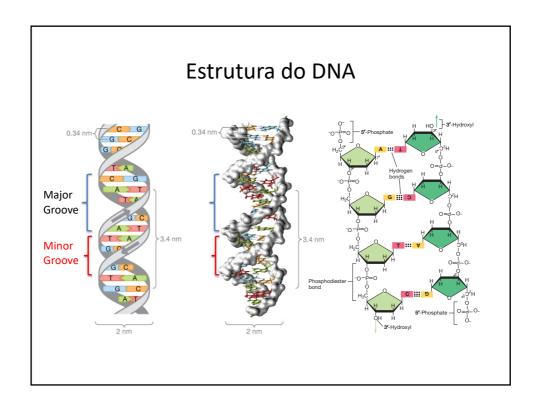

Microbiologia básica


Genética de procariotos

Robson Francisco de Souza. Ph.D robfsouza@gmail.com LEEP: Laboratório de Estrutura e Evolução de Proteínas ICB/USP – 2019

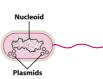
Tópicos

- Genomas de procariotos
 - Composição e estrutura química do DNA
 - Organização dos genomas e estrutura dos genes em procariotos
- Origens da diversidade genética
 - Mutação
 - Mecanismos
 - Isolamento
 - Recombinação e transposição
 - Tranferência lateral de genes
 - Transformação
 - Transdução
 - Conjugação

Organização dos genomas e estrutura dos genes em procariotos

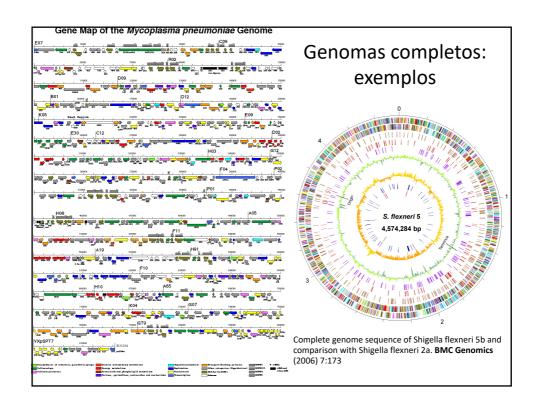
Genoma: tipos de moléculas

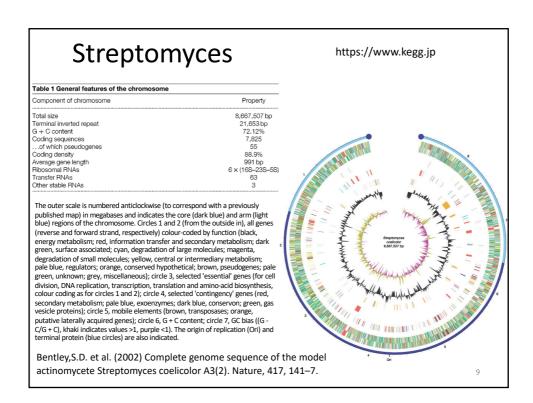
Organismo	Elemento	Ácido nucléico	Descrição
Procarioto	Cromosomo	DNA dupla fita	A maioria é circular, muito longo
Eucarioto	Cromosomo	DNA dupla fita	Maioria linear, extremamente longo
Todos	Plasmídeo*	DNA dupla fita	Relativamente curto, linear ou circular
Mitocondria ou cloroplasto	Genoma	DNA dupla fita	Pequeno ou médio, geralmente circular
Vírus	Genoma	DNA ou RNA, fita dupla ou simples	Relativamente curto, circular ou linear

