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Heterocedasticidade 



Regressão Linear - Inferência 
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Ø Para realizar testes de hipóteses, assumimos que u tem 
distribuição normal com média 0 e variância constante. 

 
Ø Nesse caso,  

Ø IMPORTANTE: Mesmo que u não tenha distribuição 
normal, se a amostra for relativamente grande as estatística 
t e F usuais tem uma distribuição que converge para as 
distribuições t-student e F. 

 
 

β̂ j −β j( )
se β̂ j( )

 ~ tn−k−1
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Revisão: Homocedasticidade 

} O pressuposto de homocedasticidade significa 
que a variância do erro não-observável é 
constante e independente do valor das 
variáveis explicativas 
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. 
x  x1 x2 

f(y|x) 

Exemplo de Heterocedasticidade 

x3 

. . 
E(y|x) = β0 + 
β1x 
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Consequências da Heterocedasticidade 

} MQO é não-enviesado mesmo na presença 
de heterocedasticidade.  

}  Porém, nesse caso, os erros padrões são 
enviesados.  

}  Portanto, as estatisticas t e F não são válidas. 
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Heterocedasticidade 

Importante: se o modelo tiver heterocedasticidade e 
os demais 4 pressupostos de Gauss-Markov 
continuarem válidos, o estimador MQO continua 
não-enviesado porém não é mais BLUE!  
 
Além disso, testes de hipóteses baseadas nas 
variâncias dos parâmetros estimadas por MQO não 
são mais válidos  



8 

Variância com Heterocedasticidade 

}   A variância e desvio-padrão robusto somente levarão a 
estatísticas t e F válidas se as amostras forem grandes. 
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Teste para Heterocedasticidade: Breusch-
Pagan 

} Queremos testar H0: Var(u|x1, x2,…, xk) = σ2  
}  Se assumirmos uma relação linear entre u2 e xj: 

   u2 = δ0 + δ1x1 +…+ δk xk + v 
  , podemos testar: 
} H0: δ1 = δ2 = … = δk = 0 
}  Esse é o teste Breusch-Pagan. 
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Teste White 

}   O Te s t e W h i t e p e r m i t e q u e a 
heterocedasticidade dependa das variáveis 
explicativas ao quadrado e produtos 
cruzados. 

}   Para simplificar o teste, procedemos da 
seguinte forma: 
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Teste White 

}   Fazemos a regressão dos resíduos ao 
quadrado nos valores de � e �2 e fazemos um 
teste F no R-quadrado 
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Mínimos Quadrados Ponderados 

}   Apesar de conseguirmos obter erros padrões robustos, 
se soubermos a forma funcional da heterocedasticidade, 
podemos obter estimativas mais eficientes.  

}  O métodos dos mínimos quadrados ponderados (MQP) 
ou weighted least squares (WLS) permite transformar o 
modelo tal que ele tenha erros homocedásticos, 
soubermos a forma exata da heterocedasticidade. Nesse 
caso WLS is BLUE!  

}  Assim como em MQO, os testes t e F são 
assintoticamente válidos ou exatamente válidos se os 
erros possuírem distribuição Normal. 
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}  FGLS não é não-enviesado, mas ainda consistente e 
assintoticamente eficiente. 

FGLS 



Variável Binária ou Dummy 



Variável Binária ou “Dummy” 

} Uma variável binária é aquela que toma 
dois valores possíveis, geralmente 0 e 1. 

} No nosso banco de dados trabalhado nas 
últimas aulas, female é uma variável 
binária. 
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Variável Binária ou “Dummy” 

} Considere o seguinte modelo com uma 
variável binária: 

} y = β0 + δ0d + β1x + u 
} Nesse caso, a variável d representa uma 

mudança de intercepto quando se passa 
de um grupo para o outro do banco de 
dados. 

}   If d = 0, y = β0 + β1x + u 
}   If d = 1, y = (β0 + δ0) + β1 x + u 
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Variável Binária ou “Dummy” 

} Considere agora o seguinte modelo: 
} y = β0 + δ1d + β1x + δ2d*x + u 
}   If d = 0, y = β0 + β1x + u 
}   If d = 1, y = (β0 + δ1) + (β1+ δ2) x + u 
}   Nesse modelo, a variável dummy permite 

uma mudança de intercepto, bem como 
uma mudança de inclinação. 
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Modelo Linear de Probabilidade 

}   Se a variável dependente for binária, então P(y 
= 1|x) = E(y|x). Nesse caso: 

}    P(y = 1|x) = β0 + β1x1 + … + βkxk 
}   Nesse caso, cada intercepto beta i mede o 

impacto de variações marginais em xi na 
probabilidade do evento 1 ocorrer. 

}   O valor previsto de y nesse é a probabilidade 
estimada do evento 1 ocorrer.  
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Modelo Linear de Probabilidade 

} Problema: nada impede que o y previsto 
não esteja no intervalo [0,1]. 

} Geralmente, esse modelo viola também o 
pressuposto de homocedasticidade. 
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Avaliação de Políticas/Programas 

}   Podemos utilizar variáveis dummy para avaliar 
o impacto de políticas/programas 

}   Por exemplo, qual o impacto da participação 
no programa Bolsa Família no nível educacional 
da família? 
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Avaliação de Políticas/Programas 

}  Problema: variáveis que influenciam a 
participação no Bolsa Família, como a renda 
dos ascendentes, também podem explicar o 
nível educacional. 

}  Isso levaria a viés nas estimações 



Estudo de Evento



Estudo de Evento (Event Study)

} Em um estudo de evento, estamos preocupados com
o impacto de um evento particular em um resultado.

