Lecture 7
Hydrodynamics

Part |

The description we are about to see is called the “Heavy-lon
Standard Model”
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Context

It did not start well:

(Some) particle physicists (ca. 90’s): “performing relativistic heavy ion
collisions is like colliding fancy sport cars ou swiss watches” (you'll
get lots of pieces and won't learn anything)
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But | believe the origin is this:
In the late seventies, colliding-beam reactions were classified as ‘clean’ and ‘dirty’. Proton-
proton collisions and a fortiori also proton-antiproton collisions were ‘dirty’. Electron-positrons,
instead, were ‘clean’. The adjectives were coined after the spectacular nature of the successes of the

‘ The ;:-a':ve ‘cxp]-analion forl lhesc“probl‘cn;s v;as‘ ordi.na-rilyublam;:d‘on -lhc ".comple‘xit-y' flal'l tAh;
hadron collisions. Dick Feynman used to say: ‘What will one ever learn colliding Swiss(!) watches
against Swiss watches?'

Since then, physicists have had lots of successes colliding protons:
Tevatron (p — p) top quark (1995), SPS (p — p) W and Z bosons
(1983), LHC (p — p) Higgs bosons. How about ion collisions?
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Heavy-lon Standard Model

hadronic phase
QGP and
initial state hydrodynamic expansion
e
e
v
pre-equilibriu

T=0 ~05fm/c
local thermal equilibrium

Fluctuating initial conditions + rapid thermalization + hydrodynamic
expansion of low viscosity sSQGP + transformation in hadron phase +
particle emission

U. Heinz “Towards the Little Bang Standard Model” J. Phys.: Conf. Ser. 455 (2013) 012044

J. Schukraft “Results from the first heavy ion run at the LHC” J. Phys.: Conf. Ser. 381 (2012) 012011
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Standard thermodynamics: p, T, 1 constant over the entire volume
Hydrodynamics: local thermodynamic equilibrium p(x*), T(x*), u(x*)

Baryon number conservation (w/o diffusion)
Mass conservation in nonrelativistic hydrodynamics
a—‘,’ + V(pV) =0 [nonrelativistic continuity equation]

Lorentz contraction in the relativistic case: n — ny = nu®

[Conserved quantity: baryon number]

0
Relativistic continuity equation: 007? +V(nid)=0

nu® baryon density, ny¥ = nii baryon flux, u* 4-velocity of a fluid element

More compactly: | 0, (nu*) =0

Notation: x* = (X e X Xs) ( y7 ,) = (t, )?) [Contravariant vector]
8/ .= d% = BQ V) OH X” = %, 7V) [resp. cov. and contrav. derivatives]

= 0 -
aua“ = (gt, ) ( ) %it + V-a [Summation convention]
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Energy and momentum conservation (w/o viscosity)

Analogously to the contravariant 4-vector j* = nu*, one can define
conserved currents for the energy and the three momentum
components. These can be written as a contravariant tensor:

T”V [v: component of 4-momentum, w.: component of the associated current]

So Th — energy density momentum density
~ \energy flux density momentum flux density

T%: energy density

TY: density of j-th component of momentum, j=1,2,3
T': energy flux along axis i

TU: flux along axis i of j-th component of momentum.

TH is called energy-momentum tensor [pressure comes from momentum flux]
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The energy-momentum tensor in the fluid rest frame (pressure is the
same in all directions) is:

w
Tp" =

QOO
O OT O
OoOT OO
T OO o

In rest frame, TH" reduces to its static form:
e no energy flux i.e. T =0

© no momentum accumulation 7% = 0
e In direction x, pressure is

2
A A
4‘? A}JAZ’ :"APX%),( F(&yéz = 82l s [ BpN(E)px vk = T = [ d®pN(E) B = [ d®pN(E) &z so
T'=pbut TV =0ifi #j

Using the general form of a Lorentz transformation, one gets:

e.g. Denicol & Rischke “ Microscipic Foundations of Relativistic Fluid Dynamics” Springer 2021

[T = (c+p)uiu —g"p
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Exercise:

Start from the rest frame expressions of the baryon current and
energy-momentum tensor and obtain their expressions in a moving
frame.

[This is an alternative derivation to that of Denicol & Rischke or Ollitrault, close to Vogt's]

¢ In the moving frame, the fluid velocity becomes:

u = Nyug with uf = (1,0,0,0) so ut = Agu = Ay the velocity in
the boosted frame defined the v = 0 component of A%.

