Y = .5X + 5 crosses the Y axis at the point where Y = 5. (This, of
course, has to be true because X is 0 at the Y axis, and when X = 0 then Y = 5.)
This additional term is called the Y intercept since it is the value of Y when X is 0,
which is to say, the value of Y where the straight line crosses the Y axis.
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Thus for any straight-line relationship between X and Y we can write an equation
in the form

Y = bX + a

where b = the slope of the line, and a = the Y intercept, or value of Y where the line
crosses the Y axis.

This specifies exactly what the relationship between X and Y is. It enables us to
say, for a given value of X , what Y will be. By convention, we always take X as a
given, and let Y ’s value depend on X . Thus X is the independent variable and Y is
the dependent variable.

THE BEST-FIT STRAIGHT LINE

We have strayed rather far from the example where we wanted to investigate the
relationship between site area and number of hoes collected per 100 artifacts. The
point of the discussion of straight-line relationships, however, was to make clear
exactly what kind of mathematical relationship we might expect to find between
these two measurements. If the relationship between site area and number of hoes
collected can be described reasonably accurately as a straight-line relationship, then
we can characterize it in these terms. If, for example, the scatter plot in Fig. 15.1 had
looked like Fig. 15.4 instead, we would find it quite easy to apply the principles of
straight-line equations just discussed. The points in Fig. 15.4 do fall almost perfectly
along a straight line, and an approximation of that line has been drawn on the graph.
We could measure the slope of the line and determine the Y value of the point at

Figure 15.4. If the scatter plot in Fig. 15.1 had looked like this, it would have been easy to fit a
straight line to the points.
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which it crosses the Y axis and write an equation that specified the relationship
between the two measurements algebraically.

The problem, of course, is that the points in the real scatter plot from our example
data did not fall almost perfectly along a straight line. While the general pattern of
declining numbers of hoes per 100 artifacts with increasing site area was clear, no
straight line could be drawn through all the points. There are so many advantages
to working with straight-line relationships, though, that it is worth trying to draw a
straight line on Fig. 15.1 that represents the general trend of the points as accurately
as possible – a best-fit straight line. The statistical technique for accomplishing this
is linear regression.

The conceptual starting point for linear regression is to think exactly what cri-
terion would determine which line, of all the possible straight lines we could draw
on the scatter plot, would fit the points best. Clearly, we would like as many of the
points as possible to lie as close to the line as possible. Since we take the values of
X as given, we think of closeness to the line in terms of Y values only. That is, for a
given X value, we think of how badly the point “misses” the line in the Y direction
on the graph. These distances are called residuals, for reasons that will become clear
later on.

We can explore the issue of residuals with the completely fictitious scatter plot
of Fig. 15.4. Since the points in this scatter plot do fall very closely along a straight
line, it is a bit easier to see good and bad fits. Fig. 15.5 illustrates a straight line
that does not fit the pattern of points nearly so well as the one in Fig. 15.4. We can
see that simply by inspection. We could put a finer point on just how bad the fit is
by measuring the residuals, which are indicated with dotted lines in Fig. 15.5. The
measurements, of course, would be taken vertically on the graph (that is, in the Y

Figure 15.5. A straight line that does not fit the points from Fig. 15.4 very well.
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direction) and would be in terms of Y units (that is, in this example, in terms of
numbers of hoes). The same operation could be performed algebraically as well.
Since the line corresponds to a specific linear equation relating X and Y , we could
use that equation to calculate, for each X value, the value of Y that would be “cor-
rect” according to the relationship the line represents. The difference between that
“correct” value of Y and the actual value of Y would correspond to the graphical
measurement of the residual. The residual and its measurement are shown for the
leftmost point on the scatter plot in Fig. 15.5. This point falls 4.88 Y units above the
straight line. The residual corresponding to this point, then, is 4.88. This means that
this site actually had 4.88 more hoes per 100 artifacts collected than the value we
would calculate based on the straight line drawn in Fig. 15.5.

We can easily see that the straight line in Fig. 15.5 could be adjusted so that it
followed the trend of the points better by twisting it around a bit in a clockwise direc-
tion. If we did this, the dotted lines representing the residuals could all be shortened
substantially. Indeed, we would put the line back the way it was in Fig. 15.4, and the
residuals would all be zero or nearly zero. Thus we can see that minimizing resid-
uals provides a mathematical criterion that corresponds well to what makes good
sense to us from looking at the scatter plot. The better the fit between the straight
line and the points in the scatter plot, the smaller the residuals are collectively.

The residuals amount to deviations between two alternate values of Y for a given
value of X . There is the Y value represented by the straight line and there is the Y
value represented by the data point. As usual in statistics, it turns out to be most use-
ful to work not directly with these deviations but with the squares of the deviations.
Thus, the most useful mathematical criterion is that the best-fit straight line is the
one for which the sum of the squares of all the residuals is least. From this definition
comes a longer name for the kind of analysis we are in the midst of: least-squares
regression.

The core of the mathematical complexity of regression analysis, as might be
expected, concerns how we determine exactly which of all the possible straight lines
we might draw provides the best fit. Fortunately it is not necessary to approach this
question through trial and error. Let’s return to the general form of the equation for
a straight line relating X and Y :

Y = bX + a

It can be shown mathematically that the following two equations produce values of
a and b that, when inserted in the general equation, describe the best-fit straight line:

b =
n∑XiYi − (∑Yi)(∑Xi)

n∑X2
i − (∑Xi)

2

and
a = Y −bX
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where n = the number of elements in the sample, Xi = the X value for the ith
element, and Yi = the Y value for the ith element.

Since the summations involved in the equation for b are complex, it is perhaps
worth explaining the operation in detail. For the first term in the numerator of the
fraction, n∑XiYi, we multiply the X value for each element in the sample by the Y
value for the same element, then sum up these n products, and multiply the total by
n. For the second term in the numerator, (∑Yi)(∑Xi), we sum up all n X values,
sum up all n Y values, and multiply the two totals together. For the first term in the
denominator, n∑X2

i , we square each X value, sum up all these squares, and multiply
the total by n. And for the second term in the denominator, (∑Xi)

2, we sum up all
the X values and then square the total. Having arrived at a value for b, deriving the
value of a is quite easy by comparison. We simply subtract the product of b times
the mean of X from the mean of Y .

There are computational shortcuts for performing these cumbersome calcula-
tions, but in fact there is little likelihood that any reader of this book will perform
a regression analysis without a computer, so we will not take up space with these
shortcut calculations. Neither will we laboriously work these equations through by
hand to arrive at the actual numbers for our example. This example has been per-
formed the way everyone now can fully expect to perform a regression analysis, by
computer. The point of including the equations here, then, is not to provide a means
of calculation but instead to provide insight into what is being calculated and thus
into what the results may mean.

PREDICTION

Once we have the values of a and b, of course, we can specify the equation relating
X and Y and, by plugging in any two numbers as given X values, determine the
corresponding Y values and use these two points to draw the best-fit straight line
on the graph. If we do this for the data from Table 15.1, we get the result shown in
Fig. 15.6. The values obtained in this regression analysis are

a = 47.802

and
b = −1.959

Thus the equation relating X to Y is

Y = −1.959X + 47.802

or
Number of hoes = (−1.959×Site area)+ 47.802
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Figure 15.6. The best-fit straight line for the points from Fig. 15.1.

This equation literally enables us to “predict” how many hoes there will be per 100
artifacts collected if we know the site area. For example, if the site area is 15.2 ha,
we predict

Y = (−1.959)(15.2) + 47.802 = 18.03

Thus, if the relationship between X and Y described by the regression equation
holds true, a site with an area of 15.2 ha should yield 18.03 hoes in a collection
of 100 artifacts. There actually was a site in the original data set with an area of
15.2 ha, and the collection of 100 artifacts from that site had 15 hoes. For this site,
then, reality fell short of the predicted number of hoes by 3.03. Thus the residual for
that site is −3.03, representing a bit of variation unpredicted or “unexplained” by
the regression equation. (The name “residual” is used because residuals represent
unexplained or leftover variation.) The prediction based on the regression equation
is, however, a better prediction than we would otherwise be able to make. Without
the regression analysis our best way to predict how many hoes would be collected
at each site would be to use the mean number of hoes for all sites, or 21.57 hoes.
This would have meant an error of 6.57 hoes in the case of the 15.2 ha site. In this
instance, then, the regression equation has enabled us to predict how many hoes
would be found on the basis of site area more accurately than we could if we were
unaware of this relationship. This will not necessarily be true for every single case
in a regression analysis, but it will be true on average.

Regression analysis, then, has helped us to predict or “explain” some of the vari-
ation in number of hoes collected per 100 artifacts. It has, however, still left some
of the variation “unexplained.” We do not know why the 15.2 ha site had 3.03 fewer
hoes than we expected. The residuals represent this unexplained variation, a subject
to which we shall return below.
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HOW GOOD IS THE BEST FIT?

We know that the equation

Y = −1.959X + 47.802

represents the best-fit straight line for our example data, so that the sum of the
squares of the residuals is the lowest possible (for straight-line equations). These
residuals are shown with dotted lines in Fig. 15.6. We notice immediately that some
of them are quite large. Although the best-fit straight line does help us predict or
explain some of the variability in number of hoes collected, it clearly does not fit
the data as well as we might have hoped. It would be useful for us to be able to say
just how good a fit it is, and the very process of determining the best-fit straight line
provides us with a way to do so. Since the best-fit straight line is the one for which
the sum of the squares of the residuals is least, then the lower the sum of the squares
of the residuals, the better the fit. The sum of the squares of the residuals becomes a
measure of how well the best-fit straight line fits the points in the scatter plot.

The sum of the squares of the residuals, of course, can never be less than 0,
because there will never be a negative number among the squared residuals that are
summed. (Even negative residuals have positive squares.) The sum of the squares
of the residuals will only be 0 when all the residuals are 0. This only happens when
all the points lie exactly on the straight line and the fit is thus perfect. There is no
fixed upper limit on the sum of the squares of the residuals, however, because it
depends on the actual values taken by Y . It would be useful if we could determine
this upper limit because then we would know just where, between the minimum
and maximum possible values, a particular sum of squared residuals lay. We could
then determine whether the best-fit straight line really was closer to the best of all
possible fits (a value of zero for the sum of the squares of the residuals) or the worst
of all possible fits (whatever that maximum value for the sum of the squares of the
residuals might be). It turns out that the maximum value the sum of the squares
of the residuals can have is the sum of the squares of the deviations of Y from its
mean. (The sum of the squares of the deviations of Y from its mean is, of course,
the numerator in the calculation of the variance of Y – that is, ∑

(
yi −Y

)2
.) Thus the

ratio
(sum of the squares of residuals)

∑
(
yi −Y

)2

ranges from zero to one. Its minimum value of zero indicates a perfect fit for the
best-fit straight line because it only occurs when all the residuals are zero. Its max-
imum value of one indicates the worst possible fit because it occurs when the sum
of the squares of the residuals is as large as it can be for a given set of values of Y
(that is, equal to ∑

(
yi −Y

)2
).

This ratio, then, enables us to say, on a scale of zero to one, how good a fit the
best-fit straight line is. Zero means a perfect fit, and one means the worst possible
fit. It is easier intuitively to use a scale on which one is best and zero is worst, so



210 CHAPTER 15

we customarily reverse the scale provided by this ratio by subtracting the ratio from
one. (If this does not make intuitive good sense to you, try it with some numbers.
For example, 0.2 on a scale from zero to one becomes 0.8 on a scale from one to
zero.) This ratio, when subtracted from one, is called r2, and

r2 = 1− (sum of the squares of residuals)

∑
(
yi −Y

)2

The ratio, r2, amounts to a ratio of variances. The denominator is the original vari-
ance in Y (omitting only the step of dividing by n – 1) and the numerator is the
variance that Y has from the best-fit straight line (again omitting only the step of
dividing by n – 1). Including the step of dividing by n – 1 would have no effect on
the result since it would occur symmetrically in both numerator and denominator.

If the variation from the best-fit straight line is much less than the original vari-
ation of Y from its mean, then the value of r2 is large (approaching one) and the
best-fit straight line is a good fit indeed. If the variation from the best-fit straight
line is almost as large as the original variation of Y from its mean, then the value
of r2 is small (approaching zero) and the best-fit straight line is not a very good
fit at all. Following from this logic, it is common to regard r2 as a measure of the
proportion of the total variation in Y explained by the regression. This also follows
from our consideration of the residuals as variation unexplained or unpredicted by
the regression equation. All this, of course, amounts to a rather narrow mathematical
definition of “explaining variation,” but it is useful nonetheless within the constraints
of linear regression. For our example, r2 turns out to be 0.535, meaning that 53.5%
of the variation in number of hoes per collection of 100 artifacts is explained or
accounted for by site area. This is quite a respectable amount of variation to account
for in this way.

More commonly used than r2, is its square root, r, which is also known as
Pearson’s r or the product-moment correlation coefficient or just the correlation
coefficient. We speak, then, of the correlation between two measurement variables
as a measure of how good a fit the best-fit straight line is. Since r2 ranges from zero
to one, then its square root must also range from zero to one. While r2 must always
be positive (squares of anything always are), r can be either positive or negative.
We give r the same sign as b, the slope of the best-fit straight line. As a conse-
quence, a positive value of r corresponds to a best-fit straight line with a positive
slope and thus to a positive relationship between X and Y , that is, a relationship in
which as X increases Y also increases. A negative value of r corresponds to a best-
fit straight line with a negative slope and thus to a negative relationship between X
and Y , that is, a relationship in which as X increases Y decreases. The correlation
coefficient r, then, indicates the direction of the relationship between X and Y by its
sign, and it indicates the strength of the relationship between X and Y by its abso-
lute value on a scale from zero for no relationship to one for a perfect relationship
(the strongest possible). In our example, r = −0.731, which represents a relatively
strong (although negative) correlation.
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SIGNIFICANCE AND CONFIDENCE

Curiously enough, the question of significance has not arisen up to now in Chap-
ter 15. The logic of our approach to relating two measurement variables has been
very different from our approach to relating two categorical variables or one mea-
surement variable and one categorical variable. Through linear regression, however,
we have arrived at a measure of strength of the relationship, r, the correlation coef-
ficient. This measure of strength is analogous to V , the measure of strength of
association between two categorical variables. It is analogous to the actual differ-
ences between means of subgroups in analysis of variance as an indication of the
strength of relation between the dependent and independent variables. We still lack,
however, a measure of the significance of the relationship between two measure-
ments. What we seek is a statistic analogous to χ2 for two categorical variables, or
t or F for a categorical variable and a measurement – a statistic whose value can be
translated into a statement of how likely it is that the relation we observe is no more
than the effect of the vagaries of sampling.

Much of our discussion about arriving at the best-fit straight line and providing
an index of how good a fit it is centered on variances and ratios of variances. This
sounds a great deal like analysis of variance, and indeed it is by calculating F as a
ratio of variances that we arrive at the significance level in a regression analysis. In
analysis of variance we had

F =
s2

B

s2
W

=
SSB / d. f .
SSW / d. f .

which is to say

F =
(sum of squares between groups / d. f .)
(sum of squares within groups / d. f .)

In regression analysis we have

F =
(sum of squares explained by regression / d. f .)

(sum of squares unexplained by regression / d. f .)

This is equivalent to

F =
r2 / 1

(1− r2) / (n−2)

In our example, F = 13.811, with an associated probability of 0.003. As usual,
very low values of p in significance tests indicate very significant results. There are
several ways to think about the probability values in this significance test. Perhaps
the clearest is that this result indicates a probability of 0.003 of selecting a random
sample with a correlation this strong from a population in which these two variables
were unrelated. That is, there are only three chances in 1,000 that we could select a
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sample of 14 sites showing this strong a relation between area and number of hoes
from a population of sites in which there was no relation between area and number
of hoes. Put yet another way, there is only a 0.3% chance that the relationship we
observe in our sample between site area and number of hoes reflects nothing more
than the vagaries of sampling. If we are willing to treat these 14 sites as a random
sample of Oasis phase sites from the Rı́o Seco valley, then, we are 99.7% confident
in asserting that larger Oasis phase sites in the Rı́o Seco valley tend to have fewer
hoes per 100 artifacts on their surfaces.

As usual, significance probabilities can be used to tell us how likely it is that the
observation of interest in our sample (in this case the relationship between site area
and number of hoes) does not actually exist in the population from which the sample
was selected. We can also discuss regression relationships in terms of confidence, in
a manner parallel to our earlier use of error ranges for different confidence levels. In
this case, instead of an individual estimate ± an error range, it is useful to think of
just what the relationship between the two variables is likely to be in the population
from which our sample came. We know from the significance probability obtained in
our example that it is extremely unlikely that there is no relationship at all between
site area and number of hoes in the population of sites from which our 14 sites are a
sample. The specific relationship expressed by the regression equation derived from
analysis of our sample is our best approximation of what the relationship between
site area and number of hoes is in the population. But, as in all our previous experi-
ence with samples, the specific relationship observed in the sample may well not be
exactly the same as the specific relationship that exists in the population as a whole.
Most likely the regression equation we would obtain from observing the entire pop-
ulation (if we could) would be similar to the one we have derived from analysis of
the sample. It is less likely (but still possible) that the relationship in the population
as a whole is rather different from the relationship observed in the sample. And, as

Be Careful How You Say It

We might report the results of the example regression analysis in the text by
saying, “For Oasis phase sites in the Rı́o Seco valley there is a moderately
strong correlation between site area (X) and number of hoes per collection
of 100 artifacts (Y ) (r = −.731, p = .003, Y = −1.959X + 47.802).” This
makes clear what relationship was investigated; it lets the reader know what
significance test was used; it provides the results in terms of both strength
and significance; and it states exactly what the best-fit linear relationship is.
Like “significance,” the word “correlation” has a special meaning in statistics
that differs from its colloquial use. It refers specifically to Pearson’s r and
other analogous indexes of the relationship between two measurements. Just
as “significant” should not be used in statistical context to mean “important”
or “meaningful,” “correlated” should not be used in statistical context to refer
simply to a general correspondence between two things.
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Figure 15.7. The best-fit straight line with its 95% confidence zone.

the significance probability has already told us, it is extremely unlikely (only three
chances in 1,000) that there is no relationship at all between site area and hoes in
the population.

This range of possible relationships that might exist in the population our sam-
ple came from, and their varying probabilities, can be depicted graphically as in
Fig. 15.7. It is neither very practical nor very enlightening to discuss the calcula-
tion of the curves that delimit this 95% confidence region. In practice, it is almost
unimaginable now to produce such a graph except by computer, so we will con-
centrate on what the graph tells us. The 95% confidence region, which includes the
best-fit straight line for our sample in its center, depicts the zone within which we
have 95% confidence that the best-fit straight line for the population lies. There is
only a 5% chance that the best-fit straight line for the population of sites from which
our sample of 14 was selected (if we could observe the entire population) would not
lie entirely between the two curves. Determination of this confidence region, then,
enables us to think usefully about the range of possible relationships between site
area and number of hoes likely to exist in the population from which our sample
came. Depiction of this confidence region relates to the significance probability in
the same way that our previous use of error ranges for different confidence levels
related to parallel significance tests.

ANALYSIS OF RESIDUALS

The regression analysis described in the example used above has enabled us to
explain a portion of the variation in number of hoes per collection of 100 arti-
facts. One possible interpretation of these results is that larger settlements contained
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Table 15.2. Hoes at Oasis Phase Sites in the Rı́o Seco Valley: Predictions and Residuals

Site area Number of hoes Number of hoes predicted Residual
(ha) per 100 artifacts by regression on site area number of hoes

19.0 15 10.59 4.41
16.4 14 15.68 −1.68
15.8 18 16.86 1.14
15.2 15 18.03 −3.03
14.2 20 19.99 0.01
14.0 19 20.38 −1.38
13.0 16 22.34 −6.34
12.7 22 22.93 −0.93
12.0 12 24.30 −12.30
11.3 22 25.67 −3.67
10.9 31 26.45 4.55
9.6 39 29.00 10.00

16.2 23 16.07 6.93
7.2 36 33.70 2.30

larger numbers of craft workers and elite residents and fewer farmers. Thus hoes
were scarcer in the artifact assemblages at the larger sites. (We would presumably
have had something like this in mind in the first place or we would not likely have
been interested in investigating the relationship between site area and number of
hoes at all. We would also presumably have provided the additional evidence and
argumentation necessary to make this a truly convincing interpretation.)

Since the regression analysis has explained part of the variation in number of
hoes, it has also left another part of this variation unexplained. This unexplained
variability is made specific in the form of the residuals. The 15.2-ha site that we
discussed, for instance, actually had 3.03 fewer hoes than the regression analysis
led us to expect, based on the size of the site. This 3.03 is its residual, or leftover
variation. For each site there is, likewise, a residual representing how much the
observed number of hoes differed from the predicted number of hoes. Table 15.2
provides the original data together with two new items. For each site, the number of
hoes per collection of 100 artifacts predicted on the basis of the regression equation
relating number of hoes to site area is listed. Then comes the residual for each site
(that is the number of hoes actually collected minus the number predicted by the
regression equation).

In examining the residuals, we note as expected that some sites had considerably
fewer hoes than we predicted and some had substantially more than we predicted.
We can treat these residuals as another variable whose relationships can be explored.
In effect, the regression analysis has created a new measurement – the variation in
number of hoes unexplained by site size. We can deal with this new measurement
just as we would deal with any measurement we might make. We would begin to
explore it by looking at a stem-and-leaf plot and perhaps a box-and-dot plot. We
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would be interested, for example, in the possibility of multiple peaks in this new
batch of numbers. A two-peaked shape would suggest two distinct sets of sites,
probably one with substantially more hoes than we would expect (given site size),
and one with substantially fewer hoes than we would expect. We might be able
to determine some other characteristics of these two groups of sites that helped us
to understand why they deviated in such different ways from the number of hoes
we would expect, given their size. If the shape is single peaked we might go on to
explore the relationship between this new batch of measurements and other vari-
ables. For example, we might imagine that, in addition to site area reflecting the
presence of nonfarming specialists, residents of sites in very fertile soils might ded-
icate themselves more intensively to farming than residents of sites in very poor
soils. We might, then, investigate the relationship between our new measurement
(the residuals from the regression analysis) and fertility of soils for each site.

Table 15.3 provides just such information about the productivity of soils – the
estimated yield of maize (in kilograms per hectare) – at each of the 14 sites in
the Rı́o Seco valley. Examination of a stem-and-leaf plot reveals that both batches
of numbers (the residuals and the soil productivity figures) are single peaked and
symmetrical, so we can proceed to investigate whether sites that have more hoes
than we would expect on the basis of their size are those located in more productive
soils. Both variables are true measurements, so again the technique of choice is
regression analysis. The scatter plot for these two variables (Fig. 15.8) suggests a
strong positive relationship. Just as we expected, the sites on the more productive
soils tend to have more hoes than expected, based on their size (positive residuals),
and those on the less productive soils tend to have fewer hoes than expected, based
on their size (negative residuals). The best-fit straight line looks to be quite a good
fit, and the 95% confidence zone around it is tight. The regression analysis fully

Table 15.3. Residual Numbers of Hoes and Soil
Productivity for Sites in the Rı́o Seco Valley

Residual Soil productivity
number of hoes (kg of maize per ha)

4.41 1,200
−1.68 950

1.14 1,200
−3.03 600

0.01 1,300
−1.38 900
−6.34 450
−0.93 1,000
−12.30 350
−3.67 750

4.55 1,500
10.00 2,300
6.93 1,650
2.30 1,700
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Figure 15.8. Scatter plot of residual number of hoes by soil productivity with best-fit straight line
and 95% confidence zone.

confirms all these observations. The correlation is very strong and highly significant
(r = 0.923, p < 0.0005). Since r2 = 0.852, 85.2% of the variation in the residuals is
explained by soil productivity.

The results of these two regression analysis are complementary and contribute
cumulatively to our goal of explaining the variation in number of hoes at these sites.
The first regression analysis (number of hoes by site area) showed that site area
accounted for 53.5% of the variation in number of hoes, leaving 46.5% of the varia-
tion in number of hoes unexplained. It is that 46.5% of the variation left unexplained
by the first regression that is encapsulated in the residuals. The second regression
analysis (residual number of hoes by soil productivity) accounted for 85.2% of the
variation in hoe residuals, which was in turn the 46.5% of the variation in number of
hoes left unexplained by the first regression. This amounts, then, to 85.2% of 46.5%,
or 39.6% of the original variation in number of hoes. Together, the two regression
analyses explain 93.1% of the variation in number of hoes (53.5% in the first regres-
sion, and 39.6% in the second). Taken together, the two independent variables (site
area and soil productivity) explain quite a lot of the variation in number of hoes,
providing strong support for the interpretation that larger settlements had more craft
workers, elites, and others not engaged in farming, and that, in addition, settlements
located on more productive soils were more involved in farming. Not only are the
patterns of relationships between these variables strong, they are very highly signif-
icant, which tells us that our samples, small though they may be, are large enough
to give us great confidence that we are not just seeing the vagaries of sampling in
operation.

Just as the assessment of the proportion of variability explained is cumulative,
so are the equations for predicting the number of hoes at a site on the basis of the
two independent variables. We have already produced the regression equation for
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predicting the number of hoes, based on the area of the site:

Number of hoes = (−1.959×Site area)+ 47.802

Now we can also predict the errors in that previous estimate (that is, the residuals):

Residual number of hoes = (.010×Soil productivity)−11.004

Since the residuals are the errors in the first prediction, adding the second equation
to the first produces a prediction of the number of hoes at a site that is based both
on its area and the productivity of the surrounding soils:

Number of hoes = {(−1.959×Site area)+ 47.802}
+{(.010×Soil productivity)−11.004}

There are, of course, residuals from the second regression analysis as well. If they
were large enough to be interested in, we could study their relationship with yet
another variable. In this way regression analysis allows for the combination of a
series of analyses of relationships between two variables, and produces an integrated
result of what has, in effect, become a multivariate analysis. Most statpacks will
perform multiple regression, which is an extension and elaboration of this basic idea.

ASSUMPTIONS AND ROBUST METHODS

It may come as a surprise that linear regression is not based on the assumption that
both measurements involved have normal shapes. The shape assumptions that we
must be alert to in linear regression have to do with the shapes of point distributions
in scatter plots. Just as we examine stem-and-leaf plots to check for the single peak
and symmetry that characterize a normal shape, we examine a scatter plot prior
to linear regression for the shape of point distributions. What we need to see is a
cloud of points of roughly oval shape. There should be no extreme outliers from the
cloud, the oval should be of similar thickness throughout, and there should be no
tendencies toward curvature of the whole oval. These three potential problems can
be discussed separately.

First, outliers present severe risks to linear regression. Fig. 15.9 provides an
extreme example that should make the principle intuitively clear. The points in
the lower left corner of the scatter plot clearly show an extremely strong negative
correlation. The single outlier to the upper right, however, will cause the best-fit
straight line to be as shown – a positive correlation of some strength. Outliers have
such a strong effect on the best-fit straight line that they simply cannot be over-
looked. When outliers are identified, those cases should be examined with great care
to see whether there is a measurement or data-recording error that can be corrected
or whether there is some other reason to justify excluding them from the sample.
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Statpacks

Regression analysis is hardly ever performed any more except by computer.
Different statpacks use a variety of vocabularies to talk about it, in part because
linear regression is only the tip of the iceberg. Regression analysis is really a
whole family of analytical approaches involving curved line fitting in addition
to straight line fitting and incorporating a number of variables simultaneously
instead of just two. Any very large and powerful statpack will perform many
of these other kinds of analysis as well, and the simple, but powerful, linear
regression techniques discussed here may be embedded in this broader family
of analyses. Consequently, the commands or menu selections that produce a
simple linear regression vary substantially from one statpack to another and
are often much more complicated than it seems like they need to be. Recourse
to the manual or help system for your particular program is likely to be nec-
essary. Some statpacks integrate scatter plots into the procedures that perform
regression analysis as an option, while others perform the numerical analysis
as one operation and produce scatter plots as a different operation. Usually the
inclusion of the curves delimiting a confidence region for the best-fit straight
line is an option to be specified as part of the production of a scatterplot. Resid-
uals, of course, are calculated as part of the regression analysis, but to be able
to use them as a new measurement and pursue further analysis with them it is
usually necessary to save them by specifying this as an option to the regression
analysis. Typically this results in the creation of a new data file in the normal
format your statpack uses for data files. The new file will have the same cases
as the original data file and a variable whose values are the residuals from the
regression analysis.

Second, oval shapes of points with very thin sections (or even worse, two or more
separate oval clouds) are the equivalent of multipeaked shapes for single batches
of numbers. They can create the same kinds of problems in linear regression that
outliers do. Fig. 15.10 shows another extreme example, where two ovals of points
showing negative correlations of some strength turn into a single best-fit straight line
with a positive slope when improperly analyzed together. Such a shape may occur
in a scatter plot of two variables that, when looked at individually, have clearly
single-peaked and symmetrical shapes. Shapes like this should be broken apart for
separate analysis.

