

MICROBIOMA HUMANO

IMPLICAÇÕES NA SAÚDE E NA DOENÇA

Robson Francisco de Souza Laboratório de Estrutura e Evolução de Proteínas robfsouza@gmail.com

Microbiota humana

Tópicos

- Definição
- Tipos
- Distribuição
- Formação
- Função
- Na Doença
- Tratamento

Objetivos do aprendizado

- ✓ Entender o que é e qual a composição da microbiota humana
- ✓ Estudar a formação e distribuição de microrganismos em indivíduos saudáveis
- ✓ Compreender a função da microbiota
- ✓ Avaliar seu papel na evolução e no tratamento de doenças

Microbiota Definição

População de microrganismos que habita a pele e as membranas mucosas de um indivíduo saudável

Composição

- <u>Bactérias indígenas</u>
 Mais de 1% da microbiota total
- <u>Bactérias suplementares</u>
 Menos de 1% da microbiota total

Sinônimos

Microbiota indígena Microbiota autóctone Microbiota residente

Microbiota transitória

Microrganismos que podem habitar a pele e/ou membranas mucosas por horas, dias ou semanas mas que **não se restabelecerão** autonomamente

Ao contrário da microbiota transitória, componentes da microbiota normal colonizam o corpo por meses ou anos

Microbiota Vocabulário

Organismos estritamente patogênicos

Organismos que só são encontrados no corpo humano em associação com doenças. Exemplos: Mycobacterium tuberculosis, Neisseria gonorrhoeae.

Patógenos oportunistas

Organismos, normalmente inócuos, mas que podem causar doenças quando ganham uma vantagem competitiva e proliferam além dos níveis usuais.

Exemplos:

- Remoção de competidores: Clostridium difficile;
- Deslocamento do sítio normal no corpo humano (e.g. Staphylococcus epidermidis em cateter);
- Indivíduos imunocomprometidos: microbiota pode multiplicar em excesso, invadir outros compartimentos e causar infecções.

Mais algumas definições...

Simbionte

Organismo que vive em associação com organismo(s) de outra espécie

Parasita

Causa dano ao hospedeiro

Comensal

Vive em associação sem causar dano ou benefício

Mutualista

Ambos os organismos se beneficiam

- Transições entre os modos de vida acima são possíveis e frequentes!!!!
- Mecanismo de conversão de mutualiastas ou comensais em parasitas: aquisição de fatores de virulência e/ou Ilhas de patogenicidade por transferência lateral de genes

DETERMINANTES DA COLONIZAÇÃO MICROBIANA DE TECIDOS BIOLÓGICOS

- Disponibilidade de nutrientes: qualidade e quantidade
- Disponibilidade do oxigênio
- Fluxo de fluídos da superfície epitelial
- Sistema de limpeza muco-ciliar
- Sistema imune local
- Presença de receptores celulares do hospedeiro
- Interação microbiana: competição e cooperação
- Variação do pH

Evolução da microbiota intestinal

Adaptado de Laforest-Lapoint & Arrieta (2017) Frontiers in Immunology

Efeitos intrauterinos

Ambiente estéril. mas o bebê é exposto a:

- Metabólitos microbianos
- Resposta imune da mãe aos microorganismos

O diâmetro dos círculos nos painéis à direita é proporcional à abundiancia de cada grupo

Nascimento

Tempo de gestação Prematuro Normal

- Bacillus
- Clostridium
- Enterobacteriaceae
- Haemophilus
- Staphylococcus
 - Bifidobacterium Streptococcus
 - Bacteroides

Parto

Normal Cesária **Bacteroidetes**

- Clostridium
- Enterobacteriaceae •
- Streptococcus
 - Staphylococcus Haemophilus

