
Lecture 4
Geometry: Glauber model

Nobel prize in 2005 for his work on quantum optics

but he also worked on high-energy collisions.
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Participants and spectators

• Npart : number of nucleons which underwent at least one inelastic
collision
• Ncoll : number of inelastic nucleon-nucleon collisions

In elastic collisions, the colliding particles glance each other, same particles are in initial and final states. In ineslatic

collisions, new particles appear after the collisions. In both cases, 4-momentum is conserved (component by

component).
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Ojectives of the Glauber model

• Glauber model gives estimates for Npart and Ncoll

• It shows up in many models: HIJET, HIJING, VENUS, RQMD, etc.

• It contains approximations: independent linear trajectories of the
constituent nucleons, constant value of the inelastic nucleon-nucleon
cross section, etc.
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Nuclear density
I Distribution of matter (or charge) inside a nucleus often

assumed to be of a Woods-Saxon type:

ρA(r) =
ρ0

1 + e
r−R

a

ρ0 is obtained from the normalization
∫
ρ(r)d3r = A. Other

parameters are obtained from charge density measurements.
Typical values are: R = 1.12A1/3, a = 0.54 fm, ρ0 = 0.17 fm−3

It works well for nuclei with A > 16
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I To do analytical calculations, we can use the hard sphere
approximation:

ρA(r) =
3

4πr3
0
≡ ρhs for all r ≤ RA and RA = r0A1/3

so ρA(r) is constant inside the nucleus and has the same value
for all nuclei.

Exercise:
Let us check that ρA(r) obeys the correct the normalisation∫
d3rρA(r) = ρhs

∫
d3r = 3

4πr3
0

4π
3 R3

A = A
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I For non spherical nuclei, one can generalize the Woods-Saxon
formula:
R −→ R(θ, φ) =
R{1 + β2[cos γY 0

2 (θ, φ) +
2√
2
sin γRe(Y 2

2 (θ, φ))] + β3Y 0
3 (θ, φ)}

β2 allows for ellipsoidal shape, γ for triaxiality (all axes of
ellipsoid non equal) and β3 for pear shape.
This is what we do when we study Ruthenium and Zirconium in view of the STAR data Phys. Rev. C 105

(2022) 014901

Spherical nuclei assumed in the following for simplicity
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Nuclear thickness function

Let us start with a single nucleon from B. It drills a
cylindrically-shaped tube when colliding in A.

Nuclear thickness function: integral of the nuclear density over the
longitudinal direction (= how much matter there is in the tube per unit
area)

TA(s′) =
∫

dzρA(z, s′)

s′ is the distance of the tube with respect to the the center of nucleus
A.
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Exercise:
Compute the nuclear thickness in the hard sphere approximation

TA(s′) =
∫

dzρA(s′, z) = ρhs
∫√R2

A−s′2

−
√

R2
A−s′2

dz = 2ρhs

√
R2

A − s′2

Comparison of the nuclear thickness for Au, computed with a Woods-Saxon and a hard sphere nuclear density

(R.Vogt).

Note that
∫

d2s′TA(s′) = 4πρhs
∫ RA

0 s′ ds′
√

R2
A − s′2 = 4πρhs

3 R3
A = A
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Nuclear overlap function

Consider row-on-row collisions
Number of possible nucleon-nucleon enconters per unit transverse
area:
dTAB = TA(|~s + ~b/2|)TB(|~s − ~b/2|)d2s

Nuclear overlap function:

TAB(b) =
∫

TA(|~s + ~b/2|)TB(|~s − ~b/2|)d2s

Integral is on overlap area
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Number of collisions
Ncoll(b) = TAB(b)σNN

inel

σNN
inel is the inelastic collision cross section and it depends on

√
s: 32 mb at 20 GeV, 42 mb at 200 GeV and 60 mb

at 5.5 TeV. It is supposed to be constant for all the collisions a nucleon is undergoing.

