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The ongoing development of more sensitive and reliable plant virus detection methods offers new 
opportunities to accurately and reliably monitor the temporal dynamics of plant viruses within plant 
populations. This review provides operational definitions and examples for concepts pertaining to the 
sampling and assessment of host populations to quantify disease and/or pathogen incidence within 
host populations over time. The linear, monomolecular, exponential, logistic, and Gompertz popula- 
tion growth models are presented and discussed with regards to their use in modeling the temporal 
dynamics of plant viruses. Other quantitative measures of temporal disease (or virus pathogen) 
spread, such as the disease (pathogen) progress curve, area under the disease (or pathogen) progress 
curve. and time to reach 50% incidence (tso), arc also presented and discussed. 0 1997 Elsevier 
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Quantitative comparisons of plant virus epidemics 
enable researchers to evaluate the effects of various 
disease management strategies and tactics on virus 
disease dynamics over time. Although the temporal 
dynamics of epidemics caused by fungi have been 
extensively studied, epidemics caused by plant viruses 
have not (Madden and Campbell, 1986). Unlike 
fungal diseases, that usually result in obvious 
symptoms and/or signs (leaf spots, blotches, cankers, 
wilts, etc.), it is often difficult to identify accurately 
virus-infected plants within host populations (crops) 
because obvious symptoms may be lacking or because 
multiple diseases, pests, and nutrient deficiencies may 
also cause virus-like symptoms. The confusion over 
virus symptoms (or lack thereof) has hampered 
efforts to model temporal spread in many virus 
pathosystems. However, modeling the temporal 
dynamics of plant viruses is becoming increasingly 
possible because of developments in virus detection 
methods that have enhanced sensitivity and specifi- 
city. These methods include, but are not limited to, 
enzyme-linked immunosorbent assay (ELISA), 
polymerase chain reaction (PCR), monoclonal 
antibodies, DNA fingerprinting and numerous other 
techniques (Hu et al., 1995). Although the need is 
great, little fundamental research in population 
ecology has been directed towards plant virus patho- 
systems to meet today’s agricultural needs. Moreover, 
there is an increasing need to quantify the epidemio- 
logical impacts that contemporary plant virus 
management practices will have on the temporal 
dynamics of plant virus epidemics, especially those 
involving genetically engineered organisms. For 
example, what will be the quantitative impacts of 

anti-sense or coat protein-mediated transgenic resist- 
ance strategies on the temporal dynamics of plant 
viruses? This information will be needed to assess the 
risk and benefits of new biotechnology-based resist- 
ance strategies. 

This review focuses on assessing temporal changes 
in virus incidence (Nutter et al., 1991) in plant virus 
pathosystems, how temporal change in virus 
incidence over time can be quantified, and how plant 
virus epidemics can be compared. The review also 
describes various sampling procedures, on how to 
select sampling units without bias, how to select the 
most appropriate population growth model to 
compare plant virus epidemics, and how mathemat- 
ical modeling of plant virus epidemics can serve as an 
interpretive tool to quantify and compare the effects 
that plant virus disease management strategies and 
tactics have on the temporal patterns of virus spread. 

Single point disease assessments 

Surveys are often employed to determine whether a 
specific virus occurs within a defined geographical 
area (field, county, state, etc.), and surveys can 
provide important information concerning the 
identity, prevalence, incidence, and severity of plant 
viruses that affect crops at a specific time of sampling 
(Nutter et al., 1991). 

Because disease is the result of the interaction of a 
susceptible host, an aggressive pathogen, and a favor- 
able environment, this interaction has inferred 
temporal and spatial requirements in that these three 
components of the disease triangle must interact 
within a defined spatial arena as well as during the 
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time of crop growth and development. Plant virus 
surveys are often conducted just once during a 
cropping season and, therefore, provide only a single 
‘snapshot’ of the status of this dynamic interaction. 
Although a single assessment within a plant virus 
pathosystem can provide important information, a 
fuller understanding concerning the dynamics of 
plant virus epidemics normally requires multiple 
disease assessments. See Barnett (1986) for addi- 
tional information regarding plant virus surveys. 

Multiple point disease assessments 

Plant virus epidemics are dynamic processes in that 
virus disease intensity changes in both time and space 
(Thresh, 1983). Th us, the quantitative study of virus 
epidemics requires that virus incidence within plant 
populations be assessed several times during the 
cropping season. Ideally, disease progress information 
should be obtained from several locations and over 
several years in order to define disease risk (Madden 
et al., 1990). The power of multiple assessments, as 
opposed to the analysis of single assessments, is the 
ability to model temporal virus spread (disease 
progress). As will be shown later, a key to quantifying 
plant virus epidemics is to plot cumulative virus 
incidence (y) over time (t) and then to choose the 
most appropriate population growth model to allow 
the calculation and comparison of temporal rates of 
virus spread (Nutter and Parker, 1997). In addition to 
their use for quantifying the effects of virus disease 
management tactics on disease state and rate 
variables, multiple assessments are often required to 
model yield losses caused by plant viruses. This is 
because time of virus infection often has a significant 
impact on both crop yield and quality (Madden and 
Nutter, 1995; Nutter et al., 1993). 

Although plant virus infections are often systemic 
within an infected plant, the sampling unit that is 
often indexed or visually assessed is often a single 
leaf or other plant part. Thus, it is assumed that 
information obtained from a single plant part will 
accurately reflect the status of the entire plant; i.e. 
the entire plant is determined to be infected or not 
infected based on indexing or inspecting only part of 
the plant. This assumption may not be valid for plant 
genotypes that temporally restrict replication and 
movement of the virus within a host plant (Nutter, 
1992) i.e. one leaf selected and indexed from a plant 
may test positive whereas other leaves selected and 
indexed from the same plant may test negative. This 
could lead to incorrect conclusions if the data are 
reported as ‘incidence of infected plants’ instead of 
‘incidence of infected leaves’. When the number of 
units sampled is large, the proportion of infected 
sampling units may closely represent the proportion 
of the infected plant tissue present in a field. It is also 
important to clearly define the population (disease 
versus pathogen) that is being assessed within a host 
population. This is particularly pertinent to plant 
virus pathosystems because the incubation period 
(time from inoculation to the time of symptom 
appearance) is usually longer than the latent period 
(time from inoculation to the time an infected host 

can be a source for new infections via insect, pollen, 
mechanical, or other means of virus transmission) in 
many plant virus pathosystems (Nutter, 1992). 

Concepts and operational definitions for disease 
assessment terms 

Before modeling the change in disease intensity (dy) 
with change in time (dt), we must first obtain 
accurate and precise measurements of disease inten- 
sity (Nutter et al., 1991). Disease intensity is a general 
term for the amount of disease (injury) present in a 
host population (Nutter et al., 1991), and the most 
common types of disease intensity measures are 
prevalence, severity, and/or incidence. 