} Por exemplo, considere o seguinte modelo com uma
variável binária “dt”:

} yt = b0 + d0dt + b1xt + ut
em que a variavel “dt” toma o valor um 1 quando o evento
ocorreu e zero nos demais períodos.

} Em um estudo de evento estamos interessados na
magnitude e significancia do coeficiente delta0,
associado à variável “dt”.

3



Exemplo 2

} Fair (1996) analisaram o efeito da performance
economica nos resultados das eleições
presidenciais.

} Para entender, utilize o arquivo stata denominado
“FAIR”.
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Escalas 



Escala 

Se o modelo populacional for dado por: 
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Em que y é o peso do indivíduo em gramas e 
quisermos transformar a unidade de medida 
para kg:  y/1000 
 
 
 
 
 
 

y = β0 +β1x +u



Escala 
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Se dividirmos os dois lados da equação pela 
mesma constante, tem-se o mesmo modelo: 
 
 
 
 
 

Quando fazemos uma regressão de y/1000 

contra x, obtemos uma estimativa de  
 
 
 
 
 

y
1000

=
β0
1000

+
β1
1000

x + u
1000

β1
1000



Escala 
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Suponha agora que queremos alterar a escala da 
variável explicativa x, altura, que está em cm, 
para metros: x/100 
 
Veja que podemos reescrever o modelo como: 
 
 
 
Quando fazemos uma regressão de y contra x/
100, obtemos uma estimativa de  
 
 
 
 
 

y = β0 +100β1
x
100

+u

100β1



Formas Funcionais 



Linearidade 

}  Até agora, consideramos o modelo linear: 
 

}  Esse modelo preve um impacto constante    , também 
chamado de efeito marginal de x em y, que independe 
do valor inicial de x: 

 
}  Em:  

}        é chamado de efeito parcial de x1 em y 
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y = β0 +β1x +u

β1
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this is a generalization of equation (A.7). (There, yi � xi for all i.)
The average is the measure of central tendency that we will focus on in most of this text. 

However, it is sometimes informative to use the median (or sample median ) to describe the 
central value. To obtain the median of the n  numbers {x1, …, xn }, we first order the values 
of the xi from smallest to largest. Then, if n  is odd, the sample median is the middle number 
of the ordered observations. For example, given the numbers {�4,8,2,0,21,�10,18}, the 
median value is 2 (because the ordered sequence is {�10,�4,0,2,8,18,21}). If we change 
the largest number in this list, 21, to twice its value, 42, the median is still 2. By contrast, 
the sample average would increase from 5 to 8, a sizable change. Generally, the median is 
less sensitive than the average to changes in the extreme values (large or small) in a list of 
numbers. This is why “median incomes” or “median housing values” are often reported, 
rather than averages, when summarizing income or housing values in a city or county.

If n  is even, there is no unique way to define the median because there are two 
 numbers at the center. Usually, the median is defined to be the average of the two middle 
values (again, after ordering the numbers from smallest to largest). Using this rule, the 
median for the set of numbers {4,12,2,6} would be (4 ��6)/2 � 5.

A.2 Properties of Linear Functions
Linear functions play an important role in econometrics because they are simple to inter-
pret and manipulate. If x and y are two variables related by

 y � C0 � C1x, [A.9]

then we say that y is a linear function of x, and C0 and C1 are two parameters (numbers) 
describing this relationship. The intercept is C0, and the slope is C1.

The defining feature of a linear function is that the change in y is always C1 times the 
change in x:

� $y � C1$x, [A.10]

where $ denotes “change.” In other words, the marginal effect of x on y is constant and 
equal to C1.
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 EXAMPLE A.1 LINEAR HOUSING EXPENDITURE FUNCTION

Suppose that the relationship between monthly housing expenditure and monthly in come is

 housing � 164 � .27 income. [A.11]

Then, for each additional dollar of income, 27 cents is spent on housing. If family income 
in creases by $200, then housing expenditure increases by (.27)200 � $54. This function is 
graphed in Figure A.1.

According to equation (A.11), a family with no income spends $164 on housing, 
which of course cannot be literally true. For low levels of income, this linear function 
would not describe the relationship between housing and income very well, which is why 
we will eventually have to use other types of functions to describe such relationships.

In (A.11), the marginal propensity to consume (MPC) housing out of income is .27. 
This is different from the average propensity to consume (APC), which is 

  housing _______ 
income

  �� 164/income � .27.

The APC is not constant, it is always larger than the MPC, and it gets closer to the MPC 
as income increases.

Linear functions are easily defined for more than two variables. Suppose that y is 
 related to two variables, x1 and x2, in the general form

 y � C0 � C1x1 � C2x2. [A.12]

F I G U R E  A . 1  Graph of housing � 164 � .27 income.
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It is rather difficult to envision this function because its graph is three-dimensional. 
 Nevertheless, C0 is still the intercept (the value of y when x1 � 0 and x2 � 0), and C1 and C2 
measure particular slopes. From (A.12), the change in y, for given changes in x1 and x2, is

� $y � C1$x1 � C2$x2. [A.13]

If x2 does not change, that is, $x2 � 0, then we have

� $y � C1$x1 if $x2 � 0,

so that C1 is the slope of the relationship in the direction of x1:

C1 �   
 $y

 ____ 
$x1

   if $x2 � 0.