Amamentação

Fórmula

Leite materno

Bifidobacterium Lactobacillus

- Enterobacteriaceae
- Streptococcus
 - **Bacteroides**

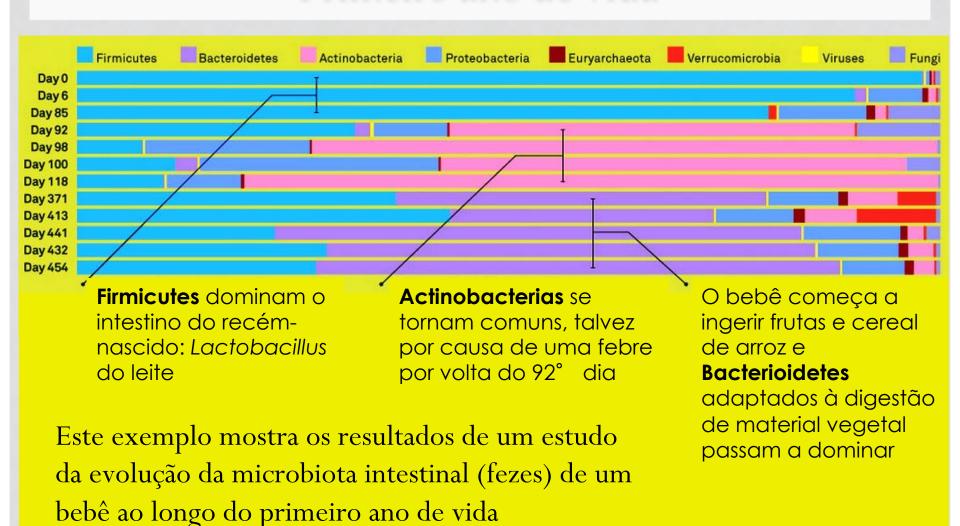
Leite materno propriedades

- Água: 88%
- Lactose: 7%
- Gordura: 4%
- Proteína: 1%
- Fosfato de cálcio
- pH ácido inibe o crescimento de Bacteroides, Clostridium e Escherichia coli.

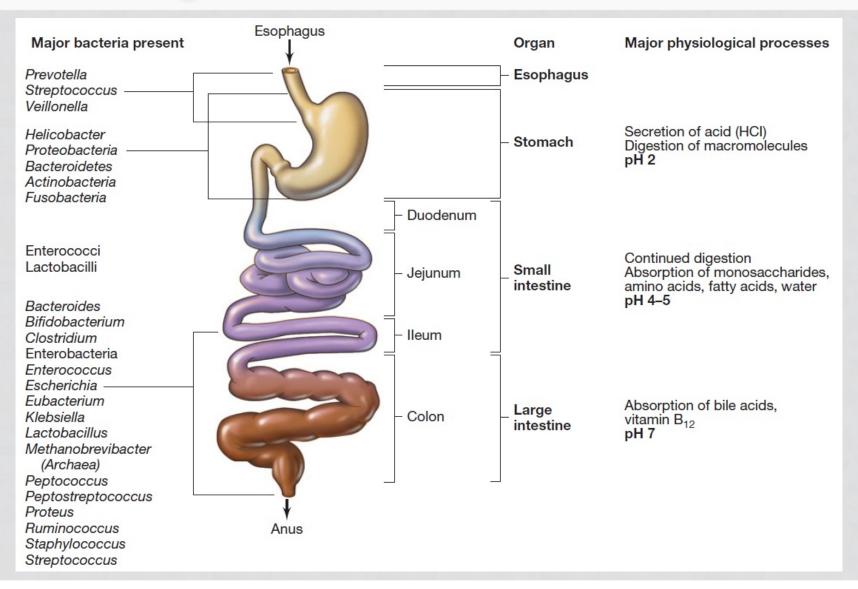
Alimentos sólidos

Desmame

- <12 mo >12mo **Bacteroides**
 - Bilophila
 - Roseburia Clostridium
 - Anaerostipes
 - Bifidobacterium Lactobacillus
 - Collinsella
 - Megasphaera Veillonella