Prevalence is a term that is often used interchange- 
ably (and mistakenly) with incidence (incidence is 
defined later in the section). Disease prevalence is 
more strictly defined as the number of fields (or other 
defined populations) within a specific geographic area 
(county, state, or region) where a disease has been 
visually observed (symptoms), divided by the total 
number of fields sampled and assessed (Campbell 
and Madden, 1990; Nutter et al., 1991; Zadoks and 
Schein, 1979). To obtain information concerning 
pathogen prevulence, individual plants or plant parts 
are sampled from a host population (fields) and these 
samples are tested for the presence of the pathogen 
(virus) using a reliable method of indexing (infec- 
tivity, ELISA, PCR, presence of inclusion bodies, 
etc.) (Hu et al., 1995; Kapa and Waterworth, 1981). 
Thus, pathogen prevalence may include quantitative 
information concerning the presence of a virus in 
asymptomatic as well as symptomatic fields. Preva- 
lence data are often multiplied by 100 to give the 
percentage of fields (or populations) in which a 
disease or pathogen is present. Quite often, plant 
samples from a single geographical sampling unit 
(field, county, or state) are obtained, bulked, and 
processed as a single unit to ascertain whether the 
virus occurs within the geographic unit sampled. 
When plant samples are bulked, a single infected 
plant is sufficient to change the status of the 
geographic unit sampled (field, county, or state) from 
negative (-) to positive (+), provided the sensitivity 
of the indexing method is sufficient to detect the 
pathogen in a bulked (diluted) sample. Bulking 
samples is particularly useful when virus incidence is 
low because the number of bulked samples tested is 
often less than the number of individuals sampled 
and processed, thus reducing the cost of detection 
per sampling unit tested (Swallow, 1995). Clearly, 
prevalence data does not provide quantitative infor- 
mation about the relative amount of disease (or the 
virus) within the individual fields sampled. Within- 
field disease intensity measurements can be obtained 
by assessing plant populations within fields for 
disease incidence, pathogen incidence, and/or disease 
severity. 

Compared to fungal and bacterial diseases, the 
concept of disease severity is usually problematical in 
virus pathosystems (see Campbell and Madden, 
1990). The general definition for disease sever@ used 
here is the quantitative measure of the effect of a 
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plant virus on the health of an individual sampling 
unit. For example, disease severity might be assessed 
by measuring the degree of stunting of a plant that is 
infected with a plant virus (shoot length, plant height, 
or internode length), or by measuring the reduction 
in leaf area (L’) relative to healthy plants. If a virus 
causes local lesions, disease severity may be defined 
operationally as the number of lesions per square 
centimeter (NIL’) or the lesion area/total leaf area 
(L ‘/L ‘). Some researchers have developed disease 
rating scales in which a number is assigned to 
sampling units based on a written description of 
severity classes. Because in many plants viruses 
become systemic, Vanderplank (1963) considered 
virus-infected plants to be analogous (epidemiolog- 
ically) to lesions in fungal pathosystems. Conse- 
quently, most virus epidemics are assessed using 
incidence data. Although the concepts of lesion size 
and lesion expansion of virus infections within whole 
plants is epidemiologically interesting and should be 
considered when sampling (Nutter, 1992) these 
concepts are not addressed further in this section. 

A useful operational definition for disease 
incidence is the number of plant units visibly diseased 
by a virus divided by the total number of plant units 
sampled and assessed (see Madden and Hughes, 
1995). As with the term prevalence, it is extremely 
important that researchers make a clear distinction as 
to whether incidence within a population of host 
plants is based on pathogen incidence (detection of a 
virus) or disease incidence (based on visual 
symptoms). Progress curves based on virus indexing 
methods, such as ELISA, may closely mirror progress 
curves based on disease symptoms such as the 
example shown in Figure I; in other instances, 
however, the use of different assessment methodolo- 
gies may result in progress curves with quite different 
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Figure 1. Comparison of disease progress curves for tobacco 
etch virus incidence in bell pepper based on visual inspection of 
plants versus indexing plants for the presence of TEV using an 
enzyme-linked immunosorbent assay (ELISA). The relationship 
between the two methods was highly significant (rz = 0.963, 
P <O.OOl). Data from Padgett et al. (1990) 

shapes (Figure 2A). Consequently, researchers must 
decide which assessment methods provide the most 
meaningful information to achieve the objectives of 
their specific studies. This can be accomplished by 
regressing incidence values derived from one method 
(visual assessment, for example) with pathogen 
incidence data obtained by using a virus detection- 
based method (ELISA, for example). In the first 
example (Figure I), regressing visual assessments for 
tobacco etch potyvirus (TEV) disease incidence in 
bell pepper (Capsicum annuum L.) (y) versus 
pathogen incidence based upon ELISA indexing (x), 
yielded the equation y = 0.02+ 1.0L~ (coefficient of 
determinant, r- of 96.3%). Note that the slope of the 
regression line is very close to 1, the y-intercept is 
very close to zero, and the amount of variation in 
disease incidence (y) explained by pathogen incidence 
(x) is very high (96.8%). Thus, both incidence assess- 
ment methods are in close agreement. This is not so 
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Figure 2. (A) Progress curves for disease caused by cucumber 
mosaic virus in narrow-leafed lupin based on visual symptoms as 
opposed to indexing by enzyme linked immunosorbent assay 
(ELISA). (B) Rate of CMV infection as a measure of epidemic risk 
based on visual symptoms (0.03 logits/day) versus ELISA 
(0.06 logits/day) 
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for the second example, however, as there is not good 
agreement between visual assessments for disease 
incidence caused by cucumber mosaic cucumovirus 
(CMV) in lupin (Lupin angustifolius L.) versus CMV 
incidence based on ELISA (Geering, 1992). See 
Nutter and Schultz (1995) regarding techniques to 
evaluate the accuracy and precision of assessment 
methods. Although there appears to be a very good 
relationship between visual and ELISA assessments 
for CMV disease and pathogen incidence, respec- 
tively (r* = 93.5%), there is clear evidence that 
systematic bias is present as the slope of the regres- 
sion line relating CMV pathogen incidence based on 
ELISA (x) to CMV disease incidence based on visual 
symptoms 6~) was 0.49 (Figure 3). Because this slope 
deviated significantly from a slope of 1.0, the two 
assessment methods were not in agreement. The 
slope should have been close to 1.0 if the two 
methods were in agreement, and a slope of 0.49 
means that for each 1% increase in pathogen 
incidence, disease incidence increased by 0.49% 
(about half) (Nutter and Schultz, 1995). There was no 
constant bias present between the two assessment 
methods as the y-intercept (-0.80) was not signifi- 
cantly different from zero. The methodology used in 
virus disease assessment is particularly important if 
the rate of infection (r) is taken as a measure of 
epidemic risk, i.e. the higher the infection rate r, the 
higher the risk. The infection rate (slope) based on 
ELISA in F@re 2B is nearly two times higher than 
the infection rate based on visual virus symptoms. 
Thus, when visual assessments are used to estimate 
the infection rate in this pathosystem, risk may be 
greatly underestimated. The effect of assessment 
method on estimating r underscores the need to 
utilize the same assessment methodologies when 
comparing infection rates for different epidemics 
(years, virus management tactics, etc.). Moreover, the 
assessment methods should be fully described when 
comparing and reporting virus rates of infection. 

t I / I 

Moreover, information concerning the accuracy and 
precision of the assessment methods should also be 
reported (Nutter and Schultz, 1995). 