Third, tendencies toward curved patterns in the oval of points can prevent a very
good fit of a straight line to a fundamentally linear pattern that just happens to
be curved. There are ways to extend the logic of linear regression to more com-
plex curvilinear relationships between variables, but it is usually much easier to
straighten out the curve by transforming one or both variables. The kinds of trans-
formations required are very like the transformations discussed in Chapter 5 and
may be applied to either or both of the variables to remove tendencies toward cur-
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Figure 15.9. The devastating effect of a single outlier on the best-fit straight line.

Figure 15.10. The effect of two oval clouds of points on the best-fit straight line.

vature. As Fig. 15.11 illustrates, if the scatter plot shows a tendency toward linear
patterning but with the ends curving downward, a square root transformation of X
will produce a straighter line. If stronger corrective action is called for, the loga-
rithm of X can be used instead of the square root. Clearly, for the data in Fig. 15.11,
the logarithm of X is too strong a transformation, having produced just as curved
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Figure 15.11. The effect of transformations of X on a downward curvilinear pattern.

a pattern in the opposite direction. Fig. 15.12 illustrates transformations to correct
linear patterns where the ends curve upward. For these data the square of X pro-
duces good results. Using the cube of X produces a stronger effect than is needed
in this instance. Applying, for example, a square root transformation to X prior to
analysis means, of course, that it is not X but rather

√
X whose relationship to Y is

being investigated. Thus it becomes
√

X rather than X that is used in the regression
equation to predict the values of Y .

PRACTICE

You have excavated a site near Yenangyaung that has a number of apparent storage
pits containing artifacts and other debris. You wish to investigate whether the density
of artifacts (the number per unit volume) is constant for all the pits. (Another way



RELATING A MEASUREMENT TO ANOTHER MEASUREMENT 221

Figure 15.12. The effect of transformations of X on an upward curvilinear pattern.

to phrase this is to ask yourself whether, knowing the volume of a pit, you could
accurately predict the number of artifacts it contains.) The volume measurements
and the number of artifacts recovered from complete excavation of each pit are
given in Table 15.4.

1. Make a scatter plot of pit volume and number of artifacts. What does inspection
of the scatter plot suggest about a relationship between them?

2. Perform a regression analysis for pit volume and number of artifacts. How can
the relationship between number of artifacts and pit volume be expressed math-
ematically? How many artifacts would you expect to find in a pit whose volume
was 1.000m3?

3. How much of the variation in number of artifacts is “explained” by pit volume?
What is the statistical significance of the relationship between pit volume and
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Table 15.4. Data from Storage Pits at Yenangyaung

Volume (m3) No. of Artifacts Volume (m3) No. of Artifacts

1.350 78 1.110 47
0.960 30 1.230 47
0.840 35 0.710 20
0.620 60 0.590 28
1.261 23 0.920 38
1.570 66 0.640 13
0.320 22 0.780 18
0.760 34 0.960 25
0.680 33 0.490 56
1.560 60 0.880 22

number of artifacts? Produce a scatter plot showing the 90% confidence region
for the best-fit straight line.

4. Sum up clearly and concisely what this regression analysis of the relationship
between pit volume and number of artifacts has shown.
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Sometimes we have variables that at first glance appear to be measurements, but
that on further examination reveal themselves to be something less than actual mea-
surements along a scale. Often they really amount to relative rankings rather than
true measurements. For example, soil productivity is sometimes rated by producing
an index with an arbitrary formula using such values as content of various nutrients,
soil depth, capacity for water retention, and other variables that affect soil produc-
tivity. The formulas used in these ratings are carefully considered to produce a set
of numbers such that we are sure that higher numbers represent more productive
soils and lower numbers represent less productive soils. Such scales, for example,
would allow us to say that a rating of 8 means more productive soils than a rating
of 4. They seldom, however, leave us in position to say that a rating of 8 means soils
twice as productive as a rating of 4. It is our inability to make this last statement
that keeps such ratings from being true measurements. Instead, they are rankings.
Rankings allow us to put things in rank order (most productive soil, second most
productive soil, third most productive soil, etc.) but not to say how much more a
high ranking thing is than a low ranking thing.

The logic of linear regression relies on the measurement principle. (Think of the
scatter plots and the regression equations. If X is twice as large it places the corre-
sponding point twice as far over on the scatter plot. If X is twice as large it has twice
the effect on the prediction of Y by way of the regression equation.) If X is actually
only a ranking rather than a true measurement, then we should feel uncomfortable
about using regression. Instead of performing a linear regression and attempting
to predict the actual value of Y from X , we might use a rank order correlation
coefficient to assess the strength and significance of a rank order relationship.

A rank order relationship has nothing to do with the actual magnitude of the
rankings for either variable studied, but rather only with the order of the rankings. If
we rank order a batch of numbers according to the values for X and this rank order
is exactly the same as the rank order of values for Y , then X and Y show a perfect
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positive rank order relationship. That is, the highest value for X is for the case that
also has the highest value for Y ; the second highest value for X is for the case that
also has the second highest value for Y ; and so on. A perfect negative rank order
relationship means that the case with the highest value for X has the lowest value
for Y ; the case with the second highest value for X has the second lowest value for
Y ; and so on until the case with the lowest value for X has the highest value for Y .

We can imagine a rank order correlation coefficient that works like Pearson’s r,
so that a perfect positive rank order relationship is assigned a value of 1; a perfect
negative rank order relationship is assigned a value of −1; and intermediate rela-
tionships are assigned values between 1 and −1, depending on the extent to which
the relationships approach one or the other of these ideal situations. Several such
coefficients exist. One of the most frequently used is Spearman’s rank correlation
coefficient (rS).

CALCULATING SPEARMAN’S RANK CORRELATION

Table 16.1 contains data for soil productivity ratings for 17 different soil zones in
the Konsankoro Plain. The Neolithic occupation consisted of a series of sedentary
village sites of remarkably consistent size. We take the number of village sites in

Table 16.1. Soil Productivity and Villages in the Konsankoro Plain

Soil Productivity No. of villages Rankings
zone rating per km2

X Y X Y d d2 tx Tx ty Ty

A 2 0.26 3.5 2 1.5 2.25 2 0.5 1 0.0
B 6 1.35 11.5 14 −2.5 6.25 2 0.5 1 0.0
C 3 0.44 6 6 0.0 0.00 3 2.0 1 0.0
D 7 1.26 13.5 12 1.5 2.25 2 0.5 1 0.0
E 4 0.35 8.5 4 4.5 20.25 2 0.5 1 0.0
F 8 2.30 16 17 −1.0 1.00 3 2.0 1 0.0
G 8 1.76 16 16 0.0 0.00 3 2.0 1 0.0
H 1 0.31 1.5 3 −1.5 2.25 2 0.5 1 0.0
I 3 0.37 6 5 1.0 1.00 3 2.0 1 0.0
J 5 0.78 10 11 −1.0 1.00 1 0.0 1 0.0
K 1 0.04 1.5 1 0.5 .25 2 0.5 1 0.0
L 8 1.62 16 15 1.0 1.00 3 2.0 1 0.0
M 7 1.34 13.5 13 0.5 .25 2 0.5 1 0.0
N 2 0.47 3.5 7 −3.5 12.25 2 0.5 1 0.0
O 4 0.56 8.5 9 −0.5 .25 2 0.5 1 0.0
P 3 0.48 6 8 −2.0 4.00 3 2.0 1 0.0
Q 6 0.76 11.5 10 1.5 2.25 2 0.5 1 0.0

∑d2 = 56.50 ∑Tx=17.0 ∑Ty = 0.0
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each soil zone divided by the total number of square kilometers covered by that
zone to indicate how densely the zone was occupied, and we wish to investigate
whether more productive soil zones were more densely inhabited.

The first step in calculating Spearman’s rank correlation is to determine the rank
orderings of all the cases for each of the two variables (taken separately). These rank
orderings are also given in Table 16.1. Ties frequently occur in the soil productivity
ratings. That is, for example, soil zones H and K are ranked in the lowest produc-
tivity category (1). These two least productive soil zones should be rank ordered 1
and 2, but we have no basis for putting one above the other since they are tied in
the productivity ratings. As a consequence, we assign each a rank order of 1.5 (the
mean of 1 and 2). Soil zones C, I, and P are tied with productivity ratings of 3. These
would be soil zones 5, 6, and 7 in rank order if we could determine which to put
above the other. Since we cannot make this determination, each is assigned a rank
order of 6 (the mean of 5, 6, and 7). Such a treatment is accorded whenever there are
ties. No ties occur in the number of villages per square kilometer (which actually is
a true measurement), so the rank ordering is simpler. It begins at 1 for soil zone K
and continues through zones A, H, and so on to zone F, which ranks 17th because it
has the highest number of village sites per square kilometer.

Subtracting the rank orderings for villages per square kilometer (Y ) from the
rank orderings for soil productivity (X) gives us the difference between rankings d,
which we then square and sum up to get ∑d2.

The last four columns in Table 16.1 concern a correction that must be made for
ties. The value t for each soil zone is the total number of soil zones that are tied at
that ranking. For example, soil zone A has a value of tx = 2 because a total of two
zones (A and N) are tied at its productivity rating of 2. Since there are no ties for
number of villages per square kilometer, all the values of ty are 1. For each t value
for each of the two variables, a value of T is obtained as follows:

T =
t3 − t

12

The calculation of Spearman’s rank correlation requires three sums from
Table 16.1: ∑d2, ∑Tx, and ∑Ty. A sum of squares is calculated for each of the
two variables:

∑x2 =
n3 −n

12
−∑Tx

where ∑Tx is from Table 16.1, and n is the number in the sample (17 in this
example). Thus, for the example in Table 16.1,

∑x2 =
173 −17

12
−17.0 = 408−17 = 391 and

∑x2 =
173 −17

12
−0.0 = 408−0 = 408

Spearman’s rank correlation, then, is given by the equation
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Be Careful How You Say It

In conclusion to the example analysis in the text, we would say “There is a
strong and highly significant rank-order correlation between soil productivity
and number of villages per square kilometer (rS = .93, p < .001).” This informs
the reader that the relationship is positive (more villages in more productive
soil zones), what correlation coefficient was used, and just how unlikely it is
that the observed correlation would have occurred in this sample if there were
no correlation in the population from which the sample was selected.

rs =
∑x2 + ∑y2 −∑d2

2
√

∑x2 ∑y2

For the example in Table 16.1, then,

rs =
391 + 408−56.5

2
√

(391)(408)
=

742.5
798.8

= 0.93

Spearman’s rank order correlation coefficient, then, between soil productivity
and number of villages per square kilometer in the Konsankoro Plain is 0.93, indi-
cating a strong positive correlation. (Values for rS can be interpreted in much the
same manner as those for Pearson’s r, although the two cannot be compared directly.
That is, a Spearman’s rS of 0.85 between two variables cannot be said to indicate a
stronger correlation than a Pearson’s r of 0.80 between two other variables.)

If there are no ties, then we can easily see that ∑T = 0 (as in the case of number
of villages per square kilometer in Table 16.1). If there are no ties for either variable,
then, there is no need to go to the trouble of figuring t and T , and the entire equation
for Spearman’s rank correlation is considerably simplified:

rS = 1− 6∑d2

n3 −n

SIGNIFICANCE

As usual, the question of significance is “How likely is it that the correlation
observed in the sample is not a consequence of a correlation in the population that
the sample was selected from but instead simply a result of the vagaries of sam-
pling?” Put another way, “How likely is it that a sample this size with a correlation
this strong could be selected from a population where there is no correlation?” For
samples of ten or more, this question can be answered with the familiar t table
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Statpacks

Spearman’s rank correlation coefficient is only one of several similar
approaches to evaluating the strength and significance of rank order corre-
lations. Many statpacks provide options for calculating them all under the
heading of rank correlations or nonparametric correlations. Sometimes, rS is
calculated as an option with the same commands that produce Pearson’s r.
Even if your statpack does not provide Spearman’s rank correlation as a spe-
cific option, you still may be able to trick it into producing rS. It turns out
that Spearman’s rank correlation is equivalent to Pearson’s r calculated on
rankings. Consequently, you can provide rankings for each of your cases on
the variables you are interested in (the fourth and fifth columns in Table 16.1)
and use your statpack to perform a regression analysis on those variables. The
resulting correlation coefficient will be equivalent to rS.

(Table 9.1). The following formula gives the value of t:

t = rS

√
n−2

1− r2
S

In our example,

t = .93

√
17−2

1−0.932 = 0.93

√
15

1−0.86
= 0.93

√
107.14 = 9.63

Looking this value up in Table 9.1, using the row for n–1 = 16 degrees of free-
dom, we discover that this value of t would be far beyond the rightmost column in
the table. The associated probability, then, would be far less than 0.001. Thus there
is far less than one chance in 1,000 that a sample of 17 would show a Spearman’s
rank correlation this strong if it had been selected from a population where there
was no rank order relationship between the two variables.

It should be noted that this example raises some complicated questions of what
population the data are a sample from. The sample consists of 17 soil zones that have
been surveyed. In order to accomplish the analysis we have just done, we must take
these 17 soil zones as a random sample from a larger and vaguely defined population
of soil zones that are or might be in the Konsankoro Plain. This sample has given us
what we take to be 17 separate and independent observations for the two variables,
and these 17 observations form the batch that we have analyzed as a sample. Strictly
speaking, this is not a random sample from a population of soil zones. Indeed, this
sample may represent a complete survey of the entire Konsankoro Plain. If we have
studied the entire population, it may seem to make little sense to treat the data as
a sample. In evaluating significance, however, we frequently engage in a sort of
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Table 16.2. Probability Values for Spearman’s Rank Correlation rs

for Samples of Less Than 10a

Confidence 80% 90% 95% 99%
.80 .90 .95 .99

Significance 20% 10% 5% 1%
.20 .10 .05 .01

n
4 .639 .907 1.000
5 .550 .734 .900 1.000
6 .449 .638 .829 .943
7 .390 .570 .714 .893
8 .352 .516 .643 .833
9 .324 .477 .600 .783

a (Adapted from “Distributions of Sums of Squares of Rank Differences for Small Numbers of
Individuals” by E.G. Olds (Annals of Mathematical Statistics 9:133–148 [1938])

pretend sampling from an imaginary larger population. What we learn from the
evaluation of significance in a case like this is still, however, whether we should
have much confidence in the correlation observed. What we have found out in this
instance is that the correlation we observed is not at all likely to be pure random
chance at work in a small sample. We will consider this notion of pretend sampling
further in Chapter 20.

The formula for values of t is appropriate only if the sample is ten or more. If the
size of the sample is less than ten, then Table 16.2 should be used to determine the
associated probability.

ASSUMPTIONS AND ROBUST METHODS

Since Spearman’s rank correlation does not assume normal distributions, or rely on
means, standard deviations, or scatter plots, it is automatically highly robust. No
transformations or other modifications need ever be applied. This, in effect, makes
rS a very robust correlation coefficient that can be used instead of Pearson’s r when
such factors present problems for the application of Pearson’s r.

PRACTICE

You have excavated the remains of 12 dwellings in the village site of Teixeira. You
notice that some of the artifacts recovered from the dwelling areas are finer and
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Table 16.3. Floor Area and Artifact Status Index for
12 Excavated Houses from the Teixeira Site

Status index Floor area (m2)
23.4 31.2
15.8 28.6
18.3 27.3
12.2 22.0
29.9 45.3
27.4 33.2
24.2 30.5
15.6 26.4
20.1 29.5
12.2 23.1
18.5 26.4
17.0 23.7

fancier than others, and might indicate differences in status or wealth between the
households. You identify a variety of ornamental objects and pottery with incised
decoration as possible status indicators, and you count the number of such artifacts
in each household area per 100 artifacts recovered. This gives you an index of status
or wealth based on the artifact assemblages in the different households. You wish to
investigate whether this status index is related to the size of the dwelling structure
itself (pursuing the idea that wealthier families might have larger houses). The data
are given in Table 16.3

1. How strong and how significant is the relationship between house floor area and
your status index?

2. What sort of support do your observations provide for the idea that wealthier
households (as indicated by their possessions) had larger houses?
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When the population we are interested in has subgroups that we are also interested
in separately, it is often useful to select a separate sample of elements from each of
the subgroups. For such purposes each subgroup is treated as if it were a completely
separate population. A sample of whatever size is needed is selected from each of
these separate populations, and the values of interest are estimated separately for
each population. Suppose that we have reliable information on the locations of all
sites in a region. No one has attempted to discover the sizes of these sites, however.
We could select a sample of the known sites and go make systematic surface collec-
tions in an effort to determine how large they are. These determinations could then
form the basis for estimating the mean site size for the region. If, in addition, the
region could be divided into three different environmental settings (remnant levees,
river bottoms, and slopes) we might be interested in estimating the mean site area
for each of the settings.

Table 17.1 provides information on a sample of sites for each of these three set-
tings, as well as a stem-and-leaf plot for each sample. The table gives N, the total
number of sites in each setting (the three populations sampled), and n, the number
of sites in each of the three samples. The stem-and-leaf plots show a single-peaked
and symmetrical shape for each of the samples, and their standard errors have been
calculated using the finite population corrector (Chapter 9) since the sampling frac-
tions are large. Multiplying these standard errors by the corresponding values of t
for 95% confidence and n−1 degrees of freedom gives us error ranges to attach to
the estimated mean site areas for each of the three settings. Thus we are 95% con-
fident that the mean area of sites on remnant levees is 1.71ha±0.32ha; in the river
bottoms, 2.78ha±0.31 ha; and on the slopes, 0.83ha±0.32 ha.

R.D. Drennan, Statistics for Archaeologists, Interdisciplinary Contributions
to Archaeology, DOI 10.1007/978-1-4419-0413-3 17,
c© Springer Science+Business Media, LLC 2004, 2009
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Table 17.1. Site Areas (ha) in Three Settings

River Bottoms Remnant Levees Slopes

N = 53 N = 76 N = 21
n = 12 n = 19 n = 7
X = 2.78 X = 1.71 X = 0.83

SE = 0.14 SE = 0.15 SE = 0.13

3.3 2.9 0.7
2.7 4 1.7 4 1.3 4
2.1 3 8 1.3 3 1.2 3
3.8 3 134 2.1 3 2 0.6 3
2.7 2 7789 1.9 2 59 0.6 2
3.4 2 144 1.2 2 0113 1.2 2
2.9 1 8 2.5 1 66779 0.2 1
2.8 1 2.1 1 0234 1 223
2.4 0 1.6 0 78 0 667
1.8 0 1.7 0 4 0 2
2.4 2.0
3.1 1.6

1.0
1.4
2.3
3.2
0.8
0.4
0.7

These estimates and their 95% confidence error ranges confirm what we might
well have suspected from looking at the three stem-and-leaf plots – sites in the three
settings have markedly different mean sizes, and the differences that we observe
between our three samples are not at all likely to be just the result of sampling
vagaries. Up to this point, we have done nothing more than treat these three samples
in the ways discussed in Chapter 9.

POOLING ESTIMATES

At this point, however, we might well want to consider the three samples together
in order to talk about sites in the region in general, irrespective of the settings in
which they were located. We cannot simply put all the sites from all three samples
together into one sample, though, and consider it a random sample of sites in the
region. Such a sample would most definitely not be a random sample of the sites in
the region because the selection procedures did not give each site in the region an
equal chance of selection. Of the 21 sites on the slopes, 7 (or 33.3%) were selected;
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of the 53 sites in the river bottoms, 12 (or 22.6%) were selected; and of the 76
sites on remnant levees, 19 (or 25.0%) were selected. Thus river bottom sites had
less chance of being included in the sample (a probability of 0.226) than sites on
levees (a probability of 0.250), and levee sites had less chance of being included
than sites on the slopes (a probability of 0.333). The overall sample produced by just
putting these three separate samples together would systematically over-represent
slope sites and systematically under-represent river bottom sites. Any conclusions
we might arrive at about mean site area in the region as a whole based on such a
sample would be affected by these sampling biases.

What we must do is consider the larger problem one of stratified sampling,
as selecting separate samples from different subgroups of a population is usually
called. In this example, each of the three environmental settings would be a sampling
stratum. Each sampling stratum would form a population to be sampled separately
from the other sampling strata, just as we have done in this example. Appropriate
sample sizes and sampling procedures would be determined independently for each
sampling stratum, and the samples selected would be used independently to make
estimates about each of the parent populations. We have already done all of this. It
raises no new issues in sampling beyond those dealt with in Chapters 7–11.

Only at the last step, that of pooling the estimates made for each sampling stratum
into an overall estimate for the whole population must special steps be taken. In
the first place, having already discovered that sites in the three different settings
have rather different mean areas, we must consider whether it makes any sense
even to speak of the mean area of sites for the region as a whole. If the overall
population of sites had a shape with multiple peaks, it would be foolish to attempt
any analysis of the entire set of sites as a single batch. We do not, of course, have any
way of knowing for certain what the shape of the whole population would be, but,
since the sampling fractions in the three sampling strata are not wildly different, we
could look at a stem-and-leaf plot of all three samples together to get a rough idea.
Such a stem-and-leaf plot appears in Table 17.2. It is certainly single peaked and
symmetrical enough to make it meaningful to use the mean as an index of center
for the whole batch. Thus, we could consider it sensible to make an estimate of

Table 17.2. Stem-and-Leaf Plot
of Areas of Sites from

All Three Samples in Table 17.1

4
3 8
3 1234
2 577899
2 0111344
1 667789
1 0222334
0 66778
0 24
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the mean site area for all sites in the region by pooling the estimates for the three
sampling strata, as follows:

X p =
∑

(
NhXh

)

N

where X p = the pooled estimate of the mean, that is, the estimated mean for the
entire population, taking all sampling strata together, Xh = the mean of the elements
in the sample for stratum h, Nh = the total number of elements in the population of
stratum h, and N = the total number of elements in the entire population.

For the example from Table 17.1,

X p =
(76)(1.71)+ (53)(2.78)+ (21)(.83)

150
=

294.73
150

= 1.96ha

Thus we estimate that the mean area of sites in the region as a whole (irrespective
of environmental setting) is 1.96 ha. We attach an error range to this estimate in
a similar fashion, by pooling the standard errors for the three separately selected
samples:

SEp =

√
∑

(
N2

h

)(
SE2

h

)

N

where SE p = the pooled standard error for all sampling strata taken together, SEh =
the standard error for sampling stratum h, Nh = the total number of elements in the
population of stratum h (as before), and N = the total number of elements in the
entire population (also as before).

For the example from Table 17.1,

SEp =

√
(762)(.152)+ (532) (.142)+ (212)(.132)

150
=

13.87
150

= .09

This pooled standard error is treated like any other. To produce an error range for
95% confidence, we would multiply it by the value of t corresponding to 95% confi-
dence and n−1 degrees of freedom where n is now the number in all three samples
considered together, or 38. This value of t is 2.021, so we would be 95% confident
that the mean area of all sites in the region is 1.96ha±0.18 ha.

THE BENEFITS OF STRATIFIED SAMPLING

Stratified sampling can sometimes offer a more precise estimate for an entire pop-
ulation than simply sampling the entire population directly. This makes stratified
sampling potentially useful even in situations where we might not be much inter-
ested in the separate means of the sampling strata. The possible increased precision
comes from providing a smaller error range in the situation where a population
has subgroups whose means differ somewhat from each other but which have very
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small standard deviations when each is taken separately. That is, if the subgroups
each form batches with smaller spreads than the population as a whole, the error
ranges associated with the estimates of their means may be quite small. When these
are pooled into an error range for the estimated overall population mean it may well
be smaller than the error range that would have been obtained from a single sample
drawn randomly from the population as a whole. Sometimes this effect is strong
enough to outweigh the opposite effect resulting from the fact that the samples from
the subgroups are each smaller than the total sample. If a population is easily divided
into subgroups whose means may be different and whose members vary little from
each other, then it is worth considering sampling that population by those subgroups
instead of as a whole, even if the subgroups are of little intrinsic interest separately.
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Sometimes the sampling elements available for selection are not the same as the
elements we wish to study. This happens most frequently in archaeology in spatially
based sampling, as in the excavation of a sample of grid squares in a site or the
survey of a sample of grid squares or transects in a region. For instance, suppose we
have a random sample of 500 sherds from a site. We may want to estimate, say, the
mean thickness of sherds at the site or the percentage of a particular pottery type in
the sherds at the site. The elements studied are sherds. Suppose the sample had been
obtained by excavating a random sample of ten grid squares. The sampling element
here is not the sherd but the grid square. It was ten grid squares that were randomly
selected from all the squares in the site grid, not 500 sherds from all the sherds in
the site. We thus have a sample, not of 500 independently selected elements, but
of ten independently selected elements, and these elements do not correspond to the
elements we need to study. Each sampling element is, in this case, a group or cluster
of a varying number of the elements of study (sherds). This fact must be allowed for
in making estimates of means or proportions.

Estimating population means and proportions from samples, and attaching error
ranges to those estimates was the subject of Chapters 9 and 11. This chapter extends
that discussion to the special case where the sampling elements are different from
the elements of study. This chapter on cluster sampling, then, can be considered
a special case of the general topics dealt with in Chapters 9 and 11, which can be
referred to as simple random sampling to distinguish them from more complex kinds
of sampling. Cluster sampling is particularly important in archaeology because so
much of the sampling we do is based on spatial units.

R.D. Drennan, Statistics for Archaeologists, Interdisciplinary Contributions
to Archaeology, DOI 10.1007/978-1-4419-0413-3 18,
c© Springer Science+Business Media, LLC 2004, 2009
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SPATIAL SAMPLING UNITS: POINTS, TRANSECTS,
AND QUADRATS

At least three different kinds of spatial sampling units might be used in archae-
ology – points, transects, and quadrats. True transects are almost never used in
archaeology, but the occasion for point sampling does sometimes arise. An example
might be in a region subject to substantial alluviation that has buried archaeological
sites beneath thick layers of sediment. An effort to estimate, say, the total area of
sites in the region might pursue a sampling program based on drilling cores down
into the sediments. Such cores could be large enough in diameter to recover rec-
ognizable artifacts if habitation deposits were intersected, making it possible to say
that a particular core was either within a site or not within a site. The cores might
well be treated as point observations: either site or not site. If a series of random
locations was selected for coring, these observations could be treated as a random
sample of the total area of the region. The proportion of cores that were within sites
would be an estimate of the proportion of the region’s total area that is within sites.
That is, if the region covered 100km2, and if 5% of the cores produced artifacts, we
would estimate that 5% of the region’s 100km2 was within sites. Thus our estimate
of the total area of the sites in the region would be 5km2. Since in this case, the units
of sampling were points in space and the estimated proportion is a characteristic of
the space itself, it is not an instance of cluster sampling but of simple random sam-
pling, and an error range could be attached to this estimate following the procedure
discussed in Chapter 11. It would depend on the size of the sample (n), which would
be the number of cores drilled. The population (N) would be infinite. The practice
questions at the end of Chapter 6 actually comprise an example of point sampling.

Quadrats (not quadrants, which are something else) are two-dimensional spatial
units, in archaeology most often the squares in a grid system. They can also be
rectangles or other shapes. When the rectangles are long and narrow and run from
one side of the study area to the other, we often refer to them as transects, but
technically these are quadrats. True transects, like lines, have only length; their
width is 0. When an archaeologist walks along a “transect” from one side of a survey
zone to the other, the observations are not actually along a line but within a very
long narrow rectangle including some distance to either side of the path walked.
Such “transects” are usually best treated as long narrow quadrats in cluster sampling
since they do have a width (and thus an area) based on how far to either side the
archaeologist can observe whatever is to be observed.

Perhaps the most frequently used method of selecting a random sample of
quadrats is to lay out a grid dividing the area to be sampled (say, a site to be
excavated) into sampling units. Each potential excavation unit in the grid system
can be assigned a number beginning with 1, and a random number table can be
used to select a sample of these quadrats. One possible result of such a sampling
scheme is shown in Fig. 18.1. The same system can be used for long narrow quadrats
(“transects”). In this case the grid divides the area to be sampled into long narrow
rectangles running from one side to the other, each as wide as the coverage of a
single “transect.” These are assigned numbers for random selection (Fig. 18.2).
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Figure 18.1. A random sample of quadrats selected individually.

Figure 18.2. A random sample of “transects” (actually very long narrow quadrats) selected
individually.

Another interesting possibility, sometimes used to avoid having all “transects”
parallel to each other, is to enclose the area to be sampled in a rectangular frame
on a map and place tick marks on all sides of the frame. The ticks should be as far
apart as the “transects” are wide. The ticks are numbered sequentially, beginning at
any point with 1 and continuing all the way around the frame until the starting point
is reached again. A random number determines one end of the first “transect,” and
a second random number determines its other end. (If the second random number
indicates a tick mark on the same side of the frame as the first, it is discarded and
another is selected.) The process is repeated until the desired number of “transects”
has been selected. One result of such a sampling scheme is illustrated in Fig. 18.3.
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Figure 18.3. A random sample of “transects” (actually very long narrow quadrats) determined by
random selection of their endpoints.

