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1 Purpose 

This document is not intended as a formal help manual, but rather as an aid in using XFLR5. Its purpose is to explain the 
methods used in the calculations, and to provide assistance for the less intuitive aspects of the software. 

2 Introduction 

2.1 Code limitations and domain of validity 

Like the original XFoil, this project has been developed and released in accordance with the principles of the GPL.  
Among other things, one important point about GPL is that: 

"This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty 
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details." 

The code has been intended and written exclusively for the design of model sailplanes, for which it 
gives reasonable and consistent results. The code's use for all other purpose, especially for the 
design of real size aircraft is strongly disapproved. 

2.2 XFLR5's development history 

The primary purposes for the development of XFLR5 were to provide:  

− A user-friendly interface for XFoil 

− A translation of the original FORTRAN source code to the C/C++ language, for all developers who might have a 
need for it 

This was done in accordance with, and in the spirit of, Mark Drela's and Harold Youngren's highly valuable work, which they have 
been kind enough to provide free of use under the General Public License.  

The resulting software is not intended as a professional product, and thus it does not offer any guarantees of robustness, 
accuracy or product support. It is merely a personal use application, developed as a hobby, and provided under GPL rules for use 
by all. 

For this reason, it should be noted and understood that XFLR5 may not be default-free. Some significant bugs affecting result 
precision have been reported in the beta releases and corrected.  
However, XFLR5 has been thoroughly tested against other software and published experimental results, up to now with some 
success, and this permits a limited amount of trust in the results it provides. 

The algorithms for foil analysis implemented in XFLR5 are exactly the same as those of the original XFoil code, except for the 
translation from FORTRAN to C. No changes nor amendments have been made. The translation in itself could have caused new 
bugs. However, the code has been thoroughly tested against numerous original XFoil analyses, always with consistent results. It 
may be found, in some cases, that one of the two programs may not converge where the other will, or that the path to 
convergence is different from one to the other. This is due to the different manner in which floating point numbers and 
calculations are processed by the two compilers. Having said this, the converged results are always close, and any differences 
within the convergence criteria set in the XFoil source code. 
Hence, both XFoil and XFLR5 results of airfoil analysis will be referred to herein as "XFoil results". 
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Wing analysis capabilities have been added in version 2.00. Initially, this was done at the suggestion of Matthieu Scherrer, who 
has experimented with his Mathlab "Miarex" code the application of the Non-linear Lifting Line Theory (herein referred to as 
"LLT") to the design of wings operating at low Reynolds numbers. 

Later on, the necessity arose to add the Vortex Lattice Method (herein referred to as "VLM") for the design and analysis of wings 
with geometries not consistent with the limitations of the LLT. 

Version v3.00 introduced Katz and Plotkin’s recommended VLM method based on quadrilateral rings, and the VLM calculation of 
planes with elevator and fin.  

On March 31st, 2007, XFLR5 has become an Open Source Development Project hosted by Sourceforge.net.  

Version v4.00 introduces a 3D panel method for wings and planes, including modeling options for fuselages. 

Up to this last version, XFLR5 has been developed specifically for Windows, using Microsoft's MFC libraries. This is a limitation of 
the product, making it non available for Unix, Linux, and MAC systems, except with the use of an emulator. It has therefore been 
decided to re-write the code using the cross-platform Qt4 libraries provided by Trolltech. This version of the code has been 
temporarily dubbed "QFLR5" for the beta stages, however it will ultimately be released as XFLR5 v5 when it has reached a robust 
and reliable state. QFLR5 does not offer any new functionality compared to the original code.  

2.3 Code structure  

Five different "Applications" have been implemented: 

− Two direct design modes which are convenient to compare foils, and to design new foils with the use of B-Splines 

− The mixed inverse (QDES) and the full inverse (MDES) foil design routines, virtually unchanged from the original 

− The foil direct analysis routines (OPER)  

− The wing, plane and body design and analysis 
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3 Foil Analysis and Design Modes 

3.1 General 

This part of the code is built around XFoil and its main features, i.e. the design routines, and the direct and inverse analysis 
(OPER, MDES, GDES, and QDES). Except for the implementation of the Windows interface, no special feature has been added 
to these modules. 

To run and use XFLR5, no special knowledge nor any previous experience of XFoil is necessary, although users accustomed to 
XFoil should have no difficulty in recognizing the new Windows-style menu options. 

Since the analysis engine is very much unchanged from the original, users are advised to refer to the original XFoil help to 
understand the purpose, operation, and limitations of the foil direct and inverse analysis. Their use in XFLR5 is basically the 
same, with a limited number of necessary adaptations for the Windows interface. 

3.2 Direct Analysis [Oper] 

3.2.1 Foil object 

3.2.1.1 Foil Database 

Foils are loaded from standard foil files and are stored in a runtime database. Any number of foils may be loaded at any time.  

3.2.1.2 File format  

XFLR5 recognizes only the plain traditional format for foils, i.e. files which contain the foil's name on the first line, followed by the 
X,Y coordinates, which run from the trailing edge, round the leading edge, back to the trailing edge in either direction:  

Foil Name  

X(1) Y(1)  

X(2) Y(2)  

. .  

. .  

X(N) Y(N)  

All lines containing a '#' character are ignored.  
No special checks are performed on the input geometry. Users are advised to check the file format if the foil is not read properly 
by XFLR5. 

3.2.2 Foil Modification 

XFLR5 provides the same options for foil modification as the original XFoil code. These are: 

− local and global refinement 

− modification of the thickness, camber, max thickness and max camber positions. 

The modification of these parameters will cause a new foil to be generated. 

Whenever a foil is modified, deleted or overwritten, all its associated results are deleted to ensure consistency. 
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Experience shows, and XFoil advises, that refinement of the foil's panels, after it has been loaded or modified, is usually a 
prudent measure to take before any analysis. 

3.2.3 Analysis/Polar object 

Unlike XFoil, an analysis of a given foil may be performed only after a 'polar object' has been defined and associated to this foil. 
The results of the analysis will automatically be associated and added to the polar object. 

Any number of polars may be created and associated to a given foil. 

A polar object is defined by: 

− its Type 

− its Reynolds and Mach numbers 

− the laminar to turbulent transition criterion 

− the forced trip locations on top and bottom surfaces 
By default, the transition number is set to 9, and the trip locations are set at the trailing edge.  

In addition to the Type 1, 2 and 3 polars which are unchanged from XFoil, Type 4 polars have been introduced, showing data for 
a given angle of attack at variable Re. The purpose is to enable determination of the critical Re value.  

 

Figure 1 : Type 1 foil polars 

3.2.4 Operating Point (OpPoint) object 

An operating point of a given foil is defined by its angle of attack and its Re number. Always associated to a foil and to a Polar 
object, the OpPoint stores the inviscid and viscous results of the analysis. 

Any number of OpPoints may be stored in the runtime database, the only limitation being computer memory. OpPoints may use 
significant memory resources. 

To insure consistency, any modification to the foil or to the polar causes the operating point to be deleted from the database.  
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Figure 2 : Cp calculation 

3.2.5 XFoil analysis 

Each time an XFoil direct analysis is performed and the convergence is achieved, an OpPoint is generated and the values of 
interest are stored in the currently selected polar object. Data is added to the polar, whether the option to store OpPoints has 
been activated or not. 

An XFoil calculation performed at the same angle of attack and Re as an existing OpPoint causes the latter to be replaced, and 
the polar data to be updated. 

The "Init BL" checkbox is the equivalent of the "Init" menu command in XFoil, i.e., it resets the boundary layer to standard values 
before an analysis. It is recommended to check the box at the time of the first calculation, and whenever the analysis of an 
OpPoint is unconverged or is very different from the previous one. 

In the case of sequential analysis, the "Init BL" is automatically deactivated after a first converged point has been reached, and is 
reset after an unconverged calculation. 
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3.2.6 XFoil errors 

Given the complexity and difficulty of a viscous analysis, XFoil is remarkably robust and consistent. It may happen however that 
the following error message is generated during an analysis. 

 

Figure 3 – XFoil Error Message 

 

This error message is usually caused by a too coarse paneling of the foil, or a too sharp leading edge. It is possible that in such a 
case XFoil gets "stuck" and fails at any attempt to perform a new analysis. The menu command "Operating Point/Reset XFoil" 
can be used to reinitialize all the variables and reset the currently selected foils and polars. 

3.2.7 Session example – Direct Analysis 

1. Load a foil from a file 

2. [Optional] Use the “Derotate” and “Normalize” commands to respectively align the mean chord with the x-axis and to set 
its length to 1. 