The disease progress curve 

Once a method for virus disease assessment and/or 
pathogen detection has been developed and verified 
as being accurate and precise, the next step is to 
decide the number of times during the period of crop 
growth and development that incidence needs to be 
assessed in order to accurately characterize the 
change in disease intensity over time. Because 
incidence is by far the most common measure of 
intensity employed in plant virus pathosystems, all the 
examples cited here will involve incidence data, Once 
incidence has been assessed several times during the 
cropping season, disease (or pathogen) progress curves 
can be constructed by plotting incidence on the 
ordinate axis versus time on the abscissa axis. Disease 
and pathogen progress curves provide a visual repre- 
sentation of the stimulus-response relationship 
between incidence and time (Zadoks and Schein, 
1979). A disease progress curve is the ‘signature’ of 
an epidemic and represents the integration of all 
host, pathogen, and environmental effects (including 
virus vectors, alternative host reservoirs, and disease 
management tactics) that occur during the period of 
interaction (Campbell and Madden, 1990). If 
sampling is done properly and with sufficient care, 
accurate and precise estimates of plant virus 
epidemics can be obtained. 

Defining a sampling unit 

A sampling unit is defined as the smallest unit on 
which a disease assessment is made, whereas the 
sample population is the aggregate from which 
sample units for disease assessment are selected. For 
example, Nutter et al. (1994) defined a sampling unit 
as the newest, fully expanded soybean leaf selected 
from single plants in order to assess the incidence of 
soybean mosaic virus-infected plants using ELISA. In 
the tobacco etch virus (TEV) bell pepper (Capsicum 
annuum L.) pathosystem, Padgett et al. (1990) 
defined a sampling unit to be a whole pepper plant 
and individual plants were inspected for the presence 
of TEV symptoms to determine TEV disease 
incidence in the crop. 

Sampling frequency and sampling interval 

.- 
’ 0 20 40 60 80 

ELISA Assessment of CMV Incidence (%) 

Figure 3. Linear relationship between CMV incidence based on 
ELISA (x) versus visual symptoms (v). The slope (0.49) was 
significantly different from 1.0, indicating the presence of 
systematic bias between the two methods 

The time scale of multiple assessments can be 
relatively short (days) or long (years), depending on 
the type of crop. As a general rule, the minimum 
number of assessments required to define the shape 
of a disease (or pathogen) incidence curve and 
calculate temporal rates of virus spread is five, 
excluding 0 and 100% incidence values. The first 
assessm&, which is a measure of the initial 
incidence of the disease or pathogen (yo), should be 
made when incidence is near zero so that the rate of 
disease increase early in the epidemic can be quanti- 
fied. Berger (1989) has suggested that the interval 
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between assessments should be half the approximate 
latent period, although time and resources will also 
impact on the time interval between assessment 
periods. Moreover, for some plant virus pathosys- 
terns, the timing and frequency of disease (or 
pathogen) incidence assessments may depend less on 
the latent period of the virus in the host population 
and more on the size, activity, and propensity of the 
viruliferous vector population (Madden and 
Campbell, 1986; Madden et al., 1990). Ideally, assess- 
ments should continue at appropriate intervals until 
incidence values approach a level where no increase 
in incidence is discernible or until the crop is physio- 
logically mature or harvested. 

Determining sample size 

Once the population of sampling units has been 
defined, the next step is to determine the number of 
sampling units that will be needed in order to achieve 
a specified level of precision. Sampling constitutes 
one of the most important activities in quantifying 
plant virus epidemics (Campbell and Madden, 1990; 
Nutter and Gaunt, 1996). The selection of sampling 
units from a population is often undertaken because 
generally one cannot take a complete census of all 
the plants in an entire field or even within an experi- 
mental plot. A census is a complete enumeration of 
all the sampling units in a population. Because of 
both logistics and costs, a complete census of the 
disease status of each individual in a host population 
is rarely undertaken; this is particularly true of field 
crops where the number of plants or sampling units 
per unit area can be extremely large. However, when 
the number of sampling units per unit area is 
relatively small, such as in orchards, plantations, and 
vineyards, the enumeration of all sampling units in a 
host population may be possible. For example, Habili 
and Nutter (1997) used several methods of virus 
indexing to determine the incidence of grapevine 
leaf-roll-associated virus 3 in Pinot Noir grapevines 
over an ll-year period for all grapevines (N = 104) in 
an experimental plot located in South Australia. 
When sampling is used to estimate incidence in a 
host population, the accuracy (closeness to the truth) 
and precision (reliability) of an estimate of disease 
and/or pathogen incidence in a host population is 
related directly to sample size (Madden et al., 1996). 
It is often useful to have some preliminary data avail- 
able to help determine sample size, i.e. the number of 
sampling units required to conduct a valid study 
(Campbell and Madden, 1990). An approximate 
determination of the number of samples (n) is 
needed to help ensure the acquisition of reliable 
disease assessment data. Too few samples will result 
in unreliable and/or unrepresentative data, but an 
excess number of samples is not cost-efficient. Often 
the number of samples must be optimized with the 
resources (labor and/or dollars) available to conduct 
the study. An approximate indication of the number 
of samples needed can be obtained by plotting 
standard deviation as a function of increasing sample 
size. Campbell and Madden (1990) state that these 
curves will often flatten after a certain number of 

samples are assessed, and the point of relative 
stability of these curves may be chosen as an approxi- 
mate measure of sample size. 

Sampling designs 

The purpose of a sampling design is to optimize the 
accuracy, precision, speed, and scope of obtaining a 
reliable sample relative to costs. Basically, there are 
three types of sampling designs employed to obtain 
disease intensity estimates from field studies; these 
are random, arbitrary, and systematic designs. 
Although many scientists state that they have 
employed a simple random sample to select sampling 
units, this is often not the case. Each sampling unit 
from the population of sampling units must have an 
equal chance of being selected in a truly random 
sampling design. The primary reason for taking a 
random sample is to remove any possibility of bias, 
unconscious or otherwise, on the part of the person 
collecting the samples for disease assessment. Biased 
sampling, by definition, leads to an overestimation or 
underestimation of the ‘true’ level of disease inten- 
sity. For a truly random sample, each sampling unit 
in the population (leaf, stem, plant, unit length of 
row or ground area, etc.) would be numbered from 1 
to IZ and a random number generator (or some other 
accepted method) would be used to select the 
sampling units to be assessed. For example, a random 
sample might be employed when the number of 
sampling units per unit area is relatively small (such 
as an orchard or plantation), yet the number of 
sampling units is too large to conduct a complete 
census. More often, scientists working in plant virus 
pathosystems employ arbitrary or systematic sampling 
schemes. Arbitrary sampling, for example, is done 
when a person walks into a field and stops on a whim 
to select a sampling unit. Campbell and Madden 
(1990) stated ‘Such sampling is not necessarily 
inappropriate in many applications, but it (arbitrary 
sampling) should be identified for what it is and not 
referred to erroneously as random sampling.’ From 
my own practical experience, arbitrary sampling 
schemes have the potential to introduce bias if the 
sampling units are visually selected. This is because, 
unconsciously, the eye may be preferentially directed 
to select diseased versus healthy sampling units and 
this will lead to an overestimation of the true disease 
incidence in the host population. One way to reduce 
this source of bias would be to reach for and select 
sampling units by touch, rather than by eyesight. One 
should be aware, however, that when selecting 
sampling units by touch, another source of bias may 
be introduced. This form of bias may occur in virus 
pathosystems in which the infecting virus causes 
stunting of the host and thus taller, virus-free plants 
would have a higher probability of being selected for 
assessment compared to shorter, virus-infected plants. 
This form of bias would result in the underestimation 
of the actual virus incidence in a host population. To 
avoid such problems of bias, Benner et al. (1995) 
devised a sampling scheme in which transects of 25 
consecutive pepper plants were individually assessed 
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for disease incidence (symptoms) beginning at 
arbitrary starting points. 