Because it measures how y changes with x1, holding x2 fixed, C1 is often called the  partial 
effect of x1 on y. Because the partial effect involves holding other factors fixed, it is closely 
linked to the notion of ceteris paribus. The parameter C2 has a similar interpretation: 
C2 � $y/$x2 if $x1 � 0, so that C2 is the partial effect of x2 on y.

 EXAMPLE A.2 DEMAND FOR COMPACT DISCS

For college students, suppose that the monthly quantity demanded of compact discs is 
 related to the price of compact discs and monthly discretionary income by

quantity � 120 � 9.8 price � .03 income,

where price is dollars per disc and income is measured in dollars. The demand curve is 
the relationship between quantity and price, holding income (and other factors) fixed. 
This is graphed in two dimensions in Figure A.2 at an income level of $900. The slope 
of the demand curve, �9.8, is the partial effect of price on quantity: holding income 
fixed, if the price of compact discs increases by one dollar, then the quantity demanded 
falls by 9.8. (We abstract from the fact that CDs can only be purchased in discrete units.) 
An increase in income simply shifts the demand curve up (changes the intercept), but 
the slope remains the same.

A.3 Proportions and Percentages
Proportions and percentages play such an important role in applied economics that it 
is necessary to become very comfortable in working with them. Many quantities reported 
in the popular press are in the form of percentages; a few examples are interest rates, un-
employment rates, and high school graduation rates.

An important skill is being able to convert proportions to percentages and vice versa. 
A percentage is easily obtained by multiplying a proportion by 100. For  example, if the 
proportion of adults in a county with a high school degree is .82, then we say that 82% 
(82 percent) of adults have a high school degree. Another way to think of percentages 
and proportions is that a proportion is the decimal form of a percentage. For example, if 

β1



Linearidade 

28 

 APPENDIX A Basic Mathematical Tools 705

This can be shown using basic properties of the summation operator:

  ∑ 
i�1

   
n

    (xi �  - x )2 �  ∑ 
i�1

   
n

     (xi
2 � 2xi  

- x  � x̄2)

  �  ∑ 
i�1

   
n

     xi
2 � 2x̄  ∑ 

i�1

   
n

     xi � n (  
- x )2

  �  ∑ 
i�1

   
n

     xi
2 � 2n (  

- x )2 � n (  
- x )2  �  ∑ 

i�1

   
n

     xi
2 � n (  

- x )2.

Given a data set on two variables, {(xi,yi): i ��1, 2, …,  n }, it can also be shown that

  ∑ 
i�1

   
n

     (xi �   
- x )(  yi �   

- y ) �  ∑ 
i�1

   
n

     xi(  yi �   
- y )

� �  ∑ 
i�1

   
n

    (xi �   
- x )yi �  ∑ 

i�1

   
n

     xi yi � n (  
- x .  

- y ); [A.8]

this is a generalization of equation (A.7). (There, yi � xi for all i.)
The average is the measure of central tendency that we will focus on in most of this text. 

However, it is sometimes informative to use the median (or sample median ) to describe the 
central value. To obtain the median of the n  numbers {x1, …, xn }, we first order the values 
of the xi from smallest to largest. Then, if n  is odd, the sample median is the middle number 
of the ordered observations. For example, given the numbers {�4,8,2,0,21,�10,18}, the 
median value is 2 (because the ordered sequence is {�10,�4,0,2,8,18,21}). If we change 
the largest number in this list, 21, to twice its value, 42, the median is still 2. By contrast, 
the sample average would increase from 5 to 8, a sizable change. Generally, the median is 
less sensitive than the average to changes in the extreme values (large or small) in a list of 
numbers. This is why “median incomes” or “median housing values” are often reported, 
rather than averages, when summarizing income or housing values in a city or county.

If n  is even, there is no unique way to define the median because there are two 
 numbers at the center. Usually, the median is defined to be the average of the two middle 
values (again, after ordering the numbers from smallest to largest). Using this rule, the 
median for the set of numbers {4,12,2,6} would be (4 ��6)/2 � 5.

A.2 Properties of Linear Functions
Linear functions play an important role in econometrics because they are simple to inter-
pret and manipulate. If x and y are two variables related by

 y � C0 � C1x, [A.9]

then we say that y is a linear function of x, and C0 and C1 are two parameters (numbers) 
describing this relationship. The intercept is C0, and the slope is C1.

The defining feature of a linear function is that the change in y is always C1 times the 
change in x:

� $y � C1$x, [A.10]

where $ denotes “change.” In other words, the marginal effect of x on y is constant and 
equal to C1.
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Linearidade 

}  É comum fazer-se a regressão de log(y) contra x. A 
interpretação do modelo faz mais sentido para 
muitos problemas em ciências sociais. Em nosso 
exemplo anterior, teríamos:  

29 

 CHAPTER 2 The Simple Regression Model 41

by some nonzero constant, c, then the OLS slope coefficient is multiplied or divided by c, 
respectively.

The intercept has not changed in (2.41) because roedec � 0 still corresponds to a zero 
return on equity. In general, changing the units of measurement of only the independent 
variable does not affect the intercept.

In the previous section, we defined R-squared as a goodness-of-fit measure for 
OLS regression. We can also ask what happens to R2 when the unit of measurement of 
 either the independent or the dependent variable changes. Without doing any algebra, we 
should know the result: the goodness-of-fit of the model should not depend on the units of 
 measurement of our variables. For example, the amount of variation in salary explained by 
the return on equity should not depend on whether salary is measured in dollars or in thou-
sands of dollars or on whether return on equity is a percentage or a decimal. This  intuition 
can be verified mathematically: using the definition of R2, it can be shown that R2 is, in 
fact, invariant to changes in the units of y or x.