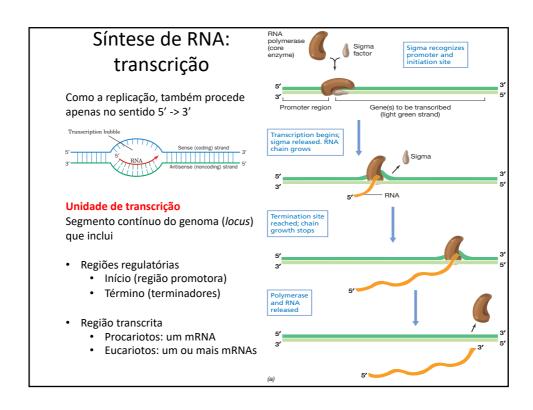

^{*} Plasmídeos são muito raros em eucariotos

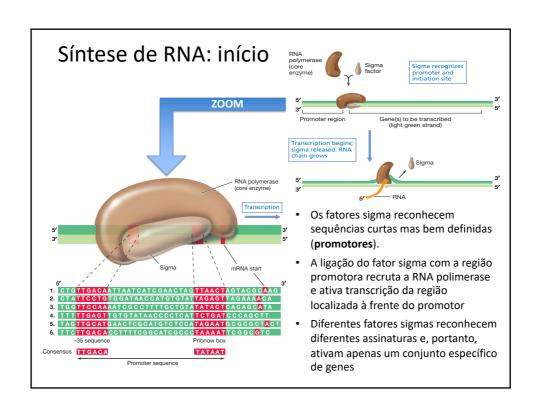
Cromossomos

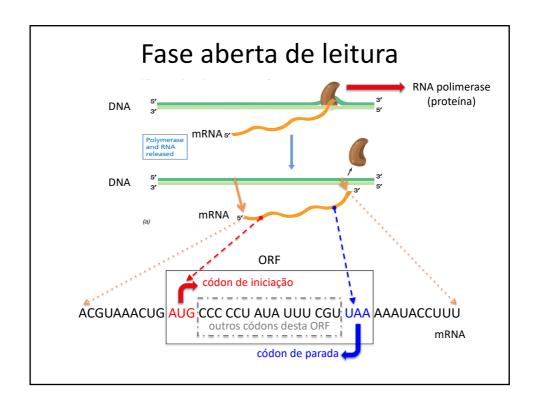
- Codificam genes essenciais para o organismo
- Codificam os genes necessários para replicação e segregação


Plasmídeos

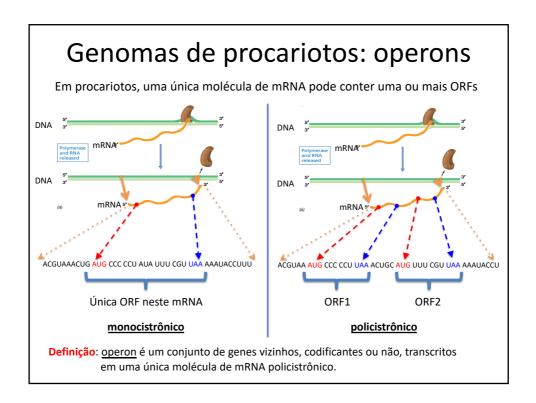

- Usam as polimerases do cromosomo
- Controlam seu número na célula
- Codificam genes para segregação

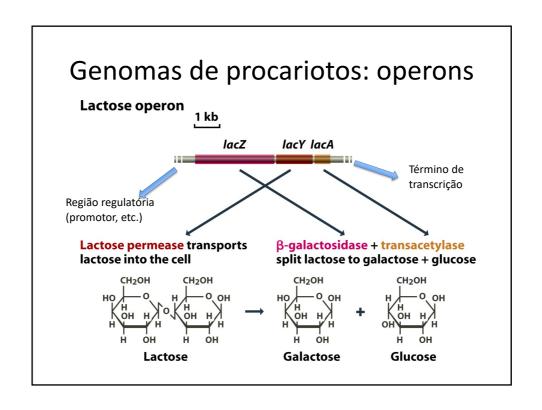


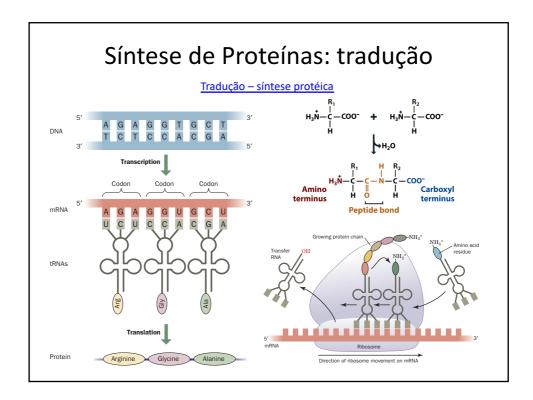

Cromossomos de procariotos **Origin of replication** GATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTC GCCGAACTTTTGACGGGACTCGCCGCCCGCCCAGCCGGGGTTCCCGCTGGCGCAATTGAAAA CTTTCGTCGATCAGGAATTTGCCCAAATAAAACATGTCCTGCATGGCATTAGTTTGTTGGG 4639 kb CTGCGACCCGCGTCAGGTGCCCGATGCGAGGTTGTTGAAGTCGATGTCCTACCAGGAAGCG CTGCGACCCGCGTCAGGTGCCCGATGCCAGGGTTGTTGAAAGTGGATGTCTACCAGGAAGCG AGTTCCAGATCCCTTGCCTGATTAAAAATACCGGAAATCCCTCAAGCACCATTGCCCCATGCCC AGTTCCAGATCCCTGCTGATTAAAAATACCGGAAATCCTCAAGCACCAGGTACGCTCAT TGGTGCCAGCCGTGATGAAGACGAATTACCGGTCAAGGGGCATTTTCCAATCTGAATAACATG GCAATGTTCAGCGTTTCTGGTCCGGGGATGAAGGGATGAAGGGATGTGCGGCGCGCTCT TTGCAGCGGATGTCAGCGCCCCGTATTTCCGTGGTGCTGATTACGCAATCATCCTCCGAATA Genoma de E. coli ORFs: fita leading (vermelho) CAGCATCAGTTTCTGCGTTCCACAAAGCGACTGTGTGCGAGCTGAACGGGCAATGCAGGAA GAGTTCTACCTGGAACTGAAAGAAGGCTTACTGGAGCCGCTGGCAGTGACGGAACGGCTGG e lagging (laranja) CCATTATCTCGGTGGTAGGTGATGGTATGCGCACCTTGCGTGGGATCTCGGCGAAATTCTT The state of the s AAAACTGGCAGGAAGAACTGGCGCAAGCCAAAGAGCCGTTTAATCTCGGGCGCTTAATTCG