Because it is often difficult to identify and 
number sampling units as required for completely 
random sampling, many researchers employ a system- 
atic sampling design. In systematic sampling, the 
person collecting samples does so in a predetermined 
pattern, starting at an arbitrarily (or randomly) 
chosen point and then obtaining a sampling unit 
every hth unit, where h is a prespecified distance and 
direction away from the previous sample. 

Any of these sampling designs are sometimes 
employed after dividing a field or plot into 
non-overlapping subpopulations called strata. Strata 
are often quadrats or strips of a field and are 
numbered N,, NZ, Nj, to N,,. After strata are estab- 
lished, random, arbitrary, or systematic samples are 
taken from within each stratum. Stratification prior to 
sampling has the benefit of ensuring that a specified 
number of samples will be selected from each section 
of a field. The gain in precision due to stratification 
can be estimated by comparing the variance in the 
stratified sample with an estimate of what it would be 
if a simple random sample had been used. In addition 
to the above sampling designs, the use of cluster 
sampling, inverse sampling, and sequential sampling 
to estimate mean disease incidence with a prespeci- 
fied degree of precision have recently been discussed 
by Hughes et al. (1996) and Madden et al. (1996). 

Sampling patterns 

Several sampling patterns can be used in conjunction 
with the above sampling designs to estimate disease 
intensity. Examples of sampling patterns include the 
V, X, W, diamond, and the diagonal (line) transect. 
For example, using arbitrary sampling with a W 
sampling pattern, a researcher would arbitrarily select 
n number of samples along each arm of the W (i.e. 
four arms). A systematic W pattern would specify the 
interval (distance or plant number) between samples 
selected within an arm. When disease is random 
within a field, increasing the number of samples (n) is 
more beneficial in terms of accuracy and precision 
than increasing the number of sampling arms. 
Conversely, if disease is aggregated in a field or plot, 
more benefit is obtained by increasing the number of 
sampling arms. 

Statistical analyses of disease progress data 

Simple linear regression 

There are two common approaches to quantity and 
compare the temporal dynamics of epidemics, and 
these approaches are not mutually exclusive. The first 
is to use population growth models coupled with 
linear regression to calculate descriptive parameters 
such as the rate of disease (or pathogen) progress (r) 
and the initial incidence of disease (yo). These two 
parameters may be obtained with linear or nonlinear 
regression analysis (Madden and Campbell, 1990). 
With linear regression, y is transformed based on the 
appropriate model (e.g. y * = In(v)), and the estimated 
slope parameter is one estimate of r. The parameter 

for the intercept with the ordinate is a measure of 
transformed initial disease (or pathogen) incidence 
(y(i). Temporal rates of progress can then be 
compared statistically, but these comparisons are 
valid only when the same population growth model is 
used to calculate rate parameters for each of the 
disease or pathogen progress data sets being 
compared. When different models are required, one 
must use either a flexible nonlinear model or 
calculate the mean weighted absolute rate of change 
in each progress curve (Campbell and Madden, 
1990). 

Coefficient of determination 

In addition to the slope and intercept parameters, 
statistics that can be obtained include the coefficient 
of determination (r2), the coefficient of variation (cv), 
and the standard error of the estimate for y (SE,). 
The r2 indicates the proportion of the variation in the 
response (y) that can be explained by the stimulus 
(e.g. t) (Madden et al., 1990). However, r2 values 
should be interpreted with caution. High r2 values 
may be obtained for more than one model simply 
because the amount of y present increases over time 
and higher slopes automatically give higher r2 values. 
Moreover, there is often a high degree of autocorre- 
lation among disease intensity values assessed over 
time (Campbell and Madden, 1990). 

Coefficient of variation 

The coefficient of variation (cv) provides a good 
overall index as to the precision with which epidemics 
are quantified. It is calculated by expressing the error 
mean square (variance) as a percentage of the overall 
mean, and thus has the advantage of standardizing 
the units for inherently different methods of 
measurement (e.g. disease incidence using visual 
assessment versus pathogen incidence based on 
ELISA indexing). To compare single point assess- 
ments of virus incidence at one time, for instance, the 
cv is given as: 

Error Mean Square 
cv = x 100 

Grand Mean 

When linear regression is used, the following 
equation can be used to calculate the cv: 

cv = [,‘(Error Adjusted Mean Square ofyl 

Grand Mean ofy)] x 100 

This equation can be used to compare regression 
results for virus incidence based on visual assessments 
versus serological indexing. The higher the cv, the 
lower the precision of the assessment method; there- 
fore, the cv provides a dimensionless numerical value 
to compare assessment methods or raters (Nutter and 
Schultz, 1995). For example, the cv may be affected 
by the experience of the rater when visually assessing 
virus disease incidence in a crop. The sensitivity 
and/or specificity of the assessment method (e.g. use 
of monoclonal versus polyclonal antibodies) may also 
impact the cv as it is quite possible that more specific 
virus detection methods such as PCR may actually 
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Table 1. Five population growth models commonly used to describe temporal disease progress The EPIMODEL computer program 
reference uses the linearized forms of each equation to transform disease severity values and compute regression statistics” 

Model Integrated expression Ahsolute rate equation 

Monomolecular y = I -(I -y,,) exp( -TM/) dyidt = rM( I -y) 
Exponential Y = (RI) exp(rr./) dyldt = ry 
Logistic y= l/~l+[(l-y~~)iy~~lexp(~~~r)~ dy/dt = rry( I -y) 
Gompertz y = exp{[lr&J] exp( -rot)) dy/d/ = r(;[ ~ In(y)] 
Linear y = h,,+r1, dy/d/ = Y, 

“I’. discax (or pathogen) incidcncc: r, time: I, rate paramctcr: Y,,, conht;mt of integratkm corresponding 111 y at I = 0 

Linearized equation 

In[ I/( I -y)] = In[ I/( I -,vJ]+rd 
In(y) = In(yll)+rr / 
Ink/( I -y)] = lnly/( I -y,Jl+r,! 
-ln[ -In(y)] = -In[ -lnCy,,)]+rc;r 
\’ = l?,,+r,t 

have a higher cv than less specific methods such as 
ELISA due to the specificity of strain detection. 

Standard error of the estimate for y (SE,) 

The standard error of the estimate for (SE,.) is 
another way to evaluate the precision of disease 
assessments obtained by different raters or methods. 
The precision of disease assessments is indicated by 
the standard error of the raters’ disease intensity 
estimates around the predicted values obtained by 
regression. In general, the smaller the SEY, the better 
the fit of the data to the predicted line. However, SE, 
values obtained using different models or assessment 
methods cannot be directly compared because SE, 
values are influenced by the scale used to describe 
disease intensity. For example, consider the range of 
numerical values encountered when disease incidence 
is expressed as a proportion (0.0 to 1.0) or on a 
logistic scale (-9.2 [or lower] to +9.2 [or higher]). 
See chapter 8 in Campbell and Madden (1990) on 
comparing statistics obtained from different models. 
The standard error of estimate for y is computed as 
follows: 

SE,.=S,\ (I m-r-‘) 

where S,. is the standard deviation fory. 