Quantidade de fibras

- Low High **Firmicutes**
 - **Bacteroidetes**


Adultos

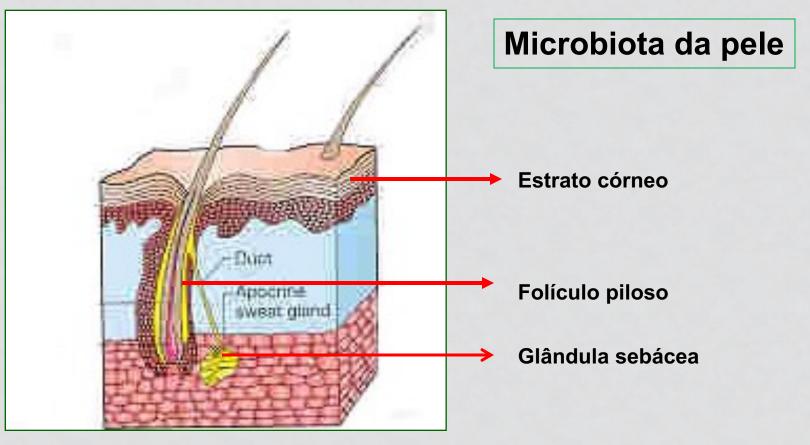
- Dietas variadas
- Relativamente estável
- 60% da cepas mantidas por 5 anos ou mais
- Actinobatérias e **Bacteroidetes** estão entre os grupos mais estáveis

Alterações na microbiota intestinal Primeiro ano de vida

Distribuição de microrganismos no trato gastrointestinal de adultos

Microbiota Anaeróbia Fecal de humanos

- 1. Bacteroides (10¹¹/g peso seco fezes)
- **2. Eubacterium** (10¹⁰/g p.s.f.)
- **3. Peptococcaceae** (10⁹⁻¹⁰/g p.s.f.)


Ruminococcus, Coprococcus, Peptostreptococcus

- 4. Bifidobacterium (109/g p.s.f.)
- **5.** *Clostridium* (10⁸⁻⁹/g p.s.f.)
- 6. Outros

Lactobacillus, Megasphaera, Veillonella, Butyrivibrio, Succinovibrio, Succinomonas, Selenomonas, Anaerovibrio, Lachnospira e Treponema

7. Facultativos ($< 10^8/g \text{ p.s.f.}$)

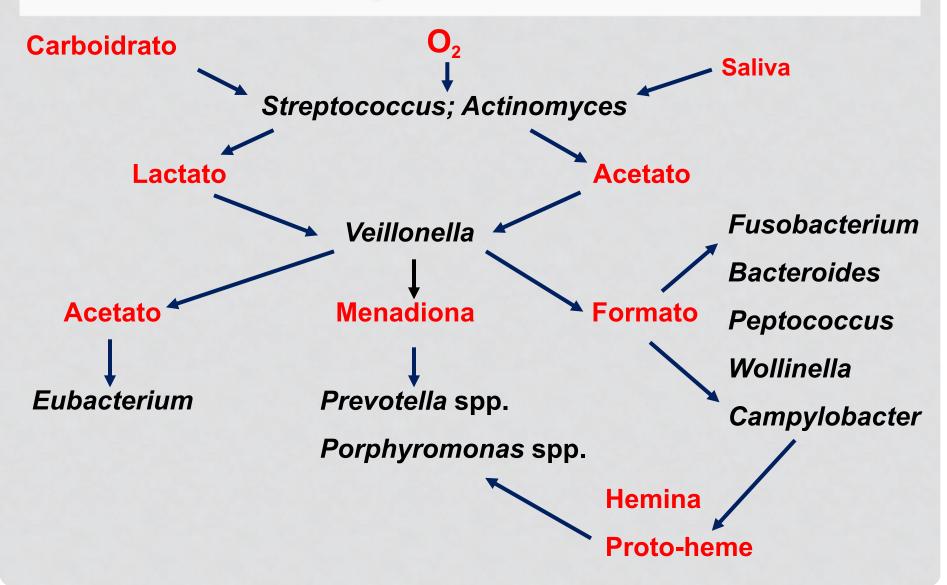
Coliformes, estreptococos e lactobacilos