Estrutura dos genes em procariotos


Fase aberta de leitura


"Open reading frame" ou ORF


- Definição: uma fase aberta de leitura é a sequência de códons em uma molécula mRNA que determina os aminoácidos de uma única proteína.
- ORFs são compostas por um códon de iniciação e um códon de parada, e todos os códons intermediários (ver próximos slides).

 Com exceção do códon de parada, cada um dos códons de uma ORF corresponde, exatamente, a um aminoácido da proteína codificada

Algumas propriedades dos operons

- Genes de uma mesma via metabólica muitas vezes formam operons no genoma de bactérias
- Agregam genes com funções relacionadas em operons permite que um único promotor regule a expressão de vários genes, garantindo quantidades adequadas dos produtos gênicos (proteínas)
- Como não têm núcleo, as bactérias podem executar transcrição e tradução simultaneamente, no mesmo compartimento. Isso permite aos genes em operons acoplar os processos de transcrição, tradução e formação de complexos, resultando em maior eficiência

Perguntas

- O que são ORFs (fases abertas de leitura)?
- O que são operons?
- O que é genoma?
- A síntese de nucleotídeos ocorre sempre em um único sentido, seja síntese de DNA ou RNA. Que sentido é esse? Mostre as posições no anel da ribose.

Origens da diversidade genética

Mutação

Definição

Mutação é uma alteração na sequência de bases de um gene que não altera a composição química do DNA e que, pelo menos em <u>princípio</u>, ser transmitida aos descendentes (hereditária).

- Difere dos danos no DNA, que por impedirem a replicação, não podem ser transmitidos
- Muitas das mutações, porém, surgem a partir do reparo de danos no DNA corrigidos por mecanismos de reparo propensos a erro

Vocabulário de genética bacteriana

Termo		Definição		
Linhagem	Selvagem	Linhagem de referência, isolada e mantida em laboratório		
Lilliageili	Mutante	Fenótipo diferente do selvagem parental		

Mutante

Linhagem geneticamente diferente da selvagem mas cuja origem pode ser traçada até uma linhagem de referência

Marcadores

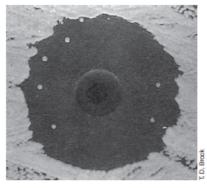
Um ou mais **genes** cujas mutações podem ser monitoradas por gerarem **fenótipos identificáveis**

Vocabulário de genética bacteriana

Nomenclatura das mutações / mutantes					
Tipo de alteração	Exemplo	Categoria	Definição		
Selvagem	wt	selvagem	referência		
	His+	selvagem	Posso fazer minha própria histidina		
Fonatínicos	His-	auxotrófico	Tenho que comer histidina pra viver		
Fenotípicas	Lac+	selvagem	Posso comer lactose		
	Lac-		Não como lactose		
Conotínicas	ΔhisC1	auxotrófico	His- porque o gene hisC1 não funciona		
Genotípicas	ΔhisC2	auxotrófico	His- porque o gene hisC2 não funciona		

Isolamento de Mutantes

• Mutações selecionáveis


- Mutações com efeito direto na capacidade de sobrevivência do organismo nas condições testadas
- Exemplos: resistência a antibióticos, ganho/perda da capacidade de sintetizar metabólitos e nutrientes
- Organismos não-resistentes podem ser selecionado por meio com antibiótico

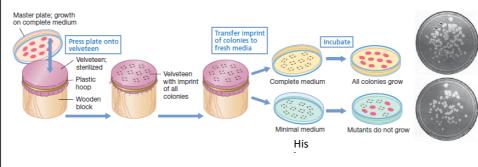
Mutações não-selecionáveis

- Produzem efeito fenotípico de fácil observação mas sem valor para a sobrevida do organismo
- Isolamento só pode ser feito pela observação visual