The baryon current in the rest frame is n; = (n,0,0,0) and in the
moving frame:

n* = Nini= Agn = nu* as expected.

o To obtain the energy-momentum tensor in the moving frame, note:
977 = g"NoNg = gPONGAG + 9'AINT = uPu” — AIAY

gH"Y = guv = diag(1, —1, —1, —1): metric tensor, all its matrix elements are zero except on diagonal . It is used
to lower or rise indices: a,, = g, 8" = (go, 8", g1,8, ...) = (&%, —a&, -, —&%)

Therefore T77 = NN TR = NgAe + A/A7p =

uPu®e + (uPu® — g°?)p = (e + p)u’u® — g°°p as expected
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Equations of non-viscous hydrodynamics
The conservation equations are then:

0, T" =0, 9u(nu")=0]

= 5 equations with 6 unknowns: u*, U, u?, ¢, p, Ny,
so we need an equation of state such as p(e, ) to close this system.

Note that the conservation equations are differential equations, so we
have to choose initial conditions to solve them.
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Exercise:
What is the relationship with the usual fluid mechanics equations?

e One equation can be recast as an entropy conservation
equation.

u,0, T" =0 = ut0,e + (e + p)o,u* = utTo,s + Tsu*0, =
Ou(su*) =0

where we used the thermodynamic relations e + p = Ts and

dp = sdT. In the non-relativistic limit y — 1 and 28 + V(sV) =0

¢ The three equations 0, T =0Qfori=1,2,3 canberecastina
Euler equation form.

Note 9, T#0 =0 — 9,[(e + p)uru®] = O°p

9, T =0=vo [(e+p)u“u°] + (e +p)u“u°6 vi—d'p=

v 8°p + (e + p)u“uoa vi—oip

= W (V-V)V = _((16+|;/3) [Vp+ yop

In the non-relativistic limit v small, p << €, € ~ p, this equation reduces

to the classical Euler equation.
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A simple example of solution: the Bjorken model
o We ignore transverse expansion (as expected initially), so:
HT® +9,7T%2 =0
{atTOZ +0,T# =0.

We introduce u* = (cosh y,sinh y) in the equations above:
cosh yOre + sinh y9,e + (e + p)(sinh yo;y + cosh yd,y) =0
sinh yOp + cosh yo,p + (e + p)(cosh yOiy + sinh yd,y) =0

We change variables: (t,z) — (7,7s)
where 7 = V2 — 72 and s = atanh(z/t) (spacetime rapidity)
an% use of the relations

or 0  0ns 0 0  sinhns 0
ot " ator Dot o - Mg T T ans
0 or 0 Js O . 0  coshns 0O
9z~ ozor Tozoms ~ S™ar T T G,

to obtain

F Oyt tanh(y — 716) Oye + (e + ) [ tanh(y — 75) D,y + Oy,y] = O
Ttanh(y —ns) 9-p + OpeP + (e+p) [T@Ty + tanh(y —ns) 8775}/] =0.
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e So far the discussion has been quite general.
We know make the Bjorken hypothesis:

Fluid velocity is v, = z/t < y = ns (fluid rapidity equals spacetime
rapidity), initially at proper time o and at all proper times

vV,,=2z/t

f— 1« > o

l—! <« >

—

[This comes from the expectation that dN/dy has a plateau around mid-rapidity, i.e. boost-invariance. The only flow

boost invariant (=0 at z=0) is v, = z/t cf. Florkowski §2.7 and ch.21]

Using y = ns, the hydro equations become:

or e
o
ons

B)
76‘ +(e+p)=0

=0.

T

So the thermodynamic quantities do not depend on ns and ¢(7)

e(0)(70/7)*/3 (for p = ¢/3).
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Exercise:
For a gas of gluons and two flavors of massless quarks, compute

T(7) in the Bjorken model.

In this case: p = ¢/3 and ¢ = gggp e T*
So using the Bjorken solution:
T(7)* = T(10)*(r0/7)*® & | T(7) = T(r0)(r0/7)"°
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Challenge

Redo the calculation on slide 9 (non-relativistic limit) for the case
ny # 0.
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Homework
Show that if p = c§e with ¢g constant, the solution of the Bjorken
model is e(7) = 6(7‘0)(’7’0/7’)1+C§
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Other references on this topic

» J.-Y.ollitrault Relativistic hydrodynamics for heavy-ion
collisions Eur.J.Phys.29 (2008) 275, arXiv:0708.2433

» R. Vogt, Ultrarelativistic Heavy-ion Collisions, Elsevier,
2007

» W. Florkowski, Phenomenology of Ultra-Relativistic
Heavy-lon Collisions, World Scientific, 2010
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