When n random quadrats are selected from all the quadrats in the grid at large,
it is often the case that some sample quadrats are very close to each other (pos-
sibly even adjacent), and one or more fairly large parts of the study area may be
left entirely unsampled. Figure 18.1 shows both these characteristics. This may be
unsatisfactory, for example, in excavating a site by random sampling, since (for
reasons not related to random sampling) we might not want to leave one whole
section untested. One alternative sometimes applied in such situations is systematic
sampling. As an example, suppose that we want a sample of 36 quadrats from an
area consisting of 570 quadrats. To select a systematic sample, we would subdivide
the grid of 570 quadrats into 36 subsets consisting of 16 contiguous quadrats each.
(We would add six dummy quadrats, indicated with hatching in Fig. 18.4, to fill out
the full 16 in each subset.) One quadrat would be randomly selected from each sub-
set of 16 by repeatedly selecting random numbers between 1 and 16. The sample
might be as large as 36, but if any dummy quadrats are selected, then the final sam-
ple is less than 36. The dummy quadrats never really become part of the sample,
even if they are selected, because they are imaginary. Their function is to provide
each real quadrat exactly one chance in 16 of being selected for the sample. The
resulting sample could still include adjacent quadrats, as Fig. 18.4 shows, but the
large unsampled areas that frequently occur in simple random samples of quadrats
would be impossible.

It is sometimes objected that systematic sampling is not strictly random, and tech-
nically this is true. In strict terms, the selection of one element in a random sample
should not have any effect at all on the selection of other elements. The selection of a
quadrat in a systematic sample, however, causes the other quadrats in the same sub-
set to lose their eligibility for future selection. Perhaps more important, systematic
sample selection, as described here, comprises sampling without replacement since
a quadrat, once selected, is no longer available for future selection. The equations
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Figure 18.4. A systematic random sample of quadrats.

given in this chapter, like those in Chapters 9 and 11, are for sampling with replace-
ment. The impact of these two technical problems, however, is minimal under most
circumstances. (And especially for the form of systematic sampling described here,
which violates the strictest norms of random sampling less than other variants of
systematic sampling that have been suggested.) The attractiveness of working with
a spatial sample that avoids leaving any large sections of the study area unexamined
usually outweighs these minor technical objections.

ESTIMATING POPULATION PROPORTIONS

The best estimate of a population proportion in cluster sampling is the same as in the
case of simple random sampling – simply the proportion in the sample. For instance,
suppose we excavate a random sample of ten grid squares in a site and obtain 500
sherds altogether. If 35% of this cluster sample of sherds are cord marked, we would
estimate that 35% of the sherds in the site are cord marked.

The error range corresponding to this estimate, as with simple random sam-
pling, is based on the standard error of the proportion, but the standard error of
the proportion in cluster sampling is calculated by the formula

SE =

√√
√
√
√

(
1
n

)
⎛

⎝
∑

(
x
y −P

)2 ( yn
Y

)2

n−1

⎞

⎠
(

1− n
N

)

where SE = standard error of the proportion, n = sample size (i.e., number of units
in the sample), N = population size (i.e., number of units in the population), x =
number of object x in a unit, y = number of object y in a unit, P = estimate of the
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Table 18.1. Sherds from a Random Sample of
Ten Excavation Units

x y
Unit No. of cord-marked sherds No. of sherds

07 10 32
18 13 27
29 16 38
31 19 73
37 17 55
56 21 41
72 18 63
83 30 81
87 19 56
91 12 34

proportion x/y for the population, and Y = ∑y, that is, the total number of object y
in n units.

Note that this formula incorporates the finite population corrector 1− (n/N) dis-
cussed in Chapter 9. Since the population is usually finite and definable in spatial
sampling, this correction can usually be applied. If the population is very large,
however, compared to the size of the sample, the finite population corrector has a
negligible effect on the result because it is only trivially different from one.

Table 18.1 provides an example of the calculations involved. It describes a ran-
dom sample of ten excavated grid units from a site whose total area is 100 grid
units. The sample size, n, is thus 10, and the population size, N, is 100. These ten
excavation units yielded a total of 500 sherds, some of which were cord marked. We
wish to estimate the proportion of cord-marked sherds in the ceramic assemblage
of the site as a whole. The units are identified by their sequential numbers, which
were used to select the random sample. Since the proportion we wish to estimate
is the proportion of cord-marked sherds in the ceramic assemblage, x is the number
of cord-marked sherds in each square and y is the total number of sherds in each
square. ∑x, or X , is 175 – the total number of cord-marked sherds found in all ten
units. And ∑y, or Y , is 500 – the total number of sherds found in all ten units. The
proportion of cord-marked sherds in the ceramic assemblage for the entire sample,
then, is (175/500) = 0.350; 35.0% of the sherds are cord marked. Since the best
estimate of the population proportion is the sample proportion, we would estimate
that 35.0% of the sherds in the site are cord marked.

Table 18.2 extends Table 18.1 into a step-by-step calculation of the summation
needed for the standard error calculation. The first calculation step (x/y) results in
the fourth column, simply dividing x by y for each excavation unit. This quantity is,
of course, the proportion of cord-marked sherds for each of the ten excavated units.
This proportion varies from a low of 26.0% in unit 31 to a high of 51.2% in unit 56.
It is this variation from one sample unit to the next in the proportion of interest to
us that will form the basis for the error range.
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Table 18.2. Calculation of the Summed Weighted Deviations
from the Overall Sample Proportion

Unit x Y
x
y

x
y
−P

(
x
y
−P

)2 yn
Y

( yn
Y

)2
(

x
y
−P

)2 ( yn
Y

)2

07 10 32 0.313 −0.037 0.001369 0.640 0.409600 0.000561
18 13 27 0.481 0.131 0.017161 0.540 0.291600 0.005004
29 16 38 0.421 0.071 0.005041 0.760 0.577600 0.002912
31 19 73 0.260 −0.090 0.008100 1.460 2.131600 0.017265
37 17 55 0.309 −0.041 0.001681 1.100 1.210000 0.002034
56 21 41 0.512 0.162 0.026244 0.820 0.672400 0.017646
72 18 63 0.286 −0.064 0.004096 1.260 1.587600 0.006503
83 30 81 0.370 0.020 0.000400 1.620 2.624400 0.001050
87 19 56 0.339 −0.011 0.000121 1.120 1.254400 0.000152
91 12 34 0.353 0.003 0.000009 0.680 0.462400 0.000004

∑y = 500 ∑
(

x
y
−P

)2 ( yn
Y

)2
= 0.053132

For the fifth column in the table, x/y−P,the overall sample proportion (0.350) is
subtracted from each excavation unit’s proportion. This is recognizable, of course, as
a deviation – the extent to which the proportion of cord-marked sherds in each exca-
vation unit deviates from the overall proportion in the whole sample taken together.
In a manner familiar from all our calculations of standard deviations, the next step,
(x/y−P)2, squares the deviations from the fifth column to arrive at the sixth col-
umn. The sixth column is one of the two terms that must be multiplied together to
arrive at the quantity to be summed.

The other term is, in effect, a weighting factor. The sixth column is a set of
squared deviations. In cluster sampling we weigh more heavily the deviations of
units that produce more evidence (that is, in this example, more sherds). This makes
some intuitive good sense if you remember that generally we get a more accurate
estimate from a larger sample than from a smaller sample. In effect, each excava-
tion unit is a single sample of sherds from the site. These single samples can be
expected to produce somewhat different results – that is, to deviate from the overall
proportion. If they all deviate very little from the overall proportion, then the error
range associated with our cluster sampling estimate should be relatively small. (The
consistency from one excavation unit to another makes us willing to believe the site
is fairly homogeneous and our estimate fairly precise.) We will be more concerned
about imprecision in our results if units that produce large numbers of sherds deviate
widely from the overall proportion than if units producing small numbers of sherds
deviate widely from the overall proportion. Thus, when we sum up the squared devi-
ations, we will count the deviations in units that produced large numbers of sherds
more heavily than deviations in units that produced small numbers of sherds (where
the deviations are more likely to be simply the result of random vagaries in smaller
samples).
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The seventh column begins the calculation of this weighting factor, which is
based on how “large” the sample unit is in terms of the elements we are studying. In
this example the elements we are studying are sherds, so the large (heavily weighted)
sample units are those that produced large numbers of sherds. The seventh column
(yn/Y ) is simply the number of sherds in a unit times the number of units in the
sample (10) divided by the total number of sherds in the sample (500). (It is useful
to know, for checking calculations, that the sum of the seventh column is always n,
the number of units in the sample.) The eighth column is simply the square of the
seventh column.

The last column in Table 18.2 is the product of the sixth column and the eighth
column, and is the quantity to be summed for all ten sample units: (x/y−P)2(yn/Y )2.
The sum of this quantity for all sample units is indicated at the bottom of the last
column: 0.053132.

Substitution of numbers into the formula given above for the standard error of
the proportion is now relatively straightforward:

SE =

√(
1

10

)(
.053132
10−1

)(
1− 10

100

)

=
√

(.100)(.005904)(.900)

=
√

.00531 = .023

The standard error of the proportion, then, is 0.023, so the estimate of the proportion
of cord-marked sherds in the ceramic assemblage at the site could take the form
35.0%±2.3%. This error range can be increased by multiplying it by an appropriate
value of t to make it a statement at whatever level of confidence is desired (see

Statpacks

Very few computer statpacks provide for the calculation of standard errors for
cluster samples. They can certainly be calculated by hand, although the sum-
mation that forms the numerator of the middle fraction is tedious. The ease
with which this calculation is illustrated as a table in which each column is
derived by relatively simple repeated calculation from the previous one, how-
ever, suggests a computerized solution. Spreadsheets were designed precisely
for performing such calculations, and are probably the fastest, easiest, and
most commonly available option for getting a computer to do most of the bor-
ing work. The provisions that statpacks provide for transforming variables can
also often be adapted to this task, since each column in Tables 18.2 and 18.4
really is simply a new variable whose values are calculated by a repeated math-
ematical manipulation from previous columns. Some database managers also
provide mathematical tools that can perform calculations like this.
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Chapter 9). For example, if we wish to express our estimate with an error range at
the 95% confidence level, we look in Table 9.1 for the value of t corresponding to
95% confidence and nine degrees of freedom (n−1). This value is 2.262. Thus the
error range we seek is (2.262)(0.023) = 0.052. We would thus say that we are 95%
confident that cord-marked sherds represent 35.0%±5.2% of the sherds at this site.

ESTIMATING POPULATION MEANS

As with proportions, the best estimate of the population mean is the overall mean
in the sample. Table 18.3 provides example data from the same sample of exca-
vated units we have been considering. The data here are lengths in millimeters of
the projectile points encountered in these same excavation units. Altogether 21 pro-
jectile points were recovered, with an overall mean length of 21.8 mm. We would
thus estimate that the mean length of all the projectile points in the site is 21.8 mm.

The standard error we need in order to put an error range with this estimated
mean is calculated in a manner very similar to the standard error of the proportion:

SE =

√√
√√
√

(
1
n

)
⎛

⎝∑
(
x−X

)2 ( yn
Y

)2

n−1

⎞

⎠
(

1− n
N

)

where SE = standard error of the mean, n = sample size (i.e., number of clusters
in the sample), N = population size (i.e., number of clusters in the population),
x = mean of x in a cluster, X = estimated population mean of x (i.e., the overall
sample mean), y = number of things in a cluster measured for x, and Y = ∑y (i.e.,
the total of y in n clusters).

Table 18.3. Lengths of Projectile Points
from a Sample of Ten Excavation Units

X
Unit Projectile point lengths (mm)

07 15, 19, 23
18 17
29 18, 23
31 18, 18, 27
37 18, 19
56 24
72 20, 21, 26, 28, 29
83 16
87 28
91 25, 26
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Table 18.4. Calculation of Summed Deviations from Overall Sample Mean

Unit Y x x−X (x−X)2 yn
Y

( yn
Y

)2
(x−X)2

( yn
Y

)2

07 3 19.0 −2.8 7.840 1.429 2.042 16.009
18 1 17.0 −4.8 23.040 0.476 0.227 5.230
29 2 20.5 −1.3 1.690 0.952 0.906 1.531
31 3 21.0 −0.8 0.640 1.429 2.042 1.307
37 2 18.5 −3.3 10.890 0.952 0.906 9.866
56 1 24.0 2.2 4.840 0.476 0.227 1.099
72 5 24.8 3.0 9.000 2.380 5.664 50.976
83 1 16.0 −5.8 33.640 0.476 0.227 7.636
87 1 28.0 6.2 38.440 0.476 0.227 8.726
91 2 25.5 3.7 13.690 0.952 0.906 12.403

X = 21.8 ∑(x−X)2
( yn

Y

)2
= 114.783

Once again, the complicated calculation is the summation that forms the numer-
ator of the middle fraction, and this summation is quite similar to the summation
required for the standard error of the proportion. Table 18.4 shows this calculation
carried out.

In this instance, y is the number of projectile points found in each unit. For each
excavation unit, we calculate a mean projectile point length based on the projectile
points in that unit. This mean appears in the third column of Table 18.4. The devi-
ation we are interested in this time is the difference between the mean projectile
point length for each unit and the overall mean in the sample (the fourth column).
As usual, this deviation is squared (the fifth column). The weighting factor works
just as it did in the case of estimating proportions (the sixth and seventh columns).
The final product is summed in the last column.

The results can then be substituted in the formula on the preceding page as
follows:

SE =

√(
1

10

)(
114.783
10−1

)(
1− 10

100

)

=
√

(.100)(12.7537)(.900)

=
√

1.1478 = 1.07mm

To use this standard error as an error range at the 95% confidence level, as we did
with the standard error of the proportion earlier in the example, we would multiply
it by the value of t for nine degrees of freedom and 95% confidence, which contin-
ues to be 2.262. Thus the error range would be (1.07)(2.262) = 2.42mm, and we
would be 95% confident that the mean length of all the projectile points in the site
is 21.8mm±2.4mm.
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DENSITIES

The fact that spatially based sampling often takes us into the realm of cluster sam-
pling rather than simple random sampling should not confuse us about what the
basic principle of cluster sampling is. Sometimes spatially based sampling is actu-
ally simple random sampling. It depends on what the elements to be studied are.
In the two examples discussed above the elements to be studied were sherds and
projectile points. Neither of these elements was the same as the sampling unit, since
quadrats from a grid were the things randomly chosen to define the sample. Thus it
was necessary to consider both estimating proportions of cord-marked sherds and
estimating mean projectile point length as questions in cluster sampling.

Often, however, we are interested in studying the very spatial units that are ran-
domly selected to form the sample. Something like this may be the case with point
sampling, as noted at the beginning of this chapter. It also can happen when we
estimate the density (the number per unit area) of some artifact or feature. Such
densities are usually easily expressed as numbers of things, say sherds, per grid
unit. Such numbers are actually properties, not of the sherds, but rather of the grid
units. The elements being studied are the same as the elements that were randomly
selected to form the sample, so this becomes a question in simple random sampling.
In the example above, we had a sample of ten grid units that produced, respectively,
32, 27, 38, 73, 55, 41, 63, 81, 56, and 34 sherds. We can estimate the mean number
of sherds per grid unit in the complete population of grid units (that is, the entire
area of the site) in exactly the manner discussed in Chapter 9 for a sample of ten
with a measurement for each of the ten units.

The mean number of sherds per grid unit in the sample is 50.0. Thus we would
estimate that in the site as a whole the mean number of sherds per grid unit is 50.0.
The standard error is 5.8 sherds, which the finite population correction reduces to 5.5
sherds, so an error range at the 95% confidence level would be (2.262) (5.5) = 12.4
sherds. We are thus 95% confident that the mean number of sherds per grid unit in
the site is 50.0±12.4 sherds.

Such estimates of densities are the most direct springboard to estimates of the
total quantities of various things in the site. For example, we have estimated that
there is an average of 50.0±12.4 sherds per grid unit in the site (at a 95% confidence
level). We know that the entire site consists of 100 grid units. Our density estimate
thus translates into an estimate that the total number of sherds in the site is (50.0
sherds per grid unit) (100 grid units) = 5,000 sherds. The error range also translates
in the same way: (12.4 sherds per grid unit) (100 grid units) = 1,240 sherds. We are
thus 95% confident that the total number of sherds in the site is 5,000±1,240.



Chapter 19
Sampling without Finding Anything

Sampling statistics ordinarily take as their point of departure some finding in a sam-
ple. Say the sample consists of artifacts, including some projectile points. We can
estimate the proportion of projectile points in the artifact assemblage from which
the sample came; we can estimate the mean weight of projectile points for the
population of projectile points from which the sample came; we can estimate the
proportions of different raw materials of which projectile points in the population
were made; and so on. Following the procedures discussed in Chapters 9, 11, and
18, we can attach error ranges for particular confidence levels to these estimates.

Sometimes, however, we have particular reason to be interested in some specific
category of observation that just does not appear at all in a sample. For example, we
may recognize chert, flint, and obsidian as potentially available raw materials from
which projectile points could be made, but perhaps our sample includes only chert
and flint points. How confidently can we say that obsidian was not used to make
projectile points? We certainly know enough about samples by now to know that
the fact that we find no obsidian projectile points in a sample does not necessarily
mean that there were none at all in the population from which the sample was drawn.
This is true no matter how large the sample is. The only way to be certain that there
are no obsidian projectile points is to acquire and study the entire population of
projectile points. As long as one projectile point remains unexamined, there is at
least some possibility that it could be made of obsidian.

As long as we are working with a sample, then, we must settle for some level of
confidence short of 100%, just as in all the conclusions we have made about popula-
tions on the basis of samples. The confidence we have, as always, will depend on the
size of the sample. We will be more confident in saying that projectile points were
not made of obsidian if we have failed to find any obsidian points in a sample of 100
points than if we have failed to find them in a sample of five points. The proportion
of obsidian projectile points in the population is also involved. It is intuitively obvi-
ous that if the population really includes many obsidian projectile points, it is more
likely that at least one will turn up in a sample of a given size than if there are very
few obsidian points in the population.

The aim of this chapter is to put a finer point on these intuitive (but perfectly
valid) approximations. Applying basic statistical principles to the task requires only
deciding at what level of confidence we need to speak and how many obsidian
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projectile points we are willing to risk overlooking. Deciding at what level of con-
fidence to speak presents no novel aspect in this context; all the considerations
brought to bear in previous chapters apply. Deciding how many projectile points
we are willing to risk overlooking, however, does raise a new issue, and making
this decision is what enables us to put statistical tools to good use here. In effect,
we must decide what low proportion of obsidian projectile points is functionally
equivalent to none. If only one projectile point in a billion were made of obsidian,
we would presumably be willing (for many purposes at least) to say that, in effect,
obsidian was not used for projectile points. We would probably be equally willing
to say that one obsidian point in a million really meant that points were not made of
obsidian. For some purposes at least, it would be interesting and useful to be able to
say with high confidence that fewer than 1% or even 5% of the projectile points in
some population were made of obsidian.

Suppose that we have a sample of 16 projectile points, and none is made of obsid-
ian. We would like to know at what level of confidence we can say that fewer than
1% of the projectile points in the population from which the sample was selected
were made of obsidian. Another (and more familiar) way to put this question is,
“How likely is it that we could select a random sample of 16 including no obsidian
projectile points from a population with as many as 1% obsidian projectile points?”
Answering this question is simply a matter of multiplying the probabilities of a
series of sequential events.

Assume that 1% of the population of projectile points we have sampled actually
are made of obsidian. The probability that the first point we select for our sample
will not be made of obsidian is 0.99. (Since 99% are not made of obsidian, 99 times
out of 100 a randomly selected point will not be made of obsidian.) There is also a
probability of 99% that the second point selected for the sample will not be made
of obsidian. Thus, 99% of the time we will select a nonobsidian point first. If this
happens, then 99% of the time we will select a nonobsidian point second. Thus
99% of 99% of the samples of two from this population will not include obsidian
points. The probability of drawing a sample of two with no obsidian points from a
population with 1% obsidian points, then, is (0.99) (0.99) = 0.980, or 98%.

If we repeatedly select samples of two from this population, then, 98.0% of those
samples will contain no obsidian points. Having found no obsidian points in a sam-
ple of two, we might continue to enlarge the sample by selecting a third random
point. This third random projectile point, like any randomly selected point, will not
be made of obsidian 99% of the time. Thus, in repeatedly drawing samples from this
population, 98.0% of the time we will not find an obsidian point among the first two
selected, and in 99% of those 98.0% of the instances, when we continue to select a
third point we will still not have found one made of obsidian. Thus there is a prob-
ability of (0.99) (0.980) = 0.970 that a sample of three points from this population
will not contain an obsidian point. We can continue in this fashion to select more
and more points. At each step the probability from the previous step is multiplied
once again by 0.99.

For any sample size, n, then, the probability of selecting a sample with no obsid-
ian points from this population is 0.99n. Thus, for a population with as many as
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Table 19.1. Confidence Levels for Concluding That Absence from a Sample
Indicates a Low Population Proportion

Population
0.1% 0.5% 1.0% 2.0% 5.0%

proportion

n

20 .020 .095 .182 .332 .642
25 .025 .118 .222 .397 .723
30 .030 .140 .260 .455 .785
35 .034 .161 .297 .507 .834
40 .039 .182 .331 .554 .871
45 .044 .202 .364 .597 .901
50 .049 .222 .395 .636 .923
55 .054 .241 .425 .671 .940
60 .058 .260 .453 .702 .954
70 .068 .296 .505 .757 .972
80 .077 .330 .552 .801 .983
90 .086 .363 .595 .838 .990

100 .095 .394 .634 .867 .994
110 .104 .424 .669 .892 .996
120 .113 .452 .701 .911 .998
130 .122 .479 .729 .928 .999
150 .139 .529 .779 .952 >.999
175 .161 .584 .828 .971 –
200 .181 .633 .866 .982 –
250 .221 .714 .919 .994 –
300 .259 .778 .951 .998 –
350 .295 .827 .970 .999 –
400 .330 .865 .982 >.999 –
450 .363 .895 .989 – –
500 .394 .918 .993 – –
600 .451 .951 .998 – –
700 .504 .970 .999 – –
800 .551 .982 >.999 – –
900 .594 .989 – – –

1,000 .632 .993 – – –
1,200 .699 .998 – – –
1,400 .754 .999 – – –
1,600 .798 >.999 – – –
1,800 .835 – – – –
2,000 .865 – – – –
2,500 .918 – – – –
3,000 .950 – – – –
4,000 .982 – – – –
5,000 .993 – – – –
6,000 .998 – – – –
7,000 .999 – – – –
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1% obsidian projectile points the probability that a sample of 16 would contain no
obsidian points is 0.9916 = 0.851. For a sample of 50 points, there would still be
a 60.5% chance of selecting a sample with no obsidian points from a population
with 1% obsidian points (0.9950 = 0.605). This probability of 60.5% amounts to an
evaluation of significance. That is, it is the probability that a random sample of 50
may contain no obsidian points even though the population does have as many as
1% obsidian points. The opposite probability (1−0.605 = 0.395) is the confidence
level at which we could say that the population from which our sample was selected
has fewer than 1% obsidian points. Thus a sample of 50 with no obsidian points
would give us only 39.5% confidence that it was selected from a population with
fewer than 1% obsidian points.

Table 19.1 provides the confidence levels for given sample sizes (n) and given
population proportions. The figures for the example just discussed can be found
there by looking at the row for n = 50 and the column for a population proportion of
1%. The number in the table is 0.395, corresponding to a 39.5% level of confidence
that the population from which a sample of 50 elements was drawn actually has
fewer than 1% of whatever item of interest it was that failed to appear in the sample.
A confidence level of 39.5% is, of course, not a very useful level of confidence at
which to speak. To determine how large a sample of projectile points without any
made of obsidian we would need in order to make this conclusion at the 95% confi-
dence level, we can read farther down the column for a population proportion of 1%
until we reach 0.95. In the row corresponding to a sample size of 300, the confidence
level has finally reached 0.951. Thus, if we wanted a sample large enough to con-
clude at the 95% confidence level that the population had fewer than 1% obsidian
points, we would need a sample of some 300 projectile points. (If we did find one or
more obsidian projectile points in this enlarged sample, of course, we would simply
turn back to the procedures discussed in Chapter 11 to estimate the proportion in the
population and attach an error range at the 95% confidence level to this estimate.)

Table 19.1, then, can be used to determine the level of confidence at which we
can conclude that something absent from a sample of a given size occurs in the
population in a proportion of less than 5%, 2%, 1%, 0.5%, or 0.1%. It can also be
used to determine how large a sample will be needed to conclude at a given confi-
dence level that the population contains less than a certain proportion of some item
of interest. As can readily be seen, if we need high confidence that the population
proportion for an item absent from the sample is very low, then quite a large sample
is required.



Chapter 20
Sampling and Reality

At the beginning of Chapter 7 I asserted that sampling was at the very heart of the
statistical principles applied in this book. I hope the chapters that lie between there
and here have made clearer just what that means. Whether the task is estimating
the population mean or proportion, comparing means in several batches, comparing
proportions in several batches, or investigating the relationship between two mea-
surements, the logic of the approaches statisticians take involves thinking about the
batches of numbers we are working with as samples from a larger population. It is
this larger population that really interests us.

Sometimes this is literally and obviously true. If, for example, we excavate an
entire rock shelter site and recover 452,516 pieces of lithic debitage, we might well
select some kind of random sample of this debitage for detailed analysis with the
objective of characterizing the entire population of 452,516 waste flakes. In this
case we would have a sample of waste flakes that we would use to make statements
about the population of all debitage at the site from which the sample was selected.
The sampling design we used might well be rather complicated. For instance, we
might want to be able to compare one stratum in the site to the others, so we
might separately select a sample from each stratum. The techniques discussed in
Chapters 9–11 would enable us to determine approximately how large each of these
samples would need to be in order to accomplish our aims, and they would enable
us to estimate means of measurements we might make and the proportions of dif-
ferent categories we might define in the several populations consisting of debitage
from each stratum. We could attach error ranges to these estimates that would help
us to know at what confidence level and with what precision we could discuss these
means and proportions (Chapters 9–11). We could compare the means of the mea-
surements in different strata using these estimates and error ranges or using t tests
and analysis of variance (Chapters 12 and 13). We could compare the proportions of
the categories in different strata using the estimates and error ranges or using chi-
square (Chapter 14). We could evaluate the strength and significance of relationships
between measurements with a regression analysis (Chapter 15). If we had ranks
rather than true measurements, we could use a rank correlation (Chapter 16). We
could combine samples from different strata to say things about the debitage from
the site as a whole (Chapter 17). If there were some category of material that just did
not appear in our sample, we could evaluate the confidence with which we could talk
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about its rarity in the population from which the sample came (Chapter 19). All these
analyses would provide us with ways to say how much confidence we had that some
observation of interest in the sample reflected something that occurred in the pop-
ulation from which the sample was selected as well. This is a very straightforward
application of the principles in Chapters 9–18.

If we had a large sample of Early, Middle, and Late Archaic projectile points,
we might well do all these same things with it – means and proportions with error
ranges, significance tests of the differences between Early and Middle or Middle
and Late, and so on. We have to stop and think for a minute, though, about just what
population it is that we are talking about on the basis of our sample. Probably, the
population is something like the large and very vaguely defined set of all projectile
points made during the Early, Middle, and Late Archaic. Our interest is likely to be
in identifying some kind of change from one period to the next in very general terms.
We still clearly have a sample, and we can imagine the population we are talking
about even if it is a fairly nebulous population. The sample has not been selected
with truly random procedures, so the issue of sampling bias is highly relevant in this
example, unlike the previous one (Chapter 7).

If we excavated a Formative village in its entirety, recovering information about
27 house structures from Early, Middle, and Late Formative, the same list of statis-
tical tools might be put to use. If we had excavated all the houses at the site, though,
it is even less clear what sense it makes to talk about these houses as a sample.
What is the population they are a sample from? Aren’t they the complete popula-
tion? And does this mean we can’t investigate the significance of a difference we
might observe between, say, Early and Middle Formative? In a case like this, there
are several kinds of populations we might implicitly be interested in. One is the pop-
ulation of all houses that existed at the site at any point in the Formative. Some have
surely been destroyed by the construction of subsequent houses and other processes.
Our sample is not this complete population, but in some contexts this would be the
complete population of interest to us. In other contexts, we might use the sample
of excavated Early Formative houses from this site as a way of talking about Early
Formative houses in general. The relation between our sample and the population of
interest in this context is similar to the first example concerning Archaic projectile
points.