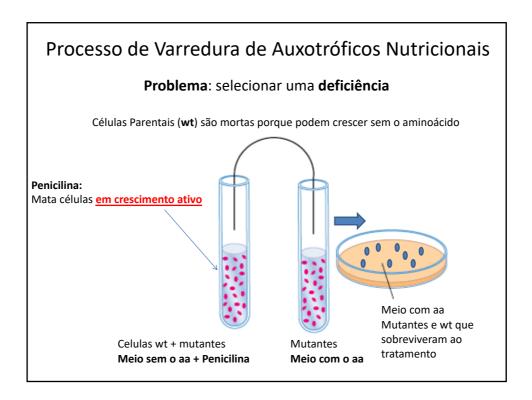
Isolamento de Mutantes

Mutante Selecionável

Mutante Não-Selecionável


Disco central com antibiótico

Fungos *Aspergillus nidulans* Variação na pigmentação

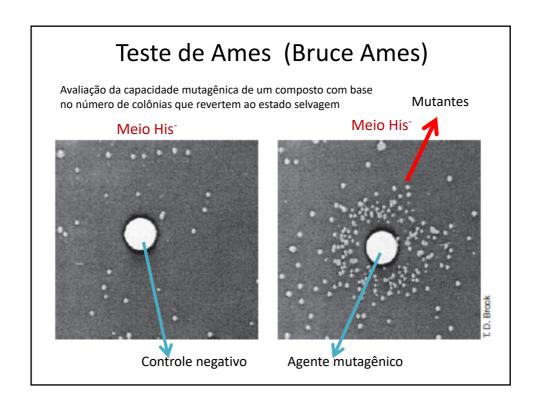

Processo de Varredura de Auxotróficos Nutricionais

Problema: selecionar uma deficiência

Técnica de Plaqueamento de Réplica

Problema: selecionar uma deficiência

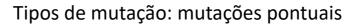
Mutagênese

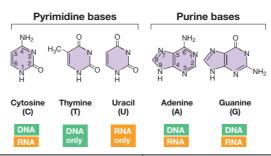

Espontâneas

- Causadas por erros do sistema de replicação
- Muito raras nos genomas baseados em DNA
- Ocorrem com frequência 1000x maior em genomas de RNA

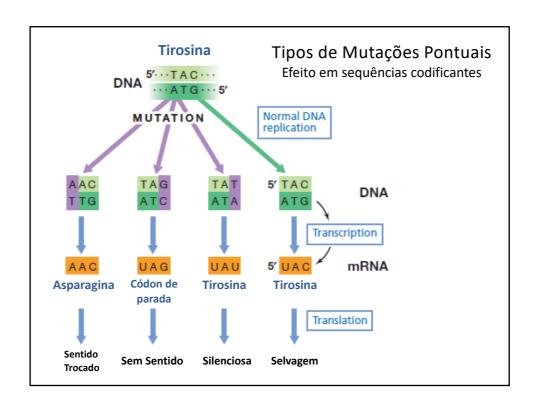
Induzidas

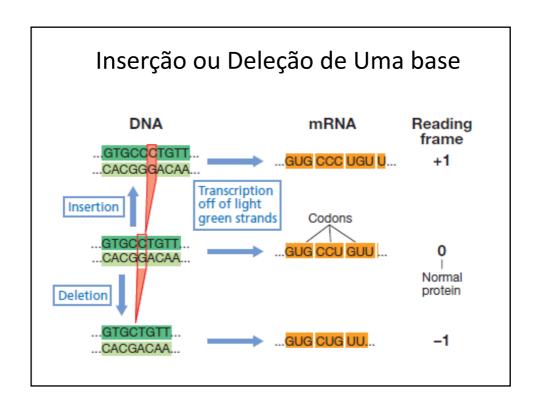
 Provocadas por agentes químicos ou físicos externos à célula


Agentes químicos mutagênicos							
Análogos de base	Análogos de bases						
5-Bromouracil	Incorpo	rada como timina; par com guanina (G) AT => GC, às vezes GC => AT					
2-Aminopurine	Incorpo	rada como adenina, par com citosina (C)	AT => GC, às vezes GC => AT				
Compostos que reagem com o DNA							
Ácido nitroso (HN	102)	Deamina adenina e citosina	AT => GC e GC => AT				
Hydroxylamine (N	ІН2ОН)	Reage com citosinas	GC => AT				
Agentes alquilant	tes						
Monofunctional: etil-metanosulfonato		Adiciona grupos metil à guanina; pareamento com timina	GC => AT				
<u>Bifunctionais</u> : mitomicina, nitrosoguanidina		Ligações cruzadas entre as fitas do DNA região danificada removida pela DNase	· ·				
Corantes intercal	antes						
Acridinas, brometo de etídeo		Inserem-se entre dois pares de bases	Microinserções ou microdeleções				
Radiação							
Ultravioleta		Dímeros de pirimidinas	Reparo com erro ou deleção				
Radiação ionizante ((raios-X)	Dímeros de pirimidinas	Reparo com erro ou deleção				