10⁴ – 10⁶ bactérias/cm²

S. epidermidis
S. aureus
Corynebacterium spp.
Streptococcus spp.
Propionibacterium spp.

Microbiota - Função

- Biofilme protetor:
 - Competição com bactérias patogênicas por sítios de adesão e microambientes (antagonismo microbiano);
- Ativamente envolvida na regulação imune e na homeostase;
- Exerce funções-chave no metabolismo do hospedeiro, auxiliando na digestão e absorção de alimentos;


Exemplo
O número e o tipo de
bactérias na vagina tem um
profundo efeito sobre a saúde
das mulheres e seu risco de
contrair ou transmitir doenças
sexualmente transmissíveis.

Alterações no pH 3,5-4,5, permite o crescimento de fungos e outras bacterias.

Contribuições metabólicas de microorganismos intestinais

Process	Product
Vitamin synthesis	Thiamine, riboflavin, pyridoxine, B ₁₂ , K
Gas production	CO ₂ , CH ₄ , H ₂
Odor production	H ₂ S, NH ₃ , amines, indole, skatole, butyric acid
Organic acid production	Acetic, propionic, butyric acids
Glycosidase reactions	β-Glucuronidase, $β$ -galactosidase, $β$ -glucosidase, $α$ -glucosidase, $α$ -galactosidase
Steroid metabolism (bile acids)	Esterified, dehydroxylated, oxidized, or reduced steroids

Microbiota humana Interações nutricionais

Disbioses

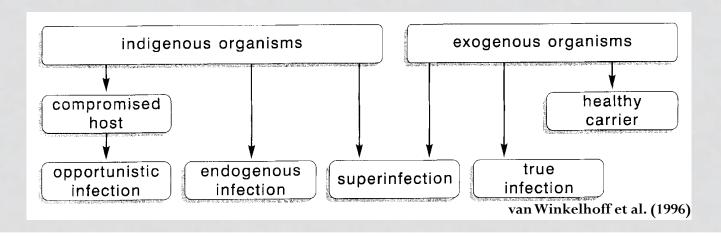
Desequílibrio na mic robiota contribui ou dá origem a doenças

Fatores que influenciam o equilíbrio da microbiota

Independe do comportamento do hospedeiro

Condições ambientais

Imunidade


Presença de patógenos

Fatores comportamentais

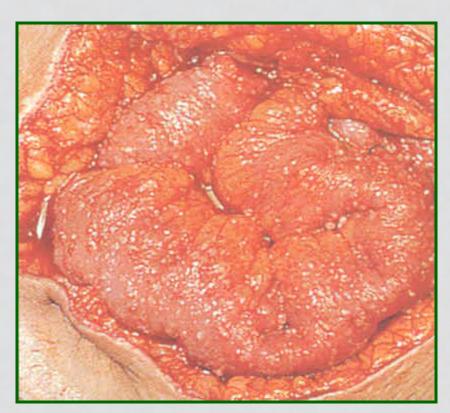
Higiene

Dieta

Uso de Antimicrobianos

Microbiota

Espécies potencialmente patogênicas

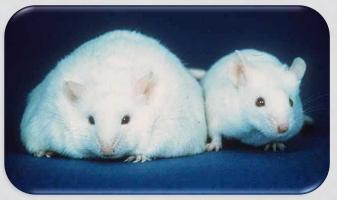


BACTERIUM	Lower Intestine
Staphylococcus epidermidis	+
Staphylococcus aureus*	++
Streptococcus mitis	+/-
Enterococcus faecalis*	++
Streptococcus pyogenes*	+/-
Veillonellae sp.	+/-
Enterobacteriaceae* (Escherichia coli)	++
Proteus sp.	+
Pseudomonas aeruginosa*	+
Bacteroides sp.*	++
Bifidobacterium bifidum	++
Lactobacillus sp.	++
Clostridium sp.*	++
Clostridium tetani	+/-
Corynebacteria	+
Mycobacteria	+
Spirochetes	++
Mycoplasmas	+
++ = nearly 100 percent + = common +/- = ra	re * = potential pathog