If we surveyed a whole region completely, with 100% coverage, it would become
even more difficult to identify just what population we take our sample to represent.
Presumably some sites would have been destroyed or made inaccessible to survey,
but if conditions were so propitious for survey that we recovered data on almost all
the sites, talking about our sites as a sample from a larger population has become
very forced. What would it mean to talk about, say, the significance of a difference
in mean site size between the Neolithic and the Bronze Age? We could certainly
perform the calculations necessary to say that the mean site area in the Neolithic
was 1.4±0.2ha at the 95% confidence level and in the Bronze Age it had changed
to 3.6± 0.3ha. (Or, instead, we could perform a t test and find out that the signif-
icance of the difference in mean site area between Neolithic and Bronze Age sites
was very high.) We would thus have very high confidence that Bronze Age sites
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were substantially larger on average than Neolithic ones. But it is not easy to say
exactly what this means in terms of samples and populations. Literally, we have
concluded that it is extremely likely that our sample of Bronze Age sites came from
a population of larger sites than our sample of Neolithic sites. But those two popu-
lations may really be imaginary. If our survey was so effective that unstudied sites
within the region are virtually nonexistent, then the population within the region is
not substantially different from our sample. It may not be any more meaningful to
think of this population existing outside the region either, since what was going on
in the next region may well be entirely different – perhaps there were no Neolithic
sites at all.

The population we have sampled in a case like this is truly imaginary. Thinking
of the things we study as samples from imaginary populations may not sound like
a very good way to approach reality, but it can indeed be meaningful to talk about
significance and confidence even when the things we have studied do comprise the
entire population we are interested in. What an evaluation of significance like this
last example tells us, in real-world terms, is that the quantity and character of the
observations we have made give us a real basis to discuss a change in mean site
area from Neolithic to Bronze Age. The change we have observed is very unlikely
to be due to the small number and equivocal nature of our observations. In short,
we have enough information to say quite confidently that something changed and to
proceed to consider more fully the nature of the changes and the forces that produced
them. Such an indication enables us to put to rest one of the continual worries of the
archaeologist: whether we have enough information to say anything at all. Whatever
other doubts we may have about our conclusions, at least we do not need to worry
that we did not recover information about enough sites to tell whether or not there
was a change in site size between Neolithic and Bronze Age.

Returning to think about Early, Middle, and Late Archaic projectile points, sup-
pose that we discover that the proportion of corner-notched points in the Early
Archaic is 46% ± 23% at the 95% confidence level, and that the proportion of
corner-notched points in the Middle Archaic is 34% ± 19% (also at the 95% con-
fidence level). We would not be much interested in talking about what caused a
change in the proportion of corner-notched points, because the quantity and char-
acter of the observations we have made does not make us very confident that there
was a change. What we might be interested in doing is visiting more museums and
observing more points. With a larger sample we would be able to achieve smaller
error ranges at the 95% confidence level. Eventually we should be able to see either
that there was a change that we could talk about with enough confidence to make
the conversation worthwhile, or, alternatively, that whatever change occurred was
so small as not to be very interesting.

In either of these two cases, application of the statistical notion of confidence
(or its mirror image, significance) has told us whether the quantity and character of
the observations we have made are sufficient to make some conclusions. Statistical
reasoning provides us with powerful tools to deal with this concern. If you find that
a difference between two sets of observations you have made has high statistical
significance, then at least you know that you do not have to worry about not having
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enough observations on which to base conclusions. To say (as some have) that such
a difference has high statistical significance, but that a larger sample is needed for
us to be confident about it, is to reveal lack of comprehension of what a significance
test means. At the very least, the high significance means that a larger number of
observations is not needed.

What none of this touches is the problem of sampling bias discussed in Chapter 7.
Having decided to treat the observations we have as if they were a random sample
enables us to go ahead and utilize the tools of statistics. We may discover that our
observations, whatever they are really a sample from, are an insufficient basis to find
out what we would like to find out – that is, that whatever pattern we observe has
very little significance. Or we may discover that the observations we have are suffi-
cient to tell us some statistically highly significant things about whatever population
it is that they are a sample from. When we arrive at this latter point, we are put in the
position once again of considering what it is we have a sample from. If the things
we observed were selected in a biased manner that affects the nature of the observa-
tion we are interested in, then we must reason our way around that problem as best
we can. The assistance we get from statistics in that task is limited to helping us to
delineate the problem of sampling bias clearly and, in a sense, compartmentalize it
by separating it analytically from the issue of sample size, which the statistical tools
in this book are designed to deal with directly.

Radiocarbon dating provides a context in which archaeologists are accustomed to
reasoning in this way, although we do not usually talk about it quite like this. When
a sample of carbon is submitted to a dating laboratory that tells us its age is 800 ±
100 years, we say that there is about a 66% chance that the sample is between 700
and 900 years old (since by convention the error ranges expressed with radiocarbon
dates are one standard error). Before we can use that result to conclude anything at
all about the date of a particular stratum, there are several other issues to consider.
How confident are we that the sample was uncontaminated? That it did not fall down
a rodent burrow from a more recent stratum? That it was not simply a burned root
of a much more recent tree? That it was not from the long-dead heartwood of a tree
already ancient at the time it was deposited? In effect, all these additional questions
are questions about the real nature of the population of carbon atoms of which those
counted to the laboratory were a sample.

The error range tells us whether the observations are sufficient to tell us what we
need to know. Suppose that what we need to know is whether or not the stratum in
question is more than 400 years old. A radiocarbon age of 800 ± 100 years gives
us high confidence that the sample dated is more than 400 years old. Submitting a
larger chunk of carbon to the laboratory in the hope of narrowing the error range
would not be at all helpful. Increasing the size of the sample would be a waste of
time and money. We are quite confident that those carbon atoms were a sample
from a population of carbon atoms assembled more than 400 years ago. The sample
was of quite sufficient size to tell us that. The worries about how the sample was
selected (in effect, about sampling bias), however, remain. Larger samples and more
statistics will not help us resolve those worries. We must reason our way through
those difficulties as best we can with recourse to considerations other than statistics.
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The approach taken in this book to the problem of sampling bias is similar to what
has become customarily accepted practice in handling radiocarbon dates. Instead
of treating random sample selection as a criterion that must be met before using
the tools of statistics (which, if taken literally, would stop us dead in our tracks in
almost every potential application of statistics to archaeology), the issue of what our
observations are really a sample from becomes a consideration in what we can con-
clude from our observations – if they have enough statistical significance to make it
possible to conclude much from them at all. If our observations do not have enough
statistical significance to make them meaningful, then we do not waste time address-
ing the issue of bias in the process of sample selection. What we want instead is
another (larger) sample, selected in as unbiased a manner as possible.

Making conclusions or interpretations, as discussed in Chapter 7, carries us
beyond the realm of statistics, although statistical tools can help put us in better
position to make conclusions. The significance or confidence levels we arrive at
with statistical tools have to do with the probable nature of the populations (real or
imaginary) that the things we observe are samples from. Knowing how much con-
fidence to place in our observations (or equivalently, how much significance they
have) helps us evaluate just how much support they provide for the conclusions
we are interested in making. The confidence probabilities, however, do not apply
directly to the conclusions.

If we think that family size increased from one period to the next and that such
a change might result in larger storage jars in the second period, we can use sta-
tistical tools to determine how much confidence we should have in our observation
that storage jar volume increased. If we find that we are 99% confident that stor-
age jar volume increased, that does not mean that we are 99% confident that family
size increased. There are other possible reasons for the increase in storage jar vol-
ume. The confidence probabilities pertain to our observations, not to what we think
our observations mean. The high confidence we have in our observation of stor-
age jar volume increase, of course, provides evidence in favor of our conclusion.
(If our calculations gave us less confidence that storage jar volume increased, then
our observations would provide less support for our conclusion that family size
increased.) Observations at high confidence levels of other kinds of evidence consis-
tent with increases in family size would add more support to our conclusion, while
observations at high confidence levels of other kinds of evidence inconsistent with
increases in family size would make us doubt our conclusion. The weighing together
of these multiple, quite possibly contradictory, observations of different lines of evi-
dence is essential to the process of evaluating conclusions, and it is not primarily a
statistical task.

Statistical tools are more useful at a lower level in helping us to evaluate each
individual line of evidence and to assess just how much (or how little) support
each set of observations contributes toward sustaining our ultimate conclusions. It
is because we use statistics most often in a context like this rather than in a context
where we must make yes or no decisions based on observation of a single variable
in a single sample that a scalar rather than null hypothesis testing approach to fram-
ing significance tests is particularly suitable in archaeology. Using samples simply
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to make estimates with error ranges about the populations they were selected from
and comparing these estimates with bullet graphs is, in many instances even clearer
and more direct.

In particular, the statistical tools most discussed in this book provide a power-
ful approach to the archaeologist’s perennial worry about whether there are enough
observations to conclude anything much. Are the 253 sherds collected from this site
enough to enable us to talk very confidently about proportions of different types?
How confidently can we discuss the size of Formative houses on the basis of the five
house floors we have excavated? Do we have much confidence that the number of
temple mounds depends on site area, given that our observation of this relationship
is based on only 16 sites? Do we need to analyze all the unifacial flake tools recov-
ered from this site, or could we learn more by studying a sample intensively? If a
sample, how large would it need to be to tell us what we need to know? These are
all examples of questions that have loomed large in archaeologists’ sleepless nights
for decades. They have been answered too often in archaeological research in purely
arbitrary and subjective ways. Answering such questions on the basis of subjective
impressions or “gut feelings,” is unsupportable. It is precisely these kinds of ques-
tions that the statistical tools explored thus far in this book can help us whittle down
to size.
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What we did in Part III (Relationships between Two Variables) is often labeled
bivariate analysis. The chapters that form this last part of the book extend the inves-
tigation of relationships between two variables into the multivariate arena. There are
many different approaches to multivariate analysis. Those discussed here represent
only a very small selection, one that emphasizes techniques particularly suitable
for exploration that seeks patterns in multivariate datasets (as contrasted to eval-
uating the strength and significance of particular patterns that are hypothesized in
advance). The perspective of this final section of the book, then, strongly recalls
the exploration of batches in Part I. The exploration here, though, is not of single
batches of numbers, or variables. It goes on beyond relationships between two vari-
ables to approach directly the more complicated situation in which we have a larger
number of variables for each case. We could, of course, approach a large number of
variables piecemeal by looking at their relationships by pairs, taking them two at a
time, and evaluating the strength and significance of the relationships between them
with the tools discussed in Part III. This would soon get out of hand without some
way to truly combine the results of all those pairwise evaluations of relationships.

In Chapter 15 we actually discussed one way to accomplish just this, using the
residuals from one regression analysis as the dependent variable in another regres-
sion analysis. This is, in fact, the avenue toward one form of multivariate analysis.
Multiple regression does just this in an integrated way as a single analysis, and most
statpacks will perform multiple regression. Since its basic principles are precisely
those described in Chapter 15 for integrating several bivariate regression analyses
into a single set of results, multiple regression will not be further discussed here.
Multiple regression has, however, been used in archaeology, especially in situations
where the aim is to use a number of variables together to predict the value of a sin-
gle important dependent variable. Models for predicting site locations, for example,
have often made heavy use of multiple regression. Multiple regression differs from
the multivariate techniques we will discuss in another way as well. Like bivariate
regression, multiple regression evaluates the strength and significance of a particular
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kind of relationship between variables – a relationship expressed in an equation for
predicting the value of a dependent variable, based on the values of a series of inde-
pendent variables. It is thus less an exploration for patterning than an evaluation of
how well a particular hypothetical way of expressing relationships works on a given
dataset.

The context we will focus on here is a more exploratory one, in which there is
not a single major dependent variable whose value we seek to predict, nor a specific
hypothesized model of relationships between variables that we seek to evaluate.
Instead, we will consider a set of things with a number of varying characteristics
encapsulated in a set of measurements and/or categories. Our aim with the tools
discussed in these final chapters is to find patterns of relationships in such a dataset –
relationships that can be expressed in several different ways.

A concrete example may make some of this vague talk a bit clearer. One of the
central reasons archaeologists got interested in multivariate analysis in the first place
was a desire to make the definition of artifact typologies more rigorous and replica-
ble. The creation of, say, a ceramic typology can easily be considered a multivariate
analysis problem. The traditional way of creating a ceramic typology is, of course,
to put a lot of sherds on a very large table and push them around into piles that
bring together sherds that are similar to each other and separate those that are dif-
ferent. Once the pushing around is done, the characteristics of the sherds in each
pile are written down in what becomes a type description. This has often seemed
a capricious and arbitrary practice, and artifact classification in the archaeological
laboratory is legendary for disagreements about just how to make the piles or just
which pile to put a particular sherd in.

There was a moment when it seemed to some archaeologists that multivari-
ate analysis offered the solution to these difficulties. The large number of sherds
could become cases in a dataset; and each of their potentially interesting and use-
ful characteristics, a variable. Some of the variables are categories (such as surface
finish, which might be either rough, smoothed, or burnished); others could be mea-
surements (such as rim thickness in mm). Voilà, a multivariate dataset! The right
statistical analysis, then, could ferret out the patterns in the multivariate dataset and
banish forever all this quibbling over artifact types. For several reasons, it has not
worked out quite this way, and it is not in the effort to make artifact typologies more
rigorous and replicable that multivariate analysis now has its most promising uses
in archaeology. The basic idea, though, of using multivariate analysis to improve
artifact typologies helps make clear just what a multivariate dataset is like, and just
what it might mean to explore for patterning in it.

A SAMPLE DATASET

We will use the same multivariate dataset as a continuing example through all of the
following chapters. Like the other datasets used in this book, it is made up so as to
help us focus more clearly on central principles. The patterns in it are fairly simple
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and straightforward, but they are not perfect. The dataset contains enough random
noise and general messiness to provide a more or less realistic opportunity to see
how different multivariate techniques present patterns in real datasets.

The cases in the dataset we will use are 20 household units from the ficti-
tious Formative Mesoamerican site of Ixcaquixtla. The excavations at Ixcaquixtla
revealed the residential structures corresponding to these 20 households and recov-
ered substantial samples of artifacts from middens associated with each one. A
remarkable number of burials were also encountered in the area around each house.
The site was occupied for only a short period of time, making it possible to treat
these household units as contemporaneous, and they apparently comprise the major-
ity of the households that existed at this small village site during its period of
occupation.

The data are presented in Table 21.1. The household units have been assigned
numbers to facilitate keeping track of which is which, and ten variables encapsulate
some of the characteristics to be observed in the house structures, the burials, and
the artifact and ecofact assemblages from the middens. The first variable, Bowls %
of Sherds, is the proportion of the sherds recovered from the midden deposits that
can be identified as serving bowls. Most of the rest of the sherds are from storage
and cooking vessels, so a high proportion indicates a large amount of finer food-
serving vessels in an assemblage. It is not uncommon to relate a high proportion

Table 21.1. A Multivariate Dataset on Households at Ixcaquixtla

House- Bowls Decoration Energy Fauna/ Shell/ Wasters Debitage Obsidian
hold % of % of Invested Mace Sherd Plat- Sherd % of % of % of
Unit Sherds Sherds in Burials Heads Ratio form Ratio Sherds Lithics Lithics

1 0.25 0.03 2 0 0.32 0 0.000 0.000 0.79 0.00
2 0.37 0.07 3 0 0.55 0 0.000 0.000 0.35 0.00
3 0.15 0.01 1 1 0.10 1 0.008 0.000 0.32 0.00
4 0.19 0.01 2 0 0.20 0 0.000 0.000 0.26 0.00
5 0.35 0.04 3 0 0.57 0 0.000 0.000 0.69 0.00
6 0.21 0.01 1 0 0.13 1 0.000 0.000 0.31 0.12
7 0.24 0.01 1 0 0.19 0 0.000 0.000 0.86 0.00
8 0.20 0.05 2 0 0.28 0 0.000 0.016 0.19 0.00
9 0.49 0.09 3 0 0.48 0 0.000 0.000 0.28 0.00

10 0.23 0.02 2 0 0.24 0 0.000 0.000 0.29 0.00
11 0.26 0.02 2 1 0.21 1 0.000 0.021 0.31 0.13
12 0.19 0.00 1 0 0.15 0 0.000 0.000 0.46 0.00
13 0.31 0.04 2 0 0.37 1 0.000 0.025 0.26 0.10
14 0.45 0.05 3 1 0.60 1 0.009 0.000 0.65 0.00
15 0.48 0.03 3 0 0.43 0 0.000 0.000 0.43 0.00
16 0.09 0.00 1 1 0.15 0 0.005 0.000 0.29 0.00
17 0.11 0.02 1 0 0.09 0 0.000 0.014 0.28 0.00
18 0.29 0.02 2 1 0.25 1 0.007 0.000 0.87 0.00
19 0.28 0.03 2 1 0.40 0 0.000 0.000 0.31 0.00
20 0.19 0.03 1 0 0.05 0 0.000 0.000 0.95 0.00



266 CHAPTER 21

of such ceramics to more elegant or elaborate food serving, as may occur in elite
households or feasting. The second variable, Decoration % of Sherds, is the propor-
tion of the sherds recovered from the midden deposits that have elaborate painted
designs. These painted vessels clearly required considerably more labor to produce
than undecorated ones, so their possession might be related to wealth or prestige.

Burials were located around the houses in which the deceased had apparently
lived. Sometimes burials were placed in plain excavated grave pits and sometimes in
more elaborate stone slab tombs, and the quality and quantity of offerings included
with them varied substantially. Energy Invested in Burials is a rough categoriza-
tion of the labor required on average for the burials associated with each household
unit. This could not be calculated at all precisely, but was rated in three categories
(1 = low, 2 = medium, and 3 = high). Investment of large amounts of labor, on aver-
age, in the burials of the deceased members of a particular household is often taken
to indicate something special about that household – whether economic wealth,
social prestige, political power, supernatural authority, ritual position, or something
else. Mace heads are elaborately carved stones that seem likely to have been more
ceremonial than practical. They were included in burials occasionally, but were very
rare, so only their presence (1) or absence (0) is recorded.

The Fauna/Sherd Ratio is the number of animal bones recovered from the mid-
den deposits associated with each household unit divided by the total number of
sherds recovered from those same deposits. In some contexts, meat is taken to be
a preferred food, and households able to consume more meat, as indicated by con-
centrations of faunal remains, are regarded as special in some way. Some house
structures were built atop plastered Platforms about 1 m high. A value of 1 for this
variable indicates that the house was on a platform; a value of 0, that it was not.
Again, house structures raised conspicuously on platforms are likely to be taken to
indicate something special about that household – high rank in a social, economic,
or political hierarchy or perhaps differentiation based on some less hierarchical
principle.

The Shell/Sherd Ratio is the total number of marine shell fragments recovered
from the midden deposits associated with each household divided by the total num-
ber of sherds recovered from those same deposits. Marine shell had to be imported
from distant coastal regions, so it was rare and apparently of ornamental use. Most
of the fragments found in the middens appear to be not finished ornaments, but
debris from making such ornaments. An archaeological interpretation is thus likely
to relate them to craft activity. Ceramic production is indicated by the presence
of kiln wasters – fired ceramic fragments that were so badly damaged during the
manufacturing process that they would never have been useful and would just have
been discarded straight away. Wasters % of Sherds is the total number of such kiln
wasters recovered from the midden deposits associated with each household unit
divided by the total number of sherds recovered from those same deposits. Waste
flakes from the manufacture of flaked stone tools were recovered in fairly large
quantity from fine screening of the midden deposits. The number of such waste
flakes recovered from the midden deposits associated with each household divided
by the total number of flaked stone artifacts recovered from those same deposits is
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recorded as Debitage % of Lithics. Finally obsidian was an especially high-quality
raw material for flaked stone tools. It was imported from one of a restricted number
of obsidian sources, all of which lie at long distances from Ixcaquixtla. Obsidian
% of Lithics records the total number of fragments of obsidian recovered from the
midden deposits associated with each household unit divided by the total number of
flaked stone artifacts recovered from those same deposits.

This multivariate dataset, then, includes a variety of kinds of information about
household units at Ixcaquixtla. The variables are kinds of evidence that have often
been related to subjects such as status, wealth, leadership, feasting, ritual, and
craft production. We might well be interested in exploring such data for patterns,
whether we had any particular hypothesis in mind to evaluate or not. This is pre-
cisely the exploration we will undertake in the next few chapters by several different
approaches to multivariate analysis.

KINDS OF VARIABLES, MISSING DATA,
AND STATPACKS

There are several kinds of variables in Table 21.1, and since they may receive dif-
ferent treatments in some multivariate approaches, it is necessary to pay attention to
a few more details about kinds of variables than we have distinguished up to now.
Most of the variables in Table 21.1 are measurements (the proportions and ratios).
Two of the variables (Mace Heads and Platforms) are categories. The categories
are mutually exclusive and exhaustive, as all sets of categories must be. That is,
each case must fit into one and only one of the categories for each variable. This
has been true of all the category variables we have dealt with in earlier chapters;
it seems so self-evident in that context that it was not even necessary to mention it.
The urge to define variables that do not have this characteristic does sometimes arise
in multivariate analysis, however, and it must be resisted.

For each household, clearly Mace Heads are either present or absent among
the burials; they cannot be both, and they must be one or the other. The same is
true of the variable Platform. Presence/absence variables like these two sometimes
receive special treatment in multivariate analysis, distinct from other sorts of cate-
gory variables. A dataset like this might also have a variable, say, Wall Construction,
whose three categories were wattle-and-daub, wood-plank, and mud-brick. These
categories would also need to be mutually exclusive and exhaustive. If both wood
plank and mud brick wall construction were found in a single house structure, a
fourth category (wood-plank-with-mud-brick) would need to be added, so that each
household unit could be placed in one and only one category. This category variable
would not, however, be a presence/absence variable, and in some approaches would
not be treated in the same way as a presence/absence variable.

Finally, there is one variable in Table 21.1 that represents ranks (Energy Invested
in Burials). In Chapter 16 we treated ranks as a sort inferior measurement variable –
one where higher values do mean “more” but where a value twice as high as another
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cannot be taken to mean “twice as much,” as is the case with real measurements.
Here Energy Invested in Burials takes the form of a variable with three categories,
and is, in this respect, much like the other category variables. It differs from the other
category variables in that the three ranks definitely come in a prescribed order. We
recognize that to say low, high, medium is to put the categories out of their correct
order. When we assign numbers to them, then, we assign 1 to low, 2 to medium, and
3 to high so that mathematical manipulations of those numbers can recognize that
in a very meaningful sense medium falls between low and high.

The data in Table 21.1 are organized as they might need to be for a statpack.
The measurements, of course, are represented by their numeric values, as always.
The categories are also now represented by assigned numeric values, something we
have not needed to do previously with categories. It is necessary in a multivariate
dataset because the values of the variables must be manipulated mathematically. We
cannot assign, say, “P” to present and “A” to absent for Platform, because we cannot
add, subtract, divide, and multiply with “P” and “A.” In principle, we could assign a
value of 0 to present and a value of 1 to absent, but it is customary to do it the other
way around. It is easier to use most software that recognizes differences between
presence/absence variables and other kinds of variables if 0 is the value of absent
and 1 is the value of present.

Values of 1, 2, and 3 have been assigned to Energy Invested in Burials, just as we
have done previously with ranks. In principle, we could have assigned 3 to low, 2 to
medium, and 1 to high, but it is much less confusing to assign low numeric values to
low amounts and high numeric values to high amounts. If the dataset had a category
variable like Wall Construction (wattle-and-daub, wood-plank, mud-brick, or wood-
plank-with-mud-brick), we would assign numbers to each of these categories as
well. Ordinarily we would not use 0 as one of the values for this variable, since
none of the categories really means absence. Instead we might use 1 for wattle-and-
daub, 2 for wood-plank, 3 for mud-brick, and 4 for wood-plank-with-mud-brick. We
could easily mix the number values around, though, for this variable. Any of the four
categories might be assigned a value of 1 since the number values do not represent
any sense of ranking of the four categories. It must be remembered that the numbers
assigned to the categories for Energy Invested in Burials convey information about
ranks, while those assigned to the categories for Wall Construction would not. This
distinction can matter in multivariate analysis.

The notion of missing data also plays an especially important role in multivariate
analysis. We have not needed to be concerned about it previously because missing
data usually takes care of itself when dealing with one variable or two. If a scraper
is broken, and we cannot measure its length, then automatically no measurement
for it appears in the batch of numbers we are exploring and calculating indexes for.
That scraper just disappears from the sample when we look at length measurements.
It might well reappear when we look at the batch consisting of categories of raw
material. The fact that it is broken would not prevent identifying the raw material of
which it was made. If we investigated the relationship between scraper length and
raw material, the broken scraper would disappear again. It would disappear because
we would have no measurement for its length and could not include that case in
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the sample for analysis. We could have said much earlier on that such a case was
excluded from the analysis by reason of missing data, the missing data being the
missing length measurement.

In multivariate datasets, it is quite common to be able to measure or classify all
the cases for most of, but not all, the variables. For example, if there were a house-
hold unit in the dataset in Table 21.1 that had no burials associated with it at all, we
would not be able either to categorize the average Energy Invested in Burials or say
whether Mace Heads were present or absent in burials. This household unit would
need to be assigned a special value for those two variables – a value that reflected
this special condition. All statpacks have an established procedure for dealing with
missing data. A particular value, not otherwise used, is likely to be established as a
missing data code. It may be a period all by itself (“.”) or some other character not
ordinarily used in recording data. In multivariate analysis it becomes of great impor-
tance to use such missing data codes effectively, and to distinguish clearly between
“missing data” and “absent.” It is sometimes necessary to choose between different
ways in which cases with missing data are dealt with by your statpack.

The concept of missing data applies to both measurements and categories. If,
for example, the sherds recovered from the midden deposits associated with one of
the Ixcaquixtla households were all so disastrously eroded that it was impossible
to tell whether they had ever been decorated or not, the appropriate value to use
for Decoration % of Sherds would not be 0.00 but “missing data.” If some of the
sherds were so badly eroded that decoration, if present, would not be discernible,
then those sherds would be excluded from the counts upon which Decoration % of
Sherds is based. Badly eroded sherds would be excluded both from the numerator
and the denominator of this fraction, so that the proportion would be calculated by
dividing the number of sherds with decoration by the number of sherds well enough
preserved that decoration would be noticed if it had been present.
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Several approaches to multivariate analysis begin by assessing the similarities of
each case in a dataset to each other case in the dataset, basing the measure of sim-
ilarity on the values of the set of variables that have been recorded for each case.
Such measures of similarity are called similarity coefficients. The notion of simi-
larity between cases in this instance is exactly what common sense implies. Two
cases are quite similar if they have similar values for each of the variables mea-
sured and less similar if they have rather different values for each of the variables.
Actual objects with physical measurements provide a clear illustration, for example
the projectile point measurements in Table 22.1. Looking first at the length measure-
ments for the four projectile points, we would easily recognize that Points 1, 2, and
3 are quite similar with regard to length, while Point 4 is rather different. Looking at
thickness, however, we would equally quickly say that it is Point 2 that stands out as
different from the group. Yet a different pattern emerges with regard to weight: here
Points 1 and 4 are quite similar (identical in fact), and Points 2 and 3 are identical
to each other but different from 1 and 4.

In short, the differences and similarities between the projectile points are easily
observed with regard to single variables. When we wish to consider all variables at
once, however, the situation rapidly becomes much more complex. If asked which
two projectile points were most alike, considering all the variables, we would have
no immediately obvious answer. This is the situation that similarity coefficients are
designed to deal with. Similarity coefficients are indexes of how similar two cases
are, considering simultaneously all the variables for which they have been measured.
The larger the similarity coefficient, the more similar the cases are.

Similarity coefficients sometimes come in the form of dissimilarity coefficients,
or numbers that are larger when two cases are less similar (that is, more dissimilar).
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Table 22.1. Measurements for Four Projectile Points

Point Length Width Thickness Weight
No. (cm) (cm) (cm) (g)

1 4.3 1.2 0.35 75
2 4.5 1.4 0.55 80
3 4.4 1.1 0.37 80
4 2.3 0.9 0.30 75

Some dissimilarity coefficients are referred to as distances, indicating metaphori-
cally how far apart two cases are on a scale of similarity. The distinction between
similarity coefficients and dissimilarity coefficients (or distances) is a trivial one in
principle, but a crucial one in practice. It is a simple proposition to convert a simi-
larity coefficient into a dissimilarity coefficient, or vice versa, by simply subtracting
either one from the maximum value it takes on. It is also easy to accidentally use
dissimilarity coefficients as if they were similarity coefficients by specifying the
wrong option in your statpack. The result would be to turn all the relationships in a
dataset on their heads and produce nonsense in a multivariate analysis.

There are a number of different similarity coefficients that are suitable for differ-
ent kinds of variables. Some were designed with measurements in mind; some, with
categories; and some, specifically with presence/absence variables.