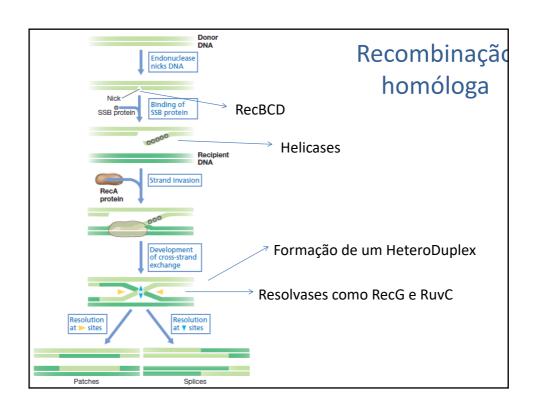

Tipos de mutações

O efeito das mutações sobre regiões codificantes será determinado pela fase de leitura e pela estrutura do código genético

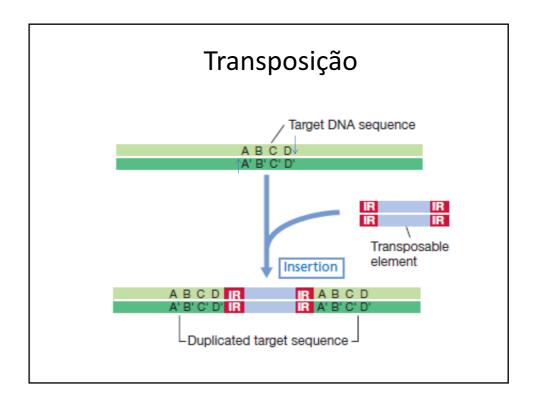

Second Position										
		U	С		Α		G			
U	UUU	Phe / F	UCU	Ser/S	UAU UAC	Tyr/Y	UGU UGC	Cys / C	U C	
	UUA UUG	Leu/L	UCA UCG	3ei / 3	UAA UAG	STOP STOP	UGA UGG	STOP Trp / W	A G	
_	CUU	Leu/L	CCU	Pro / P	CAU CAC	His / H	CGU CGC	Arg/R	U C	_
First Position	CUA CUG	Leu / L	CCA CCG	FIOTF	CAA CAG	Gln / Q	CGA CGG	Alg/ N	A G	Third Position
First P	AUU	Ile/I	ACU ACC	Thr / T	AAU AAC	Asn / N	AGU AGC	Ser/S	U C	sition
	AUA AUG	Met / M	ACA ACG	,	AAA AAG	Lys / K	AGA AGG	Arg/R	A G	
G	GUU GUC	Val / V	GCU GCC	Ala / A	GAU GAC	Asp / D	GGU GGC	Gly / G	U C	
	GUA GUG	va., v	GCA GCG	Alu / A	GAA GAG	Glu / E	GGA GGG	3,773	A G	

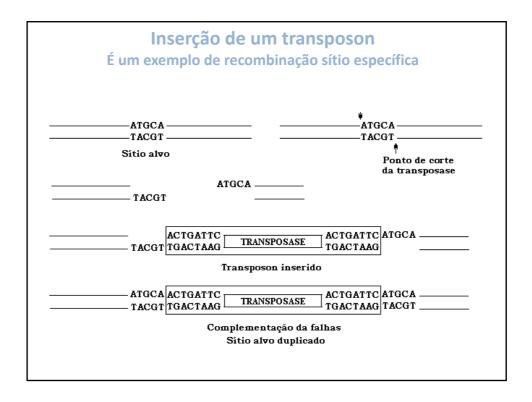


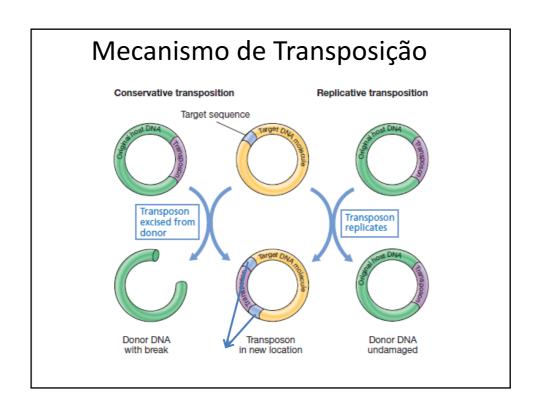
Mutações pontuais correspondem à <u>troca de uma única base no genoma</u> São também conhecidas como polimorfirmos de um único nucleotídeo (SNPs)