3. [Optional] Use the "Refine Locally" or "Refine Globally" commands to optimize the foil's panels 

4. Use the "Define Analysis/Polar" command in the Polar menu, or F6, to define an analysis – for instance a Type 1 analysis 
at Re = 100,000 and Mach = 0.0 

5. Define an angle of attack or a lift coefficient to analyze – for instance α = 0° 

6. Click on the "Analyze" button in the right toolbar to launch an analysis 

7. If the XFoil analysis has converged, the Cp distribution will be displayed automatically  

8. Check the Show BL or Show Pressure buttons to visualize either distribution 

9. Check the "Sequence" button in the right toolbar 

10. Define the min and max angles for the analysis – for instance from α = -6° to α = 10° 

11. Since the new start value is significantly different from the last calculation (i.e. α = 0°), check the "Init BLs" button  

12. Click on the "Analyze" button 

13. Click on the "Animate" button to visualize modifications of the boundary layer or pressure distributions with angle of attack 
variations 

14. Click on the "Polars" command in the View menu, or type F8 

15. Use the mouse button and wheel to drag and zoom the graphs 

3.3 Full Inverse Design [MDES] and Mixed Inverse Design [QDES] 

3.3.1 General 

Both design modes are unchanged from the original. 
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Foils generated by the Full Inverse method are defined by 255 coordinate points, which is excessive for subsequent Direct 
Analysis. A re-paneling of the foil is strongly recommended. 

Although foils generated by the Mixed Inverse Method have the same number of panels as the original foil, a re-panel is still 
advisable.  

3.3.2 Session example – Full Inverse Design 

1. Switch to the Full Inverse Application (Menu command or Ctrl+3)  

2. Select a foil from the loaded database, or load a foil from a file 

3. Click on the "New Spline" button in the right toolbar dialog 

4. Select two points either on the upper or lower surface, but not one on each  

5. Drag the spline's control points to define a new speed distribution 

6. Click on the "Apply" button to register the change 

7. Click on the "Execute" button to calculate the new foil geometry 

8. Use the mouse buttons and wheel to drag and zoom the graph and the foil 

9. Repeat the process until the desired geometry is reached 

10. To store the modified foil, click on the arrow in the top toolbar, or select "Store foil in the database" in the Foil menu 

11. Switch to the Direct Analysis Application (Menu or Ctrl+5)  

12. Use "Refine globally" in the Design menu to generate a coarser panel 

13. Proceed with the direct analysis 

3.3.3 Session example – Mixed Inverse Design 

Steps 1 to 6 are identical to the Full Inverse design method 

7. Click on the "Mark for Modification" button to define which part of the foil is to be modified 

8. Click on the "Execute" button to calculate the new foil geometry 

9. Check for convergence in the text window 
In the case of non-convergence, it is possible either to resume iterations by clicking again the "Execute" button, or to 
export the modified geometry as it is 

Finish as with the Full Inverse design method. 

4 Foil Design 

4.1 General 

A crude design module has been included in XFLR5, which allows the design of Foils either from B-Splines or from "Splined 
Points". The former gives smoother surfaces, the latter authorizes greater control over the geometry.  

This design mode however is not the best way to design foils, and the other possibilities derived from XFoil are far more adapted 
and recommended i.e.: 

− modification of a foil's thickness and camber 

− interpolation of foils 

− inverse methods 

This foil design mode, however, may be useful to overlay different foils and compare their geometries. 
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4.2 B-splines main features  

Upper and lower surfaces are each determined by a separate and single B-Spline. 

Spline degree can be set between 2 and 5. 

4.3 Spline Points main features  

Upper and lower surfaces are each determined by a set of control points  

Control points are linked by 3rd degree B-Splines  

Two intermediate control points are added to the link splines, at 1/3 and 2/3 respectively of the separation of the two control 
points. These two points are added automatically and are not visible, nor can they be modified  

The slope at each visible control point is determined by the line passing through the immediately previous and next control points  

4.4 Leading and trailing edge  

For both methods, the slope at the leading edge is vertical and may not be changed. In the case of a design from B-Splines, this 
is done by forcing the second control point to remain on the vertical axis.  
In the case of "Splined Points" the slope at the trailing edge is determined by the position of two supplementary rear points, one 
for each surface.  

4.5 Output precision  

The maximum number of output points on each surface is 150. This is consistent with the sizing of the XFoil arrays, and with the 
precision required for the application, although the increase of computing power and memory capacity of modern computers 
could allow for more points. Typically, XFoil requires at least 50 points on each side to perform an adequate analysis.  
In both cases, it is prudent to "re-panel" the foil in the main menu, to improve the convergence of the XFoil analysis and its 
precision. This can be done with the equivalent of XFoil's "PANE" and "CADD" commands.  
Upon exit from the design module, the user is asked whether to export or not the foil to the analysis module.  

5 3D Analysis  

5.1 Theory - General  

XFoil provides unique insight in the behavior of airfoils, but is a 2D analysis, hence the results are those of a wing of infinite 
aspect ratio and which is defined with a single airfoil. The influence that the aspect ratio alone may have on the wing's polars, let 
alone the sweep or the dihedral, justifies the need for a more sophisticated wing analysis. 
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Figure 4 – Influence of Aspect Ratio - LLT Calculation NACA 3412 Airfoil - Taper Ratio = 1 - Sweep = 0° 

 

The wing may be computed by either one of three methods, each having its own advantages, and all having some usage 
restrictions.  
The first is a Lifting Line method, derived from Prandtl's wing theory. The second is a Vortex Lattice method. The third is a 3D 
panel method. 
The originality of the implementations is their coupling with XFoil calculation results to estimate the viscous drag associated with 
the wing, although this is done in a different manner depending on the method. 

 

5.2 Wind and body axis, sign conventions 

 

D 

Zbody 

Xbody 

zwind 
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xwind 

Vinf 
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Figure 5 - Wind and Body axis 
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The lift and drag coefficients are given in wind axis.  
Note : Up to v3.21, calculations have been performed using a small angles approximation, which means that the wind and body 
axis were the same. 

Sign Conventions for moments – Quote from Wikipedia, Flight Dynamics : 

“The most common aeronautical convention defines the roll as acting about the longitudinal 

axis, positive with the starboard wing down. The yaw is about the vertical body axis, positive 

with the nose to starboard. Pitch is about an axis perpendicular to the longitudinal plane of 

symmetry, positive nose up.” 

This is illustrated in the Figure 6. 

 
The yaw, such that the nose 

goes to starboard is >0 

The pitching moment 

nose up is > 0 

The roll, such that the 

starboard wing goes down 

is > 0 

 

Figure 6 – Moment sign convention 
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5.3 Wing Definition 

 
 

 

Figure 7 – Wing Definition 

 
The wing is defined as a set of panels. Each panel is defined by : 

− its length li, 

− the root and tip chords ci and ci+1, 

− the leading edge offset at root and tip chords hi and hi+1 

− the dihedral angle δι  

− the mesh for VLM analysis. 

The spanwise length of a panel should be at least equal to the minimum length of the VLM elements on other panels. Divisions by 
zero or non-physical results could result from panels of insufficient length. 

Twist (washout) is processed in LLT as a modification of the angle of attack. 

In VLM, the twist is processed as a modification of the wing, with the rotation center located at the quarter chord point. 
Up to v3.04, the twist has been applied as a rotation of the sections with respect to the absolute y axis. From v 3.05 onwards, the 
sections are rotated with respect to the panel’s quarter chord, i.e., after the panel has been rotated by the dihedral angle. The 
results are impacted for wings with panels well off the x-y plane. 

The 'span' of the wing is defined as  

S=2×∑ l
i  

For ease of interpretation, the wing is shown developed on a horizontal planform, both in the wing design dialog box and in the 
2D view. Only the 3D view gives a realistic representation of the geometry. 

A wing may be asymmetric if the foils are different on each side. This option is meant to provide some capability to evaluate the 
influence of flaps, but should be used with caution. It has been tested neither against experimental nor theoretical results. 
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5.4 Reference area for aerodynamic coefficients 

The reference area for all wing and plane aerodynamic coefficients is the main wing's area. 

In the case of a bi-plane, the reference area is also the main wing's area. 

There reference lengths for moment coefficients are defined in §5.16. 

Note :  

− Up to v.4.15, the reference area and the reference span have been defined as the planform's area and span. With this 
convention, the winglets' contribution are counted in the area and in the span. This is not necessarily the best choice, 
since it is usually convenient to compare performance coefficients of a wing with and without winglets, but with a 
constant reference area. 

− Starting in v4.16, the default option is to use the planform area and span projected on the xy plane. With this definition, 
the contribution of the winglets to span and area is zero. For convenience, it is still possible to choose either reference 
area; the option can be set in the dialog box for analysis definition. 

5.5 Flaps 

From version v3.16 onwards, the automatic mesh methods takes into account the breaks at the flap position, if both foils at each 
end of the wing panel are defined with a flap. 

The recommended way to create a flap is to define two foils at the same spanwise position, the first with a flap break, the other 
without. The code will ignore the zero-length panel. 

 

Figure 8 – Flap Definition 

Triangular flaps, defined by a plain foil at one side of the panel and by a flap break at the other side, are not recognized. 

The flaps are counted as one for each wing side, e.g. ailerons are counted as two flaps. This is necessary to calculate separately 
hinge moments for asymmetrical wings. 
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5.6 Body Design 

The modeling of the body is natural in a 3D panel method, but isn't either without difficulties. 