EUCLIDEAN DISTANCE

One of the most frequently used and versatile coefficients for measuring similarity
between cases is Euclidean distance, based on the familiar Pythagorean Theorem of
grade-school geometry. If we consider for a moment just the two variables, length
and width in Table 22.1, it is easy to create a scatter plot as in Fig. 22.1 represent-
ing the length on the x axis and the width on the y axis. The distances between the
points in this graph are a good commonsense representation of the dissimilarities
between the four projectile points. Points 1, 2, and 3 are relatively close together,
while Point 4 is set clearly apart from them. When we look at the lengths and widths
in Table 22.1, we see that this makes good sense; Points 1, 2, and 3 have relatively
similar lengths and widths, while Point 4 is rather different from this group, espe-
cially in regard to length. We could simply measure or calculate the distance shown
in Fig. 22.1 and use it as a measure of how dissimilar the projectile points are with
regard to the two variables length and width.

The distance between Points 1 and 4 in Fig. 22.1 can be calculated using the
Pythagorean Theorem. The length of the horizontal leg of the right triangle is the dif-
ference in length between the two points (or 4.3cm−2.3cm = 2.0cm). The length
of the vertical leg of the right triangle is the difference in width between the two
points (or 1.2cm−0.9cm = 0.3cm). The straight-line distance between Point 1 and
Point 4 is the length of the hypotenuse, which is the square root of the sum of the
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Figure 22.1. Measurement of Euclidean distance between projectile points in two dimensions.

squares of the two legs, or

√
2.02 + 0.32 =

√
4.0 + .09 = 2.02

We could calculate distances in this way between each pair of points, finding that
Points 1 and 2 are relatively close together, as are Points 1 and 3 and Points 2 and
3. Points 1 and 4, 2 and 4, and 3 and 4 are substantially farther apart. These are the
Euclidean distances between each pair of points in simple Euclidean geometry on
this two-dimensional plane defined by the two variables, length and width.

Precisely the same logic for any number of variables, and the same calculation
of distance can be made. It is easy to visualize adding a third variable and a corre-
sponding z axis to the graph. It would become a three-dimensional graph with its z
axis perpendicular to the page. In algebraic terms, the distance between any pair of
points would simply be the square root of the sum of the squares of the differences
between the values for the two cases on each variable. This algebra is extendable to
any number of dimensions, and the formula for Euclidean distance becomes

D1,2 =
√

∑
(
Xj,1 −Xj,2

)2

where D1,2 = the Euclidean distance between cases 1 and 2, Xj,1 = the value of the
jth variable for case 1, and Xj,2 = the value of the jth variable for case 2.

The squared differences are summed for all j variables, resulting in a single dis-
tance for each pair of cases, considering all the variables at once. The resulting table
of distances appears in Table 22.2. Such a matrix is often referred to as a square
symmetrical matrix. It will always be square since there is a row for each case and a
column for each case, and thus the number of rows is always the same as the number
of columns. It will always be symmetrical since the distance or dissimilarity between
Case 1 and Case 2 is always the same as the distance or dissimilarity between Case
2 and Case 1 (for Euclidean distances at least). The table is, in fact, just like a table
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Table 22.2. Euclidean Distances between Projectile Points
from Table 22.1

1 2 3 4

1 0.0000
2 5.0120 0.0000
3 5.0020 0.3639 0.0000
4 2.0230 5.4911 5.4272 0.0000

of distances between cities in the margin of a highway map. Along the diagonal of
such a table running from upper left to lower right, the values in all the cells are
zeros, since they represent the Euclidean distances between each case and itself,
which is always 0. The values in all the cells above and to the right of this diagonal
simply mirror the values below and to the left of this diagonal, since the two halves
of the table represent the same distances measured in opposite directions. Because
of this, tables of similarities or dissimilarities are often printed or stored as triangu-
lar half-tables to save space. This is the practice followed in Table 22.2. According
to this table of distances or dissimilarities based on all four measurements, Points
2 and 3 are the most alike because they show the smallest distance or dissimilar-
ity (0.3639), and Points 2 and 4 are the least alike because they show the largest
distance or dissimilarity (5.4911).

EUCLIDEAN DISTANCE WITH STANDARDIZED
VARIABLES

Upon reflection, there are reasons to be dissatisfied with the indexes of dissimilarity
in Table 22.2. Points 2 and 3, with by far the shortest Euclidean distance, certainly
are similar in regard to weight and length, but their differences in regard to width and
thickness do not seem adequately to have been taken into account. The Euclidean
distance between Points 1 and 2 is 5.0120, far greater than the distance between
Points 2 and 3, but if we look across all four variables, it does not seem reasonable
that we should consider 1 and 2 so much more different from each other than 2 and
3 are.

In Table 22.1, the length difference between Point 4 and the others is the most
notable difference of all. It only amounts to about 2 cm in length, but the longer
points are nearly twice as long as the shorter one, and this calls our attention to
the difference, as well it should. We would likely consider the difference in weight
between Points 3 and 4 to be minor when compared with the difference in length
between Point 4 and the others. These observations are implicitly based on the
notion of unusualness that we have been working with since Chapter 4. Consid-
ering the lengths of the four projectile points, Point 4 is quite unusual. Its length of
2.3 cm is 1.5 standard deviations below the mean length of 3.88 cm. Point 4 differs
from the other three points in regard to length by anywhere from 1.9 to 2.1 standard
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deviations. The weight of 80 g for Point 3, however, while different from Point 4,
is not so unusual as is the length of Point 4. This weight of 80 g is only 0.87 stan-
dard deviations above the mean weight of 77.5 g. The points weighing 80 g differ
from the points weighing 75 g by 1.7 standard deviations. Here a difference of 5 g
in weight is less unusual (1.7 standard deviations), and thus matters less to us, than
a difference of only 2 cm in length (1.9–2.1 standard deviations). That a difference
of 5 matters less than a difference of 2 here does not surprise us; after all length
measured in centimeters and weight measured in grams are on inherently different
scales that cannot be compared to each other meaningfully in this way. Our calcu-
lation of Euclidean distance, however, has treated the difference of 5 g to be much
larger than the difference of 2 cm because 5 is much larger than 2. In calculating
Euclidean distance, we implicitly treated each of these scales as if they were fully
comparable.

The fact that one is a measurement of length and the other a measurement of
weight, however, is only part of the story. A much more fundamental aspect of
incomparability applies even to measurements on the same kind of scale in the same
units. Projectile Points 1 and 2 differ from each other by 0.2 cm in length and by
exactly the same amount in width. The difference in width, however, is a difference
that matters much more since it is a difference of 1.0 standard deviations of width.
The difference in length (of exactly the same 0.2 cm) is a difference of only 0.2
standard deviations of length.

Both these aspects of incomparability of scales can strongly affect the calcu-
lation of Euclidean distance. It is usually a good idea to base the calculation of
Euclidean distance on measurements expressed in terms of their unusualness in
their own respective batches rather than on their original units of measurement. We
can use the customary way of re-expressing a batch of measurements on a scale of
unusualness by removing the level and spread. In calculations of Euclidean distance
this is usually done by standardizing with the mean and standard deviation. That
is, for each variable, the mean of the batch for that variable is subtracted from each
number in the batch, and the remainder is divided by the standard deviation. The
standardized variables from Table 22.1 are given in Table 22.3. The length of Point
1, for example, is 0.404 standard deviations longer than the mean projectile point
length, and Point 4 is 1.495 standard deviations shorter than the mean projectile
point length.

Table 22.3. Standardized Measurements for Four Projectile Points

Point
No. Length Width Thickness Weight

1 0.404 0.240 −0.390 − 0.866
2 0.593 1.201 1.444 0.866
3 0.498 −0.240 −0.206 0.866
4 −1.495 −1.201 −0.848 − 0.866
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Table 22.4. Euclidean Distances between Projectile Points from
Table 22.1 Based on Standardized Variables in Table 22.3

1 2 3 4

1 0.0000
2 2.7061 0.0000
3 1.8093 2.1933 0.0000
4 2.4276 5.2882 2.8829 0.0000

Euclidean distances are then calculated on these numbers in exactly the same
way we first calculated them on the unmodified measurements. The standardization
has changed the coordinate system of the imaginary multidimensional space within
which we calculate the distances. Instead of an axis measured in centimeters that
corresponds to projectile point length, we have an axis whose units are in standard
deviations of length above and below the mean length. The same thing happens to
each of the axes (variables). The Euclidean distances between each pair of projectile
points, based on standardized measurements, are given in Table 22.4.

Points 2 and 3, which were separated by such a short distance before the mea-
surements were standardized, are now separated by a much larger distance. The
important differences between 2 and 3 in regard to width and thickness which
counted for so little before, now count much more heavily. They counted for so
little before because the raw numbers for width and thickness are so much smaller
across the board than the raw numbers for length and weight. Previously the differ-
ence of 5 g in weight between Points 1 and 4 on the one hand and Points 2 and 3
on the other hand made for very large Euclidean distances between the pairs 1/2,
1/3, 2/4, and 3/4. Standardization has placed these large raw differences in weight
on a scale more appropriately comparable with the much smaller raw differences in
width and thickness. In the vast majority of multivariate analyses, there is much to
be gained by standardizing measurements before calculating Euclidean distances,
and there is seldom anything to be lost by doing it.

WHEN TO USE EUCLIDEAN DISTANCE

Euclidean distance is a measure of dissimilarity that can be used with most kinds
of variables. It is most commonly used when the variables are true measurements,
and it is in such a case that the calculation of Euclidean distances makes most sense
(especially if the variables are standardized). It makes reasonably good sense if the
variables are ranks as well, even though it will treat a rank of 4 as twice as much
as a rank of 2. Even presence/absence variables (or other kinds of two-category
variables) are treated meaningfully in the calculation of Euclidean distance.

The one kind of variable that poses a serious problem for the calculation of
Euclidean distance is a variable with more than two unranked categories. The Wall
Construction variable imagined for the Ixcaquixtla household dataset in Chapter 21
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is such a variable. Its four categories of different kinds of wall construction are
just all different from each other – no pair of them any more different from each
other than any other pair. If the values 1–4 are assigned to the four categories, how-
ever, the calculation of Euclidean distance will inevitably treat categories 1 and 4
as more different from each other than 1 and 2. This seems undesirable enough
that Euclidean distances should not be used with such variables. One solution worth
considering is to reorganize the dataset, so that each of the categories is a separate
presence/absence variable. There would then be three new presence/absence vari-
ables: wattle-and-daub walls, wood-plank walls, and mud-brick walls, each coded
independently as present or absent for each household. Since these have become
separate variables rather than mutually exclusive and exhaustive categories of a
single variable, there is no need for combinations like wood-plank-and-mud-brick
walls. Such a case would simply be coded present for both kinds of wall.

As noted earlier, standardization is very often a good idea in the calculation of
Euclidean distances, even though calculating a mean and standard deviation for a
presence/absence variable and using them to standardize it makes little sense in and
of itself. Standardization does tend to equalize the impact of the different variables,
and in most cases this is desirable.

PRESENCE/ABSENCE VARIABLES: SIMPLE MATCHING
AND JACCARD’S COEFFICIENTS

Several special similarity coefficients have been suggested for use when all the vari-
ables consist only of two categories: present and absent. In such a situation, all the
possible results of comparing two cases for a single variable are summarized in the
crosstabulation of Table 22.5. Cell a in the table represents the result if the vari-
able is present for Case 1 and present for Case 2 (sometimes called present-present
matches). Cell b represents absent for Case 1 and present for Case 2 (a mismatch
between the two cases). Cell c represents present for Case 1 and absent for Case 2
(another mismatch). And cell d represents absent for both Case 1 and Case 2 (an
absent-absent match). A tabulation in the form of Table 22.5 can be made for all
variables and for each pair of cases, such that cell a becomes the total number of
present–present matches for the two cases under consideration across all variables,
and so on.

The simplest coefficient based on such a tabulation is, not surprisingly, called the
Simple Matching Coefficient. It is the total number of matches divided by the total
number of variables, or

a + d
a + b + c + d

For example, for the data on sherds in Table 22.6, the Simple Matching Coeffi-
cient for Sherds 1 and 2 is three matches divided by the total of six variables, or
0.5000. For Sherds 1 and 3, there are also three matches divided by six variables,
or 0.5000. The two most similar sherds are 6 and 7: six matches divided by six
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Table 22.5. The Four Possible Results of Comparing
Two Cases for a Presence/Absence Variable

Case 1

Present Absent

Present a b
Case 2

Absent c d

Table 22.6. Some Presence/Absence Variables Coded for a Set of Seven Sherds

Sherd Quartz Mica
No. Slip Red Paint Incising Punctations Temper Temper

1 Present Absent Absent Absent Absent Absent
2 Absent Present Present Absent Absent Absent
3 Absent Present Absent Absent Absent Present
4 Present Absent Present Absent Absent Present
5 Present Present Absent Present Absent Absent
6 Present Absent Present Absent Present Absent
7 Present Absent Present Absent Present Absent

variables, or 1.0000. Since these two sherds are identical, we can notice that the
largest value the Simple Matching Coefficient ever has is 1. Its lowest possible
value is 0, the result of 0 matches divided by any number of variables. Thus the
Simple Matching Coefficient ranges from 0, for two maximally dissimilar cases, to
1, for two identical cases. This property, ranging from 0 to 1, is a useful one for
a coefficient to have, and this is an advantage of the Simple Matching Coefficient
over Euclidean distance, which ranges from 0 for no distance or dissimilarity to an
indeterminately large number for a pair of cases that are very different.

Sometimes, when presence/absence variables represent categories that rarely
occur (as, for example, incising, punctations, and quartz and mica temper in
Table 22.6), a present–present match is considered more meaningful than an absent–
absent match. That is, the fact that Sherds 6 and 7 both have quartz temper is
probably a much more meaningful match than the fact that both of them do not have
punctations. Most sherds, after all, do not have punctations or quartz temper, so it
is not so remarkable to find two sherds that lacked both. In many regards, we tend
to remark on the co-occurrence of rare characteristics more than the co-occurrence
of common characteristics. It is more striking if two people meet and discover they
have the same birthday than if two people meet and discover they are both right
handed. Jaccard’s Coefficient was designed with this observation in mind. It is
the number of present–present matches divided by the number of present–present
matches plus the number of mismatches, or

a
a + b + c
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Jaccard’s Coefficient thus completely ignores absent–absent matches as uninterest-
ing, much as you might ignore as uninteresting the coincidence of meeting someone
who did not have your same birthday. Jaccard’s Coefficient is a sensible choice
where presence/absence variables deal with rarely occurring categories.

Like the Simple Matching Coefficient, Jaccard’s Coefficient ranges from 0 to 1.
Both are similarities (as opposed to dissimilarities like Euclidean distances) since
large values mean more similar cases and smaller values mean less similar cases.
Both are typically expressed as square symmetrical matrices, as with Euclidean dis-
tances, and they are often printed as lower left half matrices, including only the
nonredundant numbers in one triangular half of the matrix. Sometimes the upper
right half is printed instead of the lower left, but this is less common. Sometimes
the diagonal appears (in the case of these two similarity coefficients, all the num-
bers along the diagonal will be ones); sometimes it does not. The Simple Matching
Coefficient matrix and the Jaccard’s Coefficient matrix for the sherds in Table 22.6
are given in Tables 22.7 and 22.8. Comparing the two tables shows the different
assessments these two coefficients provide of relationships between cases. While
many pairs of cases that have high similarity scores in one table also have high sim-
ilarity scores in the other, similarity relationships do change as well with the change
in coefficient. In Table 22.7, Sherds 1 and 2, for example, are rated as having the
same degree of similarity to each other as Sherds 3 and 4 do. In Table 22.8, Sherds
1 and 2 are rated as completely dissimilar, but Sherds 3 and 4 are not.

Table 22.7. Simple Matching Coefficient of Similarity
between the Sherds in Table 22.6

1 2 3 4 5 6 7

1 1.0000
2 0.5000 1.0000
3 0.5000 0.6667 1.0000
4 0.6667 0.5000 0.5000 1.0000
5 0.6667 0.5000 0.5000 0.3333 1.0000
6 0.6667 0.5000 0.1667 0.6667 0.3333 1.0000
7 0.6667 0.5000 0.1667 0.6667 0.3333 1.0000 1.0000

Table 22.8. Jaccard’s Coefficient of Similarity between the Sherds in Table 22.6

1 2 3 4 5 6 7

1 1.0000
2 0.0000 1.0000
3 0.0000 0.3333 1.0000
4 0.3333 0.2500 0.2500 1.0000
5 0.3333 0.2500 0.2500 0.2000 1.0000
6 0.3333 0.2500 0.0000 0.5000 0.2000 1.0000
7 0.3333 0.2500 0.0000 0.5000 0.2000 1.0000 1.0000
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MIXED VARIABLE SETS: GOWER’S AND ANDERBERG’S
COEFFICIENTS

Euclidean distance is ideal when measurements or ranks are involved, and could
be used with presence/absence variables (as long as no distinction needs to be
made between present–present matches and absent–absent matches). The Simple
Matching Coefficient and Jaccard’s Coefficient provide more elegant and simple
ways of measuring similarity between cases when the dataset consists only of pres-
ence/absence variables. Neither works at all well with variables having more than
two unranked categories, although, as noted above, such variables can be refor-
mulated with each category as a separate presence/absence variable. There is also
a different solution to the problem posed by such variables, as well as the prob-
lem posed by datasets consisting of several different kinds of variables. Gower’s
Coefficient and Anderberg’s Coefficient have been devised for just such situations.

Gower’s Coefficient between two cases is arrived at by calculating a score for
each variable. The final coefficient of similarity is the mean of all the scores.
The individual variable scores are arrived at differently for different kinds of
variables:

• For a presence/absence variable, the Gower score is 1 for a present–present match
and 0 for a mismatch. If there is an absent–absent match, the variable is omitted
entirely (which is not the same as averaging in a score of 0). The treatment of
presence/absence variables by Gower’s Coefficient is thus like that of Jaccard’s
Coefficient.

• For a categorical variable whose categories are unranked the Gower score is 1
if the two cases belong to the same category and 0 if the two cases belong to
different categories. Thus greater differences between numeric values assigned
to the categories are ignored.

• For measurements and ranks, the absolute value of the difference between the
values for the two cases is divided by the range of the measurements in the batch
or, in the case of ranks, by the number of ranked categories the variable has. The
quotient in either case is subtracted from 1 to produce the Gower score in the
form of a similarity. This treatment is something like that provided by Euclidean
distance for measurements and ranks.

A little experimentation with these rules for calculating the Gower scores will show
that each score has a minimum value of 0 and a maximum value of 1. Thus the
final coefficient (the average of the scores for all the variables) has a minimum
value of 0 and a maximum value of 1. Expressed in this way it is also a similarity
coefficient, not a dissimilarity coefficient, since larger values correspond to greater
similarities.

Anderberg’s Coefficient is closely related to Gower’s and also involves the deter-
mination of scores for each variable that are averaged across all variables for each
pair of cases:



SIMILARITIES BETWEEN CASES 281

• For a presence/absence variable, the Anderberg score is 1 for a mismatch or 0 for
either a present–present match or an absent–absent match. It thus amounts, for
presence/absence variables, to a kind of simple mismatching coefficient. That is,
it works like the Simple Matching Coefficient turned into a dissimilarity where
larger values indicate greater dissimilarity.

• For a variable with multiple unranked categories, the Anderberg score is 0 for
a pair of cases falling in the same category or 1 for a pair of cases falling in
different categories.

• For ranks, the Anderberg score is the absolute value of the difference between the
category codes divided by one less than the number of categories. For example, if
a variable has five categories (1, 2, 3, 4, and 5), cases coded 2 and 4, respectively,
would receive a score of 2/4 or 0.5000.

• For measurements, the Anderberg score is the absolute value of the difference
between the measurements for the two cases divided by the range of the mea-
surements in the batch. Anderberg recommends using the square root of this
score rather than the raw score to lessen the impact of outliers.

Once a score is determined for each variable, all the scores are averaged to produce
the final Anderberg’s Coefficient for the pair of cases under consideration. Like the
Gower scores, the Anderberg scores have a minimum value of 0 and a maximum
value of 1, so the final coefficient also ranges from 0 to 1. Unlike Gower’s Coeffi-
cient, Anderberg’s Coefficient, calculated in this way, is a dissimilarity coefficient.
A value of 0 means identical cases; a value of 1 means totally dissimilar cases.

SIMILARITIES BETWEEN IXCAQUIXTLA
HOUSEHOLD UNITS

Table 22.9 shows Gower’s Coefficient of similarity between the household units at
Ixcaquixtla from the data in Table 21.1. That dataset, as discussed in Chapter 21,
contains both measurements and ranks, along with two presence/absence variables
where present–present matches seem more meaningful than absent–absent matches.
It was because of this mixture of variables for which different treatments seem
appropriate that Gower’s Coefficient was chosen. As a practical matter, it is always
a good idea to examine a matrix of similarity scores like this. There are many pos-
sibilities for making mistakes – either with the software or in thinking through the
principles of the chosen coefficient – and it is always reassuring to notice that pairs
of cases whose values across the variables seem quite similar come out with high
similarity scores, and the pairs of cases whose values across the variables seem
quite different come out with low similarity scores. For example, Household Units
2 and 5 show up in Table 22.9 with a very high similarity score (0.8916). A look
at Table 21.1 shows that these two household units have quite similar values on
the majority of the variables. In contrast, Household Units 14 and 20 show up in
Table 22.9 with a very low similarity score (0.3733). Again, a look at Table 21.1 is
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Statpacks and Reporting Results

Measuring similarities between cases runs against the grain of the usual orga-
nization of statpacks, which are designed to work with variables rather than
cases. Some statpacks nonetheless provide options for calculating similarity
indexes between cases. Different statpacks vary quite substantially in how this
is accomplished. In some, there is a specific set of options for measuring simi-
larities between cases. In others, it is necessary to transpose the entire dataset
so that rows (cases) become columns (variables) and columns become rows.
Then the usual structure of measuring relationships between variables becomes
a question of relationships between cases instead. In yet other statpacks, mea-
suring similarities between cases is not a separate task but instead is embedded
in the routines that perform a multivariate analysis that begins with similarities
between cases. The statpack that will calculate the full variety of coefficients of
similarity between cases discussed in this chapter is rare. There are, however,
stand-alone specialty programs that perform just this task.

Whatever the software solution, in reporting the results of any multivariate
analysis that starts with the measurement of similarities between cases, it is
essential to specify how the similarities were measured. The choice of similar-
ity coefficient has a major bearing on the outcome of a multivariate analysis,
and the reader should always be made explicitly aware of that choice and the
reasons for it.

consistent with this result, since Household Units 14 and 20 have quite different
values for most of the variables. These calculations of Gower’s Coefficient then jibe
with the original data, reassuring us both that the choice of coefficient makes sense,
and that it was calculated correctly.
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Multidimensional scaling is perhaps in concept the simplest and most intuitive of
the various approaches to multivariate analysis, and this can rightly be regarded as
a major advantage. It is difficult to misunderstand the principles upon which it is
based. A multidimensional scaling takes as its starting point a matrix of similarity
(or dissimilarity) scores between cases like the one in Table 22.9. The analysis con-
sists of an iterative, trial-and-error process of creating a configuration of points, each
representing one of the cases in the dataset. These points representing the cases are
placed in space in such a way that the rank order of the distances between the pairs
of points corresponds as well as possible to the rank order of the similarity coeffi-
cients in space. That is to say, the aim of the configuration is to place the two points
representing the two most similar cases closer to each other than any other pair of
points in the configuration. The two points representing the second highest simi-
larity score should be the second-closest pair of points, and so on. Finally, the two
cases with the lowest similarity score should be the two points farthest apart in the
configuration. In this very simple way, multidimensional scaling attempts to draw a
picture of the relationships between cases that are encapsulated in the matrix of sim-
ilarity coefficients. Since only a rank order correlation is sought between similarity
scores and distances between pairs of points, multidimensional scaling is sometimes
referred to as nonmetric multidimensional scaling.

The conceptual simplicity of multidimensional scaling masks the fiercely com-
plex challenge of writing a program to produce such a configuration of points.
A multidimensional scaling program must set up an initial configuration by plac-
ing points representing all the cases in space, and then tinker with that config-
uration, moving some points to new locations to see whether that improves the
rank order correlation between distances between pairs of points and similarity
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coefficients between pairs of cases. This is done over and over until no improve-
ment can be found. As multidimensional scaling was developed, it was not unusual
to get different results from different programs, but the algorithms for this iterative
procedure are now honed enough that all the programs currently in use are pretty
much equivalent. Some, but not all, large statpacks will perform multidimensional
scaling.

It is easy to visualize multidimensional scaling in two dimensions, and even
in three, but multidimensional scaling solutions can have more dimensions than
physical space does. A perfect rank order correlation between similarity scores and
distances between pairs of points can always be achieved in one less dimension than
the number of variables. For the Ixcaquixtla household unit dataset, for example,
which has ten variables, a configuration of points representing a perfect rank order
correlation between similarity scores and distances between pairs of points can be
achieved in nine dimensions. Since multidimensional scaling results are interpreted
by looking at the configuration, however, this is an unsatisfactory solution. Looking
at a configuration of points in nine dimensions is unbearably cumbersome – more
difficult than simply looking at the original data table to hunt for patterns. The game,
then, is to produce as good a rank order correspondence between similarity scores
and distances between point pairs as possible in as few dimensions as possible. The
smaller the number of dimensions, the easier it is to look at and interpret a multidi-
mensional scaling configuration, so it is a great advantage to produce a configuration
that represents the patterns in the similarity scores, not perfectly, but very accurately
in very few dimensions. For any dataset, the larger the number of dimensions, the
stronger the rank order correlation will be between distances between pairs of points
and similarity scores between pairs of cases.

CONFIGURATIONS IN DIFFERENT NUMBERS
OF DIMENSIONS

Carrying out multidimensional scaling starts by asking a statpack to take a set
of similarity scores between cases (as described in Chapter 22) and produce the
best possible configuration in one dimension. A one-dimensional configuration, of
course, is an arrangement of points representing the cases along a line. Multidimen-
sional scaling can be based on any one of several different rank order correlations,
which are commonly referred to in this context as stress values. The different stress
coefficients generally do not produce very different results. The lower the stress
value, the better the rank order correlation between similarity scores and distances
between pairs of points. For the matrix of similarity scores between Ixcaquixtla
household units from Table 22.9, a one-dimensional configuration can be produced
that has a final stress value of 0.3706. It is called a “final” stress value because
the procedure is iterative, and a stress value is calculated at each step in the pro-
cess. The iteration history of this scaling began with an initial configuration with
a stress value of 0.4452. After the first successful iteration, which improved the
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configuration, the stress value was 0.4139. It then continued to drop, iteration by
iteration, to 0.3988, 0.3874, 0.3795, 0.3709, 0.3707, and finally 0.3706. Beyond
this, the algorithm could make no further improvement, and the analysis concluded.
A stress value of 0.3706 is fairly high, and there was little intelligible patterning to
be observed in the one-dimensional linear configuration.

The process is then repeated for two dimensions, which arranges points on a flat
plane, easily represented as a scatter plot. For the Ixcaquixtla household dataset,
the final stress value for the two-dimensional configuration is 0.1813, a substan-
tial improvement over the 0.3706 of the one-dimensional configuration. We know
that a three-dimensional configuration will enable an even better rank order cor-
relation between similarity scores and distances between pairs of points. For the
Ixcaquixtla data, the three-dimensional configuration yields a final stress value of
0.0726, another substantial improvement. There is further improvement in four
dimensions, with the stress declining to 0.0465; and in five dimensions, with the
stress down to 0.0332.

In practice, one must decide which configuration (the one-dimensional one,
the two-dimensional one, the three-dimensional one, etc.) to attempt to interpret.
Since interpretation centers on the examination of plots of the configuration of
points, it is unusual to attempt to interpret a scaling in more than three dimen-
sions. It simply becomes too cumbersome to attempt to visualize and inspect a
configuration of points in more dimensions than actual physical space provides.
A two-dimensional configuration is easier to inspect than a three-dimensional one,
and a one-dimensional configuration is easier still to inspect. A one-dimensional
configuration will not, however, be at all easy to interpret if it does not provide a rea-
sonably accurate picture of the pattern of relationships between cases encapsulated

Figure 23.1. Graph of declining final stress values for analysis of Ixcaquixtla household data with
increasing number of dimensions.
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in the matrix of similarity scores. It is the stress value that indicates how accurate a
picture it is.

Sometimes it is helpful to look at a plot of declining stress values like the one in
Fig. 23.1. This shows the high stress value for one dimension mentioned above, the
much lower stress value for two dimensions, and an additional substantial decline
in stress for the three-dimensional configuration. Beyond this, in four and five
dimensions, the stress continues to decline, as it always will, but at a much slower
pace. This “elbow” in the graph of declining stress value is an indication that the
three-dimensional configuration may be a good representation of the patterns in the
dataset, and that, since there is less improvement in four and five dimensions, there
may be little to be gained in looking at these configurations. There is also a useful
rule of thumb that stress values of about 0.1500 or less are often associated with
interpretable configurations. For the Ixcaquixtla household scaling, it is the three-
dimensional configuration that breaks through to a stress value below 0.1500. For
this reason, then, and because of the elbow in the graph at three dimensions, it seems
likely that the three-dimensional configuration will be an effective representation of
the patterning in the dataset.