Disbiose: participação da microbiata em doenças

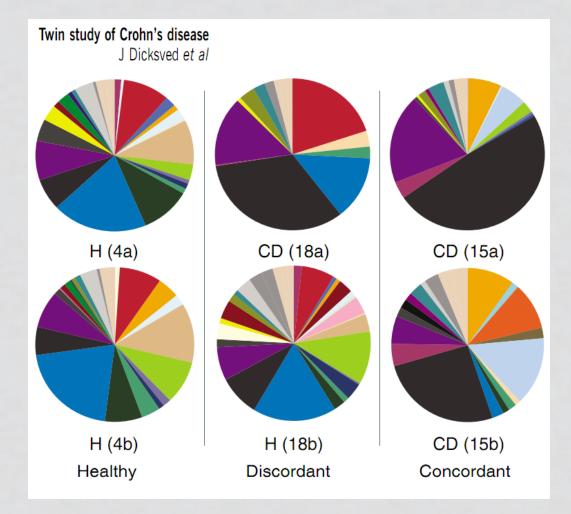
Invasão de compartimentos estéreis por espécies da microbiota

Bacteroides fragilis



<u>Peritonite</u>: extravasamento de material contaminado da luz intestinal para o cavidade abdominal (peritônio)

Microbioba intestinal **novos** vínculos com doenças e disbioses **emergentes**


- Colite pseudomembranosa
- Colite ulcerativa
- Síndrome do intestino irritável
- Doença inflamatória intestinal
- Síndromes metabólicas
- Obesidade
- Diabetes
- Esclerose múltipla
- Sintomas de Parkinson
- Alergia e auto-imunidade

Diversidade Bacteriana na Doença

B. ovatusB. vulgatus

B. uniformis

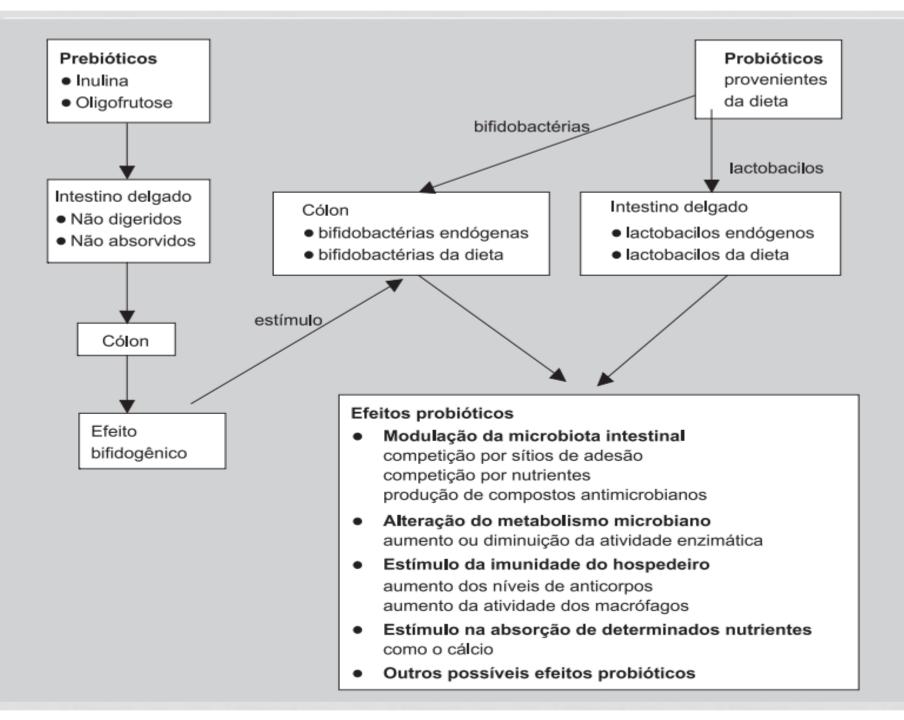
Chron disease: gêmeos monozigóticos

Microbiota no tratamento/prevenção Probiótico

O fato da microbiota intestinal poder ser alterada e trazer benefícios à saúde humana, tem motivado o desenvolvimento de ingredientes alimentícios chamados "funcionais".