5.6.1 Modeling options 

Two options are provided, for two different purposes :  

1. Representation by flat panels : this is the 'Analysis" purpose.  
Given an existing body, the idea is to digitalize its geometry and input it in XFLR5. The resulting geometry will not be 
smooth, but it is usually enough for prediction pruposes 

2. Representation by B-Splines : this is the "Design" purpose.  
The idea is to define and optimize a body geometry to achieve some targeted aerodynamic (or cosmetic) performance. 
The body points can then be exported to a text file for further use. 

5.6.2 Import/export of body data 

To facilitate the edition process, the control points can be edited in a text file and imported in XFLR5, rather than being defined 
directly in XFLR5. 

An example of the format of the input file can be obtained by exporting any existing body definition. 

A typical format is : 

#NAME 
Body_Name 
… 
#FRAME 
x1    y1   z1 

… 
xn    yn   zn 

#OFFSET 
Xo    Yo    Zo 

 
#BODYTYPE 
1 or 2 

Remarks/Notes : 

− The keywords should be preceded by the character "#". 

− n is the number of side point definining the frame. This number must be the same for all frame. If the frames are defined with 
different numbers of points, the frame last defined will set the number of points. 

− The frames are sorted by x positions 

− The points in the frame should be defined in clockwise order, on the body's left side, when looking at the body from the front; 
this is the view which is displayed in the right panel in the body design module. 

− All points in a frame should have the same axial position 

− The x position of a frame is defined by the first point 

5.7 Plane Definition 

A plane consists in a main wing, and optionally of a secondary wing, an elevator, one or two fins, and a body. 

The body may be described either by cross-sections located at different streamwise locations or by NURBS surfaces. 
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5.7.1 Surface assemblies 

The main difficulty with the construction of a 3D plane model is to connect the wing, elevator, fin and body together. Without the 
help of a CAD system, it has been difficult to implement a versatile and robust algorithm, mainly because of the number of 
configurations to consider. For instance, the elevator may or may not intersect the body, it may or may not intersect the fin, it may 
intersect the body only on its bottom or upper surface, etc. 

The only surface verification implemented in V4.00 is a trim of the wings, elevator and fin to the body's surface, and even then, 
the algorithm may not be robust for all configurations. 

What’s more, even if the wings, elevator and fin are trimmed to the fuselage surface, the body's panels are not adapted to follow 
their contour. This implies that some of the body's panels will be located inside the volume, which is not consistent with the panel 
theory.  

5.7.2 Tip Patches 

The Panel Theory requires that the volume on which the analysis is performed is completely closed by the surfaces which support 
the panels. In other words, a body or a wing cannot have an open end, in which case a numerical error will occur.  

To try to close the volumes, the code will automatically create tip patches in the following cases : 

− Left tip of the left wing, and right tip of the right wing 

− Top and bottom tips of fins 

It will not create patches in the following cases 

− Gap at the center of the wing, i.e. if the first chord is located at a positive span position 

− Junction of the wing and fuselage 

Caution Note : the influence of these modeling errors on the results is unknown. 

5.8 Inertia estimations 

QFLR5 v0.03 introduces a calculation form to provide an approximate evaluation for the CoG position and for the inertia tensor 
associated to the geometry. The evaluation should not be understood as anything else than a rough order of magnitude (ROM). 

The inertia is evaluated in the default coordinate system, i.e. with respect to the origin point and not the CoG. The tensor in other 
systems can be computed by the appropriate tensor transformations. 

The evaluation is based on the following assumptions. 

− For the body, the mass is distributed uniformly in the external surface, and this surface is assumed to have a uniform 
thickness. The body is divided in Nb elementary sections along the x-axis. The weight is concentrated at the center of 
the cross section, as illustrated in Figure 9. 

− For the wing, the mass is assumed to be distributed uniformly in the wing volume along the span. It is modeled as Nw 
point masses concentrated at the quarter-chord point of distributed sections along the span, as illustrated in. The 
location of the mass at the quarter-chord point is a simplifying assumption, which is consistent with manufacturing 
techniques known to the author. 

− Parts such as actuators, battery, lead, or receiver should be modeled separately as point masses. 

 

Notes : 

− At this stage of the code development, the results are not used at any point in the performance calculations. The inertia 
evaluations are provided as a convenience for external stability analysis to be performed with codes such as AVL. 

− The mass defined for wings and bodies is not the one used for Type 2 calculations. The mass for type 2 is defined with 
the Analysis/Polar. 
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Figure 9 – Mass representation for the body 
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Figure 10 – Mass representation for the wing 
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5.9 Mesh 

The wing is "meshed" into a number of panels distributed over the span and the chord of the planform, and a vortex or a doublet 
and source is associated to each panel. 

− The analysis may be of the VLM type and is performed on the mean camber line 

− The analysis may be of the 3D-panel type in which case the wing is modeled as a thick surface 

It is recommended to choose a panel distribution which is consistent with the wing's geometry, i.e. the density of the mesh needs 
to be increased at geometrical breakpoints and at the root and tip of the wings. A cosine type distribution is recommended in the 
chordwise direction to provide increased density at the leading and trailing edges. 

There is a lower limit size for the panels below which the calculation becomes unstable, or which leads to non-physical results. 
This can typically occur with "sine" spanwise distributions of panels. Ideally, the precision of the calculation increases with the 
mesh's refinement, but so do the calculation times. It is fairly simple to experiment to determine what is the best compromise for a 
given design objective.  

Numerical instability may also occur in 3D Panel analysis if a panel’s lengths in the streamwise and chordwise directions are too 
different. The panel’s aspect ratio should be kept low. 

It is possible to exclude from the calculations the wing panels with a spanwise length less than a minimum value. This can be set 
in the advanced settings dialog box. If the minimum length is set to zero, then all wing panels with length less than 1/1000 of the 
span will be excluded. This is meant to avoid numerical errors linked to small mesh elements. 

Panel Methods :  

1. The current implementation uses flat 1st order panels. 
Ideally, these kind of panels need to have their four corners in the same plane, which is not possible for twisted 
geometries. However, this is not seen as a major issue for the low washout angles used for model sailplane wings. 

2. The surface velocity is the gradient of the doublet strengths between adjacent panels as described in ref [4]. It is 
therefore recommended to have the same number of chordwise panels along the span, and the same type of distribution, 
either uniform or sine. 
Ideally, the panels should share the same edges and corner nodes. In the case of a flap, the 'trick' to connect properly the 
panels is to define a foil with a false flap set at 0° flap angle, as is illustrated in Figure 11. 

 

 

Figure 11 – Mesh disposition for a flap 



 
 

 

Guidelines for QFLR5 v0.03 20/58 
October 2009 

5.9.1 Panel arrangement - VLM analysis 

Elevator VLM Panels 
must be aligned with 
the wing’s VLM 

Panels 

Control Points 

Horseshoe vortex 

 

Figure 12: VLM Panel arrangement for a plane  

Special care must be taken in the disposition of VLM panels to avoid having a control point of the tail’s surface close to the trailing 
leg of one of the wing’s horseshoe vortex. This would lead to a division by zero, and inconsistent results. 

One method to avoid this issue is to have the wing's panels aligned with those of the elevator, .  

For the same reason, it is a good idea, though not compulsory, to position fins in the planes of the wing's panel junctions. 

5.9.2 Panel arrangement - 3D panel analysis 

Chordwise panels 

The Cp distribution is calculated as the derivative of the doublet strength along the panel chordwise and spanwise strips.To 
achieve this, it is required that each wing has a uniform number of chordwise mesh panels along the span. It is also 
recommended that the chordwise panel distribution be the same from one wing panel to the next, i.e. cosine distribution for each 
wing panel. This is necessary to connect adequately the mesh panels at junctions between wing panels. 

Mesh panels located in flaps are not connected to the adjacent wing panel. The remaining connections at the junction are 
performed using the method described in ref. [4]. 
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Wake Panels 

In the VLM method, the wake is represented by the trailing legs of the horseshoe vortices. 

In the 3D-panel method, the wake is modeled as a series of flat panels which extend 'far behind' the wing. 
The idea is that each of the wing's chordwise strip sheds a column of wake panels. The doublet strength of each panel in this 
wake strip is the difference of the doublet strength of the top and bottom panels of the wing's strip. This is a consequence of the 
fact that the wake cannot sustain load. In addition, being a thin surface, the wake panels have a zero source strength. 

The wake strips are modeled as a column of thin panels. In the simplest form, these wake panels are straight aligned behind the 
wing panels, as illustrated in . 

 

Figure 13: Straight wake 

In a more refined and realistic implementation, the wake is aligned with the streamlines which trail behind the wing.  Since the 
doublet distribution on the wing, and the streamlines, in turn depend on the wake shape, an iteration process is required to reach 
a converged state. This is usually referred to as the "wake relaxation process". 