Table 23.1. Coordinates in Three Dimensions of the
Multidimensional Scaling of Household Units from Ixcaquixtla

Household Unit Dimension 1 Dimension 2 Dimension 3

1 −0.285 0.301 0.142
2 −1.069 −0.003 −0.083
3 0.996 −0.568 0.523
4 0.062 0.421 −0.088
5 −0.963 0.011 0.224
6 0.970 0.056 −0.517
7 0.178 0.619 0.427
8 −0.146 0.425 −0.624
9 −1.228 −0.008 −0.159

10 −0.059 0.348 −0.105
11 0.739 −0.761 −0.830
12 0.314 0.626 0.216
13 0.102 −0.466 −1.261
14 −0.541 −1.384 0.527
15 −0.881 0.064 0.024
16 0.817 0.017 0.716
17 0.504 0.780 −0.242
18 0.382 −0.935 0.504
19 −0.121 −0.305 0.082
20 0.229 0.762 0.524
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INTERPRETING THE CONFIGURATION

The essential element in the results of this analysis, as always with multidimen-
sional scaling, is the list of coordinates for each case in the three dimensions
(Table 23.1). Inspecting a multidimensional scaling configuration usually means
plotting the points on a graph to examine their relationships. For some datasets,
simply plotting the points and labeling them makes the patterning clear, as seen in
Fig. 23.2. This two-dimensional scaling configuration was produced from a matrix
of Euclidean distances in real space – the matrix of distances between each pair of
cities. With only this information, a multidimensional scaling analysis placed the
cities in a two-dimensional configuration that represents their actual physical loca-
tions quite accurately. Simply labeling the points in a configuration like this makes
the nature of the patterning obvious.

Interpretation of the multidimensional scaling of the Ixcaquixtla household units
is considerably more complicated. In the first place, the configuration we need to
interpret is not in two dimensions, but in three. It is usually easiest to see three-
dimensional configurations in three views based on each pair of the three dimensions
taken two at a time. If the three-dimensional configuration is imagined in real space,
it would take the form of a cube with points scattered around in it. The cube could be
looked at in perspective from an angle, and most statpacks will produce such a plot,
but it can be very difficult to see just where the points really are in relation to each
other. It is often clearer to look at the cube successively from three different sides:
first, directly from the front; second, directly from one side; and third, directly from
the top. This is how we will inspect the three-dimensional configuration produced
from the Ixcaquixtla household data.

Figure 23.2. Two-dimensional scaling configuration based on distances between cities.
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A second complexity in this analysis is that labeling the household units with
their numbers would not automatically make any patterning clear. The simple act of
labeling the cities in Fig. 23.2 makes the patterning clear because we know where
they are, and we immediately recognize that they have been placed in their actual
spatial locations. We have no prior knowledge of, say, Household Unit 6 that makes
such pattern recognition possible. In a case like this, the most useful strategy is likely
to be looking at the behavior of each variable, one at a time, in the space defined by
the three-dimensional configuration.

Figure 23.3 begins this process. The cube of the three-dimensional configuration
is looked at in the form of three plots. The first looks directly along the third dimen-
sion, to give a clear orthogonal view of the configuration of points in Dimensions
1 and 2. The second takes a view directly along the second dimension, showing
the configuration in Dimensions 1 and 3. And the third takes a view directly along
the first dimension, giving a clear view of Dimensions 2 and 3. To envision the full
three-dimensional configuration as a cube, imagine cutting out the leftmost plot in
Fig. 23.3 and pasting it to the top of the cube. Then cut out the center plot and paste
it to the left side of the cube. The rightmost plot would go on the front of the cube.
Together the three plots make it possible to look at the cube in all its dimensions.
Within the plots in Fig. 23.3, each circle represents one household, and larger circles
correspond to higher values of the first variable in the dataset, Bowls as % of Sherds.
A clear trend is visible in the plot of Dimensions 1 and 2. The values of Bowls as
% of Sherds are quite low in the upper right corner of this plot and increase steadily
toward the lower left. Household units with high proportions of bowls, then, appear
toward the lower left of the plot of Dimensions 1 and 2.

Figure 23.4 provides the same kind of illustration of Energy Invested in Burials,
and again we see the same pattern. Households with the highest levels of energy
invested in burials on average appear toward the lower left corner of the plot of
Dimensions 1 and 2. Continuing with Fig. 23.5, we see a pattern for Decoration
as % of Sherds that is not identical, but very similar to that seen for the two vari-
ables shown in Figs. 23.3 and 23.4. Household units with the highest proportions
of decorated ceramics appear toward the bottom and slightly toward the left in the
plot of Dimensions 1 and 2. The Fauna/Sherd Ratio shows the same pattern yet

Figure 23.3. Plots of the three-dimensional scaling of Ixcaquixtla household data (larger circles
indicate higher proportions of bowls).
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Figure 23.4. Plots of the three-dimensional scaling of Ixcaquixtla household data (larger circles
indicate greater energy investment in burials).

Figure 23.5. Plots of the three-dimensional scaling of Ixcaquixtla household data (larger circles
indicate higher proportions of decorated ceramics).

Figure 23.6. Plots of the three-dimensional scaling of Ixcaquixtla household data (larger circles
indicate higher proportions of faunal remains).

again: higher values toward the bottom and slightly toward the left in the plot of
Dimensions 1 and 2 in Fig. 23.6.

These four variables, then, pattern in the same way in the space defined by the
three-dimensional configuration. Households where the value of one of these vari-
ables is high tend strongly to be households where the values of the others are also
high. The four variables form a gradient running roughly from the upper right to
the lower left in the plot of Dimensions 1 and 2. Values for proportion of bowls,



292 CHAPTER 23

for energy investment in burials, for proportion of decorated ceramics, and for the
ratio of faunal remains to sherds increase in a more or less gradual fashion along
this gradient. None of the other variables, as we shall see, pattern in this way. The
description up to this point is of the patterning to be observed in the dataset, and
it is clearly shown in the plots of these variables in the multidimensional scaling
space. The next step takes us from the realm of finding patterning through multi-
variate analysis into the realm of interpretation. We might interpret this pattern as
reflecting a dimension of economic differentiation at Ixcaquixtla. All four variables
might plausibly be connected to economic well-being or standard of living. All four
pattern in the same way, suggesting a gradient of wealth from low to high.

Moving on through the variables, Platform also shows a clear pattern in the plot
of Dimensions 1 and 2 in Fig. 23.7, but it is a distinctly different pattern from the
one we have been seeing. High values for Platform are clustered toward the upper
left. Since Platform is a presence/absence variable, high values (large circles) mean
the code for presence (1) and low values (small circles) mean the code for absence
(0). The other presence/absence variable, Mace Heads, shows a very similar pattern
in Fig. 23.8. Again as the inevitable result of being a presence/absence variable the
pattern looks more like a cluster than a gradient. Closer comparison of Figs. 23.7 and

Figure 23.7. Plots of the three-dimensional scaling of Ixcaquixtla household data (larger circles
indicate house structures built on platforms).

Figure 23.8. Plots of the three-dimensional scaling of Ixcaquixtla household data (larger circles
indicate presence of maces in burials).
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Figure 23.9. Plots of the three-dimensional scaling of Ixcaquixtla household data (larger circles
indicate higher proportions of marine shell).

23.8 shows that this pattern is actually a bit more like a gradient than it first appears.
Farthest off to the upper left are four household units where the house structure is
built on a platform and where mace heads are present in burials. Not so far toward
the upper left are two households with platforms but no mace heads and two with
mace heads but no platforms. At the opposite end of the scale is a larger number of
households with neither platforms nor mace heads. These are toward the lower right
in the plot of Dimensions 1 and 2.

There is, then, another gradient running perpendicular to the one apparent in
Figs. 23.3–23.6. Since they are perpendicular, the two are unrelated to each other.
Some households with platforms and mace heads are toward the wealthier end of
the first gradient; others are not. In this way Figs. 23.7 and 23.8 delineate a sec-
ond separate and independent element of patterning in the multidimensional space.
The patterning is again quite clear, although as always open to potentially different
interpretations. We might interpret this second gradient as one of prestige or pos-
sibly political authority, which at Ixcaquixtla seems not to correspond to wealth.
However we interpret these two gradients in the multidimensional space, both their
presence and their independence are clear patterns in the scaling results.

The patterns we have discussed up to this point have been most visible in the
plot of Dimensions 1 and 2. We have not yet needed to look at the cube from any
other angle. A few household units with high proportions of marine shell, how-
ever, can be seen to cluster clearly together in the plot of Dimensions 2 and 3 in
Fig. 23.9. They also form a detectable cluster in the plot of Dimensions 1 and 2,
although this cluster is less clear, since it also includes some households without
high proportions of shell. This pattern simultaneously suggests both some relation
with the gradient identified in Figs. 23.7 and 23.8 and some independence from it.
A few households with high proportions of obsidian also cluster together in the plot
of Dimensions 2 and 3 in Fig. 23.10, but this cluster is not in the same place as the
cluster of household units with high proportions of shell. The cluster of households
with high proportions of obsidian can also be observed in the plot of Dimensions
1 and 3. Households with high proportions of obsidian also focus in the upper left
of the plot of Dimensions 1 and 2, but they are more mixed there with households
having low proportions of obsidian. If high proportions of marine shell and obsid-
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Figure 23.10. Plots of the three-dimensional scaling of Ixcaquixtla household data (larger circles
indicate higher proportions of obsidian).

Figure 23.11. Plots of the three-dimensional scaling of Ixcaquixtla household data (larger circles
indicate higher proportions of kiln wasters).

ian are interpreted to reflect stronger contacts with the distant regions from which
they come, then there does not seem to be much correspondence between house-
holds connected to the obsidian source regions and those connected to the coasts.
Nor do either of these clusters correspond in any way to the gradient interpreted as
wealth, but both the shell and obsidian clusters do pattern generally toward one end
of the gradient interpreted as prestige. Taken together these interpretations would
suggest that, for the inhabitants of Ixcaquixtla, contacts with distant regions were
separately maintained by different households and had little to do with wealth. They
do, however, show some sort of relationship to what was interpreted as prestige.

Fig. 23.11 shows a cluster of household units with high proportions of kiln
wasters, a cluster that is especially clear in the plot of Dimensions 1 and 3. This
view of the configuration also reveals a cluster of household units with high propor-
tions of lithic debitage (Fig. 23.12). The two clusters are located in different places
in the multidimensional scaling space, showing us that they are two different sets of
households with high proportions of these artifact types. Neither high proportions
of debitage nor high proportions of kiln wasters align with either of the gradients
observed in the Dimensions 1 and 2 view. In the plot of Dimensions 1 and 3, the
kiln waster cluster overlaps with a manifestation of the obsidian cluster, raising the
possibility of a relationship between these two.
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Figure 23.12. Plots of the three-dimensional scaling of Ixcaquixtla household data (larger circles
indicate higher proportions of lithic debitage).

Figure 23.13. Plots of the three-dimensional scaling of Ixcaquixtla household data with patterning
and possible interpretations indicated (household units indicated by number).

Fig. 23.13 summarizes the patterns seen in the three-dimensional scaling con-
figuration, labeled with some of the plausible interpretations. To re-emphasize,
the multidimensional scaling analysis has not shown us that these interpretations
are correct. It has, however, shown us that there is a set of characteristics (large
amounts of energy invested in burials and high proportions of bowls, decorated
ceramics, and faunal remains) that go together in this dataset on household units
at Ixcaquixtla. They parallel each other sufficiently strongly to identify a gradient
across the configuration when it is looked at from a particular angle (Fig. 23.13 left).
The nature of this pattern is also better described as a gradient across the space than
as a distinct cluster of household units with very high values for these four variables.
It represents not a sharp division between household units that have these character-
istics and those that don’t, but a more gradual range of variation. If we interpret this
pattern as connected to wealth distribution, then we have learned something about
the nature of wealth distribution at Ixcaquixtla.

The multidimensional scaling has also shown us a gradient relating houses on
platforms to mace heads in burials (Fig. 23.13 left). These two characteristics tend to
go together and also appear to form more of a gradient than a sharply distinguished
cluster. This gradient is entirely unrelated to the one discussed in the previous para-
graph. The multidimensional scaling does not prove that this gradient is related to
prestige, but it shows that the gradient exists. If we interpret it as prestige, then we
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Statpacks and Reporting Results

Multidimensional scaling was once a specialized domain of its own with sev-
eral major programs dedicated specifically to performing it. By now, many
large multipurpose statpacks perform multidimensional scaling, but not all
of them have incorporated it into their repertoire. Sometimes the process of
measuring similarities between cases is incorporated into the multidimen-
sional scaling routines themselves; sometimes it is treated as a separate task.
Whichever way it is accomplished, the measurement of similarities between
cases is conceptually a task separate from scaling. As noted in Chapter 22, it is
vitally important in reporting the results of a multidimensional scaling analysis
to specify what coefficient was used to measure the similarities between cases.
The choice of a measure of similarity is the single choice made in performing
the analysis that is likely to have the biggest impact on the outcome. Readers
deserve to know exactly what choice was made (and exactly what the variables
were) so that they can judge for themselves how appropriate the choice was.

Once the similarities have been measured, performing the scaling is likely
to involve running the analysis several times, first in one dimension, then in two
dimensions, and so on. This is the only way to obtain the final stress values for
configurations in different numbers of dimensions so as to be able to decide
how many dimensions to work with. Looking for stress values below 0.1500
and looking for an “elbow” in the plot of final stress values against number
of dimensions are useful indicators of how many dimensions are needed. In
the final analysis, however, the most compelling reason to select a particu-
lar number of dimensions is that that configuration shows clear and sensible
patterning.

The central element in statpack output for a multidimensional scaling analy-
sis is the list of coordinates of the points corresponding to the cases. There will
be a coordinate for each point in however many dimensions are selected. Stat-
packs usually provide for saving this list of coordinates in multidimensional
space as a data file which can then be combined with the original variables so
as to use the statpack’s tools for making scatter plots to produce plots of the
configuration. In these plots, the points may be labeled to show which case
is which, if such visual identification is meaningful. Such labeling would not
have been much help in interpreting the Ixcaquixtla household scaling, and we
relied instead on plots in which symbols of different sizes indicated the values
of each variable in turn. Most statpacks have an option to vary the symbol size
according to the value of some variable in the dataset. An essential element
in the presentation of results is one or more plots of the configuration so that
readers can see the patterns of points that you are interpreting.

It is a good idea to limit the number of variables in a multidimensional
scaling analysis to no more than about half the number of cases. If the number
of variables is much larger than this, there is substantial risk of finding spurious
patterns that are no more than the product of random noise in the data.
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have learned something about the nature of prestige at Ixcaquixtla and about its lack
of relation to wealth distribution.

The multidimensional scaling has also shown us two different clusters of house-
holds with high proportions of material brought from long distances away (obsidian
and shell, Fig. 23.13 center and right). Both are more accurately characterized as
clusters, sharply set off from other household units, than as gradients of continu-
ous variation. And the two do not overlap where they are seen most clearly. Both
these clusters are, however, seen somewhat more hazily in the zone interpreted in
the plot of Dimensions 1 and 2 as highest in prestige. In similar fashion, the mul-
tidimensional scaling has shown us two different clusters of households with high
proportions of artifacts likely related to craft production (kiln wasters and lithic
debitage, Fig. 23.13 center). These are also more accurately characterized as clus-
ters than as gradients, and these also do not overlap with each other or correspond
to the gradients in the plot of Dimensions 1 and 2. The kiln waster cluster, though,
is seen to be largely coterminous with the obsidian cluster as it appears in the plot
of Dimensions 1 and 3; these two things do coincide in some households.

All this could have turned out differently. The multidimensional scaling might,
for example, have shown us that a cluster of households with high proportions of
lithic debitage corresponded well to a cluster of households with high proportions
of obsidian. This might have led us to think of some degree of special focus in these
households on various aspects of lithic raw material procurement and production
combined. The patterns we actually see, in contrast, lead us to think of these two as
special activity foci, but not combined in the same households.

Multidimensional scaling has been quite successful at drawing us a picture of
patterns in the variation that exists in the multivariate dataset on household units at
Ixcaquixtla. That picture has led us to a series of observations and rather compli-
cated characterizations of those patterns. Clusters and gradients are two common
kinds of patterns to be identified in multidimensional scaling configurations, but
many other sorts of spatial patterns are imaginable. What it is possible to perceive
in a multidimensional scaling configuration is up to the imagination of the analyst.
This is simultaneously a major advantage and a disadvantage of multidimensional
scaling. Identifying patterns in scaling results is neither automatic nor necessarily
simple. A good bit of time is likely to be consumed in producing and inspecting
various kinds of plots of configurations. Finally, though, there is the possibility of
observing a richly varied array of patterning. There is also the possibility of observ-
ing very little in the way of patterning in a scaling configuration. This may at first
seem a disadvantage, but it is really quite a substantial advantage. If little or no
meaningful patterning shows up in a scaling configuration, it may well reflect a
general lack of meaningful patterning in the dataset. This is not a happy outcome,
but it is one of the possibilities in the real world. If there is indeed little meaningful
patterning in a multivariate dataset, we do want an analytical approach that can tell
us that.
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In moving from multidimensional scaling to principal components analysis, we
shift from the simplest and most commonsense approach conceptually to the most
abstract and mathematical. Mastering the mathematical fundamentals of principal
components analysis is a lot of work – work that does not finally bring much pay-
back in making it easier to perform more reliable or successful analyses. In keeping
with the overall approach of this book, we will give short shrift to the abstract
mathematical fundamentals of principal components analysis and concentrate our
attention on understanding its principles and concepts in ways that provide surer
guides to effective use of the technique. This approach is very different from the
one that is usually taken to the subject. Nevertheless, more archaeologists seem able
to understand the principles of principal components analysis more readily, more
deeply, and to better effect through such a commonsense approach than through an
abstract mathematical explanation. Understanding and effective use of multidimen-
sional scaling does not require much knowledge of how the iterative trial-and-error
procedure that produces the configuration is programmed. In similar fashion, what
principal components are and how they tell us about patterning in a multivariate
dataset can be understood effectively without much knowledge of the particular
mathematics that produce them.

Principal components analysis is often confused with factor analysis. Opinion
is divided about how much this confusion matters. There certainly are distinctions
between the underlying logic of the two analytical techniques. On the other hand,
their results are presented and interpreted in precisely the same way. At the prac-
tical level, it is extremely unusual to carry out the two analyses on the same data
and get very different results. Not surprisingly, statpacks tend to have a focus on
the practical, and principal components analysis and factor analysis are often com-
bined into one set of routines where the choice between the two is simply one
of the options to set. The difference between them certainly matters little to the
commonsense approach of this chapter. The vocabulary we will use will be that of
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principal components analysis, but in actual fact, this chapter could just as easily be
a chapter on factor analysis. Virtually the only difference would be to replace the
words “principal component” or “component” with “factor.”

Although we did not discuss it in exactly this way, it would have been easy
enough to characterize multidimensional scaling as a way of reducing the ten vari-
ables measured or categorized for the Ixcaquixtla household units to three variables
(the three dimensions of the scaling configuration we found patterns in). In some
sense, the major elements of the patterning to be found in Table 21.1 were encapsu-
lated in the simpler and more compact Table 23.1. This is much more centrally and
directly the idea behind principal components analysis, which can be looked at as a
way of reducing a large number of variables to a much smaller number of variables
that still reflects reasonably accurately (although not perfectly) the major patterns in
the original dataset.

Multidimensional scaling’s effort to produce as good a configuration as possi-
ble in as few dimensions as possible bears more than a passing resemblance to
principal components’ effort to reduce the number of variables as much as possi-
ble without losing important aspects of the patterning in the original dataset. The
approach taken by principal components analysis to this task, however, does not
begin by measuring the similarities between all pairs of cases. It begins instead by
looking at relationships between variables. Usually this is done with tools we used
in Chapter 15. The point of departure for principal components analysis is a matrix
of correlations between all pairs of variables in the original dataset. This matrix tells
us the same kind of thing about relationships between variables that the matrix of
similarity scores we used for multidimensional scaling tells us about relationships
between cases. If two variables show a strong correlation, that means they behave
quite similarly (have high values for the same cases and low values for the same
other cases).

CORRELATIONS AND VARIABLES

The broad thought behind principal components analysis is that a set of variables
that all show strong correlations with each other are all responding to the same
underlying thing and that these variables could, in some sense, be replaced in the
dataset by a single variable with little damage to the overall patterning of relation-
ships between cases or variables that characterizes the original dataset. The dataset
would thus, in some sense, be re-expressed with fewer variables. As far as the user
of principal components analysis is concerned, there might well be some iterative
trial-and-error procedure by which such a task is accomplished, much like multidi-
mensional scaling. This is not, in fact, how the trick is done in principal components
analysis though. Principal components are extracted mathematically by working
with the matrix of correlations between variables. The goal is to produce a set con-
sisting of as few components as possible that show strong correlations with the
original variables.



PRINCIPAL COMPONENTS ANALYSIS 301

The fact that principal components analysis starts with correlation coefficients is
important. As we saw in Chapter 22, a number of different similarity coefficients
have been devised for dealing with similarities between cases with different sorts
of variables. Correlation and regression, as we saw in Chapter 15, is built on scatter
plot logic and most suitable for measurements. If all the variables in a multivariate
dataset are measurements, then looking at the relationships between them by way of
correlation coefficients makes sense. It makes less sense if some of the variables are
ranks or categories. In practice, principal components analysis often does produce
sensible and valid results even when the variable set does not consist purely of mea-
surements. It should not be too surprising that variables that are ranks rather than
true measurements are not especially threatening to principal components analysis.
As we saw in Chapter 16, rank order correlation coefficients are a better tool for
relating ranks than regression and correlation, but a correlation coefficient (r) gives
a decent approximate assessment of the degree of correlation between variables that
are ranks.

Unranked categories are a different proposition. The scatter plot logic of regres-
sion and correlation means that values of 1 and 3 are treated not only as more
different than values of 1 and 2, but also as twice as different. (The difference
between 1 and 3 is 2, and the difference between 1 and 2 is 1.) We faced a very
similar problem in thinking about Euclidean distance in Chapter 22. We can con-
sider, as we did before, the possibility that the Ixcaquixtla household dataset had a
variable for type of wall construction, and that the categories were wattle-and-daub,
wood-plank, and mud-brick, assigned values of 1, 2, and 3, respectively. It does not
seem at all reasonable to treat 1 and 3 as any more different than 1 and 2, but cor-
relation coefficients (like Euclidean distances) inevitably will do this. This kind of
category variable with multiple unranked categories is truly unsuitable for measure-
ment of relationships with other variables by way of correlation coefficients and thus
is truly unsuitable for principal components analysis. We came to the same conclu-
sion about Euclidean distances, and the same solution discussed there is potentially
applicable in principal components analysis. The three categories of kinds of wall
construction can be reorganized into three separate presence/absence variables.

Category variables with two categories (including presence/absence variables),
of course, are also not the most suitable fodder for regression and correlation. If the
question is simply to assess the strength and significance of the relationship between
a two-category variable and some other variable, we would not choose regression
and correlation. Principal components analysis, however, must begin with correla-
tions, and it turns out that correlations, while providing only a blunt instrument for
assessing the strength of relationships involving two category variables, can provide
an acceptable rough approximation.

Imagine the scatter plot we would draw to explore the relationship between two
presence/absence variables. Since the values of each of these two variables would be
limited to 0 and 1, there are only four places in a scatter plot where points could fall:
where x = 0 and y = 0 (the origin of the graph at its lower left corner), where x = 1
and y = 1 (the upper right corner), where x = 1 and y = 0 (the lower right corner),
and where x = 0 and y = 1 (the upper left corner). If the two variables are strongly
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related positively, that means that when x is 1, y tends also to be 1, and that when x is
0, y tends also to be 0, and most of the points will fall at the lower left corner and the
upper right corner. The best-fit straight line in the scatterplot will run from the lower
left corner to the upper right corner, the correlation will be positive, and if there are
very few points at the other two corners, the correlation will be fairly near 1. If the
two variables are strongly related negatively, the same thing will happen, but the
line will run from the upper left corner to the lower right corner for a correlation
coefficient near -1. If the two variables are not strongly related, then points will be
broadly distributed across all four possible locations, the best fit straight line will
not be a very good fit, and the correlation coefficient will be closer to 0.

In sum, the result of measuring the strength of relationships between
presence/absence variables with a correlation coefficient is crude but functional
– functional enough to make it possible to use presence/absence (or other two-
category) variables in a principal components analysis. Correlation coefficients do
a better job with ranks, and, of course, they are just the right tool for real measure-
ments. To reiterate, the one kind of variable that simply must be gotten out of a
dataset before principal components analysis is a variable with multiple unranked
categories.

EXTRACTING COMPONENTS

The procedure for extracting principal components can be thought of as a multidi-
mensional equivalent of finding best-fit straight lines. If there is a perfect correlation
between two variables, we know that all the points in the scatter plot lie exactly on
the best-fit straight line. In such a situation, the two variables that form the axes
of the coordinate system of the scatter plot could be done away with and replaced
by a single axis running along the best-fit straight line. Coordinates along this sin-
gle axis would enable us to position the points perfectly in the scatterplot, and two
dimensions of variability would have been re-expressed or reduced to one. If the
correlation between the two original variables is strong but not perfect, we could
reduce the two axes of the scatterplot to one running along the best-fit straight line,
and reproduce the pattern of the scatter plot, not perfectly, but pretty well. If the cor-
relation between the two original variables is quite weak, then reducing the scatter
plot to coordinates along a single axis would do quite a poor job of capturing the
pattern of the points in the scatter plot.

Principal components analysis can be visualized as beginning with a scatter plot
in as many dimensions as there are variables in the initial dataset. Something akin
to a single best-fit straight line is determined for this multidimensional scatter plot,
and this becomes the first component. This component will align relatively closely
with one or more of the original variables, which is the same as saying that it will
show a strong correlation with one or more of the original variables. To the extent
that several of the original variables are strongly correlated with each other, then
this first component can simultaneously show strong correlations with all of them.
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Since this first component is akin to a best-fit straight line, it can be thought of as
accounting for as much variability as possible and leaving residuals. The process is
repeated for extracting a second component which accounts for as much as possible
of the variation in the residuals left by the first, again by leaving residuals that are
as small as possible. The analysis continues, extracting a third component, then a
fourth, and so on.

Components are described in terms of their correlations with each of the original
variables. These correlations are usually referred to as component loadings. Since
it was in some sense created to minimize residuals, the first component will have
fairly large loadings on a fairly large number of the original variables. Since the
loadings are correlation coefficients (r) between the component and each of the
original variables in turn, their squares (r2) express the proportion of variation in
each of the original variables explained by the component. The squared loadings
of all the original variables on a component are often summed up, and this sum
of the squared loadings (the sum of the component’s r2 values with the original
variables) is called the eigenvalue. Since the eigenvalue is the sum of the proportions
of variation explained for each of the variables in turn, the eigenvalue divided by the
number of variables is the overall proportion of variation in the original dataset
explained by a component.

There is an eigenvalue for each component. The eigenvalue of the first component
is the highest; of the second component, the second highest; and so on. If the number
of components extracted is the same as the original number of variables, then all the
variation in the original dataset is always explained. If all the eigenvalues are divided
by the number of variables so as to express what proportion of the overall variation
is explained by each, these eigenvalues, each divided by the number of variables,
will sum up to 1, reflecting the fact the all the components taken together explain
100% of the variation in the original variables. If many of the variables are strongly
correlated with each other, then the first few components will be able to account for
a very large proportion of the variation in the original dataset. Their eigenvalues will
be relatively large, and the eigenvalues of the last components will be quite small.
Components with large eigenvalues are the most meaningful, encompassing as they
do the largest proportion of the variation in the dataset.

CARRYING OUT THE ANALYSIS

The implications of this entire line of thinking become clearer when it is put into
practice. Seven of the variables for household units at Ixcaquixtla are measurements,
one is a set of ranks, and two are presence/absence variables (Table 21.1). They
are thus not perfectly qualified for correlation analysis, but represent the kind of
real-world compromise with perfection that is often made in order to carry out a
principal components analysis. The extraction of ten components produces the set
of eigenvalues in Table 24.1. The sum of the eigenvalues divided by the number of
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Table 24.1. Eigenvalues for Principal Components
Extracted from the Ixcaquixtla Household Data

Component Eigenvalue Eigenvalue/No. of Variables

1 3.511 0.3511
2 2.291 0.2291
3 2.100 0.2100
4 0.887 0.0887
5 0.473 0.0473
6 0.326 0.0326
7 0.213 0.0213
8 0.110 0.0110
9 0.063 0.0063

10 0.027 0.0027

Table 24.2. Component Loadings (Unrotated) for Analysis of the
Ixcaquixtla Household Dataset

Components
1 2 3 4 5

Energy in Burials −0.944 0.173 0.052 0.063 0.054
Fauna/Sherds −0.933 0.197 0.017 0.046 0.041
Bowls % −0.909 0.223 0.007 0.193 0.145
Decoration % −0.858 0.041 0.193 0.070 0.261
Platform 0.205 0.905 0.111 0.251 0.067
Mace Heads 0.207 0.750 0.399 0.285 0.031
Shell/Sherds 0.108 0.683 0.640 0.171 0.118
Wasters % 0.157 0.291 0.788 0.032 0.481
Obsidian % 0.253 0.479 0.710 0.327 0.257
Debitage % −0.051 0.086 0.593 0.747 0.249

variables is 1, just as it should be, indicating that these ten components together
account for 100% of the variation in the household data.