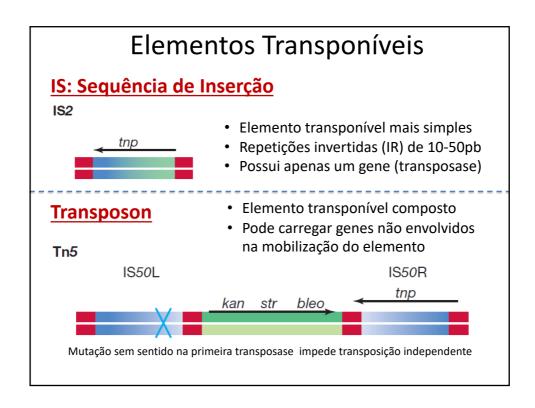


T	ransição	Transversão		
Purina – Purina			Pirimidina - Purina	
A → G	C -> T	A → T	T → A	
G → A	$G \rightarrow A$ $T \rightarrow C$		T → G	
		G → T	C → A	
		G → C	C → G	

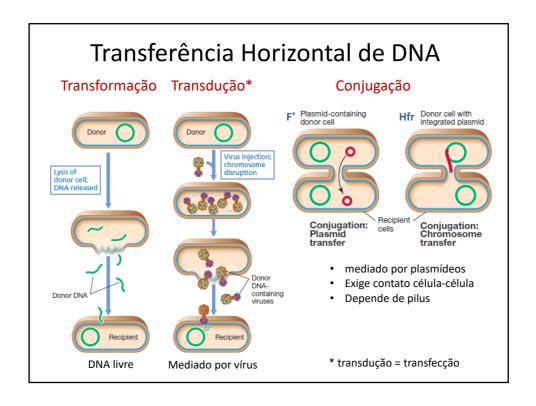


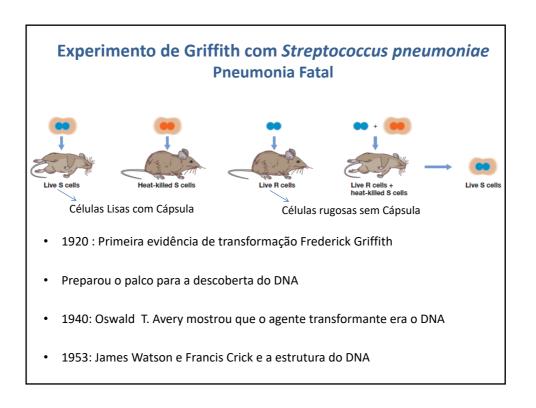

Recombinação e Transposição

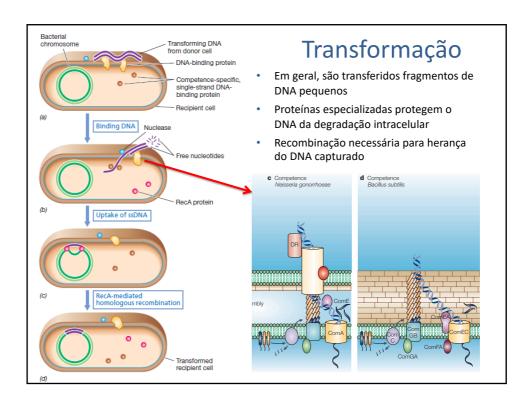



Transposição

- Mobilização ou duplicação de porções do genoma mediadas por enzimas especializadas (transposases)
- Associadas a elementos genômicos mais ou menos autônomos, chamados <u>elementos</u> <u>móveis</u>

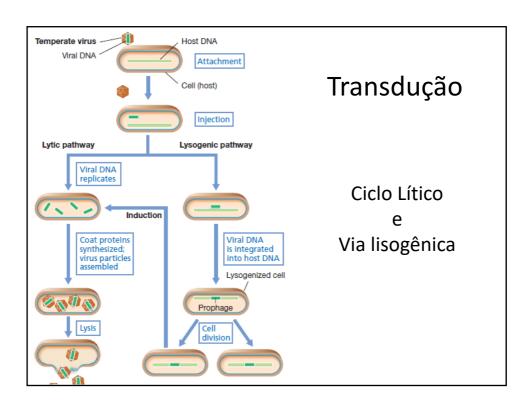




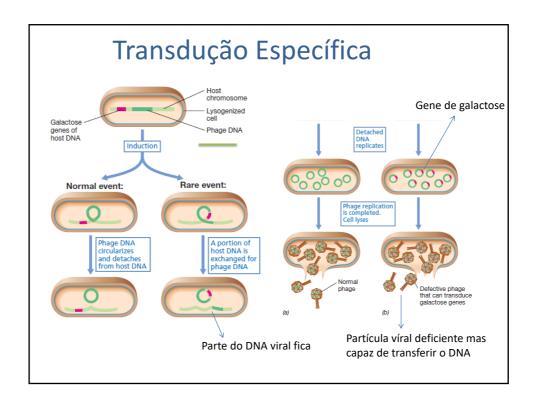

Permuta Genética em Procariotos

Três Mecanismos de Troca Genética

- Transformação
 - Competência
- Transdução
 - Generalizada
 - Específica
- Conjugação
 - Plasmídeos
 - Cepas Hfr