The wake relaxation is a difficult process which can easily diverge. Numerical experimentations in XFLR5 have shown that the 
wake panels are highly warped at the wing tips where the wake strongly rolls up on itself. The convergence requires close control 
by the user of key parameters such as number of wake panels, length of wake panels or time steps. For these reasons, the wake 
roll-up process has been disabled. 

The wake panels are therefore defined as flat panels which extend behind the wings trailing edges. Their length is 100 x MAC. At 
this distance, the influence of the plane's panels is negligible. 

A difficulty arises whenever one of the straight wake panels shed by a surface such as the wing, goes through another surface 
such as the elevator, as illustrated in Figure 14a. This will lead to unrealistic, non physical results. 
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In such a situation, it is necessary to modify slightly the geometry to avoid the interference Figure 14b. 

 

Figure 14a & b: Wake Interference between wing and elevator  

 

5.9.3 Body – Wing connections 

If the analysis is of the VLM type, the wings are trimmed to the body's surface ; other than that, the body is ignored and the 
analysis is performed on the wings mean camber line. 

If the analysis if of the 3D-Panel type, the body is taken into account, and the wings may be modeled as thin or thick surfaces; in 
the first case, Neumann BC are applied on the wings' surfaces, and their panels source strength is zero. 

From a theoretical point of view, a constant doublet on a panel is equivalent to a ring vortex located at the panel's sides. However 
for a VLM model the ring vortex is located at the quarter chord and the control point at the ¾ of the panel's streamwise length, 
whereas for a panel model the equivalent vortex ring would coincide with the panel's sides. The results therefore will not be 
exactly the same. 

5.10 Symmetry 

A symmetric calculation reduces the matrix's size by approximately half (exception is the fin), and reduces the matrix inversion 
operations by a factor 4. The code detects automatically whether the problem is symmetric or not. It is considered to be 
symmetric in the following cases : 

− The wing is symmetric in a Wing-only calculation 

− The plane is symmetric without a fin, or with a double fin 

The problem is asymmetric otherwise : 

− if any of the wings, elevator or fin is asymmetric 

− if the plane has a fin 

5.11 Viscous and inviscid calculations 

In VLM and panel methods, an inviscid analysis/polar may be defined, in which case there is no need to define a polar mesh for 
the foils. The viscous characteristics will be set to zero. 

The LLT is necessarily viscous. 
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5.12 Lifting Line Theory (LLT) - Non Linear  

5.12.1 General 

The 'classic' LLT is linear, i.e. the relation Cl = f( α ) is linear, and viscous effects are not taken into account. In the present 
application, a non-linear LLT has been implemented based on the NACA technical note 1269 [1].  

Quote from Technical Note 1269: 

"The hypothesis upon which the theory is based is that a lifting wing can be replaced by a 

lifting line and that the incremental vortices shed along the span trail behind the wing in 

straight lines in the direction of the freestream velocity. The strength of these trailing 

vortices is proportional to the rate of change of the lift along the span. The trailing vortices 

induce a velocity normal to the direction of the free-stream velocity. The effective angle of 

attack of each section of the wing is therefore different from the geometric angle of attack 

by the amount of the angle (called the induced angle of attack) whose tangent is the ratio of 

the value of the induced velocity to the value of the freestream velocity. The effective angle 

of attack is thus related to the lift distribution through the induced angle of attack. In 

addition, the effective angle of attack is related to the section lift coefficient according to 

two-dimensional data for the airfoil sections incorporated to the wing. Both relationships must 

be simultaneously satisfied in the calculation of the lift distribution of the wing. 

If the section lift curves are linear, these relationships may be expressed by a single equation 

which can be solved analytically. In general however, the section lift curves are not linear, 

particularly at high angles of attack, and analytical solutions are not feasible. The method of 

calculating the spanwise lift distribution using non-linear section lift data thus becomes one of 

making successive approximations of the lift distribution until one is found that simultaneously 

satisfies the aforementioned relationships." 
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In the present implementation, the non linear lift behavior is interpolated on pre-generated meshes of XFoil Type 1 polars and the 
non-linearity is solved by an iteration loop :  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wing definition 

Selection of α, V∞ parameters 

Initialization of αi with the linear solution  to the 
LLT 

Interpolation  of Cl from (α + αi + washout, Re) on 

the type 1 polar mesh 

Calculation of the non linear αi distribution 

Loop until |∆ αi|<criterion 

From α + αi + washout, interpolate, on the type 1 

polar mesh, values for Cd, Cm, etc. 

Interpolation of Cl from (α + αi + washout, Re) on 

the type 1 polar mesh  

If Type 2 analysis, scaling of V∞ to create a lift 

opposite to the weight 

If Type 2 analysis, scaling of V∞ to create a lift 
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Figure 15 –Induced Angle – Bi-Airfoil NACA3412-NACA1410 – AR = 14.8 – TR = 2.0 – Alfa = 5° - V= 16.7m/s 

5.12.2 Limitations of the LLT 

It is important to note that the lifting line theory has two main limitations. Quote from Technical Note 1269 : 

"The calculations are subject to the limitations of lifting line theory and should not be 

expected to give accurate results for wings of low aspect ratio and large amounts of sweep"  

In addition, the wing's planform is expected to lie essentially in the X-Y plane, i.e. with low dihedral. 

5.12.3 Precautions with the LLT  

As it turns out, the convergence of the non-linear LLT is not a robust process, and requires careful use of a relaxation factor. This 
factor should always be greater than 1. A value of 20 is usually a good start, and may be increased as necessary for 
convergence.  
Usually wings with low aspect ratio require high relaxation value.  

The number of stations across the wing span should be chosen around 20, but may be increased up to 40. Greater numbers do 
not improve the precision of the analysis, but tend to seriously hinder the convergence. The relaxation factor should be increased 
with higher numbers of span stations. 

5.12.4 2D vs. 3D 

The LLT assumes implicitly that all the surfaces lie essentially in the X-Y plane. 
The only use for the sweep and the dihedral in this implementation of the LLT is for the calculation of the pitching moment 
coefficient Cm.  
Sweep and dihedral are not used in the calculation of the lift distribution. 

5.12.5 Viscous and inviscid calculations 

There is no option available to perform a non-viscous LLT calculation. The reason behind is that the linear theory requires that a 

zero-lift angle be defined for each airfoil, and that there is no convenient manner to define this α0 value which depends on 
the Reynolds number. 
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5.12.6 Lift center of pressure 

Up to v3.11, the position of the lift center at each span location has been calculated using the usual approximation for thin airfoils, 
i.e. : 

X
CP

= 0.25−
Cm0

Cl
 

From v3.12 onwards, the wing’s Center of Pressure’s x-position is calculated by interpolation of the center of pressure’s position 
on the foil’s polar mesh. 

For foil polar meshes generated prior to v3.05, the foil’s center of pressure was not stored, hence the formula above is used to 
calculate the wing’s center of pressure. 

5.12.7 Downwash 

The downwash is defined at each span station as 

V
i
=V ∞ sinα

i
  

For convenience, it is represented at the wing's trailing edge in 3D views. 

5.13 Vortex Lattice Method (VLM) - Linear  

5.13.1 VLM General principles 

A VLM method has been implemented as an alternative, for the analysis of those wing geometries which fall outside the 
limitations of the LLT.  

The main differences from the LLT are:  

− The calculation of the lift distribution, the induced angles and the induced drag is inviscid and linear i.e. it is independent 
of the wing's speed and of the air's viscous characteristics. 

− The method is applicable to any usual wing geometry, including those with sweep, low aspect ratio or high dihedral, 
including winglets.  

The principle of a VLM is to model the perturbation generated by the wing by a sum of vortices distributed over the wing's 
planform. The strength of each vortex is calculated to meet the appropriate boundary conditions (BC), i.e. non penetration 
conditions on the surface of the panels. 

A comprehensive description of the principles of VLM analysis is well outside the scope of this document. Only the main features 
necessary to a sound use of the code are detailed hereafter. 

The resolution of the VLM problem requires the inversion of a square matrix of the size of the number of panels. This inversion is 
performed by Gauss' partial pivot method. The problem's size may be significantly reduced by considerations of symmetry, 
detailed in §5.10. 
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Figure 16 – Influence of Sweep for a given CL - AR=10 - TR=1 - Symmetric Airfoil 

 

5.13.2 Lift force and lift coefficient 

The force acting over each panel is the vector cross product 

F=ρ V × Γ  

Γ being the vortex strength x its length,  

ρ is the fluid density 
V is the freestream speed 

Which implies that the force is normal to each panel. 

The lift coefficient is defined as  

C
L
=

1

ρSV
2 ∑

panels

F
wz  

S is the sum of the panels’ area, i.e. the planform's area 

Fwz is the projection on the vertical wind axis 

This formula is applicable both to a chordwise strip and to the wing’s total surface.  

The pitching moments and center of pressure position at each span location are calculated by summation of the lift force over the 
panels. 