As the eigenvalues in Table 24.1 make clear, each of the first three components
explains considerably more variation than subsequent ones do. Taken together these
three explain 79% of the variation in the dataset, and the first three components
will probably convey much or all of the meaning to be found in these results. Since
it is often useful to look a bit beyond such probable limits, the loadings for five
components are given in Table 24.2.

Four variables have very high loadings on the first component: energy invested
in burials, the ratio of faunal remains to sherds, the proportion of bowls among the
ceramics, and the proportion of decorated sherds. These are the four variables that
the multidimensional scaling put together in parallel, forming a gradient across the
plot of Dimensions 1 and 2. Both analyses, then, show us this same element of
patterning in the dataset, which it was suggested in Chapter 23 might be interpreted
as wealth. It is of no consequence that the signs of the component loadings for all
four of these variables are negative. The important observation is that the loadings
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are strong and the signs of all four are the same. If energy invested in burials had
a strong negative loading and the fauna/sherd ratio had a strong positive loading,
this would mean that high energy investment in burials and low fauna/sherd ratios
corresponded to this component (and thus to each other). Since all the signs are
the same, we know that high energy investment in burials, high fauna/sherd rations,
high proportions of bowls, and high proportions of decorated ceramics all correlate
with each other on this component. None of the other variables show loadings of
much strength at all on this component, suggesting that none of them relates very
strongly to wealth (or whatever it is that this element of patterning in the dataset
may represent).

Three variables have strong loadings on the second component (again all with
the same sign): presence of a platform, presence of mace heads in burials, and the
shell/sherd ratio. We saw a similar relationship between platforms and mace heads
in the multidimensional scaling, and we also noted there a slightly more ambiguous
relationship between these two things and a high ratio of shell. The shell/sherd ratio
loads strongly on the second component here but its divided loyalties, so to speak,
are reflected in its loading on the third component, which is almost as strong. The
four variables that have such high loadings on the first component have very low
loadings on the second, and the three variables with high loadings on the second
component have very low loadings on the first. The message for us in this obser-
vation is that the first two components are quite independent of each other. We
drew this same conclusion from the fact that these two elements appeared in the
multidimensional scaling as two gradients that were perpendicular to each other.

The two variables with the strongest loadings on the third component are the
proportions of kiln wasters and obsidian. We saw that high proportions of these two
things formed clusters that overlapped in one view of the multidimensional scaling
configuration, but not so much in another view in which they also appeared. The
shell/sherd ratio also loads fairly highly on this third component. It is interesting
to note that obsidian also has a moderate loading on the second component, par-
alleling the moderate relationship we saw in the multidimensional scaling between
high proportions of obsidian and the gradient interpreted there as prestige. Finally,
though, all four variables that did not have extremely high loadings on the first two
components, have moderate to strong loadings on the third component. In part, this
is produced by the fact that household units with high values for these four variables
tend to share lower values for the six variables that have very high loadings on the
first two components.

The only loading of much strength on the fourth component is for the proportion
of debitage. It is in this way that this variable’s particular lack of connection to others
is shown in the principal components results. In the multidimensional scaling, both
obsidian and kiln wasters stood partly apart and partly together, and both obsidian
and shell were connected in their tendency to be at the high end of the gradient
interpreted as prestige. Debitage, however, formed a cluster with little indication
of overlap or relationship to anything else in the multidimensional scaling, and it
stands apart in the principal components analysis as well.
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Table 24.3. Component Loadings (with Orthogonal Rotation) for Analysis of the
Ixcaquixtla Household Dataset

Components
1 2 3 4 5

Energy in Burials −0.960 −0.008 −0.044 0.068 0.047
Fauna/Sherds −0.950 0.045 −0.061 0.020 0.068
Bowls % −0.937 −0.027 0.129 −0.127 0.151
Decoration % −0.854 −0.128 −0.164 0.022 −0.272
Shell/Sherds 0.002 0.946 −0.058 −0.151 0.103
Mace Heads 0.068 0.908 0.099 0.087 0.023
Platform −0.008 0.597 0.743 −0.087 −0.156
Obsidian % 0.089 −0.088 0.934 0.166 −0.238
Debitage % 0.004 0.051 −0.097 −0.970 0.169
Wasters % 0.041 −0.086 0.374 0.224 −0.874

There is considerable difference of opinion about rotation of loadings in prin-
cipal components analysis. Once the components have been extracted, they can be
thought of as coordinate axes in a space of multiple dimensions. This whole set
of extracted axes can be rotated around in the space to maximize various differ-
ent criteria of relationships with the original variables. They can be subjected to
orthogonal rotation in which the axes are rotated as a set and all are kept at right
angles to each other (i.e., they are uncorrelated with each other). Or they can be
rotated individually in oblique rotation, in which they lose the property of being
uncorrelated with each other. Within each of these two large families of rotation
there are several variants.

Orthogonally rotated component loadings for the Ixcaquixtla household analysis
are given in Table 24.3. As usual with orthogonal rotation the contrasts between high
loadings and low loadings on each component are maximized. The same four vari-
ables that showed strong loadings with the same sign on the first component in the
unrotated components behave the same in the rotated components. The same three
variables load strongly on the second component in both sets as well. In the rotated
components obsidian appears more strongly linked to platforms by virtue of their
strong loadings on the third component. The relationship between obsidian and kiln
wasters that we saw in the unrotated components and in the multidimensional scal-
ing has disappeared, and both debitage and kiln wasters stand strongly apart from
the other variables. The two sets of component loadings correspond quite well in
regard to the main elements of patterning, and sometimes these main elements show
up more sharply in rotated component loadings. The discrepancies in the indica-
tions of some of the lesser elements in the patterning exemplify what worries some
analysts about component rotation.

There is no easy answer, and certainly no consensus answer, to the question about
the wisdom of rotating components. Large statpacks all do principal components
and factor analysis, and they all offer rotation as an option. There is certainly no
harm in looking at both rotated and unrotated components. If the important ele-
ments of patterning in both sets of loadings correspond well to each other, then it
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Statpacks and Reporting Results

Principal components analysis is almost certainly a more straightforward
proposition with your statpack than either of the other two approaches to
multivariate analysis discussed here. Although a couple of other options are
possible, principal components analysis almost always is based on correla-
tion coefficients between variables. If you don’t say otherwise, this is what the
reader will assume. Even though little has been made here of the difference
between principal components analysis and factor analysis, some readers will
be much more concerned about the distinction, so it is important to pay atten-
tion to the options in your statpack and be sure to report accurately which you
did. Providing the actual list of component loadings is an essential part of pre-
senting the results. Just a description of the patterns observed on them is not
enough.

As with multidimensional scaling, it is a good idea to limit the number of
variables in a principal components analysis to no more than about half the
number of cases. If the number of variables is much larger than this, there is
substantial risk of finding spurious patterns that are no more than the product
of random noise in the data.

really doesn’t matter which you choose. If some details differ between the two, then
perhaps these details should be taken with a grain of salt.

Principal components analysis is extremely powerful, just as regression analy-
sis is. Much of this power comes from the specificity and rigidity of the model of
relationships between variables, just as it does in regression analysis. Except for
the possibility of inexplicable discrepancies between unrotated and rotated compo-
nents, the results of principal components analysis tend to be clear and unequivocal.
A principal components analysis will always produce components of some sort,
whether there is much strong patterning in the dataset or not. In this sense it cannot
fail, as multidimensional scaling can fail to produce any intelligible patterns. The
signs that there just may not be much useful patterning in a dataset are easier to
overlook in principal components analysis. If labeling the cases provides intuitive
knowledge, then finding patterning in a multidimensional scaling is likely to be quite
straightforward. On the other hand, if looking at the behavior of variables provides
the most intuitive knowledge, as it does in the Ixcaquixtla household analysis, then
presenting the multidimensional scaling in an intelligible way requires a good bit
more work. With principal components analysis, it is just the reverse. If the behavior
of variables provides the most direct route into identifying meaningful patterns, then
principal components is certainly less work than multidimensional scaling because
its natural way of presenting its results is organized around the variables.
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Cluster analysis is perhaps the most familiar of all approaches to exploratory
multivariate analysis, although it is not always thought of as a multivariate technique
parallel to, for example, multidimensional scaling or principal components analysis.
It is like such approaches, though, in seeking structure in the relationships among
cases characterized by a number of variables. Cases that are strongly similar to each
other, in terms of their values for a number of variables, wind up in the same groups
or clusters, while those that are more different from each other wind up in differ-
ent clusters. Cluster analysis mimics one of the human mind’s fundamental ways
of dealing with complicated variability: categorizing, or putting things into groups.
Artifact typology in archaeology is a very familiar example of such categorizing.
Recognizing that no two artifacts are likely to be identical, but that some pairs are
more similar than others, we put the more similar ones together subjectively into
what we then define as types. Our artifact typologies are hierarchical in that they
group artifacts first according to broad classes like ceramics, flaked stone, textiles,
etc., and then, within these broad classes, into more specific types at perhaps several
levels. Flaked stone, for example, may be divided into tools and debitage; tools, in
turn, into unifaces and bifaces; unifaces, into scrapers, blades, burins, etc.; scrapers,
into endscrapers and sidescrapers; and so on.

This kind of hierarchical clustering can also be accomplished by statistical
(as opposed to purely subjective) means. The first step in a hierarchical cluster anal-
ysis is usually the same as the first step in multidimensional scaling: measuring the
similarities between each pair of cases in the dataset. The coefficients of similarity
(or dissimilarity) that were discussed in Chapter 22 are just as suitable for cluster-
ing. Once the similarities (or dissimilarities or distances) have been measured, the
clustering can begin.

R.D. Drennan, Statistics for Archaeologists, Interdisciplinary Contributions
to Archaeology, DOI 10.1007/978-1-4419-0413-3 25,
c© Springer Science+Business Media, LLC 2004, 2009
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Hierarchical cluster analysis is most often agglomerative because it usually
proceeds by combining individual cases together to form larger and larger clus-
ters. The procedure begins with each case considered as a separate entity. At the
first step of this multistep procedure, the two most similar cases are combined into
a cluster. At the next step, either two other cases are combined to begin a second
cluster or else a third case is added to the existing cluster. Step by step, the cluster-
ing procedure continues to higher and higher (or more and more inclusive) levels in
the hierarchy of agglomeration until finally all cases are combined into a single big
cluster.

There are three major variations on this basic theme of hierarchical clustering,
involving different specific clustering criteria. They arise because, as individual
cases are gradually combined into more and more inclusive clusters, the proce-
dure must choose between combining two individual cases to initiate a new cluster,
adding a case to an existing cluster, or joining together two already existing clusters.
While similarities have already been measured for all possible pairs of individ-
ual cases, the question arises of just how to use these in measuring the similarity
between a case and an already existing cluster or between two already existing clus-
ters. There may, for example, be a very strong similarity between a case in one
cluster and a case in another cluster but very little similarity between the other pairs
of cases involved in the two clusters.

SINGLE LINKAGE CLUSTERING

The simplest approach is single linkage clustering, in which the strongest single sim-
ilarity score between cases governs each step in clustering. For example, using the
matrix of similarity coefficients in Table 25.1, the sequence of single link clustering
would go as follows:

1. The strongest single similarity in the matrix is 0.96 between Cases 4 and 6, so
these two cases would be combined into a cluster.

2. The next strongest similarity in the matrix is 0.95 between Cases 1 and 3, so
these two cases would be combined into a second cluster.

Table 25.1. Matrix of Similarity Coefficients for Seven Cases

1 2 3 4 5 6 7

1 1.00
2 0.34 1.00
3 0.95 0.22 1.00
4 0.69 0.04 0.11 1.00
5 0.87 0.90 0.75 0.63 1.00
6 0.12 0.15 0.37 0.96 0.27 1.00
7 0.86 0.76 0.32 0.59 0.43 0.49 1.00
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3. The next strongest similarity in the matrix is 0.90 between Cases 2 and 5, so
these two cases would be combined into a third cluster.

4. The next strongest similarity in the matrix is 0.87 between Cases 1 and 5. Case 1
already belongs to a cluster (with Case 3) and Case 5 already belongs to a cluster
(with Case 2), so these two clusters would be combined to form a cluster of four
cases.

5. The next strongest similarity in the matrix is 0.86 between Cases 1 and 7. Case 1
already belongs to a cluster (with Cases 2, 3, and 5), so Case 7 would be added
to that cluster, enlarging it to five cases.

6. The next strongest similarity in the matrix is 0.76 between Cases 7 and 2. These
two already belong to the same cluster so there is no additional joining at this
point.

7. The next strongest similarity in the matrix is 0.75 between Cases 3 and 5. These
are also already members of the same cluster.

8. The next strongest similarity in the matrix is 0.69 between Cases 1 and 4. Case
1 already belongs to a cluster (with Cases 2, 3, 5, and 7), and Case 4 already
belongs to a cluster (with Case 6), so these two clusters would be joined together
to form a cluster of seven cases.

At this point all the cases have been joined into a single cluster, and the procedure is
finished. The dendrogram in Fig. 25.1 provides a complete account of the entire pro-
cedure. The joining steps can be read from left to right. That is, the leftmost vertical
line joining two cases represents the first joining step, and each step can be read in
succession by selecting vertical joining lines in a steady rightward progression. The
strength of similarity at any particular step in joining can be read from the horizontal
scale at the top of the dendrogram.

Single linkage clustering often joins clusters together even though a number of
individual cases from the two clusters show very little similarity to each other. That
is, a single strong similarity for one pair of cases can cause two clusters to be joined
even if all the other cases involved are quite different from each other. In the example
used above, for instance, the cluster consisting of Cases 1 and 3 was joined with the
cluster consisting of Cases 2 and 5 at Step 4 because of the strong similarity (0.85)

Figure 25.1. Single linkage clustering of the similarity scores from Table 25.1.
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between Cases 1 and 5, even though the new cluster formed incorporated cases that
were often not measured to be very similar. The similarity between Cases 1 and 2
is only 0.34 and between Cases 2 and 3 is only 0.22. Yet these pairs of cases were
included together in the newly formed cluster. This would seem to make little sense,
so clustering criteria other than single linkage are often used.

COMPLETE LINKAGE CLUSTERING

Complete linkage clustering prevents the undesirable joining of clusters with dis-
similar members. With complete linkage, no two clusters are joined together unless
even the weakest similarity between any two of the cases involved is stronger than
any other “unused” similarity score in the matrix. The sequence of complete linkage
clustering of the similarity scores from Table 25.1 would be as follows:

1.–3. The first three steps would be the same as with single linkage.
4. The next strongest similarity in the matrix is 0.87 between Cases 1 and 5.

Case 1 already belongs to a cluster (with Case 3) and Case 5 already belongs
to a cluster (with Case 2), so we would need to examine the other similarities
involved in combining these two clusters. Cases 3 and 5 have a similarity of
0.75; Cases 1 and 2, of 0.34; and Cases 2 and 3, of 0.22. The two clusters will
not be combined unless all the other possible combinations at this stage would
require combining even less similar cases. All the possible combinations (and
the weakest similarities each would incorporate) are as follows:

1/3 with 7 (a similarity of 0.32 between 3 and 7);
1/3 with 4/6 (a similarity of 0.11 between 3 and 4);
1/3 with 2/5 (a similarity of 0.22 between 2 and 3);
2/5 with 7 (a similarity of 0.43 between 5 and 7);
2/5 with 4/6 (a similarity of 0.04 between 2 and 4); and
4/6 with 7 (a similarity of 0.49 between 6 and 7).
Combining 7 with the cluster of 4 and 6 puts together less dissimilar cases
than any other available combination, so step 4 makes the cluster 4/6/7.

5. At this point there are three clusters, made up of Cases 1/3, 2/5, and 4/6/7.
Cluster 1/3 is held back from joining Cluster 2/5 by a weak similarity of
0.22 between Cases 2 and 3. The only other two possible joining steps, how-
ever, are impeded by even weaker similarities. The similarity of 0.11 between
Cases 3 and 4 holds Clusters 1/3 and 4/6/7 apart, and the similarity of 0.04
between Cases 2 and 4 holds Clusters 2/5 and 4/6/7 apart. Thus, the proce-
dure would work its way down to the similarity of 0.22 as the next strongest
combination, and would put Clusters 1/3 and 2/5 together as the fifth step.

6. The last joining would unite Cluster 1/2/3/5 with Cluster 4/6/7 at the weakest
level of 0.04 (the similarity between Cases 2 and 4).

This history of clustering and its outcome are represented in the dendrogram of
Fig. 25.2. Complete linkage clustering can be seen to represent the opposite extreme
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Figure 25.2. Complete linkage clustering of the similarity scores from Table 25.1.

to single linkage clustering. Instead of relying on the single strongest link between
clusters (as with single linkage), it relies on the single weakest link to determine
what to join. The effects of the two criteria can be appreciated by imagining each
cluster as a club whose members are deciding which applicants to accept. The effect
of complete linkage clustering is the same as the system of “blackballing” applicants
for membership. Any case can prevent the joining of any other case with which it has
a very low similarity, just as in a club where any single member can veto a disliked
applicant. Single linkage clustering, however, is just the opposite: a new member
is accepted into the club on the basis of a strong similarity score from any current
member, regardless of how low other members’ scores for that applicant may be.

AVERAGE LINKAGE CLUSTERING

Just as clubs may adopt procedures for accepting new members that fall somewhere
between the two extremes, average linkage clustering has been proposed as a happy
medium between single and complete linkage. In average linkage clustering, after
each joining step a new matrix of similarities is calculated, treating each existing
cluster as if it were a single case. The similarity between an existing cluster and
another case is the average of the similarities between that case and each member of
the cluster. For the similarity coefficients from Table 25.1, average linkage clustering
would proceed as follows:

1. Cases 4 and 6, with a similarity of 0.96, would join. The similarity matrix would
be recalculated, with the result in Table 25.2. The similarity score between Clus-
ter 4/6 and Case 1, for example, would be the average of the similarity scores
between Cases 1 and 4 and Cases 1 and 6, or: 0.69 + 0.12/ 2 = 0.41.

2. Cases 1 and 3, with a similarity of 0.95, would combine, and the similarity matrix
would be recalculated again, with the result in Table 25.3. The similarity between
Clusters 1/3 and 4/6 would be the average of the similarities between the four
pairs of cases involved (1 and 4, 1 and 6, 3 and 4, and 3 and 6).

3. Cases 2 and 5, with a similarity of 0.90, would combine, and the similarity matrix
would be recalculated again, with the result in Table 25.4. (The first three steps,
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Table 25.2. Matrix of Similarity Coefficients after the First Step in
Average Link Clustering

1 2 3 4/6 5 7

1 1.00
2 0.34 1.00
3 0.95 0.22 1.00
4/6 0.41 0.10 0.24 1.00
5 0.87 0.90 0.75 0.45 1.00
7 0.86 0.76 0.32 0.54 0.43 1.00

Table 25.3. Matrix of Similarity Coefficients after the
Second Step in Average Link Clustering

1/3 2 4/6 5 7

1/3 1.00
2 0.28 1.00
4/6 0.32 0.10 1.00
5 0.81 0.90 0.45 1.00
7 0.59 0.76 0.54 0.43 1.00

Table 25.4. Matrix of Similarity Coefficients after
the Third Step in Average Link Clustering

1/3 2/5 4/6 7

1/3 1.00
2/5 0.56 1.00
4/6 0.32 0.27 1.00
7 0.59 0.60 0.54 1.00

Table 25.5. Matrix of Similarity Coefficients
after the Fourth Step in Average Link

Clustering

1/3 2/5/7 4/6

1/3 1.00
2/5/7 0.56 1.00
4/6 0.32 0.36 1.00

Table 25.6. Matrix of Similarity Coefficients after the
Fifth Step in Average Link Clustering

1/2/3/5/7 4/6

1/2/3/5/7 1.00
4/6 0.35 1.00
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Figure 25.3. Average linkage clustering of the similarity scores from Table 25.1.

then, turn out to be the same for average linkage as they were for both single and
complete linkage.)

4. Case 7 would join with Cluster 2/5, based on their similarity score of 0.60, and the
similarity matrix would be recalculated yet again, with the result in Table 25.5.

5. The highest similarity score in the new matrix, 0.56, would cause Cluster 1/3 to
join with Cluster 2/5/7, and the similarity matrix would be recalculated one last
time, with the result in Table 25.6.

6. The final two clusters would be joined together at a similarity level of 0.35.

This clustering sequence and its outcome are illustrated in the dendrogram in
Fig. 25.3. Minor variations in average linkage clustering can be produced by calcu-
lating the new similarity matrix in different ways – by using the median similarity
coefficient instead of the average, for example, or by calculating some other index
of the center of the scores involved (sometimes referred to as a centroid).

WHICH LINKAGE CRITERION TO CHOOSE

Comparison of the three dendrograms in Figs. 25.1–25.3 shows the different con-
sequences of the three different linkage criteria. Sometimes the difference is quite
dramatic. This naturally raises the question of which linkage criterion should be
chosen. There is no simple principle that can be routinely applied to answer this
question.

Occasionally the nature of the dataset suggests a particular linkage criterion as
the most appropriate. For example, hierarchical clustering is frequently used in raw
material sourcing studies. Here the cases are typically artifacts that have been sub-
jected to some form of chemical analysis, and the variables are some measure of the
abundance of different chemical elements or other constituents. Hierarchical clus-
tering may be used to delineate groups of artifacts that are presumed to be made
of materials from the same source location. If we expect the raw material involved
to have pretty much the same composition in a given source, then complete link-
age clustering makes good sense. This is because complete linkage clustering will
prevent assigning an artifact to a cluster unless it is broadly similar to each of the
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artifacts already in the cluster. If we hope for clusters whose basis is shared raw
material source, then we should insist, just as complete linkage clustering does, that
each member of the group be similar to each other member. In fact, complete link-
age clustering often does produce very convincing results in raw material sourcing
studies.

The most important concern really is whether a particular linkage criterion pro-
duces interpretable results. The aim is to produce clusters that make good sense
according to whatever considerations can be applied to their interpretation. If one
linkage criterion produces sensible clusters, then that is the best solution, even if
there were good a priori reasons to think that a different linkage criterion might
work well with that dataset. Fortunately, once similarity scores are calculated sat-
isfactorily, it is extremely easy to get a statpack to produce hierarchical clusterings
based on different criteria and compare the results.

HOW MANY CLUSTERS TO DEFINE

Since hierarchical clustering starts with each case in a separate cluster and finishes
with all cases in a single large cluster, it is necessary to decide how many clusters to
read out of the results. This is, in effect, a process of deciding where to stop the clus-
tering procedure for purposes of interpretation. If we consider the average linkage
clustering in the example above to have run its useful course after Step 5, then two
clusters are produced (1/2/3/5/7 and 4/6). If, on the other hand, we find meaning in
the three clusters 1/3, 2/5/7, and 4/6, we could cut the process off after Step 4. This
is not an option that must be set when running the analysis, but instead a question
of reading the results. As with the choice of the number of dimensions in a multidi-
mensional scaling or the number of components in a principal components analysis,
though, the decision devolves primarily on what is meaningful. For this, there are
really no rules. It depends on the prior knowledge, intuition, and inventiveness of
the analyst.

CLUSTERING BY VARIABLES

Usually hierarchical clustering is done by cases, and that is what all of the above
concerns. Occasionally, however, a hierarchical clustering of variables can be useful
and enlightening. The starting point for a hierarchical clustering of variables is to
measure the similarities between variables. Thinking about the similarities between
variables requires a shift of mental gears after thinking about similarities between
cases. Similarities between variables amount to a consideration of how similarly
the variables behave across cases. Two variables that vary together across the cases
in the dataset are quite similar. If the variables are all measurements, correlation
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Statpacks and Reporting Results

Cluster analysis, like multidimensional scaling, is performed by many but
not all large statpacks. The measurement of similarities, whether between
variables or between cases, sometimes appears as an option to be selected as
part of the clustering routines. It is conceptually a separate step, however, and
more options for different measures of similarity may be available elsewhere
in your statpack or in stand-alone programs. Either way, it is important in
reporting results to be explicit about the exact nature of the variables, the
similarity coefficient used, and the clustering criterion selected. The resulting
dendrogram is the essential result to present to back up your discussion of
what you’ve found out.

As with multidimensional scaling and principal components analysis, it is a
good idea to limit the number of variables in a cluster analysis to no more than
about half the number of cases. If the number of variables is much larger than
this, there is substantial risk of finding spurious patterns that are no more than
the product of random noise in the data.

coefficients (r) are a good measure of similarity between variables. This is, after
all, the starting point for principal components analysis, which is also an analysis
by variables. In many instances it may make most sense to use the absolute values
of correlations, rather than the values with signs. This is because a strong negative
correlation may be just as meaningful a similarity between two variables as a strong
positive correlation. The dissimilar variables, then, would be those that show little
relationship to each other at all. The decision about whether to use correlations or
absolute values of correlations depends on the specific context and content of the
variables in a particular dataset.

If the variables are not all measurements, but include ranks or presence/absence
variables, correlation coefficients may still be a perfectly reasonable choice, for the
same reasons that such variables often turn out to create no real obstacles to prin-
cipal components analysis. If there are variables with multiple unranked categories,
then the use of correlation coefficients is not appropriate. If all the variables are
categorical, we can use V or φ or φ2, the measures of strength that accompany the
chi-square test (Chapter 14).

Either way, the starting point for the clustering is a square symmetric matrix of
scores (r or V values) of each variable with each other variable. The same measure
must be chosen for the entire matrix, however, since r and V values are not really
comparable. This matrix is handled in the clustering procedure exactly as it would
be if it measured similarities of each case with each other case. A linkage criterion
must be chosen, and clustering can proceed.
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Figure 25.4. Clustering of the household units from Ixcaquixtla.

CLUSTERING THE IXCAQUIXTLA HOUSEHOLD DATA

The starting point for a clustering by cases of the household units from Ixcaquixtla
is the matrix of similarity coefficients in Table 22.9. The dendrogram in Fig. 25.4
shows a single-linkage clustering. It might be read in several ways. Sometimes a
small grouping can be found that makes some sense to work from. Household Units
15, 9, 2, and 5, for example, form a cluster sharing the large amounts of energy
invested in burials and the high proportions of bowls, decorated ceramics, and faunal
remains previously interpreted in this dataset as associated with wealth. In the other
clearest cluster, Household Units 20, 7, and 1 have high proportions of debitage,
although Household Units 12, 4, and 10 do not share this characteristic even though
they also appear in this cluster. All six, however, seem to be of very similar modest
wealth. Units 6, 11, and 13 are the households with high proportions of obsidian.
Both households 8 and 17 have high proportions of kiln wasters. Households 11 and
13 have high proportions of both kiln wasters and obsidian. Household Units 14 and
18 have mace heads in burials and the houses are on platforms, but they do not join
well, even though they turn up next to each other in the list. Households 3 and 11,
which also have both these things, are widely separated. Some of the patterns seen
before in this dataset are, thus, visible here, although mostly in fragments rather than
in integrated ways.

This is the least satisfactory of all the analyses we have tried so far on this dataset.
The reason is clear. The nature of the patterns we have seen in the Ixcaquixtla house-
hold data is just not at all well expressed by simply grouping the household units
together into several mutually exclusive clusters, but this is the only kind of pattern
hierarchical clustering can delineate. We probably would expect a dataset like this to



CLUSTER ANALYSIS 319

Figure 25.5. Clustering of the variables from the Ixcaquixtla household dataset.

have more complicated patterns that, if thought of as groups of households, would
involve patterns of multiple overlapping and crosscutting groups. If we expected
that we would need to recognize patterns of this sort, we would not choose hier-
archical clustering as an analytical approach. Hierarchical clustering does provide
an effective solution, however, when mutually exclusive groupings accurately char-
acterize the patterns we need to find. This is why it has proven to be especially
useful in questions of raw material sourcing. In raw material sourcing, each artifact
is expected to fit comfortably into one and only one group which represents a distinct
raw material source, and this is precisely the kind of pattern hierarchical clustering
inevitably produces.