Alimentos Funcionais

Probiótico / Prebiótico

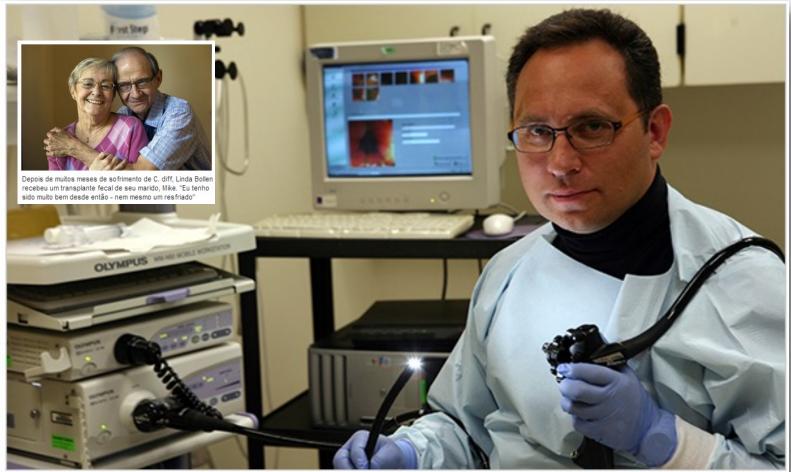

Probiótico

Alimentos "pró-bióticos" contêm bactérias vivas como suplemento alimentar, o que melhora o equilíbrio da microbiota intestinal, trazendo benefícios ao hospedeiro (Fuller 1989).

Prebiótico

Simbiótico

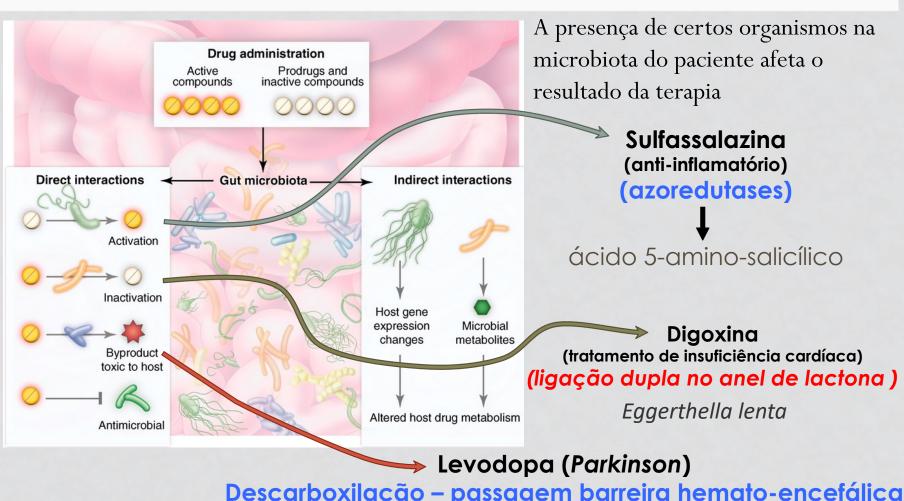
Combinação de probiótico e prebiótico Alimentos "pré-bióticos" são aqueles não-digeríveis pelo ser humano mas que promovem a seleção das espécies benéficas e limitam o número de bactérias no cólon, beneficiando assim o hospedeiro (Gibson and Roberfroid 1995).


Microbiota no tratamento Transplante Fecal (FMT)

- Processo de transplante de microbiota fecal de um indivíduo saudável para um receptor
- 1958* Colorado (EUA): quatro pacientes criticamente comprometidos com colite pseudomembranosa fulminante
- 2000 Cepas multirresistentes de C. difficile, 3 milhões de casos novos, 300 evoluem para morte por dia (EUA e Europa). Custo anual de US\$ 1 bilhão por ano só nos EUA.