Incorporating Nonlinearities in Simple Regression
So far, we have focused on linear relationships between the dependent and indepen- 
dent variables. As we mentioned in Chapter 1, linear relationships are not nearly general 
enough for all economic applications. Fortunately, it is rather easy to incorporate many 
nonlinearities into simple regression analysis by appropriately defining the dependent 
and independent variables. Here, we will cover two possibilities that often appear in ap-
plied work.

In reading applied work in the social sciences, you will often encounter regression 
equations where the dependent variable appears in logarithmic form. Why is this done? 
Recall the wage-education example, where we regressed hourly wage on years of educa-
tion. We obtained a slope estimate of 0.54 [see equation (2.27)], which means that each 
additional year of education is predicted to increase hourly wage by 54 cents. Because of 
the linear nature of (2.27), 54 cents is the increase for either the first year of education or 
the twentieth year; this may not be reasonable.

Probably a better characterization of how wage changes with education is that each 
year of education increases wage by a constant percentage. For example, an increase in 
education from 5 years to 6 years increases wage by, say, 8% (ceteris paribus), and an 
increase in education from 11 to 12 years also increases wage by 8%. A model that gives 
(approximately) a constant percentage effect is

 log(wage) � C0 � C1educ � u, [2.42]

where log(�) denotes the natural logarithm. (See Appendix A for a review of logarithms.) 
In particular, if $u � 0, then

 %$wage � (100 �C1)$educ. [2.43]

Notice how we multiply C1 by 100 to get the percentage change in wage given one ad-
ditional year of education. Since the percentage change in wage is the same for each 
 additional year of education, the change in wage for an extra year of education increases 

716 APPENDICES 

The Exponential Function
Before leaving this section, we need to discuss a special function that is related to the 
log. As motivation, consider equation (A.27). There, log( y) is a linear function of x. 
But how do we find y itself as a function of x? The answer is given by the exponential 
function.

We will write the exponential function as y � exp(x), which is graphed in Figure A.5. 
From Figure A.5, we see that exp(x) is defined for any value of x and is always greater 
than zero. Sometimes, the exponential function is written as y � e x, but we will not use 
this notation. Two important values of the exponential function are exp(0) � 1 and exp(1) 
� 2.7183 (to four decimal places).

The exponential function is the inverse of the log function in the following 
sense: log[exp(x)] � x for all x, and exp[log(x)] � x for x � 0. In other words, the 
log “undoes” the exponential, and vice versa. (This is why the exponential function is 
sometimes called the anti-log function.) In particular, note that log(y) � C0 � C1x is 
equivalent to

 y � exp(  C0 � C1x).

If C1 � 0, the relationship between x and y has the same shape as in Figure A.5. Thus, if 
log(y) � C0 � C1x with C1 � 0, then x has an increasing marginal effect on y. In Example 
A.6, this means that another year of education leads to a larger change in wage than the 
previous year of education.

Two useful facts about the exponential function are exp(x1 � x2) � exp(x1)exp(x2) 
and exp[c.log(x)] � xc.

0

y

x

y = exp(x)

F I G U R E  A . 5  Graph of y � exp(x).
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Linearidade 

}  Utilizando cálculo, é possível demonstrar que: 

}  Em  
 
      , multiplicando-se por 100 tem-se: 

30 
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The logarithm can be used for various approximations that arise in econometric appli-
cations. First, log(1 � x) � x for x � 0. You can try this with x � .02, .1, and .5 to see how 
the quality of the approximation deteriorates as x gets larger. Even more useful is the fact 
that the difference in logs can be used to approximate proportionate changes. Let x0 and x1 
be positive values. Then, it can be shown (using calculus) that

 log(x1) � log(x0) � (x1 � x0)/x0 � $x/x0 [A.22]

for small changes in x. If we multiply equation (A.22) by 100 and write $log(x) � log(x1) 
� log(x0), then

 100.$log(x) � %$x [A.23]

for small changes in x. The meaning of “small” depends on the context, and we will en-
counter several examples throughout this text.

Why should we approximate the percentage change using (A.23) when the exact per-
centage change is so easy to compute? Momentarily, we will see why the approximation 
in (A.23) is useful in econometrics. First, let us see how good the approximation is in two 
examples.

First, suppose x0 � 40 and x1 � 41. Then, the percentage change in x in moving from 
x0 to x1 is 2.5%, using 100(x1 � x0)/x0. Now, log(41) � log(40) � .0247 to four decimal 
places, which when multiplied by 100 is very close to 2.5. The approximation works pretty 
well. Now, consider a much bigger change: x0 � 40 and x1 � 60. The exact percentage 
change is 50%. However, log(60) � log(40) � .4055, so the approximation gives 40.55%, 
which is much farther off.

Why is the approximation in (A.23) useful if it is only satisfactory for small changes? 
To build up to the answer, we first define the elasticity of y with respect to x as

0

y

1 x

y = log(x)

F I G U R E  A . 4  Graph of y � log(x).
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by some nonzero constant, c, then the OLS slope coefficient is multiplied or divided by c, 
respectively.

The intercept has not changed in (2.41) because roedec � 0 still corresponds to a zero 
return on equity. In general, changing the units of measurement of only the independent 
variable does not affect the intercept.