5.13.3 Limitations of the VLM 

1. The VLM algorithms first computes the lift coefficient Cl and the other values which may be calculated by integration of the 
surface forces, i.e. the moment coefficients and the center of pressure's position. The viscous variables (viscous Cd, 
transitions, etc) are interpolated from the value of Cl on the previously XFoil-generated polars. This obviously raises an issue 
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for high and low Cl, where the Type 1 polar curve may be interpolated either before or after the stall angle. 
VLM results should therefore not be considered around angle of attack values close to stall angles. 

2. In the current formulation, the VLM makes the assumptions of the small angle of attack. As a main consequence, the trailing 
vortices are not aligned with the freestream velocity. This means that the influence matrix will be independent of the a.o.a. 
To explore this limitation, it is possible to experiment a calculation of the tilted geometry, as explained in §5.15.8. The results 
tend to show that the assumption of small angles of attack is acceptable. 

5.13.4 VLM alternative method 

In the ‘classic’ VLM method, a horseshoe vortex is positioned at the panel quarter chord and the non-penetration condition is set 
at the three-quarter chord point. 

 

Control Points 

Horseshoe vortices 

 

Figure 17 – Classic VLM Method 
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In the method recommended by Katz and Plotkin [3], only the trailing vortices extend to infinity. 

 

Control Points 

Quad vortices 

Trailing vortices  

 

Figure 18 – Quad VLM Method 

Since the wake must be force free, the strength of the trailing vortex is equal to that of the trailing edge quad vortex. 

Both methods are implemented for comparison, but give close if not identical results in most cases. 

5.13.5 Panel disposition for VLM 

The resolution of the system and the determination of the vortices' strengths require a matrix inversion. In some rare cases, this 
matrix may turn out to be singular due to a conflicting disposition of panels and control points on the wing's planform.  

The problem arises when a control point is positioned on the line of a vortex. This will result in a division by zero. In those cases, 
manual re-paneling of the wing is sufficient to fix the problem. 
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Conflicting arrangement : a control point is 

aligned with a vortex 

 

Figure 19 – Quad VLM Method 

If inversion problems persist despite re-paneling, it will be necessary to check the consistency of the input data. 

5.14 3D Panel Method - Linear 

5.14.1 General Principles 

The 3D panel method has been implemented with the following objectives : 

− refine the LLT and VLM results by a more sophisticated full 3D method, taking into account the wings' thickness, whereas 
the VLM only considers the mean camber line. 

− provide insight in the Cp distributions over the top and bottom surfaces of a wing 

− provide a method capable of modeling fuselages 

The principle of a 3D Panel Method is to model the perturbation generated by the wing by a sum of doublets and sources 
distributed over the wing's top and bottom surfaces. The strength of the doublets and sources is calculated to meet the 
appropriate boundary conditions, which may be of the Dirichlet or Neumann type. 

A comprehensive description of the principles of such a method is well outside the scope of this document. Only the main 
features necessary to a sound use of the code are detailed hereafter.  

The 3D method implemented in XFLR5 is as described in reference [4]. For those interested, this document provides a 
comprehensive review of the theoretical and numerical aspects of the method. 

The doublet and source distributions are uniform over each panel. 

The resolution of the panel problem requires the inversion of a square matrix of the size of the number of panels. This inversion is 
performed by Gauss' partial pivot method. The problem's size may be significantly reduced by considerations of symmetry, 
detailed in §5.10. 

The method uses constant strength doublets and sources over flat, linear panels. The boundary conditions are applied at the 
panel's center of gravity, named the "collocation point". 
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The wake roll-up process has been implemented and tested. However, it is not considered to be sufficiently robust to be released 
at this time, and has been disabled in v4.00. 

5.14.2 Boundary Conditions (BC) 

In a VLM calculation, the BC are necessarily of the Neumann type, i.e. the velocity's component normal to the surface must be 
zero. 

In a 3D-Panel calculation, the BC may be either of the Neumann or Dirichlet type. In the latter case the velocity's potential on the 
panel's inside surface is zero, so that the total potential inside the body is equal to the freestream velocity's potential. 

After a trial and error process, the Dirichlet BC have been preferred to the Neumann BC. The latter method is more sensitive to 
local geometry changes, and leads to less convincing results. 

This is also the choice which is implied in reference [4]. 

5.14.3 Validation 

Infinite Cylinder and Sphere Analysis 

The theoretical values for the Cp coefficients of a body in a uniform flow are : 

- for a cylinder : Cp = 1.0 at the leading and trailing edges, and Cp = -3.0 at the lowest and highest points 

- for a sphere : Cp = 1.0 at the leading and trailing edges, and Cp = -1.25 at the lowest and highest points 

These values are calculated within 1% by the 3D panel analysis. 

 

Figure 20 – Pressure coefficient Analysis – Sphere and near infinite cylinder 
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Figure 21 – Pressure  Coefficient Analysis – Sphere and near infinite cylinder 

 

Wing Analysis 

The Cp distributions calculated by 3D panel analysis for a near infinite wing, and by 2D panel analysis with  XFoil are 
plotted in Figure 22 and in Figure 23. There is general concordance for inviscid results. 
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Figure 22 – Pressure Coefficient Analysis – NACA2412 
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Figure 23 – Pressure Coefficient Analysis – NACA64A410 

5.15 Analysis considerations 

5.15.1 General Limitations 

As a general rule, LLT and VLM are adapted to configurations of thin lifting surfaces, operating at small angles of attack. 

The most questionable assumption of the wing design algorithm is probably the use of XFoil transition results to wings with finite 
aspect ratio. The 2D simulation proposed by XFoil corresponds to infinite wings, where a laminar bubble extends indefinitely 
along the span. Some authors suggest that on span-limited wings, such bubbles will appear only on a fraction of the planform. 
However, theories for 3D transitions are still in development and to the author's knowledge, not giving total satisfaction yet. 

The method which consists in interpolating XFoil generated results is clearly an approximation with no real theoretical or 
experimental background, but should be a reasonable approximation for wings with moderate to high aspect ratio. 

The viscous characteristics will be less and less representative as the wing geometries differ from the ideal 2D Xfoil infinite wing. 
Hence those results for non planar geometries, low aspect ratio or high sweep should be considered with caution. 

5.15.2 Selection of an Analysis Method 

The LLT method should always be preferred if the wing's geometry is consistent with the limitations of the theory. LLT provides 
better insight into the viscous drag, gives a better estimation of the behavior around stall conditions at high angles of attack, and 
is better supported by theoretical published work. 

The 3D panel method should be selected if there is interest in the Cp distribution on top and bottom surfaces, or if the body's 
influence should be taken into account. 

VLM analysis is preferable for all other cases. 

The comparison of the Cp distribution at two span positions for different method of analysis is given in Figure 24 and Figure 25. 
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Figure 24 – Cp comparison for different analysis methods  
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Figure 25 – Cp comparison for different analysis methods 

5.15.3 Core radius 

In VLM analysis, the velocity vector induced by a vortex is singular on the vortex line. 

In a 3D panel method, the velocity vector is singular in the alignment of the panel sides. 

This can create numerical errors in the analysis and in the calculations of the streamlines. 

It is therefore highly recommended to set a minimal core radius, which can typically be of the order of magnitude of 1/1000 of the 
min mesh panel size, e.g. Core radius = 10-6m. This is the value set by default, and it can be modified in the advanced settings. 

The velocity at a point located on the vortex line, or in the alignement of a panel side, is zero. 
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5.15.4 Sideslip 

The simulation of sideslip has been introduced in XFLR5 v4.09 

The order in which a.o.a. and sideslip are applied has its importance. In XFLR5, sideslip is modeled by rotating the model about 
the z-axis, with a freestream velocity vector remaining in the x-z plane. The resulting geometry is analyzed using the conventional 
VLM and panel methods. The advantage of this method is that the trailing vortices are in the vertical plane which contains the 
velocity vector, i.e. are aligned with the x-axis of the stability frame. 
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Figure 26 – Definition of sideslip 

5.15.5 Trefftz Plane, far field and near field analysis 

The lift and induced drag may be calculated by near field or by far field methods. The theoretical aspects are too vast to be 
detailed here, but in essence the near field method consists in an integration of pressure forces on the panels, whereas the far 
field method is based on the balance of the momentum on a control surface far downstream of the body, i.e. the Trefftz plane.  

It is generally reported that the drag and lift results from near field analysis are significantly higher and less representative than 
those resulting from a calculation in the Trefftz plane. This issue is not specific to the present implementation, but is reported for 
almost all VLM and panel codes. The implementation in the present code for the calculation of lift and drag is therefore the far 
field method. 

On the other hand, far field analysis does not provide information on the pressure distribution over the strip, and no information on 
the pitching moment with reference to the chord's quarter point. All the moments and the position of the center of pressure are 
therefore calculated by summation on the panels. 

In the current implementation of the 3Dpanel method, it is considered that only the wings shed a wake, and that the body does 
not. 