Plot of residuals 

Finally, it is often helpful to examine subjectively the 
plot of residuals (yilCtlli,i -yprcdicted) versus t or yprc<iictcd 
to help determine how well the regression line fits 
actual disease data. An obvious pattern in the plot of 
residuals indicates that the data set is not adequately 
explained by the model under consideration (Nutter 
and Parker, 1997). 

Area under the disease progress curve 

A second common approach to quantify disease 
progress curves (epidemics) is to calculate the area 
under the disease progress curve (AUDPC). This 
method is particularly useful when there is no single 
population growth model that best tits all of the 
disease progress curves among the set of curves to be 
compared, or if there are too few assessments. This 
‘synoptic’ approach is the numerical integration over 
time of the proportion or percentage of the host 
population that is diseased. Bear in mind that 
AUDPC values are based on disease incidence data 
and that area under the pathogen (incidence) 

progress curve (AUPPC) values can also be 
calculated. AUDPC and AUPPC are usually 
calculated by trapezoidal integration (Berger, 1989) 
and, therefore, the accuracy of these values as a 
measure of the virus epidemic depends on the time 
interval between assessments. AUDPC and AUPPC 
values calculated from progress curves of different 
durations can be normalized by dividing each AUDPC 
(or AUPPC) value by the time duration from the first 
to last assessment of the epidemic. 

Other measurements that are derived from 
progress curves and can be used to compare 
epidemics include the date of disease onset (from 
time when y > 0), the time to reach a certain level of 
y (e.g. 50% incidence), and the maximum disease 
(pathogen) incidence (‘y,,&. When experimental 
treatments are replicated, temporal rates, AUDPC (or 
AUPPC), y,;,,, and time to, say, 50% incidence values 
can be calculated for each replication and then treat- 
ment effects for these estimated parameters can be 
evaluated with analysis of variance (Padgett et ul., 
1990). The above discussion on statistics is relevant 
for AUDPC (AUPPC) and other variables as well. 

Population growth models 

Model selection 

The selection of a temporal model that best describes 
the progress data of plant virus epidemics involves 
consideration of both subjective and objective criteria 
(Madden, 1980, 1986; Waggoner, 1986). The 
temporal population growth models commonly used 
to analyze plant disease epidemics are the linear, 
monomolecular, exponential, logistic. and Gompertz 
population models (Nutter and Parker, 1997). 
Expressions for the absolute rate of change in y with 
t (dyldt) and the integrated and linearized forms of 
these models are given in Table I. 

To select the most appropriate population growth 
model for virus progress data sets, several steps are 
involved (Campbell and Madden, 1990). One of the 
first steps is to graph y (usually disease or pathogen 
incidence) versus time t. As will be shown later with 
specific examples, the shape of the incidence progress 
curve is very helpful in identifying the best model. 
The next step is to graph the estimated dyldt versus t. 
The shape of these curves will also help to identify 
the model that will best fit virus progress data (see 
below). If the appropriate model is chosen, the plot 
of the y 0, *) versus (t) should approximate a straight 
line. 
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After viewing the above graphs, objective criteria 
for the acceptance or rejection of a model are 
provided by the estimated regression parameters and 
statistics described earlier in this section such as the 
r2, cv, SE, and standard deviations of parameter 
estimates (Campbell and Madden, 1990). Finally, the 
inspection of residual plots reveals if the model is 
satisfactory. For additional information concerning 
these and other temporal models used to quantify 
disease dynamics, the reader is referred to Berger 
(1989), Campbell and Madden (1990), Madden and 
Campbell (1990), Nutter and Parker (1997), Vander- 
plank (1963), and Waggoner (1986). 

The simple linear model 

The simple linear model is appropriate to quantify 
and compare epidemics for which dyldt appears 
constant throughout the epidemic, resulting in a 
straight line (linear) progress curve. Unlike the other 
models discussed here, the linear model is too 
simplistic to predict or explain the biological charac- 
teristics of an epidemic. The linear model, however, 
can be used to provide simple descriptions of 
epidemics and to give information concerning the 
epidemiological benefits of various disease control 
tactics (Gray et al., 1994). A good example is the 
disease progress curve for a virus disease of chili 
(Roff and Ho, 1991) (Figure 4A). Note that the rate 
curve (dyldt vs t) for the linear model is approxi- 
mately a horizontal line (Figure 4B) and that the 
simple linear model provides a very good fit to this 
epidemic (Figure 4C). 

The monomolecular model 

The monomolecular model assumes that dyldt is 
greatest at the beginning of the epidemic and that 
dyldt slows in direct relation to the remaining amount 
of disease-free (or pathogen-free) plant tissue (1 -y) 
(Table I). For simplicity, it is assumed here that y,,, 
is 1 (100%). The expression 1 -y accounts for the 
constraints to further disease increase caused by the 
lack of healthy plants. At low levels of disease y, the 
expression is approximately dyldt ErM, and therefore 
dyldt is not dependent on y and is similar to the 
linear model. This model is also called the negative 
exponential model (Campbell and Madden, 1990) or 
the ‘simple interest’ model (Vanderplank, 1963). The 
monomolecular population growth model is applied 
to epidemics for which there is no spread from plant- 
to-plant, i.e. there is no secondary spread within a 
growing season. The monomolecular model can also 
be used to quantify changes in virus incidence over 
years. For example, Jones (1979) annually recorded 
the incidence of raspberry virus in raspberries based 
on visual symptoms beginning at planting (May 1971) 
through 1978. The disease progress curve for 
incidence of raspberry virus over this &year period is 
shown in Figure SA. Note that the rate dyldt 
decreases with time for this model (Figure SB) and 
that the monomolecular model provides a good fit to 
this epidemic as indicated by the regression line and 
equation in Figure 5C. 
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The exponential model 

The exponential model (also known as the 
logarithmic, geometric, or Malthusian model) is the 
simplest of the two ‘compound interest’ models of 
Vanderplank (1963). It is appropriate for when there 
is virus spread from plant-to-plant over time; that is, 
new diseased (infected) individuals lead to more 
diseased (infected) individuals. Spread may be from 
plant-to-plant within a crop and/or be the result of 
virus spread from infected alternative virus hosts 
(reservoirs) located within or outside the crop to crop 
plants within a field. The exponential model dates 
back at least to Malthus who, in 1798, used it to 
predict future increase in the human population. This 
model assumes that dyldt increases throughout the 
epidemic and that the absolute rate of virus increase 
is directly proportional to the present level of virus 
incidence as well as the rate of infection r. This 
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Figure 4. (A) Disease progress curve for chili virus disease 
incidence (v) in chili pepper. (B) Rate of change of chili virus 
incidence (dyldf) versus time for the same epidemic. (C) Linear 
regression line and equation for the increase in chili virus 
incidence versus time; y = 46.5+0.88(t), r2 = 98.8%, SE,, = 2.97 
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model also implies that factors such as the carrying 
capacity of the host crop do not limit the rate of 
disease increase and, therefore, virus progress curves 
are typically J-shaped and lack an inflection point. A 
plot of the rate curve, dyldt vs t, also has no inflection 
point and dyldt increases with time. The exponential 
model can be used to model changes in disease 
prevalence on a geographic scale and can be applied 
to describe the very early phases of most polycyclic 
(compound interest) epidemics. This is because, when 
y is very small, there is little effect of healthy host 
level on dyldt (1 -y is close to 1). 