In the previous section, we defined R-squared as a goodness-of-fit measure for 
OLS regression. We can also ask what happens to R2 when the unit of measurement of 
 either the independent or the dependent variable changes. Without doing any algebra, we 
should know the result: the goodness-of-fit of the model should not depend on the units of 
 measurement of our variables. For example, the amount of variation in salary explained by 
the return on equity should not depend on whether salary is measured in dollars or in thou-
sands of dollars or on whether return on equity is a percentage or a decimal. This  intuition 
can be verified mathematically: using the definition of R2, it can be shown that R2 is, in 
fact, invariant to changes in the units of y or x.

Incorporating Nonlinearities in Simple Regression
So far, we have focused on linear relationships between the dependent and indepen- 
dent variables. As we mentioned in Chapter 1, linear relationships are not nearly general 
enough for all economic applications. Fortunately, it is rather easy to incorporate many 
nonlinearities into simple regression analysis by appropriately defining the dependent 
and independent variables. Here, we will cover two possibilities that often appear in ap-
plied work.

In reading applied work in the social sciences, you will often encounter regression 
equations where the dependent variable appears in logarithmic form. Why is this done? 
Recall the wage-education example, where we regressed hourly wage on years of educa-
tion. We obtained a slope estimate of 0.54 [see equation (2.27)], which means that each 
additional year of education is predicted to increase hourly wage by 54 cents. Because of 
the linear nature of (2.27), 54 cents is the increase for either the first year of education or 
the twentieth year; this may not be reasonable.

Probably a better characterization of how wage changes with education is that each 
year of education increases wage by a constant percentage. For example, an increase in 
education from 5 years to 6 years increases wage by, say, 8% (ceteris paribus), and an 
increase in education from 11 to 12 years also increases wage by 8%. A model that gives 
(approximately) a constant percentage effect is

 log(wage) � C0 � C1educ � u, [2.42]

where log(�) denotes the natural logarithm. (See Appendix A for a review of logarithms.) 
In particular, if $u � 0, then

 %$wage � (100 �C1)$educ. [2.43]

Notice how we multiply C1 by 100 to get the percentage change in wage given one ad-
ditional year of education. Since the percentage change in wage is the same for each 
 additional year of education, the change in wage for an extra year of education increases 
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by some nonzero constant, c, then the OLS slope coefficient is multiplied or divided by c, 
respectively.

The intercept has not changed in (2.41) because roedec � 0 still corresponds to a zero 
return on equity. In general, changing the units of measurement of only the independent 
variable does not affect the intercept.

In the previous section, we defined R-squared as a goodness-of-fit measure for 
OLS regression. We can also ask what happens to R2 when the unit of measurement of 
 either the independent or the dependent variable changes. Without doing any algebra, we 
should know the result: the goodness-of-fit of the model should not depend on the units of 
 measurement of our variables. For example, the amount of variation in salary explained by 
the return on equity should not depend on whether salary is measured in dollars or in thou-
sands of dollars or on whether return on equity is a percentage or a decimal. This  intuition 
can be verified mathematically: using the definition of R2, it can be shown that R2 is, in 
fact, invariant to changes in the units of y or x.
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and independent variables. Here, we will cover two possibilities that often appear in ap-
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additional year of education is predicted to increase hourly wage by 54 cents. Because of 
the linear nature of (2.27), 54 cents is the increase for either the first year of education or 
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Probably a better characterization of how wage changes with education is that each 
year of education increases wage by a constant percentage. For example, an increase in 
education from 5 years to 6 years increases wage by, say, 8% (ceteris paribus), and an 
increase in education from 11 to 12 years also increases wage by 8%. A model that gives 
(approximately) a constant percentage effect is

 log(wage) � C0 � C1educ � u, [2.42]

where log(�) denotes the natural logarithm. (See Appendix A for a review of logarithms.) 
In particular, if $u � 0, then
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ditional year of education. Since the percentage change in wage is the same for each 
 additional year of education, the change in wage for an extra year of education increases 

42 PART 1 Regression Analysis with Cross-Sectional Data

wage

educ0

F I G U R E  2 . 6  wage � exp(B0 � B1educ), with B1 > 0.

 EXAMPLE 2.10 A LOG WAGE EQUATION

Using the same data as in Example 2.4, but using log(wage) as the dependent variable, we 
obtain the following relationship:

  ̂  log(wage)    � 0.584 � 0.083 educ [2.44]

           n � 526, R2 � 0.186. 

The coefficient on educ has a percentage interpretation when it is multiplied by 100:  @�wage  
increases by 8.3% for every additional year of education. This is what economists mean 
when they refer to the “return to another year of education.”

It is important to remember that the main reason for using the log of wage in (2.42) 
is to impose a constant percentage effect of education on wage. Once equation (2.44) is 
obtained, the natural log of wage is rarely mentioned. In particular, it is not correct to say 
that another year of education increases log(wage) by 8.3%.

The intercept in (2.44) is not very meaningful, because it gives the predicted 
log(wage), when educ � 0. The R-squared shows that educ explains about 18.6% of the 
variation in log(wage) (not wage). Finally, equation (2.44) might not capture all of the 
nonlinearity in the relationship between wage and schooling. If there are “diploma ef-
fects,” then the twelfth year of education—graduation from high school—could be worth 
much more than the eleventh year. We will learn how to allow for this kind of nonlinearity 
in Chapter 7.
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A.4 Some Special Functions and Their Properties
In Section A.2, we reviewed the basic properties of linear functions. We already indicated 
one important feature of functions like y � C0 � C1x: a one-unit change in x results in 
the same change in y, regardless of the initial value of x. As we noted earlier, this is the 
same as saying the marginal effect of x on y is constant, something that is not realistic for 
many economic relationships. For example, the important economic notion of diminishing 
 marginal returns is not consistent with a linear relationship.