5.15.6 Linear and non-linear behavior 

Traditional VLM and Panel analysis do not account for viscous effects. For model aircraft operating at a few m/s however, the 
viscous drag is not negligible compared to the induced drag, and must therefore be estimated by an alternative mean. 

In the present application, the viscous drag is estimated by interpolation of XFoil pre-generated polars, by the Cl value resulting 
from the linear 3D analysis. This assumes implicitly that the foil's behavior on a finite wing is not very different than on an "infinite 
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XFoil wing". There is no real background, neither theoretical nor experimental, to support this approach, so it should be used with 
caution. 

As is generally the case when transposing 2D results to 3D analysis, the estimation of viscous drag is probably too low and may 
lead to arguably optimistic results. 

Because the VLM is linear, it does not, among other things, account properly for stall at high angles of attack, unlike, potentially, 
the LLT. 

 

Figure 27 – Linear and Non-Linear modeling 
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5.15.7 Non-Linear Implementation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.15.8 Tilted Geometry – VLM and 3D Panel Analysis 

The baseline VLM method uses small angle approximation for the wake's definition. Within this assumption, the wake is aligned 
with the body axes : 

− For VLM, the trailing legs of the horseshoe vortices are parallel to the body's x-axis (Fig. 10-a). 

− For 3D Panel analysis, the trailing wake panels are in the x-y plane 

The advantage of this approximation is its simplicity : only one influence matrix is required for all angles of attack, and the matrix 
inversion can be performed for all alphas simultaneously. 
The disadvantage is that the horseshoe vortices or the wake panels are not aligned with the freestream velocity. 

 

Wing definition 

VLM Mesh creation  

Selection of α, V∞ parameters 

Interpolation from Cl on the type 1 polar mesh of 

the other viscous variables VCd, transitions, etc. 

If Type 2 analysis, scaling of V∞ and of the Γi  to 

create a lift opposite to the weight 

Calculation of the Cl values from the Γi 

Creation of the vortex influence matrix and of the 

boundary conditions 

Inversion of the matrix for the vortices strength Γi 

Calculation of the induced downwash and induced 

angles in the Trefftz plane 

Calculation of the induced drag in the Trefftz plane 
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Figure 28 – Normal and Tilted geometry configurations 

 
A more representative approach is to align the wake with the wind axes (Figure 28b). Equivalently, the problem can be set in the 
wind axes and the body's geometry can be tilted by the angle of attack (Figure 28-c), which is a direct transposition of the physics 
of the problem. Both methods are equivalent, but the latter can be implemented more simply, hence has been chosen for XFLR5. 
It is selected by checking the "Tilt Geometry" checkbox in the Analysis Dialog Box. 

The inconvenience with this approach is that a new matrix must be set up and inverted for each angle of attack, leading to longer 
computation times. 

The coefficients Cl and Cd are almost identical for both methods, which means the small angles approximation is applicable from 
the performance analysis point of view. The moment coefficients may be slightly different. 
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5.15.9 Wake roll-up – VLM and 3D Panel Analysis 

Note : Because it is sensitive and difficult to use, the wake roll-up process has been disabled. The following explanation 
is provided for information only. 

General considerations 

In their base formulation, both the VLM and the Panel methods make the assumption of a flat wake, which is an approximation. 
The wake tends to roll up on itself, which can be illustrated for instance by the two vortices at the tip of each wing. 

A wake model more refined than the simple straight line or flat panel can be of interest for two reasons : 

− Although the wake carries no load and therefore has no influence on the lift coefficient, its shape affects the induced 
drag value and derived coefficients 

− A flat wake is inappropriate for plane configurations with and elevator, since the downwash created by the main 
wing influences the flow field around the elevator. 

The shape of the wake is determined by the flowfield behind the wing, but in turn, the flow field is dependent on the wake shape. 
Therefore, the shape the wake takes in a constant state situation can be deduced by an iterative process, in which the wake 
geometry is updated ("relaxed") after each computation loop. 

Wake mesh 

The panels formulation implemented in XFLR5 is of the constant, flat panel type. Special care must therefore be taken in the 
choice for the wake panel's size, to avoid excessive twisting. The panel size is controlled by three parameters : 

− The wake's total length 

− The streamwise size for the first wake panel's length 

− The ratio, or progression factor, between two adjacent panels in the streamwise direction 

As a general indicaction, it is advisable to set those parameters so that the first panel's size is approximately the same as that of 
the wing's trailing edge panel. 
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Roll-up process 

Ideally, the lift and drag coefficients tend towards limit values. However, if no special precautions are taken, numerical 
experiments show that the wake tends to roll up indefinitely on itself. This leads to highly twisted panels and to numerical 
divergence. 

Since the roll-up is not a robust process, the iteration loop is limited both by the number of iterations and by a precision criterion. 

 Set Initial flat wake geometry 

Set up the problem for  

for the current wake geometry 

Solve the problem for  

Γ or µ and σ values 

Relax the wake geometry 

Loop until maximum 

iterations is reached 

Compute UFO coefficients 

 

Figure 29 – Wake roll-up iteration process 

 

Reference [5] provides a comprehensive description of the issues related to wake roll-up.  
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5.16 Moments 

All moment calculations in LLT are strictly in accordance with the formula of NACA TN1269 

In V4.00, the definition of the moments has been modified to clarify some ambiguities that existed up to v3.21.. 

From V4.00 onwards, the geometric pitching, rolling and yawing moments are calculated by integration of forces on the panels. 
For VLM this is done at the vortex middle position, for 3D Panel analysis, the force is applied at the panel's center. 

The geometric moments are therefore the total moments applied to the wing or plane. 

For analysis purposes, it may be interesting to break down those moments in separate parts, or to isolate one specific 
contribution to the total moment.  

Strip Moment Coefficients 

These moments are calculated for each span position on the wing and are accessible in the Operating Point graphs. 

Moment Sign Ref. length Nature LLT VLM & 3D-Panel 

Airfoil 

CmAirfoil 

Moment of the 
lift forces around 

the ¼ chord 
point 

The value for the 
pitching moment is 
interpolated on the 
foil's polar mesh. It 
takes into account 

viscous effects 

Sum of the moments 
created by pressure 
forces on the strip's 

panels 

The viscous part is 
ignored 

Pitchi
ng 

Cm 

positive nose 
up 

M.A.C. 

 
M = q S mac Cm 

Moment of the 
pressure and 

viscous forces 
with respect to 

XCmRef 

Integration over the 
wing's lifting line of the 

strips self pitching 
moment, and of the 

strip lift force  
Both sweep and 

dihedral are taken into 
account 

Sum on all the panels 
of the moments of 

pressure forces 

+ 

pitching moment of 
viscous drag forces 

 

Wing moment coefficients 

Moment Sign Ref. length Nature LLT VLM & 3D-Panel 

Geom. 
(global) 

GCm 

Moment of the 
pressure forces 
with respect to 

XCmRef 

Integration of the 
moment over the 
wing's lifting line. 
Both sweep and 

dihedral are taken into 
account 

Sum on all the panels of 
the moments of pressure 

forces 

Viscous 
(global) 

VCm 

Moment of the 
viscous airfoil 

drag forces with 
respect to 
XCmRef 

Integration of the moment over the wing's lifting 
line. 

Pitchi
ng 

Airfoil 
(at local 

span 
position) 

positive 
nose up 

M.A.C.  

 
M = q S mac Cm 

Moment of the lift 
forces around ¼ 

chord point 

 

Cm interpolated on 
polar 1 mesh 

Sum of the moments 
created by pressure 
forces on the strip's 

panels 
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Rollin
g 

Geom. 
(global) 

GRm 

positive 
with the 

starboard 
wing 
down 

Span 

R = q S b Cr  

Moment of the 
pressure forces 
with respect to 

XCmRef 

Integration of the lift's 
moment over the 
wing's lifting line. 

Dihedral is not taken 
into account 

Sum on all the panels of 
the moments of pressure 

forces 

 

Geom.  
(global) 

GYm 

Moment of the 
pressure forces 
with respect to 

XCmRef 

N/A 
Sum on all the panels of 
the moments of pressure 

forces 

Profile 
(global) 

VYm 

Moment of the 
viscous airfoil 

drag forces with 
respect to the 

plane y=0 

Integration of the moment over the wing's lifting 
line 

Yawin
g 

Induced 
(global) 

IYm 

positive 
with the 
nose to 

starboard 

Span 

N = q S b Cn 

Moment of the 
induced tangential 

forces with 
respect to the 

plane y=0 

Integration of the moment over the wing's lifting 
line 

5.17 Neutral point, Center of pressure, Static Margin 

XFLR5 up to v3.12 has provided a measure of the quantity 

SM=
X CP

− X
CG

MAC
 

incorrectly labeled “Static Margin”, where 

- XCP is the centre of pressure’s streamwise position 

- XCG is the centre of gravity’s streamwise position 

The conventional static margin of a wing or a plane may be determined by an iterative process. It is the CG position (or moment 
reference position XCmRef) for which  

dCm

dα
= 0  

This is illustrated in the Figure 30 where the neutral point is approximately 67 mm from the leading edge. 
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Figure 30 – Wing Neutral Point 

Illustration of the way to use XFLR5 to position the CG of a model sailplane are given in ref [6] and [7] 

5.18 Efficiency factor 

The efficiency factor, referred to also as Oswald's factor, is a measure of the deviations of the wing's induced drag from that of an 
optimal elliptic loading, and is defined as  

e=
CL2

π . AR . ICd
 

where  

− CL is the lift coefficient 

− ICd is the induced drag coefficient 

− AR is the wing's Aspect Ratio 

The efficiency factor, also named Oswald's factor, should always be smaller than 1. It may happen however that this factor 
becomes greater than 1 for numerical reasons in LLT, VLM and 3D Panel calculations. 