A substituição de componentes em falta (vitaminas, etc.) e a produção de produtos antimicrobianos pela "nova microbiota" tendem a ser os mecanismos de cura

Transplante Fecal



Allen Brisson-Smith for The New York Times

Dr. Alexander Khoruts, a gastroenterologist at the University Minnesota, used bacteriotherapy to help cure a patient suffering from a gut infection.

Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 2010; 44: 354-360.

Interações da microbiota com medicamentos Exemplos

Descarboxilação – passagem barreira hemato-encefálica Biotransformação no intestino

Is It Time for a Metagenomic Basis of Therapeutics?
Therapeutic Modulation of Microbiota-Host Metabolic Interactions.

Projeto Microbioma Humano

"Individuo Saudável"

- 100 trilhões de microrganismos
- 10 vezes mais células procariontes
- 1-3% do peso corporal
- Mais de 10.000 espécies microbianas
- Genoma humano possui 22.000 genes
- Microbioma contribui cerca de 8 milhões de genes
- 360 vezes mais material genético

80-95% não cultiváveis in vitro

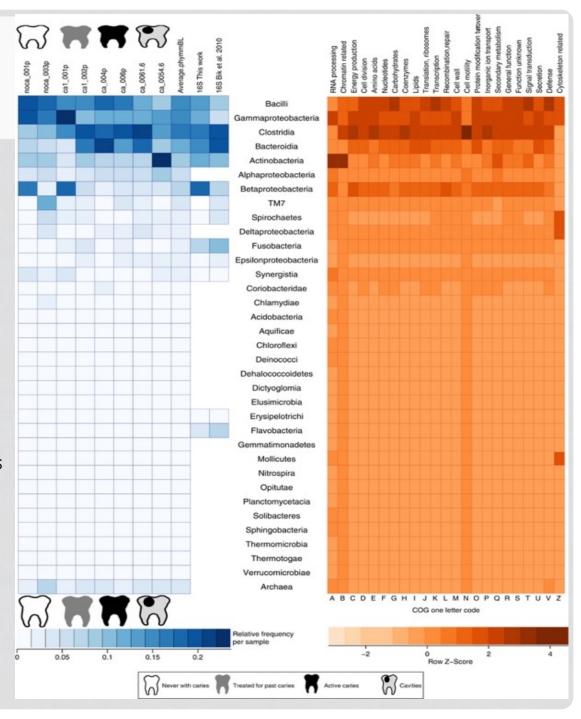
O Programa: \$173 milhões 300 indivíduos saudáveis 18 locais de coleta no corpo 7 anos (2007 – 2014)

80 Universidades

Metrópole bacteriana

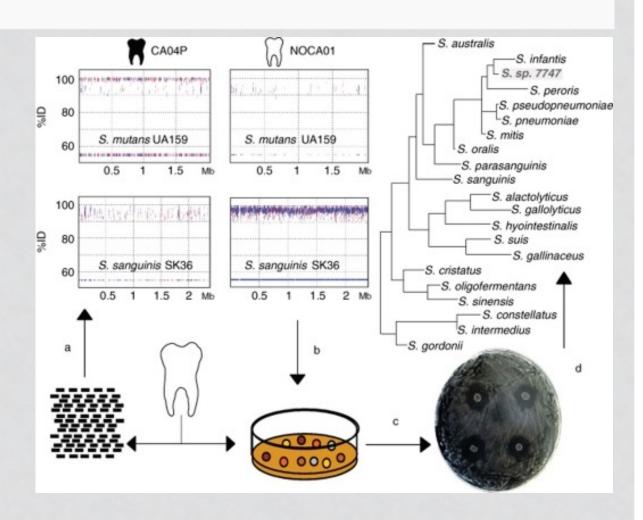
Human Microbiome Project 2007-2014

Metagenômica oral


Diversidade de bactérias da cavidade oral (1Gbp sequenciados).