A clustering by variables of the Ixcaquixtla household data (Fig. 25.5) is only
slightly more satisfactory than the clustering by cases. The similarities between vari-
ables for this analysis were measured with correlation coefficients (r), so the starting
point was the same as for the principal components analysis. There is a clear cluster
of the four variables that formed a gradient in Dimensions 1 and 2 of the multidimen-
sional scaling and that loaded very strongly on the first component in the principal
components analysis. Proportion of lithic debitage does not join with any other vari-
able until very near the end of the clustering, and this is consistent with what we
have been seeing through several analyses. The pattern of clustering between the
other five variables though is less satisfactory. We have seen relationships between
the presence of mace heads and high proportions of marine shell, so it makes sense
that these two variables cluster together. Platform, however, does not appear in this
cluster but rather in a cluster with proportion of obsidian. That is a relationship we
have seen before, but then obsidian’s connection to kiln wasters pulls that cluster
together with kiln wasters rather than with the shell and mace head cluster. Again
the complexity of crosscutting relationships has confounded the dendrogram struc-
ture created by hierarchical clustering. Just as with cases, when variables really need
to belong to multiple groups, clustering is likely to be predicated on too simple a
structure of relationships to give very satisfactory results.
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The dataset we have been using as an example, then, is one whose structure just
does not match the only kind of structure that hierarchical clustering can find. In
this sense, hierarchical cluster analysis is the narrowest of the approaches we have
considered. Both multidimensional scaling and principal components analysis offer
a wider view of patterning in a multivariate dataset and are thus applicable in a
broader range of contexts. When a clear and simple structure of mutually exclu-
sive groupings is indicated, though, hierarchical clustering is probably the approach
of choice. It will delineate such clusters more clearly and effectively than either
multidimensional scaling or principal components analysis.

In the end, the approaches to multivariate analysis described in these final
chapters are tools for exploring multivariate datasets, looking for patterning both
suspected and unsuspected. It often pays to try out different approaches and different
options within each approach (including different similarity coefficients for multi-
dimensional scaling and clustering). It is often not possible to predict in advance
which approach will work well with a particular dataset, and experimenting with
different ones can produce insights that would not be obtained in any other way.



Suggested Reading

Bibliographic citations have been avoided in this book in order to streamline the
presentation and because careful tracing of the intellectual pedigree of many of the
ideas and techniques discussed here is a scholarly endeavor in itself, and one not
comfortably combined with an introduction to their application in archaeology. The
books and articles listed below, however, are places to go for further information
on statistics in archaeology. The literature on statistics in archaeology has become
very large, and the list below is very short. Consequently, a large number of perfectly
relevant references have not been included – the selection is idiosyncratic rather than
comprehensive. Some of the items included are relatively new; some are not so new.
Some are included because they share the general outlook of this book (and indeed
in some cases are the specific inspiration for it); some, because they complement it
(which is to say they take a different perspective).

GENERAL STATISTICS BOOKS

Exploratory Data Analysis, by John W. Tukey (Reading, MA: Addison-Wesley,
1977), is one of the classic presentations of an approach to statistics from which
much in this book is derived, and its author is the father of the approach. Not sur-
prisingly, there is a great deal more to exploratory data analysis (EDA) than has
been presented in this volume, and readers who would like to go directly to the
source to find out about it should read Tukey’s book, which is a full-scale intro-
ductory text in EDA. Although EDA is now more than 40 years old, only parts of
the prescription Tukey laid out for EDA have been much applied in archaeology
(and even those parts that have been do not yet constitute the “standard” statistical
approach in the archaeological literature). Many of the techniques Tukey discusses
in his book were intended to be easily accomplished with pencil and paper, or, at
most, with a calculator, but more widespread availability in the most commonly used
computer statpacks would undoubtedly encourage greater use of EDA techniques in
archaeology and in other fields.

Exploratory Data Analysis, by Frederick Hartwig and Brian E. Dearing (Beverly
Hills, CA: Sage, 1979), is a brief presentation of the basic techniques of EDA. It
nevertheless includes a number of EDA topics not covered in this volume.
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Applications, Basics, and Computing of Exploratory Data Analysis, by Paul
F. Velleman and David C. Hoaglin (Boston, MA: Duxbury Press, 1981), is yet
another introduction to EDA techniques, less formidable than Tukey’s and more
comprehensive than Hartwig and Dearing’s.

Understanding Data, by Bonnie H. Erikson and T. A. Nosanchuk (Toronto:
McGraw-Hill Ryerson, 1977), is an introductory statistics text that combines EDA
with more traditional statistical approaches. It advocates two different and comple-
mentary kinds of work with numbers (exploratory and confirmatory), keeping the
two strongly separated and emphasizing the differences between their goals. The
presentation is especially accessible and free of jargon and abstract mathematics.

Introduction to Contemporary Statistical Methods, by Lambert H. Koopmans
(Boston, MA: Duxbury Press, 1987), also combines EDA with more traditional
statistics. A very wide range of methods is covered, and the logic behind the meth-
ods is presented in more abstract mathematical terms than in most of the other
books listed here. Instead of focusing on the difference between exploration and
confirmation throughout the book, Koopmans considers statistical exploration at
the beginning, and then complements the discussion of the usual significance test-
ing techniques with a wide array of robust techniques suitable for use on data that
present problems for the usual techniques.

Nonparametric Statistics for the Behavioral Sciences, by Sidney Siegel (New
York: McGraw-Hill, 1956), is a classic presentation of a full array of robust tech-
niques for evaluating significance – that is, ones that are not much affected by things
like very asymmetrically shaped batches for which means and standard deviations
are not useful. Many of these techniques require special tables in which to look up
the results, and Siegel provides them.

Sampling Techniques, by William G. Cochran (New York: Wiley, 1977), descri-
bes itself (quite accurately) as “a comprehensive account of sampling theory.” It
is, perhaps, the ultimate source on this subject. Estimating means and proportions,
sample selection, stratified sampling, cluster sampling, sampling with and without
replacement, determining necessary sample size, and many other topics are covered
in detail. The full logic behind the techniques presented is given in mathematical
terms.

Elementary Survey Sampling, by Richard L. Scheaffer, William Mendenhall, and
Lyman Ott (Boston, MA: Duxbury Press, 1986), covers much of the same ground
that Cochran does. The presentation is largely in terms of abstract mathematics, but
it is considerably less detailed and formidable than Cochran’s.

INTRODUCTIONS TO STATISTICS FOR (AND OFTEN BY)
ARCHAEOLOGISTS

Sampling in Archaeology, by Clive Orton (Cambridge: Cambridge University Press,
2000), explores sampling in archaeology at length. The emphasis is on sensible use
of sampling theory in the varied array of circumstances archaeological data col-
lection presents. There is especially extended treatment of sampling in the field,
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which usually means spatially based sampling. Examples are drawn from real
archeological datasets.

Quantifying Archaeology, by Stephen Shennan (Edinburgh: Edinburgh Univer-
sity Press, 1997), is an introductory statistics text (and more) specifically for
archaeologists. Mostly traditional statistical methods are covered, but some EDA
techniques are also included. Shennan goes beyond basic statistical principles to
deal with multivariate analysis (with emphasis on multiple regression, clustering,
and principal components and factor analysis). Methods for estimating population
means and proportions are presented (not usual in introductory statistics books) and
the special issues that sampling raises in archaeology are discussed.

Statistics in Archaeology, by Michael Baxter (London: Arnold, 2003), reviews
basic statistical techniques (including the fundamental ones from EDA) very com-
pactly, and considers a number of special topics from an archaeological perspective.
These include several multivariate approaches, spatial analysis, radiocarbon dating,
seriation, and assemblage diversity. Baxter’s earlier book, Exploratory Multivariate
Analysis in Archaeology (Edinburgh: Edinburgh University Press, 1994), consid-
ers multivariate analysis in greater depth. Extended treatment is given to principal
components analysis, correspondence analysis, cluster analysis, and discriminant
analysis, and numerous examples of multivariate analyses of real archaeological
data are woven into the explanations.

Digging Numbers: Elementary Statistics for Archaeologists, by Mike Fletcher
and Gary R. Lock (Oxford: Oxford University Committee for Archaeology, 2005),
applies basic statistical techniques (both traditional and EDA) specifically to archae-
ology. The presentation is informal, avoids jargon, and is designed to be very
accessible, especially to those suffering math anxiety.

Refiguring Anthropology: First Principles of Probability and Statistics, by David
Hurst Thomas (Prospect Heights, IL: Waveland Press, 1986), is an introduc-
tory statistics text specifically for anthropologists (including archaeologists). The
approach is purely traditional (that is, it does not incorporate an EDA perspective
or techniques), and some rules are laid down that this volume has argued against,
but numerous robust methods are discussed. There are abundant examples of the
application of all the techniques presented to real data from archaeology, cultural
anthropology, and biological anthropology.

ARCHAEOLOGISTS CONSIDER STATISTICS
IN OUR DISCIPLINE

“The Trouble with Significance Tests and What We Can Do About It,” by George
L. Cowgill (American Antiquity 42:350–368, 1977), makes the case for an attitude
about significance testing that has inspired much in the perspective taken on this
subject in this volume. It is a view distinctly different from that often adopted in
introductory statistics texts – indeed it is branded as heresy by the rules often found
in introductory statistics texts. This article is fundamental for those interested in
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a fuller presentation of the arguments that archaeologists will often find it useful
to use samples directly to make estimates about populations and that it is usually
a mistake for archaeologists to force significance tests into the mold of a yes-or-
no decision. Cowgill’s suggestions about the most useful ways to approach these
issues in archaeology go well beyond what is presented in this volume, which
has stopped at the point where the information commonly provided by computer
statpacks imposes a limitation.

“A Selection of Samplers: Comments on Archaeo-statistics,” by George L.
Cowgill [In Sampling in Archaeology, edited by James W. Mueller (Tucson: Uni-
versity of Arizona Press, 1975)], prefigures some of the issues Cowgill argues more
fully in his later paper (above), and focuses especially on sampling, criticizing many
of what he sees as erroneous notions that appear in other papers in the same volume.

“On the Structure of Archaeological Data,” by Mark S. Aldenderfer [In Quantita-
tive Research in Archaeology: Progress and Prospects, edited by Mark S.
Aldenderfer (Newbury Park, CA: Sage, 1987)], is a discussion of the fundamen-
tal nature of data in archaeology, the position that numbers occupy in such data,
and the implications that this has for how we think about and analyze data. Four
other articles in this same volume are also of special interest. “Quantitative Meth-
ods Designed for Archaeological Problems,” by Keith W. Kintigh, discusses the
issue of the extent to which standard statistical techniques and those borrowed
directly from other disciplines are suited to the particular needs of archaeology.
“Simple Statistics,” by Robert Whallon, stresses the importance of exploring the
patterns in numbers in batches before proceeding to more complicated analyses.
And “Archaeological Theory and Statistical Methods: Discordance, Resolution, and
New Directions,” by Dwight W. Read, and “Removing Discordance from Quantita-
tive Analysis,” by Christopher Carr, try to place archaeological data analysis firmly
in a broader context. Both authors are concerned that data analysis is too often con-
ceived and carried out in isolation from the theoretical questions that analysis aims
to help answer. As a consequence “discordance” between data, analysis, and theory
arises and seriously impedes the archaeological endeavor.

“Statistics for Archaeology,” also by Aldenderfer [In Handbook of Archaeo-
logical Methods, edited by Herbert G.D. Machsner and Christopher Chippindale
(Lanham, MD: Altamira Press, 2005)], reviews the history of statistical analysis in
archaeology and considers a series of topics of special importance in archaeology,
including spatial analysis, EDA techniques, and Bayesian analysis.

MULTIVARIATE ANALYSIS

Since the chapters here on multivariate analysis are only brief explanations, further
reading on these techniques is likely to be especially important. Several of the vol-
umes listed above on statistics in archaeology also provide introductory treatments,
and some are more detailed than those in the final chapters of this book. In addition,
the sources below may be helpful.
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In Multidimensional Scaling (Quantitative Applications in the Social Sciences,
Paper 11, Beverly Hills, CA: Sage, 1972), Joseph B. Kruskal and Myron Wish pro-
vide a clear introduction to this multivariate approach. Kruskal also wrote an article
directed specifically at archaeologists [“Multi-Dimensional Scaling in Archaeology:
Time Is Not the Only Dimension.” In Mathematics in the Archaeological and Histor-
ical Sciences, edited by F.R. Hodson, D.G. Kendall, and P. Tautu, eds., Edinburgh:
Edinburgh University Press, 1971]. Multidimensional Scaling: Theory and Applica-
tions in the Behavioral Sciences, edited by Roger N. Shepard, A. Kimball Romney,
and Sara Beth Nerlove (2 volumes, New York: Seminar Press, 1972), is a compi-
lation of studies making use of multidimensional scaling in all parts of the social
sciences. Ingwer Borg and Patrick J.F. Groenen bring the subject more up to date in
Modern Multidimensional Scaling: Theory and Applications (New York: Springer,
1997).

Principal Components Analysis, by George H. Dunteman (Quantitative Appli-
cations in the Social Sciences, Paper 69. Newbury Park, CA: Sage, 1989), is
an accessible but comprehensive account, with numerous examples. Two other
volumes in the same series of publications, both by Jae-On Kim and Charles
W. Mueller, discuss factor analysis, as opposed to principal components analy-
sis, in fairly intuitive terms. They are Introduction to Factor Analysis: What It
Is and How to Do It (Quantitative Applications in the Social Sciences, Paper 13.
Beverly Hills, CA: Sage, 1978) and Factor Analysis: Statistical Methods and Prac-
tical Issues (Quantitative Applications in the Social Sciences, Paper 14. Beverly
Hills, CA: Sage, 1978).

A very accessible discussion of measures of similarity and basic principles of
cluster analysis can be found in Cluster Analysis by Mark S. Aldenderfer and
Roger K. Blashfield (Quantitative Applications in the Social Sciences, Paper 44.
Newbury Park, CA: Sage, 1984). Numerical Taxonomy, by Peter H.A. Sneath
and Robert R. Sokal (San Francisco, CA: Freeman, 1973), is one of the classic
sources on hierarchical clustering. Cluster Analysis for Applications, by Michael R.
Anderberg (NewYork: Academic, 1973), is another. Both these books also address
the measurement of similarities between cases at length.
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with two centers, 23–25
Best-fit straight line, 204–207, 209

devastating effect of, 219
downward curvilinear pattern, 220
oval clouds, effect of, 219
for points, 208
residuals, sum of squares, 209
scatter plot, 209

327
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site area, 214
variance, 210

Bias, sampling, 92–93
Black-Smith sites

floor areas of structures at, 23–24
post hole diameters, removal of level

and spread from, 48
Bootstrap

assessment of error ranges with, 138
error ranges for median and, 137
histogram, 136

Bowl sherds, average proportion of, 183
Box-and-dot plot

Early and Late Classic period site areas,
135

Formative and Classic period house floor
areas, 147

graphical approach, 38
with level and spread removed, 44–46
post hole diameters at Black–Smith sites,

40–41
of post hole diameters from Smith site,

38–40
stem-and-leaf plot and, 37

Bronze Age, 256
Burials, 266, 268, 269, 290

Categorical variables, 211
Categories (See also Batch)

data recorded in terms of, 63
definition of, 63
pottery decoration, 68
pottery sherds, 63
sherds, unincised and incised, 65–68
and sub-batches, 73–75

Central limit theorem, 106, 128
Ceramic assemblage

cord-marked sherds,
proportion of, 244

standard error, 246
Ceramic typology, 264
Chi-square

average, 183
comparison, 182–188
distribution, 185
statistics

degrees of freedom, 186
error ranges, 188

tests, 183, 186, 187, 191
area survey, 194
Cramer’s V, 199
data, 192
expected numbers of sites, 195

principal concern, 191
two-by-two table, 192

Classical statistical theory, 133
Cluster analysis, 309
Column proportions, 69
Commonsense representation, 272
Complete linkage clustering

sequence of, 312
similarity scores, 313

Computational method, 207
Computer programs, 178
Computer statpacks, 192, 246
Confidence

intervals (see Error ranges)
vs. precision, 115–118
statistical notion of, 257
in statistics, 151–152

Cord-marked sherds, proportions
estimation, 249

Cottonwood River valley
Archaic period animals, hunting of, 165
Archaic projectile points, 165

weight and period data, 166
early/middle/late archaic projectile points

of, 167–171
Cramer’s V, 199
Cross tabulations, 192
Cube transformation, 56

Data analysis, 193
Data-recording error, 217
Debitage, 267
Densities and proportions, 70–71
Dissimilarity coefficients, 271
Dummy quadrats, 242

Eigenvalue, 303
Error ranges, 126

assessment of, 138
calibration, 122
at 95% confidence level, 120, 130, 143
estimated proportions, comparison,

181–182
at fixed level of confidence, 122
graphical representation of, 149
level of confidence associated with, 119,

120, 126, 137
means of populations, 118
in notched box plots, 162
for specific confidence levels, 121–122
1 standard error range, 121–122, 140
t test and, 155
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Estimation proportion, 182
Euclidean distances, 272–274, 280

calculation of, 277
projectile points

measurement of, 273
standardized variables, 276
tabular presentation, 274

Pythagorean theorem, 272
standard deviations, 275
standardized variables, 274–276
standardization of measurements, 276
two-dimensional scaling configuration,

289
variables, 276

Excavations, 265
Expected values, 184

Fauna/sherd ratio, 266, 290, 305
Finite population corrector, 123, 124, 141
Fisher’s exact test, 193
Fisher’s method, 192
Formative Mesoamerican site, 265

Gower’s coefficient, 280, 283
Grab sampling, 86
Grid squares, 239
Gut feelings, 260

Haphazard sampling, 86
Haphazard surface collection, 89–91
Heterogeneous batch, 140
Hierarchical cluster analysis, 309

agglomerative, 310
clustering by variables, 316–318
clustering criteria, 310

Histograms, 11, 14, 136
Household units, 281–283

Ixcaquixtla household dataset, 286, 287
clustering of, 318

single-linkage clustering, 318
variables, 319

clusters and gradients, 297
component loadings analysis, 304
component loadings, analysis of, 306
decline of stress values, graph of, 287
detectable cluster, 293
gradient identification, 293
household units, multidimensional scaling

of, 288

multidimensional scaling, 294, 295
domain of, 296

orthogonally rotated component loadings,
306

presence/absence variables, 303
principal components extracted,

eigenvalues, 304
similarity, matrix of, 286
spurious patterns, substantial risk of, 296
three-dimensional configuration, 289
three-dimensional scaling, plots of,

290–295
Ixcaquixtla household units, similarities,

281–283
Ixcaquixtla, multivariate dataset, 265

Jaccard’s coefficients, 278
presence/absence variables, 277–279
similarity between sherds, 279
simple matching coefficient, 277, 279

Jackknife, 138
Jar sherds

comparison of bowl and, 182
proportions of bowl and, 181

Judgmental sampling, 86, 87

Kiln wasters and obsidian, relationship,
306

Kiskiminetas river valley
areas of sites in, 12
histogram of areas of sites in, 13

Konsankoro plain, 224, 226

Least-squares regression, 206
Linear regression, 210, 211

logic of, 218, 223
statistical technique, 205

Linear relationships
algebraic expressions, 202
comparison of, 203
geometric expressions, 202
straight-line relationships, 201, 202, 204

Linkage criterion
dendrograms, comparison of, 315
hierarchical clustering, 316

Lithic debitage, proportion of, 319
Log transformation, 57

Mace heads, 266, 267
Marine shell, 266
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Mean, 169, 171
calculation of, 17, 18
median and trimmed mean, 23
outliers and, 20–21
standardization based on, 70
trimmed (see Trimmed mean)
weights of flakes from pits, 18, 28

Mean projectile point length, standard
deviations, 275

Mean weights, 169
differences, strength of, 174–175
estimation, 177, 178
probability, 177

Measurement variable, 199, 201
categorical variable, relationship, 199
logic of, 210
percentages, 199
product-moment correlation coefficient,

210
real measurements, 268
relationship, 199
scatter plot, 200, 201

Median
estimation, 178
mean and trimmed mean, 23
weights of flakes recovered from

bell-shaped pits, 18, 28
Midspread

method for calculation, 28–29
of weights of flakes recovered from pits, 29

Missing data
code, 269
notion of, 268

Multidimensional scaling, 285, 305, 317
algorithms, 286
interpretation of, 289
one-dimensional configuration, 286
similarity/dissimilarity, matrix of, 285
simplicity of, 285

Multiple regression, 263
Multiple-sample case, 183
Multivariate analysis, 263–269, 324–325

artifact typologies, 264
dataset, 271
missing data, 268
missing data codes, 269

Multivariate approaches and variables,
263–264

Multivariate datasets, 264, 267, 269

Negative reciprocal transformation, 56
Neolithic sites, 256, 257
Nonrandom sampling procedures, 88–89

Normal distribution, 59–61
Notched box-and-dot plot, Early and Late

Classic site areas, 161, 162
Null hypothesis

postulates, 157
rejection/acceptation, 157, 158, 160
significance tests and, 157–159

Obsidian artifacts, sample of, 91, 92
Obsidian lithics records, 267
Obsidian projectile points, 251, 252
One-sample t test, 156–157
Outliers

definition, 4
elimination, 20–21
low/high, 40

Pearson’s r, 210, 223, 225
Physical measurements, 271
Pie charts, 73
Point distributions, linear regression, 217
Pooling estimates, 234–236
Population proportion estimation

cluster sampling, standard error, 243
confidence levels and, 253, 254
large sample, 142–143
obsidian projectile points

error range, 139–141
standard deviation of proportion,

140
standard error estimation, 141

random sampling, 243
small sample, 142

Populations
confidence vs. precision, 115–117
estimation, 239

samples, means, 182
finite, 123–124
infinite, 109, 123
mean

largest possible error in estimation,
98–99

and mean of special batch, 104–105
procedure of estimation, 124–125

post holes, 97–98
proportion (see Population proportion

estimation)
and sample mean, 110
special batching of means of samples from,

110–111
standard deviation, 110
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within 1 standard error of sample mean,
115

trimmed mean of, 128–130
Presence/absence variables, 267

coded, 278
correlation coefficients, 317
scatter plot, relationship, 301
square symmetric matrix, 317

Principal components analysis
category variables, 301
correlation coefficients, 301
multidimensional scaling, 299–300, 317
multivariate analysis, 307
regression analysis, 307
variables, set of, 300

Principal components, extraction
component loadings, 303
dataset, scatter plot, 302
procedure for, 302

Probability, 175
Product-moment correlation coefficient, 210
Projectile point weights

early/middle/late archaic subsample,
169–171

period, comparison of, 168
stem-and-leaf plots for, 169, 171

shape differences, 170
Proportions and densities, 70–71
Pseudo three-dimensional bar graphs, 73
Purposive obsidian sample, 91–92
Purposive sampling, 86–88

Radiocarbon age, 258
Random number table, 82–84
Random sample

assumptions, 128
means of selection, 82
of projectile points, 108–109
sherds, ten excavation units, 244
from single population, 97
target population and, 94

Range
definition, 27
statistical properties, 35
of weights of flakes recovered from pits,

27–28
Rank order correlation coefficient, 222
Rank order relationship, magnitude of, 222
Regression analysis, 207, 211

mathematical complexity of, 206
measurement, 214
prediction, 208

Regression relationships, 212

Regular/trimmed standard deviation squared,
178

Representativeness, 85
Resampling technique

bootstrap (see Bootstrap)
jackknife, 138

Residuals
hoes and soil productivity, 215

scatter plot of, 216
number of hoes, 216
positive/negative, 215
predictions, 214
regression analysis, 213
soil productivity, 215

Rı́o Seco valley
hoes, Oasis phase sites, 214
number of hoes, 200
Oasis phase sites, 212

Row proportions, 69–70

Samples (See also Sampling)
comparison

on basis of error bars, 150
Formative and Classic period house

floor areas and size, 149–150
by one-sample t test, 156–157
in terms of level and spread, 148
by two-sample t test, 153–156
two-way, 150–151

dataset, 265–268
estimation of population means, 247–248
of given size, all possible, 97–99
of larger given size, all possible, 100–103
projectile points, lengths of, 247
sample mean, calculation of, 248
selection

biased, 92
effects of known or possible bias in, 89
large, 125–129
nonrandom ways of, 86

size and sampling fraction, 127
size, effect of, 189–190
standard error, 247

Sampling (See also Samples)
bias, 92–93
calculation check, 246
carbon atoms, 258
cluster sampling, 239
computerized solution, 246
definition of, 80
densities, 249
distribution of mean, 106
elements, 239
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estimation of population, 239
fraction, 127
heavy weight, 246
mean site size, 233
pooled estimate, 236
problem of, 259
purpose of, 80–82
random sample selection, 259
random sampling, 82–94, 249
and reality, 255–260
with replacement, 84–85
river bottom sites, 235
site areas (ha), 234
statistics, 251
stem-and-leaf plots

areas of sites, 235
symmetrical shape, 233

stratified random, 86
stratum pooling, 235
subgroups, population, 233–234
technical problems, impact, 243
weighted deviations calculation, 245

Scrapers
length, width, thickness, and weight of, 3
much too dense a stem-and-leaf plot of

weights of, 8
stem-and-leaf plot at an appropriate scale

of weights of, 7
too dense a stem-and-leaf plot of weights

of, 8
too sparse stem-and-leaf plot of

weights of, 6
Shell/sherd ratio, 266
Significance probability, 151–152
Significance, statistical concept of, 151
Significance tests, 157–159
Significant rank-order correlation, 226–230
Similarity and dissimilarity coefficients,

271–272
Simple random sampling, 85
Single linkage clustering, 310–312

dendrogram, 311
similarity coefficients, matrix of, 310

Skewed distribution, 52–53
Software solution, 283
Soil productivity ratings, 224
Spatial sampling, 240–243
Spearman’s rank correlation coefficient, 223,

224
calculation of, 223, 224
normal distributions, 228
probability values for, 228
rank order correlations, 228

rank ordering determination, 225
soil productivity, 225

Special batch, 103–104
characteristics of, 106
means of samples selected from population,

111–115
spread of, 111
standard deviation of (see Standard error)

Square transformation, 56
Standard deviation

equation for, 31
of flakeweights from pit 1, 31–32
of flakeweights from pit 2, 30
of proportion, 140
of special batch (see Standard error)
standardization of based on, 52trimmed

(see Trimmed standard deviation)
Standard error

definition of, 105
equation for, 105
error range of, 126

assessment of, 138
calibration, 122
at 95% confidence level, 123–129, 143
at fixed level of confidence, 122
graphical representation of, 149
level of confidence associated with,

119, 121, 126, 137
means of populations, 118
in notched box plots, 162
1 standard error range, 121–122, 140
t test and, 155

finite population corrector in equation for,
123–124

of mean, 137
pooled, 150–151
of sample, 105, 121

Standardized number scale, 47
Statistical reasoning, 257
Statistical tools, 259–260
Statistic analogous, 211
Statpack, 14
Stem-and-leaf plot

back-to-back (see Back-to-back
stem-and-leaf plots)

bunching of numbers in, 11, 12
of diameters of post holes at black site, 4
much too dense, 8
scale for

approaches to spreading out or
compressing, 8–9

appropriate, 4, 7
symmetry of batch with, 51–52
too dense, 7–8
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too sparse, 6
of weights of scrapers from black

site, 5–7
Straight-line equations

linear equation, 206
principles of, 204

Straight-line relationships
algebraically, 205
mathematical relationship, 204
scatter plot, 204

Stratified random sampling, 86
Stratified sampling

benefits of, 236–240
error range, 237

Strength, measures of, 188–189
Student’s t distribution, 118, 119
Sum of squares, 30

Target population
inferences about, 94
and population, discrepancies between, 95
random sampling procedures, 94

Transformations
for asymmetry correction

normal ruler, 59
upward skewness, 56–57

cube, 56
effect on shape of batch, 54–56
negative reciprocal, 56
selection,
square, 56

Trimmed mean, 21–22, 178
mean and median, 23
of population, 128–130

Trimmed standard deviation, 32
calculation of, 33
equation for, 33
for flake weights from Pit 1, 34

t test, 178, 194
assumptions, 161

one-sample, 156–157
two-sample, 153–156, 199

Two-peaked batch, 25
Two-sample t test

assumptions, 161
for Formative and Classic period house

floor area samples, 153–154
pooled standard error from, 154, 156

Variables, 200, 267
Variance

analysis, 168–173
archaeology, 175
calculation, 174
computer output for, 174
computer programs, 178
dependent/independent, 176
grouping/independent, 174
between groups, 171, 173
within groups, 172
populations vs. relationship, 176–178
regression analysis, 211
relationships vs. populations, 191
samples, 169
subsamples, 172

basic concept of, 29
equation for, 31

Vessel, sherds of, 183
expected number of, 184
row proportions of, 183
sample of, 189

Volume measurements, 221

Weight dependent variable, 174
Weighting factor, 245, 248
Weights comparison samples, 170
Winsorized batch, 33
Winsorized variance, 33
Wood-plank-with-mud-brick, 267
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