Figure 6A shows a pathogen progress curve for a 
soybean mosaic virus epidemic in soybean (Nutter et 
al., 1994) in which the exponential model would be 
the most appropriate model to obtain a linear 
relationship between transformed pathogen incidence 
(In y) and t. The date of sowing for this experiment 
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Figure 5. (A) Disease progress curve for raspberry virus incidence Figure 6. (A) Progress curve for incidence of soybean mosaic 
in raspberry. (B) Rate of change of raspberry virus incidence virus (SMV) in soybean cv. ‘Corsoy’. (B) Change in rate of SMV 
(dyldt) versus time for the same epidemic. (C) Linear regression incidence (dy/dt) versus time for the same epidemic. (C) Linear 
line and equation using the monomolecular model In[l/(l -y)] regression line and equation using the exponential model [In(y)] 
versus time to transform incidence data; In[l/(l -y)] = versus time to transform incidence data; In(y) =25.4+0.10(t). 
-0.11+0.75(t), r2 = 96.9%, SE,, = 0.35 r2 = 99.3% SE = 0.13 I Y 

was 17 June 1992 (day of year 168). The sampling 
unit defined in this study was unique in that indivi- 
dual leaves or plants were not assessed. The sampling 
unit was defined as a quadrat and each quadrat was 
30 cm long and one row wide. Each plot consisted of 
25 quadrats per row by six rows (i.e. there were 150 
quadrats per plot). A single leaf was sampled from 
each plant within a quadrat (three to four plants) and 
the leaves from each quadrat were bulked and then 
tested for the presence of SMV using ELISA. The 
incidence of quadrats testing positive for SMV was 
then plotted with respect to time. Note that there is 
no inflection point in the pathogen incidence curve 
shown in Figure 6A and that dyldt also increases with 
time (Figure 6B). The linearized model provides a 
good fit to the data as indicated by a high r2 and low 
SE, (Figure 6C). The slope of the regression equation 
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(O.lO/day) is a measure of the exponential rate of 
pathogen increase per day. 

The logistic model 

The logistic model was proposed by Verhulst in 1838 
to represent human population growth and is 
probably the model most frequently used to describe 
viral epidemics. It is the second type of compound 
interest model of Vanderplank (1963) and may be 
appropriate for entire epidemics (O<y< 1) of viral 
diseases where there is spread from plant-to-plant. 
Disease and pathogen progress curves typically have a 
characteristic sigmoid (S-shaped) form, with an 
inflection point at the time when virus incidence 
reaches a proportion of 0.5 (50%). The absolute rate 
curve is symmetrical, with the highest rate occurring 
when y = 0.5. A biological interpretation is that, early 
in the epidemic, dyldt accelerates as y approaches 0.5 
because an, increasing number of newly diseased 
plants become infectious and contribute to more 
diseased plants. At later stages, the diminishing 
incidence of healthy plants remaining (1 -y) limits 
the rate of increase. This relationship can be 
expressed in a differential equation for the rate of 
increase as dyldt = r&l -y). Thus, the absolute rate 
of virus disease increase is proportional to the 
incidence of noninfected plants late in the epidemic 
(1 -y), the level of virus incidence early in the 
epidemic, and the rate of infection (Ye). 

A typical S-shaped disease progress curve is 
demonstrated in Figure 7A for the disease caused by 
tobacco etch potyvirus (TEV) in bell pepper. Pepper 
plants were transplanted to the field on 6 June 1986 
(day of year 157) and all pepper plants (census) in 
plots of six rows by 24 plants per row (H = 144 plants) 
were visually assessed each week for symptoms 
typical of those caused by TEV. The first diseased 
plants were observed on 3 July (day of year 184) and 
TEV disease incidence was 99% by 20 August (day of 
year 232). The absolute rate curve is bell-shaped 
(Figure 7B), which further indicates that the logistic 
model would probably provide a good fit to linearize 
disease progress data (Figure 7C). The slope of the 
regression line for transformed y versus t (rL) is 

0.2l/day. It should be noted that rL is an overall 
measure of the host, pathogen, and environment 
interaction, including vector population dynamics. 
Using this model, the independent variable (time) 
explained 96% of the variation in the transformed 
disease incidence- and the SE, was quite small, 
indicating that the logistic model provided a good fit 
to the data. 

The Gompertz model 

The Gompertz model is borrowed from an animal 
growth study and was originally proposed in 1825 
(Madden, 1980). As with the logistic model, the 
progress curve has an inflection point, but it is 
located when y = 0.37(1/e), and a large portion of the 
area under the rate curve is located to the right of 
the inflection point. The absolute rate curve reaches 
a maximum more quickly and then declines more 
gradually than with the logistic model. The model 
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could be appropriate for polycyclic (compound 
interest) diseases as an alternative to the logistic 
model. The ‘correction factor’ for decreasing healthy 
host plants of the logistic model (1 -y) is replaced by 
- In[ - In@)] in the Gompertz model. 

An example of a disease progress curve that is best 
fitted by this model comes from Madden et al. (1987) 
for a TEV epidemic in tobacco (Figure ??A). The 
tobacco cultivar Kentucky 14 was transplanted to the 
field during 23-28 May 1985. An experimental plot 
consisted of 22 rows of 150 plants each and tobacco 
plants were assessed for the presence of tobacco etch 
virus symptoms each week in the experimental plot. 
The disease progress and the absolute rate curves are 
both skewed (Figure 8B). Because of the logarithmic 
function in the equation for dyldt, the appropriate- 
ness of this model implies that equal proportions of 
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Figure 7. (A) Progress curve for incidence of tobacco etch 
potyvirus in bell pepper cv. ‘Yolo Wonder B’ in Georgia. (B) 
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epidemic. (C) Linear regression line and equation using the 
logistic model [lny/(l -y)] versus time to transform incidence 
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the pathogen’s ability to increase are reduced with an 
increase in time. This may possibly be due to the 
temporal dynamics of the aphid vector population 
and/or a trend towards increased host resistance as 
the crop matures (Webb and Nutter, 1997). Figure #C 
shows that the Gompertz model provided an excel- 
lent fit to the transformed data, with an rz value of 
98.%% and a very small SE,.. 

Analysis and interpretation of disease progress 
curves in selected virus pathosystems 

Example one 

The first example involves three disease progress 
curves obtained from the TEVibell pepper patho- 
system (Figure 9A). The experiment was planted on 1 
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Figure 8. (A) Progress curve for incidence of tobacco etch 
potyvirus in tobacco in Kentucky. (B) Change in rate of TEV 
incidence (dyldt) versus time for the same epidemic. (C) Linear 
regression equation using the Gompertz model -In[-In(y)] 
versus time to transform incidence data; ~In[~ln(y)] = 
1.81+0.06(t), r2 = 98.9%, SE, = 0.11 

June 1987 (day of year 152) and each treatment was 
replicated four times. The first curve (closed circles) 
shows the effect of having a single TEV-infected 
plant present in a 8.3 x 8.0 rn’ plot at the time 
peppers were transplanted to the field. The second 
curve (open triangles) depicts disease progress typical 
of that found in grower’s fields whereby no weeds are 
present within the crop at transplanting and all 
pepper transplants are initially disease-free. The third 
disease progress curve (closed triangles) shows the 
effect of aluminum plastic mulch in delaying both the 
onset and rate of TEV spread with time. The latter 
control tactic is thought to repel aphids that may 
already have acquired TEV from alternative weed 
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Figure 9. (A) Disease progress curves for three epidemics of 
tobacco etch potyvirus (TEV) incidence in bell pepper as affected 
by (i) a single TEV-infected plant present in the plot at the time 
peppers were transplanted, (ii) no infected plants at time of 
transplanting, and (iii) use of aluminum plastic mulch. (B) Rate of 
change in TEV virus incidence versus time for the same three 
epidemics. (C) Linear regression lines and equations using the 
logistic model [lny/(l -y)] versus time to transform incidence 
data; 0 -47.57+0.26(f), r* = 96.6%; H -46.44+0.24(t), 
r2 = 97.6%; A -30.09+0.14(t), r* = 97.1% 
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hosts found in bordering pepper fields (Summers et 
al., 1995). Thus, the epidemiological effect of this 
tactic is to reduce the amount of virus inoculum 
entering the field as well as the number of aphids 
that could potentially spread TEV within the field. 