À esquerda: diversidade taxonômica na amostra (frequência relativa dos taxons)

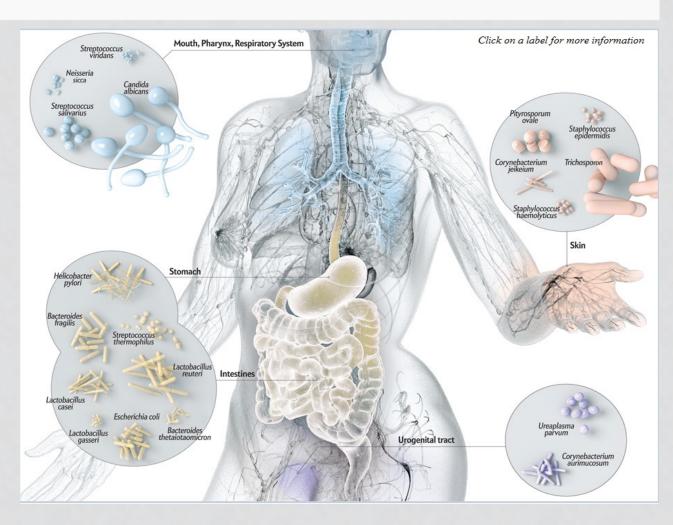
À direita: contrbuição relativa de cada grupo para o repertório de genes codificantes do ecossitema bucal


A análise revelou que indivíduos sadios possuem microbiota bucal com excesso de genes para percepção da população ("quorum sensing") e peptídeos antimicrobianos

Belda-Ferre et al (2012) **The oral metagenome** in health and disease. ISME J. 2012 January; 6(1): 46–56. doi: 10.1038/ismej.2011.85

Metagenômica oral

- Os autores
 procuraram
 bactérias com
 atividade anti-cárie
 entre as bactérias
 menos frequentes na
 boca de indíviduos
 doentes e mais
 abundantes na boca
 dos sadios.
- Encontraram uma linhagem de S. sanguinis nos pacientes saudáveis


Belda-Ferre et al (2012) **The oral metagenome in health and disease.** ISME J. 2012 January; 6(1): 46–56. doi: 10.1038/ismej.2011.85

Nova visão da microbiota

A microbiota humana como um **orgão**

O corpo humano como um **ecossistema**

F. Baquero and C. Nombela (2012) The microbiome as a human organ. Clin Microbiol Infect 2012; **18** (Suppl. 4): 2–4. DOI: 10.1111/j.1469-0691.2012.03916.x

Referências

- Microbiota humana
 - Microbiologia Médica (Murray, Rosenthal & Pfaller, 7a. Edição)
 - Capítulo 2: Flora Microbiona Comensal e Parogênica em Humanos
 - Microbiologia (Trabulsi & Alterthum, 4a. Edição)
 - Capítulo 12: Microbiota ou Flora Normal do Corpo Humano

Bibliografia adicional

- The human microbiome: at the interface of health and disease. (*Nature Reviews Genetics* 13, 260-270 (April 2012) | doi:10.1038/nrg3182);
- Experimental and analytical tools for studying the human microbiome. (Nature Reviews Genetics 13, 47-58 (January 2012) | doi:10.1038/nrg3129);
- Sequencing technologies the next generation. (*Nature Reviews Genetics* 11, 31-46 (January 2010) | doi:10.1038/nrg2626);
- Structure, function and diversity of the healthy human microbiome. (Nature 486, 207–214 (14 June 2012) doi:10.1038/nature11234);
- A core gut microbiome in obese and lean twins. (Nature 457, 480-484 (22 January 2009) | doi:10.1038);
- Therapeutic Modulation of Microbiota-Host Metabolic Interactions. (Sci. Transl. Med. DOI: 10.1126/scitranslmed.3004244);
- The Gut Microbiota. (DOI: 10.1126/science.336.6086.1245);