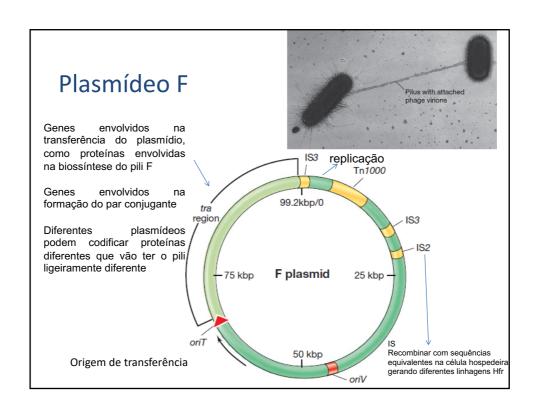


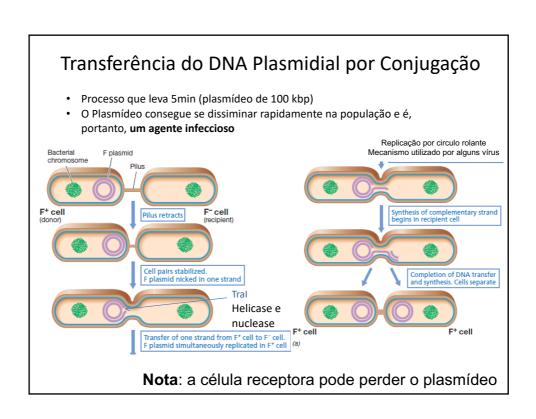


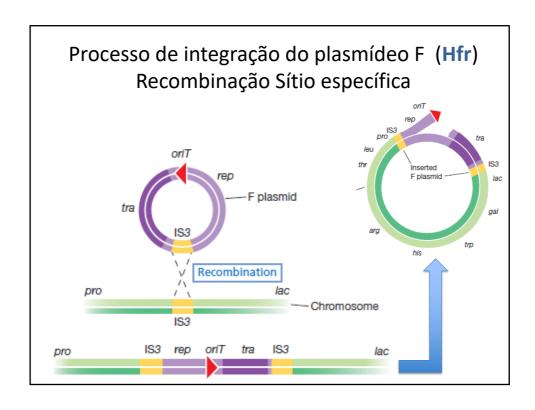


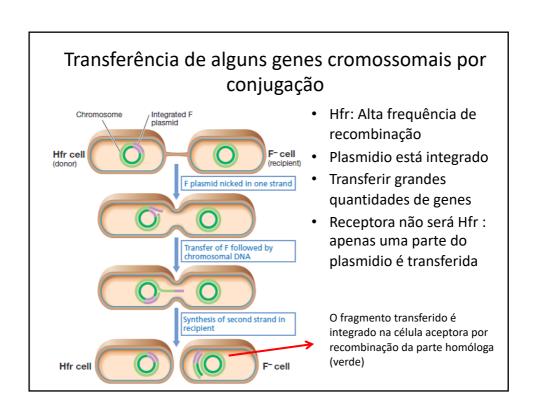
Competência na Transformação

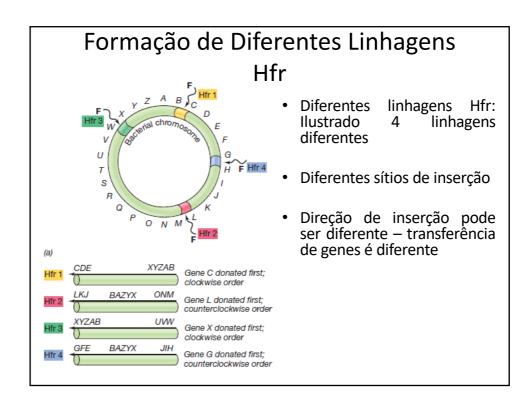
- Bactérias naturalmente transformáveis são chamadas competentes. Exemplos:
 - Bacillus: 20% das células se tornam competentes e permanecem por por horas
 - Streptococcus durante o ciclo de crescimento 100% ficam competentes – período curto de tempo
- Células não compenetes
 - Tratamentos físicos e químicos permitem induzir a permeabilidade da parede celular
 - Cloreto de Cálcio
 - Eletroporação: aplicação de pulsos elétricos curtos de alta voltagem