In order to model a variety of economic phenomena, we need to study several nonlin-
ear functions. A nonlinear function is characterized by the fact that the change in y for a 
given change in x depends on the starting value of x. Certain nonlinear functions  appear 
frequently in empirical economics, so it is important to know how to interpret them.  
A complete understanding of nonlinear functions takes us into the realm of calculus. Here, 
we simply summarize the most significant aspects of the functions, leaving the details of 
some derivations for Section A.5.

Quadratic Functions
One simple way to capture diminishing returns is to add a quadratic term to a linear rela-
tionship. Consider the equation

 y � C0 � C1x � C2  x
2, [A.16]

where C0, C1, and C2 are parameters. When C1 � 0 and C2 � 0, the relationship between y 
and x has the parabolic shape given in Figure A.3, where C0 � 6, C1 � 8, and C2 � �2.

When C1 � 0 and C2 � 0, it can be shown (using calculus in the next section) that the 
maximum of the function occurs at the point

 x* � C1/(�2C2). [A.17]

For example, if y � 6 � 8x � 2x2 (so C1 � 8 and C2 � �2), then the largest value of y 
 occurs at x* � 8/4 � 2, and this value is 6 � 8(2) � 2(2)2 � 14 (see Figure A.3).

The fact that equation (A.16) implies a diminishing marginal effect of x on y is  easily 
seen from its graph. Suppose we start at a low value of x and then increase x by some amount, 
say, c. This has a larger effect on y than if we start at a higher value of x and increase x by the 
same amount c. In fact, once x � x*, an increase in x actually decreases y.

The statement that x has a diminishing marginal effect on y is the same as saying that 
the slope of the function in Figure A.3 decreases as x increases. Although this is clear from 
looking at the graph, we usually want to quantify how quickly the slope is changing. An 
application of calculus gives the approximate slope of the quadratic function as

 slope �   
$y

 ___ 
$x

   � C1 � 2C2  x, [A.18]

for “small” changes in x. [The right-hand side of equation (A.18) is the derivative of the 
function in equation (A.16) with respect to x.] Another way to write this is

� $y � (C1 � 2C2x)$x  for “small” $x. [A.19]

 APPENDIX A Basic Mathematical Tools 711

To see how well this approximation works, consider again the function y � 6 � 8x � 2x2. 
Then, according to equation (A.19), $y � (8 � 4x)$x. Now, suppose we start at x � 1 and 
change x by $x � .1. Using (A.19), $y � (8 � 4)(.1) � .4. Of course, we can compute 
the change exactly by finding the values of y when x � 1 and x � 1.1: y0 � 6 � 8(1) ���
2(1)2 � 12 and y1 � 6 � 8(1.1) � 2(1.1)2 � 12.38, so the exact change in y is .38. The 
approximation is pretty close in this case.

Now, suppose we start at x � 1 but change x by a larger amount: $x � .5. Then, the 
approximation gives $y � 4(.5) � 2. The exact change is determined by finding the dif-
ference in y when x � 1 and x � 1.5. The former value of y was 12, and the latter value 
is 6 � 8(1.5) � 2(1.5)2 � 13.5, so the actual change is 1.5 (not 2). The approximation is 
worse in this case because the change in x is larger.

For many applications, equation (A.19) can be used to compute the approximate mar-
ginal effect of x on y for any initial value of x and small changes. And, we can always 
compute the exact change if necessary.

 EXAMPLE A.4 A QUADRATIC WAGE FUNCTION

Suppose the relationship between hourly wages and years in the workforce (exper) is 
given by

 wage � 5.25 � .48 exper � .008 exper2. [A.20]

This function has the same general shape as the one in Figure A.3. Using equation (A.17), 
exper has a positive effect on wage up to the turning point, exper* � .48/[2(.008)] � 30. 
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F I G U R E  A . 3  Graph of y � 6 � 8x � 2x2. 
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A.4 Some Special Functions and Their Properties
In Section A.2, we reviewed the basic properties of linear functions. We already indicated 
one important feature of functions like y � C0 � C1x: a one-unit change in x results in 
the same change in y, regardless of the initial value of x. As we noted earlier, this is the 
same as saying the marginal effect of x on y is constant, something that is not realistic for 
many economic relationships. For example, the important economic notion of diminishing 
 marginal returns is not consistent with a linear relationship.

In order to model a variety of economic phenomena, we need to study several nonlin-
ear functions. A nonlinear function is characterized by the fact that the change in y for a 
given change in x depends on the starting value of x. Certain nonlinear functions  appear 
frequently in empirical economics, so it is important to know how to interpret them.  
A complete understanding of nonlinear functions takes us into the realm of calculus. Here, 
we simply summarize the most significant aspects of the functions, leaving the details of 
some derivations for Section A.5.

Quadratic Functions
One simple way to capture diminishing returns is to add a quadratic term to a linear rela-
tionship. Consider the equation

 y � C0 � C1x � C2  x
2, [A.16]

where C0, C1, and C2 are parameters. When C1 � 0 and C2 � 0, the relationship between y 
and x has the parabolic shape given in Figure A.3, where C0 � 6, C1 � 8, and C2 � �2.

When C1 � 0 and C2 � 0, it can be shown (using calculus in the next section) that the 
maximum of the function occurs at the point

 x* � C1/(�2C2). [A.17]

For example, if y � 6 � 8x � 2x2 (so C1 � 8 and C2 � �2), then the largest value of y 
 occurs at x* � 8/4 � 2, and this value is 6 � 8(2) � 2(2)2 � 14 (see Figure A.3).