In LLT, this may be corrected by increasing the precision required for convergence, for instance with the following parameters : 

− Number of stations =  40 

− Relaxation factor =  40 

− convergence criterion  =  0.001 

− Max Number of iterations =  300 

In VLM and 3D Panels, a refinement of the panel density in the streamwise direction is required to reduce the efficiency factor to 
values less than 1.  
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5.19 Wing Operating Points and Wing Polars 

The presentation of results is the same as for foil analysis, i.e. each converged analysis generates an operating point and adds 
results to a polar object. The definition and selection of an Analysis/Polar object is necessary to perform a calculation. 

Any number of Operating Points may be stored in the runtime database, the only limitation being computer memory. Wing and 
plane operating points will use significant memory resources. 

Type 1 and Type 4 polars are unchanged from foil analysis.  

A type 2 polar corresponds to a plane with a given weight operating at constant lift. 

For a given angle of attack, the plane's velocity is calculated to create a lift force opposite to the weight of the airplane:  

 

V=2 mg

ρSCl

 

The angle of descent is  

γ=arctanC d

C
l
 

 

and the horizontal and vertical speeds are respectively  

Vx = V∞ cos(γ)  

Vz = V∞ sin(γ) 

 

Figure 31 – Speed polars based on Type 2 analysis 

Convergence for type 2 polars requires that the apparent angle of attack be greater than the zero-lift angle. Otherwise, no speed 
whatsoever may generate a positive lift... 
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5.20 Control analysis – Polar Type 5 and Type 6 

5.20.1 Description 

The purpose of Control Polars is to analyse the performance in stabilised flight conditions, as a function of the plane's geometric 
controls. The controls which can be set as parameters are : 

1. The CG position 
2. The wing's tilt angle w.r.t. horizontal 
3. The elevator's tilt angle w.r.t. horizontal 
4. The angular deflection of wing and elevator flaps 
 

For each set of control data, the code calculates the angle of attack for which the aircraft is in balanced horizontal flight, i.e. for 
which the pitching moment coefficient is zero. The corresponding Operating Point is stored. 

The analysis is performed using the classic VLM method, i.e. VLM1. 

If the only active control are of the type 1, 2, and 3 in the list above, the analysis may be viscous or non-viscous. If a control for 
flap angle is active, the analysis will necessarily be non-viscous, since it is not possible from a practical point to pre-generate 
Type1 polar meshes for all flap angles used in the control analysis. 

Type 5 are analogous to Type1, i.e. fixed speed, and Type 6 and are analogous to Type 2, i.e. fixed lift. 

5.20.2 Method 

In the dialog box for the definition of the Control Polar, for each control : 

− define if it is active and inactive ; this is done by setting 0 or 1 in the relevant column. 

− define its range of variation : from minimum value V1 to maximum value V2 

The analysis is performed as a function of a control variable "t" which typically ranges between 0 and 1. 

For a given value of t, the control are set in the following way : 

− If the control is active, then : V = V1 + t . (V2-V1) 

− if the control is inactive, then : 
• For the CG position : XCmRef is set to V1 

• For all the other controls : the values defined by default for the plane and wing will be used 

 

 

 

 

 

 

 

 

 

 

 

Set the value of t 

Adjust the geometry 

 and CG position i.a.w. t 

Perform Newton Loop between values 

of a.o.a = -45° and +45° 

If converged, calculate the Operating 

Point and store the polar data 
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Notes : 
• Any number of controls can be active at the same time 
• The analysis can be performed for values of t outside of the range [0, 1] 
• The initial flap angles and tilt angles are cancelled when setting the value of the control. 

For instance, if the elevator tilt angle has been set at –2° in the dialog box defining the plane, and the control 
variation has been set from –3° to 0°, the angle will effectively range from –3° to 0°.  

• Examples of the use of control polars are given in reference [8]  

5.21 Interpolation of the XFoil-generated Polar Mesh 

The code does not recalculate with XFoil each operating point at every wing station and at each iteration:  

− this would require lengthy -and unnecessary- calculations  

− XFoil's convergence is too uncertain  

Instead, the operating point is interpolated from a pre-generated set of Type 1 polars.  

The wing calculation requires that a set of Type 1 foil polars be previously loaded or generated for each of the wing's foils.  
 

 

Figure 32 – Polar mesh ranging from Re = 40,000 to Re = 300,000 

The set of polars should cover the whole flight envelope of each point of the wing, with regard to both Reynolds numbers and to 
the apparent angle of attack.  

If any point of the wing planform operates outside the available polar mesh, a warning message is issued in the log file. This 
happens for instance in the case of short tip chords of elliptic wings. In such a case, the "closest point" of the mesh will be used, 
and the operating point may be generated and added to the current polar, if so chosen by the user.  

For the interpolation process, the code uses indifferently all available type 1 polars related to the selected foil. The user must 
therefore be careful to provide only a homogeneous and consistent set of polars.  

The interpolation process of a variable X (X being Cl, Cd, Cm, Transition points etc.) from [α = aoa + αi + washout, Re] at a 
geometrical point P between the foils 1 and 2 is: 

1. For the first foil, find polars 1 and 2 such that Re1 < Re < Re2; 
if neither polar 1 nor 2 can be found, return on error 
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if Re is less than all the polars' Reynolds numbers, use the polar of smallest Re 
if Re is greater than that of any polars' number, use the polar of greatest Re 

2. Interpolate each polar with α to get X11 and X12; 

if either polar is not defined up to α, use the smallest or greatest angle available, and issue a warning 
if only one polar is available, interpolate only that polar, and issue a warning 

3. Interpolate X1 between X11 and X12, pro-rata of Re between Re1 and Re2 

4. Do the same for the second foil to get X2 

5. Interpolate X between X1 and X2, pro-rata of the position of the point between the two foils 

5.22 Streamlines 

The streamlines are calculated from the vortices, or doublet and source, strengths each time an operating point is selected. 

The calculation is incremental, in the x streamwise direction. 

The streamline are initiated at the mesh panels leading edge or trailing edge, with a user defined offset in the x and z directions. 

The "Initial Length" is the first x-increment for the calculation of the streamline. 

The "Progression Factor" determines the length of step n+1 vs. step n. 

Caution note : The velocity vector is singular at the panel edges in 3D-Panel analysis, and on the panel’s vortex trailing line in 
VLM analysis. This may cause numerical instabilities, in cases for instance when the streamlines are requested to initiate exactly 
at the panels leading or trailing edge, or at the panel corners. A minor x or z offset is necessary to prevent the instability. The use 
of a core radius, which can be defined in the advanced settings, is another possibility. 
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5.23 Comparison to experimental results 

The code has been tested against experimental results and against other software, with consistent results.  
Also, the VLM, 3D Panel and LLT algorithms in their XFLR5 implementation are totally independent, but give close results in the 

linear part of the Cl vs. α plots. 

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Cd

C
l VLM - XFLR5

LLT - XFLR5

Naca TN1270

Speed = 261,5ft/s

Bi-Airfoil Naca4416 - Naca4412

Span = 15ft

AR = 8 ; TR =  2.5 

Root : Chord = 2.67 ft, Re = 4.32M, Ma = 0.12

Tip  : Chord = 1.07 ft, Re = 1.80M; Ma = 0.06

Washout = -4.5°

 

Figure 33 – Comparison to test results from Naca Tech. Note 1270  

5.24 Comparison to wind tunnel data 

An experiment has been carried out beginning of 2008 on a model sailplane. The detailed results are given in reference [9]. 

The following figures provide results from XFLR5 v3.21 and from v4.09. Results from v3.21 are marked as "FMe", since the 
calculation has been performed by F. Meschia. 