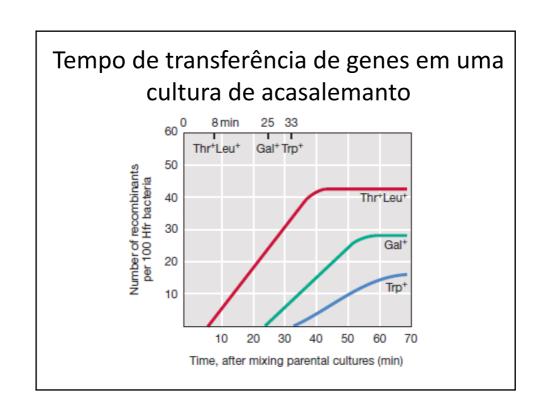


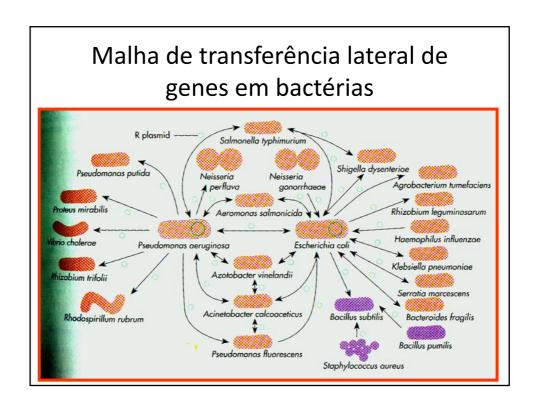


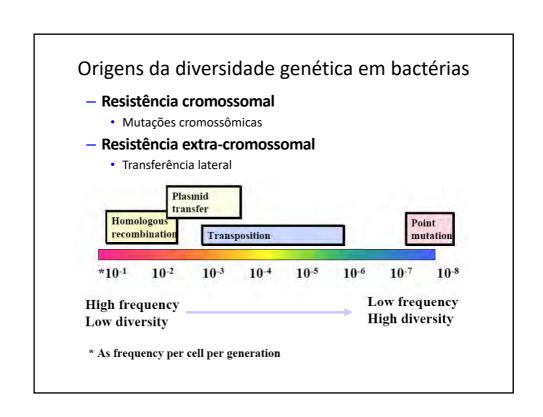


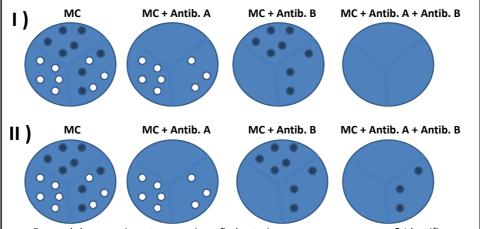

Conjugação


- Conjugação: Transferência genética entre duas células que envolve contato
- Envolve: célula doadora e receptora
- Mecanismo de transferência pode exibir diferenças dependendo do plasmídeo envolvido
- A maioria das bactérias Gram-negativas usam um mecanismo semelhante ao do plasmídeo F
- Normalmente, o plasmídeo é replicado por polimerases celulares e segregado por proteínas próprias
- Pode também ser integrado no cromossomo da célula hospedeira por intermédio de sequências de inserção (IS)








Perguntas

- Na transdução especializada, a célula receptora pode em alguns casos replicar o DNA da célula doadora? E no caso da transdução generalizada?
- O que é competência no processo de transformação?

Perguntas

- Você tem Hfr, His⁺ e Lac⁺ e uma célula F⁻ resistente a canamicina. Qual fenótipo você espera observar para a célula conjugada? A célula F⁻ se transforma em F⁺ e Hfr?
- Mutação de sentido trocado pode causar que problemas para a célula?
- Uma célula F⁺ com resistência aos antibióticos Amp, Str e Gen, torna a célula receptora resistente a quais antibióticos? O processo de conjugação pode ser um problema para a saúde pública, em qual aspecto?

Os resultados abaixo foram obtidos a partir de dois experimentos de transferência de resistência a antibióticos por conjugação:

- a. Em qual dos experimentos a conjugação bacteriana ocorreu com sucesso? Identifique a célula doadora e a receptora. Justifique suas respostas.
- a. Quais características a célula Receptora, doadora e conjugada possuem: A^{r,} B^r e Lac⁺

Referências

- Microbiologia de Brock (12a. Edição)
 - Capítulo 6: Biologia Molecular de Bactérias
 - Unidade 10: Genética de bactérias e árqueas