Obviously, the presence of a single TEV-infected 
plant at transplanting enhances disease progress and 
the use of aluminum plastic mulch restricts disease 
progress, compared with the center disease progress 
curve which represents standard cropping practices. 
Note also that the aluminum mulch treatment 
changes the shape of the disease progress curve from 
sigmoidal to exponential, although there are no y 
values above 70% in this curve. The absolute rate 
curves indicate that the logistic model provides a 
good fit to the other two progress curves but may not 
be the best transformation for the aluminum mulch 
treatment because of the continually increasing dyldt 
(Figure 9B). This curve indicates that the exponential 
model would provide a better fit to this epidemic. 
The logical question, therefore, is which model 
should be selected to make comparisons among all 
three curves? There are several possible approaches 
to this problem. First, one could argue that in the 
aluminum mulch treatment, the disease progress 
curve would have become sigmoidal if the onset and 
rate of the epidemic were not slowed to the point 
where the crop was mature before high disease levels 
of incidence ( > 70%) could be reached. If so, then 
the logistic model would be a realistic choice. To test 
this, all three disease progress curves were trans- 
formed based on the logistic model and regression 
parameters for each treatment were calculated. Figure 
7C shows that the logistic model could, indeed, be 
used to adequately describe and compare all three 
curves as this model provided a linear relationship 
between transformed y with time. Moreover, the use 
of this model accounted for 96.6 to 97.1 of the varia- 
tion in logit TEV incidence (high r* values). 

For these three epidemics, the effect of aluminum 
mulch compared to no infected plants at time of 
transplanting can be seen as a reduction in rL from 
0.24 to O.l4/day, with no change in transformed initial 
disease, ln(y,/[l -yo]). Adding an infected plant 
increased In(y,j[l-yo]), which is the initial disease 
incidence, and the rate of TEV infection was 
increased from 0.24 (no infected plants at trans- 
planting) to 0.26 logits/day when one infected plant 
was present at transplanting. 

Another possible approach to quantify and 
compare these three epidemics is to calculate the 
time to 50% disease incidence (tso) for each of the 
four replicate plots and then use analysis of variance 
and mean separation tests to compare the three treat- 
ments. The tstl values for one infected plant at trans- 
planting, no infected plants at time of transplanting, 
and aluminum mulch treatments were days of year 
181 (30 June), 196 (15 July), and 219 (7 August), 
respectively. Note in this example that final disease 
incidence (ymax) does not distinguish between the first 
two epidemics, yet AUDPC values for all three 
epidemics were significantly different (P 2 0.05) 
(AUDPC values were 3680, 2534, and 1001 for the 
same three treatments, respectively). Thus, the 
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comparison of rL, AUDPC, and/or t5(, values appear to 
be the best methods to obtain quantitative informa- 
tion to compare these three disease progress curves 
(Figure 7A). 

Example two 

A study by Lecoq and Pitrat (1983) quantified the 
effects of weed control measures and host resistance 
on cucumber mosaic cucumovirus (CMV) in 
muskmelon. The form of resistance evaluated was 
known to be effective against some CMV strains but 
completely ineffective against others. Each plot was 
approximately 600 m* (260 plants) planted to either 
the CMV-susceptible cultivar Vedrantais or the 
resistant cultivar (line) Songwhan charmi (PI 161375) 
in the summer of 1979. Four disease progress curves 
for the 1979 summer planting are shown in Figure 
IOA. Based on the sigmoid shape of these four curves 
and the absolute rate curves (not shown), it appeared 
that the logistic model was the model most appro- 
priate to describe all four curves (Figure IOB). 
Vanderplank (1963) stated that resistance effective 
against some strains (races) of a pathogen may have 
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the effect of delaying the epidemic, that is, yll will be 
reduced, but not rI_. The estimates of ytd for the 
susceptible and resistant cultivars were 0.32 and 
0.32/day (with no weeding), respectively. The lack of 
a difference in rI. values between cultivars can be 
attributed to the fact that this form of resistance was 
only effective against some virus strains, and there- 
fore transformed y,, was somewhat reduced but rl. was 
unaffected. As predicted by Vanderplank (1963) the 
epidemiological effect of this form of resistance was 
to delay the epidemic, but only for a few days 
because ri, was very fast. The initial amount of virus 
infection in the field was reduced because only the 
compatible strain(s) of the virus continued to spread 
within the crop. The epidemiological effects of this 
form of resistance can best be measured by deter- 
mining and comparing the time to reach 50% disease 
incidence (ts,,). Although tso can be estimated by 
finding the time ofy = 50% for each curve, one could 
also use the appropriate linearized version of the 
population growth model (Table I) that was selected 
and solving the equation for t (with y = 50%) to 
obtam tso values (Padgett ef al., 1990). In this 
example, the benefit of the resistant cultivar was to 
delay the epidemic by only 2 days, that is tso was 
increased from 24 to 26 days after transplanting; thus, 
this form of resistance alone is probably not cost- 
effective. 

There was no effect of weed control (use of herbi- 
cides and mechanical cultivation) on the rate of the 
epidemic (ri ) when the susceptible cultivar was grown 
(ri. = 0.32 for both weeded and unweeded epidemics), 
but there was an ll-day delay in the time to reach 
50% TEV incidence when the susceptible cultivar was 
weeded. When resistance was combined with weed 
control, however, tso was further delayed from day 24 
(susceptible cultivar, no weed control) to day 51 
(resistant cultivar plus weed control). The two tactics 
combined reduced rI_ from 0.32 to 0.23 logits/day. 
The biological interpretation of these results is that 
resistance reduces initial disease, and together with 
weed control, alloinfection among plants is reduced 
throughout the epidemic by reducing the number of 
foci from which aphids could potentially acquire 
CMV. This study clearly demonstrates that when 
disease progress (or pathogen) curves are similar in 
shape, tsO values can provide an excellent alternative 
means to quantify the effects of virus control tactics 
that delay epidemics. Furthermore, this study also 
provides an excellent example of how the benefits of 
integrated virus management tactics can be 
quantified. 