The fact that equation (A.16) implies a diminishing marginal effect of x on y is  easily 
seen from its graph. Suppose we start at a low value of x and then increase x by some amount, 
say, c. This has a larger effect on y than if we start at a higher value of x and increase x by the 
same amount c. In fact, once x � x*, an increase in x actually decreases y.

The statement that x has a diminishing marginal effect on y is the same as saying that 
the slope of the function in Figure A.3 decreases as x increases. Although this is clear from 
looking at the graph, we usually want to quantify how quickly the slope is changing. An 
application of calculus gives the approximate slope of the quadratic function as
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for “small” changes in x. [The right-hand side of equation (A.18) is the derivative of the 
function in equation (A.16) with respect to x.] Another way to write this is

� $y � (C1 � 2C2x)$x  for “small” $x. [A.19]
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To see how well this approximation works, consider again the function y � 6 � 8x � 2x2. 
Then, according to equation (A.19), $y � (8 � 4x)$x. Now, suppose we start at x � 1 and 
change x by $x � .1. Using (A.19), $y � (8 � 4)(.1) � .4. Of course, we can compute 
the change exactly by finding the values of y when x � 1 and x � 1.1: y0 � 6 � 8(1) ���
2(1)2 � 12 and y1 � 6 � 8(1.1) � 2(1.1)2 � 12.38, so the exact change in y is .38. The 
approximation is pretty close in this case.

Now, suppose we start at x � 1 but change x by a larger amount: $x � .5. Then, the 
approximation gives $y � 4(.5) � 2. The exact change is determined by finding the dif-
ference in y when x � 1 and x � 1.5. The former value of y was 12, and the latter value 
is 6 � 8(1.5) � 2(1.5)2 � 13.5, so the actual change is 1.5 (not 2). The approximation is 
worse in this case because the change in x is larger.

For many applications, equation (A.19) can be used to compute the approximate mar-
ginal effect of x on y for any initial value of x and small changes. And, we can always 
compute the exact change if necessary.

 EXAMPLE A.4 A QUADRATIC WAGE FUNCTION

Suppose the relationship between hourly wages and years in the workforce (exper) is 
given by

 wage � 5.25 � .48 exper � .008 exper2. [A.20]

This function has the same general shape as the one in Figure A.3. Using equation (A.17), 
exper has a positive effect on wage up to the turning point, exper* � .48/[2(.008)] � 30. 
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$y
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$��x

    .    x __  y   �   
%$y

 _____ 
%$��x

   . [A.24]

In other words, the elasticity of y with respect to x is the percentage change in y when x 
increases by 1%. This notion should be familiar from introductory economics.

If y is a linear function of x, y � C0 � C1x, then the elasticity is

   
$y

 ___ 
$��x

    .    x __  y   � C1
.    x __  y    � C1

.   x ________ 
C0 � C1x

   , [A.25]

which clearly depends on the value of x. (This is a generalization of the well-known  result 
from basic demand theory: the elasticity is not constant along a straight-line demand 
curve.)

Elasticities are of critical importance in many areas of applied economics, not just in 
demand theory. It is convenient in many situations to have constant elasticity models, and 
the log function allows us to specify such models. If we use the approximation in (A.23) 
for both x and y, then the elasticity is approximately equal to $log(y)/$log(x). Thus, a 
constant elasticity model is approximated by the equation

 log(y) � C0 � C1log(x), [A.26]

and C1 is the elasticity of y with respect to x (assuming that x, y � 0).

 EXAMPLE A.5 CONSTANT ELASTICITY DEMAND FUNCTION

If q  is quantity demanded and p  is price and these variables are related by

 log(q ) � 4.7 � 1.25 log( p ),

then the price elasticity of demand is �1.25. Roughly, a 1% increase in price leads to a 
1.25% fall in the quantity demanded.

For our purposes, the fact that C1 in (A.26) is only close to the elasticity is not 
 important. In fact, when the elasticity is defined using calculus—as in Section A.5—the 
 definition is exact. For the purposes of econometric analysis, (A.26) defines a constant 
elasticity model. Such models play a large role in empirical economics.

Other possibilities for using the log function often arise in empirical work. Suppose 
that y � 0 and

 log(y) � C0 � C1x. [A.27]

Then, $log(y) � C1$x, so 100.$log(y) � (100.C1)$x. It follows that, when y and x are 
related by equation (A.27),

 %$y � (100.C1)$x. [A.28]
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β1 = log(y) / log(x)



Linearidade 

}  Elasticidade de y com relação a x é definida pela 
variação percentual de y dividida pela variação 
percentual de x: 

}  (Cálculo) A elasticidade pode ser aproximada por: 

 
 

 

36 

714 APPENDICES 

   
$y

 ___ 
$��x

    .    x __  y   �   
%$y

 _____ 
%$��x

   . [A.24]

In other words, the elasticity of y with respect to x is the percentage change in y when x 
increases by 1%. This notion should be familiar from introductory economics.

If y is a linear function of x, y � C0 � C1x, then the elasticity is

   
$y

 ___ 
$��x

    .    x __  y   � C1
.    x __  y    � C1

.   x ________ 
C0 � C1x

   , [A.25]

which clearly depends on the value of x. (This is a generalization of the well-known  result 
from basic demand theory: the elasticity is not constant along a straight-line demand 
curve.)