Note : in v4.09, the lift calculation was performed by integration of pressure forces on the panels. From v4.13, the calculation is 
performed in the far field plane. 
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Lift curve 

Measurement vs prediction - V=20m/s
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Figure 34 – Predicted lift curve vs. experimental results 

 

Drag polar 

Measurement vs prediction - V=20m/s
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Figure 35 – Predicted drag polar vs. experimental results 
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Pitching moment curve 

Measurement vs prediction - V=20m/s
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Figure 36 – Predicted pitch moment vs. experimental results 

 

It can be concluded that 

− the VLM is at least as reliable as the 3D panel method, 

− the body modeling does not improve the precision of the results 

− both methods give reasonable estimations of values such as : 
• lift coefficient 
• zero lift angle 
• pitch moment coefficient 
• zero lift moment or zero moment lift 

− both methods tend to underestimate the drag, probably the viscous part of it 
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5.25 Comparison to Miarex and AVL results 
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Figure 37 – Comparison to results from Miarex  
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Figure 38 – Lift coefficient - Comparison to AVL and Miarex 
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Figure 39 – Induced Angle vs. span - Comparison to AVL and Miarex 
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Figure 40 – Induced Drag vs. span - Comparison to AVL and Miarex 

Note about induced drag : the heterogeneity of AVL results is unexplained.  
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Figure 41 – Center of pressure position vs. span - Comparison to AVL and Miarex 
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Figure 42 – Pitching moment coefficient vs. span - Comparison to AVL and Miarex 
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5.26 Session example – Wing Analysis  

1. Load the foil(s) which will be used to define the wing 

2. In the Direct Analysis Application, click the "Run Batch Analysis" command in the Polars menu, or type Shift+F6 

3. Run a batch analysis with the following parameters (make sure these values cover the whole flight envelope of the wing): 

− from α = -6° to α = 10° 

− from Re = 40,000 to Re = 160,000 every 20,000 

− from Re = 200,000 to Re = 500,000 every 50,000 

or use a predefined list 

Checking the box "Start from zero" will cause the analysis to start from ϖ = 0°, going upwards to αmax, then downwards to 

αmin ; this usually facilitates convergence 

4. Close the dialog box 

5. Use the "Save Associated Polars" in the "Current Foil" menu to save the polars to a ".plr" file for use in future projects 
(optionall 

6. Switch to the Wing Design Application or type Ctrl+6 

7. Click the "Define Wing" command, or F3 in the Wing menu 

8. Define the wing and close the dialog box 

9. Click the "Define Analysis/polar" in the Wing Polar menu, or type F6  

10. Activate the Type 2 check box 

11. Define the plane weight and the center of gravity position (the moment ref. location) 

12. Unless the wing has either low aspect ratio, high sweep, or high dihedral, select the "LLT" checkbox, and close the dialog 
box (� and �) 

13. Leave the LLT settings to the default values in the "Operating Point" menu, i.e. "Relax Factor = 20" and 
"N° of Stations Along the Span = 20" 

14. Select an angle of attack in the right toolbar which can be expected to give positive lift equal to the model weight at 

reasonable Speed/Re values – for instance α = 3° 

15. Click the "Analyze" button in the right toolbar 

16. Change settings if LLT convergence cannot be reached, or continue the LLT analysis after un-checking the "Init LLT" 
checkbox 

17. Click the "3D view" command in the View menu 

18. Use the mouse to zoom and rotate the model 

19. Use Sequence to calculate a complete wing's polar 

16. Click on the "Polars" command in the View menu, or type F8 to visualize the polar graphs 
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5.27 Non convergences 

 Cause Fix 

All methods The foils' Type 1 polar meshes do not cover the 
available flight envelope 
[most usual case of non convergence] 

Extend the foils' Type 1 polar meshes 

 In Type 2 analysis, the lift is negative Calculate only for higher values of the angle of 
attack  

 In Type 2 analysis, the speed is either too low 
or too high, leading to OpPoints outside of the 
available flight envelope 

Extend the foils' Type 1 polar mesh ; 
The speed will tend towards infinite values at low 
aoa, and symmetrically will tend towards 0 at high 
aoa 

 The tip chord is too small and yields too low 
Reynolds numbers 

Either:  

1. Check the "Store OpPoints outside the 
Polar mesh" checkbox 

2. Omit the end of the wing in the 
definition of its planform 

LLT The relaxation factor is too small Increase the factor in the "LLT Settings…" dialog 
box 

 The number of points over the planform is too 
high 

Decrease the number in the "LLT Settings…" 
dialog box 

VLM The matrix is singular because of a conflicting 
disposition of VLM panels 

Regenerate a manual VLM mesh  

Panel The results are inconsistent because the wakes 
shedded by the wing and elevator are in the 
same horizontal plane 

Offset either the wing or elevator in the z 
direction, so that they do not lie in the same 
plane 

 

The log file will indicate which points of the flight envelope could not be calculated. It can be accessed with the menu command 
"Operating Point/View Log File" 

The "log file" is a plain text file. If the document does not show up when called from the menu, it may be necessary to manually 
associate the ".log" extension to Windows' Notepad. 

6 Code Specifics 

6.1 XFoil, AVL and XFLR5 

XFLR5 has been developed based on XFoil V6.94. Later additions to XFoil have not been included in XFLR5. 

Since the algorithms have been re-written and integrated in XFLR5, XFoil does not need to be present on the computer for 
XFLR5 to run. No special links need to be declared. 

XFLR5 does not use any of the AVL source code. The VLM algorithms have been developed and implemented independently. 

For AVL files generated by XFLR5, the foil’s file names will need to be checked, and it will also be necessary to check that the foil 
files are present in the directory together with the other AVL files. 



 
 

 

Guidelines for QFLR5 v0.03 56/58 
October 2009 

6.2 Files and Registry 

Running XFLR5 will generate two files in the user's directory for temporary files: 

− "XFLR5.set" which records user settings ; delete this file to restore the default settings 

− "XFLR5.log" which records the output of the foil and wing analysis  

The location of the directory is defined by the user's environment variables. 

XFLR5 itself does note write anything in the registry, but the installation program will create shortcuts for the ".plr" and ".wpa" 
files. Users can choose to associate the foil ".dat" files to XFLR5, but since this extension is used by Windows for many different 
purposes, it has been deemed preferable to leave this choice to the user. 

Registry shortcuts will be removed by the uninstall process. 

6.3 Shortcuts 

In an attempt to increase the user friendliness of the interface, shortcuts have been provided for most major commands, and are 
mentioned in the menus. 

Typing a first carriage return ( � ) in a dialog box will select the OK or the default button, typing a second carriage return will 

activate this button. 

Typing a first carriage return ( � ) in the main window will select the 'Analyze' button, typing a second carriage return will activate 

this button. 

6.4 Mouse input 

All graphs, foils, and wings may be dragged and zoomed with the mouse. Using Ctrl+Left button in 3D view will cause rotation of 
the model. 

These options however may not work correctly (or not at all) if the buttons are not set to the "Default" in the Windows Mouse 
interface. 

Pressing the 'X' or 'Y' keys while zooming a graph will expand only the corresponding axis. 

For those computers without a mouse wheel nor a middle button, zooming can be achieved in all views by pressing the 'Z' key 
and moving the mouse. 

6.5 Memory 

One of the characteristics of both the foil and the wing analysis is to use a significant computer memory.  

Operating points specifically store a large amount of data and lead to voluminous project files which will slow down Save & Load 
processes. It is however unnecessary to keep them, since the important data is also stored in the polar objects which do not 
require large memory resources. 

6.6 Export Options 

Printing 

− Although XFLR5, as it is, offers some printing options, the implementation of more advanced capabilities would require 
significant work, and has not been, nor is expected to become, the primary concern of the on-going development. 

Screen Images 

− An option has been added in v4.12 to export screen client areas to image files. 
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Graph data 

− An option has been added in v4.13 to export graph data to text files. 

Data export 

− All results, operating points and polars, can be exported to text files for processing in a spreadsheet. 

− From v4.12 onwards, an option is available to export the data to the "comma separated value" format ".csv". This text 
format is meant to be readable without conversion in a spreadsheet. However, it may happen that the operating system's 
regional settings need to be adjusted to define the comma ',' as the default list separator. 

6.7 Bugs 

Once again, XFLR5 is by no means a professional program, and despite the author’s best efforts and the help of all those who 
have tested it and provided valuable feedback, it is most probably still not default-free. 

Main Bug Corrections : 

1. The most serious bug yet uncovered was reported shortly after the release of v3.00 on September 7th, 2006. It had for 
main consequence to count twice the elevator’s lift in the calculation of a Plane with the VLM quad-method. This bug 
has been corrected in version v3.01 released on September 24th, 2006. 

2. Up to v3.14, the contribution of the elevator and fin to the pitching and yawing moments was calculated with respect to 
the point X=0 instead of X=XCmRef. Corrected in v3.15 released January 21st, 2007. 

The author will be grateful for any report of inconsistent results or other bugs, and will do his best to investigate and correct them 
in a timely manner. To facilitate bug corrections, the reports should ideally include: 

- The Operating System’s identification (e.g. Windows XP Pro, Vista…) 

- The project file (“xxx.wpa”) 

- The sequence of commands leading to the bug 

6.8 Open Source Development 

On March 31st, 2007, XFLR5 has become an Open Source Development Project hosted by SourceForge.net. 

SourceForge provides a comprehensive set of tools and methods for a project’s development, and a documentation may be 
found online. Potential contributors who would like to help organize the project, correct bugs, or add new features and 
enhancements are welcome. 
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