Example three 

The third example again comes from the TEV/bell 
pepper pathosystem (Padgett et al., 1990). The 
objectives of this study were to identify pepper 
genotypes that reduce the temporal rate of TEV 
epidemics and to quantity the effect of this form of 
resistance on epidemiological characteristics. Figure 
ZIA shows disease progress curves for a susceptible 
cultivar ‘Yolo Wonder’ and two pepper genotypes 
with rate-reducing resistance: ‘Tambel 2’ and an 
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‘Asgrow’ line. Plot sizes were 7.2 m long (24 plants) 
and six rows wide and each treatment (pepper 
genotype) was replicated four times. All pepper 
plants within a plot were assessed each week for the 
presence of TEV symptoms. The disease progress 
curve for TEV in ‘Yolo Wonder’ is sigmoidal, but the 
disease progress curves for the other two pepper lines 
are J-shaped. It was assumed that these two progress 
curves would have become sigmoidal had the annual 
growing season been extended; indeed, the logistic 
model provided a good fit to all three curves for 
purposes of comparison (Figure 1ZB). Using this 
model, the estimates of rl, for Asgrow and Tambel 2 
lines were about half of the rid compared with ‘Yolo 
Wonder’ (Table 2). A reduction in rL delayed the tso 
by 25 to 34 days, and by the end of the growing 
season, TEV incidence levels (ymax) were substantially 
lower for the two rate-reducing genotypes (Table 2). 
Had the logistic model not adequately described all 

100 

--C Yolo Wonder 
--t Asgrow 

? 80 - -k- Tambel 
& 

z 
c 60~ 
0 
2 - 
$ 40- 

g 
.II 
n 

20 - 

6 

-6 

30 40 50 60 70 80 90 100 110 

30 40 50 60 70 80 90 100 110 

Time (days after transplanting) 

Figure 11. (A) Progress curves for incidence of tobacco etch 
potyvirus in three pepper genotypes. (B) Linear regression lines 
using the logistic model [In y/(1 -y)] versus time to transform 
incidence data. Regression equations for the transformed y values 
versus time (t) are: Yolo Wonder -10.18+0.15(t), r*=99.1%; 
Asgrow -7.48+0.07(t), r2 = 87.7%; Tambel 2 -7.63+0.08(t), 
r2 = 85.4% 
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Table 2. Disease progress measurements? effect of bell pepper genotype on final incidence of tobacco etch virus (TEV) incidence at time 
of harvest, relative area under the disease progress curve (RAUDPC), time for TEV incidence to reach 50% (tso). and apparent infection rate 
(rJ in Blarisville, GA, 1986 

Genotype Final incidence (s) RAUDPC (96) Apparent infection rate (rdday) 

Yolo Wonder B 97.2a 1 oo.oa O.lSa 
Tambel 2 73.4b 46.4b 0.08b 
Asgrow XPG-5021 51.4c 32.3~ 0.07c 
SEDz 3.7 4.8 0.02 

,‘Within each column, means followed by a diffcrcnt letter XL’ significantly diffcrcnt using the Walk-Duncan K-ratio test (P~O.O.5) 

lo (days) 

20sa 
246b 
2ssa 
3.2 

three TEV disease progress curves, the effect of host 
genotype on disease progress could still have been 
quantified by calculating the AUDPC for each repli- 
cate plot and subjecting the data to analysis of 
variance and a means separation test. This was done 
and the results are shown in Table 2. In addition to 
standardizing AUDPC by dividing the time from the 
first to the last assessment, another useful standard- 
ization is to divide AUDPC values by the highest 
AUDPC value obtained in the study and multiply by 
100. Using this approach, the relative area under the 
disease progress curve values for Tambel 2 and 
Asgrow were 46 and 32, compared with 100 for ‘Yolo 
Wonder’ (Table 2). 

Example four 

Seasonal effects on alfalfa mosaic virus alfamovirus 
(AMV) epidemics in annual medics (Medicago spp.) 
were quantified and compared by obtaining estimates 
of the rate parameter for AMV spread in each of 
four seasons. The original data were collected by 
R.A.C. Jones and D.G. Ferris, Plant Pathology 
Branch, Department of Agriculture, Perth, Western 
Australia (Jones and Ferris, 1995). The rate of spread 
of AMV in annual medics was determined by plotting 
cumulative AMV incidence versus time to obtain 
disease progress curves for the years 1991-1994 
(Figure 22A). In this study, AMV epidemics began as 
early as 18 August (1992) or as late as 13 September 
(1994). The computer program EPIMODEL (Nutter 
and Parker, 1997) was used to determine which 
population growth model best described AMV 
disease progress in annual medic pastures. Model 
evaluation included the following criteria: (i) the 
F-statistic for the overall model which indicates that 
there is a significant linear relationship between 
transformed AMV incidence (y) and time (x); (ii) the 
coefficient of determination (r’) which indicates the 
amount of variation in y that is explained by time; 
(iii) the standard error of the estimate for a predicted 
y value (SE,); and (iv) visual inspection of the plot of 
the residuals versus time (a model is considered 
inadequate if residuals plotted versus x appear in a 
defined pattern). 

Based on the above criteria, the logistic model best 
explained the temporal spread of AMV in annual 
medics of the study and, therefore, AMV incidence 
was transformed to logits [In yl( 1 -y)] and regressed 
against time to obtain slope values which are 
estimates of the rate of AMV spread (Figure 12B). 
AMV spread in annual medic pastures was moder- 
ately fast in 1991 (0.12 logits/day) and moderately 
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slow in 1992 (0.06 logits/day) (Figure 2). CMV spread 
in 1993 and 1994 was intermediate (0.09 logits/day). 
Using the highest infection rate recorded during the 
4-year study (0.12 logits/day), AMV has the potential 
to increase from 1 to 100% incidence in just 96 days. 
The logistic model can also be used to calculate the 
time to 50% AMV incidence and this variable may 
also be used to compare AMV epidemics among 
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Figure 12. (A) Progress curves for incidence of alfalfa mosaic virus 
(AMV) in annual medic during the years 1991-1994. Disease 
incidence reached 53 to 83% within the first growing season with 
epidemics starting as early as day of year 220 (August 18) and as 
late as day of year 256 (September 13). (B) Rate of spread of 
alfalfa mosaic virus in annual medic: 1991, 0.12 logits/day; 1992, 
0.06 logits/day; 1993 and 1994, 0.09 logits/day 
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years. For three of the four years, time to 50% AMV 
incidence occurred within a 6-day window (day of 
year 266, 269, and 272 for the years 1991, 1992, and 
1993, respectively). For some as yet unknown reason, 
time to 50% AMV incidence occurred much later in 
1994 (day of year 290). 

Concluding remarks 

Although the temporal analysis of plant virus disease 
(or pathogen) progress curves can provide much 
information on plant virus epidemics, our under- 
standing of virus epidemics is still sparse compared to 
pathosystems involving fungal and bacteria1 patho- 
gens. The development of virus detection tools that 
are low cost, fast, and accurate in terms of specificity 
and sensitivity will facilitate the undertaking of more 
extensive and quantitative epidemiological studies of 
plant virus pathosystems. The ability not only to 
detect the presence of specific viruses in time and 
space, but to differentiate virus strains, will lead to 
the generation of important new epidemiological data 
that can be quantitatively analyzed and interpreted by 
using the methods discussed here. These new results 
will help provide critical knowledge concerning the 
risks and benefits of virus disease management strat- 
egies and tactics, especially those involving crop 
plants genetically engineered for resistance to plant 
viruses. Moreover, quantitative information 
concerning the epidemiological impacts of specific 
virus management tactics on initial disease (or 
pathogen) incidence (y,)) and the increase in virus 
incidence with respect to time (Y) will facilitate the 
integration and evaluation of more effective plant 
virus management programs. 
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