Elasticities are of critical importance in many areas of applied economics, not just in 
demand theory. It is convenient in many situations to have constant elasticity models, and 
the log function allows us to specify such models. If we use the approximation in (A.23) 
for both x and y, then the elasticity is approximately equal to $log(y)/$log(x). Thus, a 
constant elasticity model is approximated by the equation

 log(y) � C0 � C1log(x), [A.26]

and C1 is the elasticity of y with respect to x (assuming that x, y � 0).

 EXAMPLE A.5 CONSTANT ELASTICITY DEMAND FUNCTION

If q  is quantity demanded and p  is price and these variables are related by

 log(q ) � 4.7 � 1.25 log( p ),

then the price elasticity of demand is �1.25. Roughly, a 1% increase in price leads to a 
1.25% fall in the quantity demanded.

For our purposes, the fact that C1 in (A.26) is only close to the elasticity is not 
 important. In fact, when the elasticity is defined using calculus—as in Section A.5—the 
 definition is exact. For the purposes of econometric analysis, (A.26) defines a constant 
elasticity model. Such models play a large role in empirical economics.

Other possibilities for using the log function often arise in empirical work. Suppose 
that y � 0 and

 log(y) � C0 � C1x. [A.27]

Then, $log(y) � C1$x, so 100.$log(y) � (100.C1)$x. It follows that, when y and x are 
related by equation (A.27),

 %$y � (100.C1)$x. [A.28]
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In other words, the elasticity of y with respect to x is the percentage change in y when x 
increases by 1%. This notion should be familiar from introductory economics.
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which clearly depends on the value of x. (This is a generalization of the well-known  result 
from basic demand theory: the elasticity is not constant along a straight-line demand 
curve.)

Elasticities are of critical importance in many areas of applied economics, not just in 
demand theory. It is convenient in many situations to have constant elasticity models, and 
the log function allows us to specify such models. If we use the approximation in (A.23) 
for both x and y, then the elasticity is approximately equal to $log(y)/$log(x). Thus, a 
constant elasticity model is approximated by the equation

 log(y) � C0 � C1log(x), [A.26]

and C1 is the elasticity of y with respect to x (assuming that x, y � 0).

 EXAMPLE A.5 CONSTANT ELASTICITY DEMAND FUNCTION

If q  is quantity demanded and p  is price and these variables are related by

 log(q ) � 4.7 � 1.25 log( p ),

then the price elasticity of demand is �1.25. Roughly, a 1% increase in price leads to a 
1.25% fall in the quantity demanded.

For our purposes, the fact that C1 in (A.26) is only close to the elasticity is not 
 important. In fact, when the elasticity is defined using calculus—as in Section A.5—the 
 definition is exact. For the purposes of econometric analysis, (A.26) defines a constant 
elasticity model. Such models play a large role in empirical economics.

Other possibilities for using the log function often arise in empirical work. Suppose 
that y � 0 and

 log(y) � C0 � C1x. [A.27]

Then, $log(y) � C1$x, so 100.$log(y) � (100.C1)$x. It follows that, when y and x are 
related by equation (A.27),

 %$y � (100.C1)$x. [A.28]
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We end this subsection by summarizing four combinations of functional forms avail-
able from using either the original variable or its natural log. In Table 2.3, x and y stand for 
the variables in their original form. The model with y as the dependent variable and x as 
the independent variable is called the level-level model because each variable appears in its 
level form. The model with log(y) as the dependent variable and x as the independent vari-
able is called the log-level model. We will not explicitly discuss the level-log model here, 
because it arises less often in practice. In any case, we will see examples of this model in 
later chapters.

The last column in Table 2.3 gives the interpretation of C1. In the log-level model, 
100 �C1 is sometimes called the semi-elasticity of y with respect to x. As we mentioned in 
Example 2.11, in the log-log model, C1 is the elasticity of y with respect to x. Table 2.3 
warrants careful study, as we will refer to it often in the remainder of the text.

The Meaning of “Linear” Regression
The simple regression model that we have studied in this chapter is also called the simple 
linear regression model. Yet, as we have just seen, the general model also  allows for 
 certain nonlinear relationships. So what does “linear” mean here? You can see by look-
ing at equation (2.1) that y � C0 � C1x � u. The key is that this equation is linear in 
the param e ters C0 and C1. There are no restrictions on how y and x relate to the original 
explained and explanatory variables of interest. As we saw in Examples 2.10 and 2.11, 
y and x can be natural logs of variables, and this is quite common in applications. But 
we need not stop there. For example, nothing prevents us from using simple regression 
to estimate a model such as cons � C0 � C1 √

___
 inc   � u, where cons is annual consumption 

and inc is annual income.
Whereas the mechanics of simple regression do not depend on how y and x are de-

fined, the interpretation of the coefficients does depend on their definitions. For successful 
empirical work, it is much more important to become proficient at interpreting coefficients 
than to become efficient at computing formulas such as (2.19). We will get much more 
practice with interpreting the estimates in OLS regression lines when we study multiple 
regression.

Plenty of models cannot be cast as a linear regression model because they are not 
linear in their parameters; an example is cons � 1/(C0 � C1inc) � u. Estimation of such 
models takes us into the realm of the nonlinear regression model, which is beyond the 
scope of this text. For most applications, choosing a model that can be put into the linear 
regression framework is sufficient.

T A B L E  2 . 3  Summary of Functional Forms Involving Logarithms

Model
Dependent

Variable
Independent

Variable
Interpretation

of B1

Level-level y x $y � C1$x

Level-log y log(x) $y � (C1/100)%$x

Log-level log(y) x %$y � (100C1)$x

Log-log log(y) log(x) %$y � C1%$x
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