Comparison of the nucleus-nucleus thickness functions top to bottom for a Woods-Saxon distribution: Pb+Pb,

Au+Au, I+I, Cu+Cu, Ca+Ca, Si+SI, O+O. (R.Vogt)
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Exercise:
Compute the nuclear overlap function at b = 0 for the hard sphere
approximation for Au+Au and Pb+Pb. Verify it agrees with the
previous figure.

TA(s) = 2ρhs

√
R2

A − s2 ⇒ TAB(0) =
∫

TA(s)2d2s =

4ρ2
hs

∫
(R2

A − s2)d2s = 4ρ2
hs 2π(R2

A

∫ RA

0 sds −
∫ RA

0 s3ds) =

4ρ2
hs 2πR4

A/4 = 2π
(

3
4πr3

0

)2
(r0A1/3)4 ∼ 0.25A4/3 for r0 ∼ 1.2 fm.

So TAu+Au(0) ∼ 285 fm−2 and TPb+Pb(0) ∼ 305 fm−2, which agree
reasonably with the figure.
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Probability for an inelastic A+B collision
T̂A(s′) = TA(s′)/A : proba. per unit transverse area of a given
nucleon being located in the tube in A

dT̂AB(|~s ± ~b/2|) = dTAB(|~s ± ~b/2|)/AB= proba. per unit transverse
area of nucleons being located in the respective overlapping target
and projectile tubes

Then: Ncoll(b) = ABT̂AB(b)σNN
inel

⇒ proba. for a nucleon from A to collide with a nucleon from B:

pNN = T̂AB(b)σNN
inel

Proba for k collisions at impact parameter b out of possible AB:

P(k ,b) =
(

AB
k

)
pk

NN(1− pNN)
AB−k

Probability for k = 0 is (1− pNN)
AB. Thus:

pAB
inel(b) = 1− [1− T̂AB(b)σNN

inel ]
AB

This can be integrated on d2b to get σAB
inel
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Number of participants at a given impact parameter
So the probability for a collision when a nucleon from A collides with
nucleus B is:
pB

inel(|~s − ~b/2|) = 1− [1− T̂B(|~s − ~b/2|)σNN
inel ]

B

and the number of such hadrons is TA(|~s + ~b/2|)d2s
Similarly for nucleons from B colliding with A. So

Npart(b) = NA
part(b) + NB

part(b)

=

∫
d2s TA(|~s + ~b/2|){1− [1− T̂B(|~s − ~b/2|)σNN

inel ]
B}

+

∫
d2s TB(|~s − ~b/2|){1− [1− T̂A(|~s + ~b/2|)σNN

inel ]
A}

Number of participants from top to bottom for a Woods-Saxon distribution: Pb+Pb, Au+Au, I+I, Cu+Cu, Ca+Ca,

Si+SI, O+O. (R.Vogt, dependence in σNN
inel weak) 13 / 20



Exercise:
Compute the number of participants at b = 0 in the hard sphere
approximation for an A+A collision
Npart(0) = 2

∫
d2s TA(s){1− [1− T̂A(s)σNN

inel ]
A} ∼

2
∫

d2s TA(s){1− exp(−TA(s)σNN
inel)} if TA(s)σNN

inel << A
and if TA(s)σNN

inel >> 1: Npart(0) ∼ 2
∫

d2s TA(s) = 2A (Integral is on
overlap region, i.e. a disk of radius RA)
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Centrality
It is usual to classify collisions with their impact parameter in
centrality bins

c =
π b2

σAB
inel

So c = 0⇔ b = 0 corresponds to central collisions (total overlap of
the colliding nuclei).
Experimentally it is not possible to measure b, so collisions are
classified in centrality using multiplicity, energy in some forward
detector (ZDC), etc.

15 / 20



Exercise:
Show that in the hard shere approximation σAA

inel = π (2RA)
2 and

c = [b/(2RA)]
2

pAA
inel(b) = 1− [1− T̂AA(b)σNN

inel ]
AA ∼ 1− exp(−TAA(b)σNN

inel) if
TAA(b)σNN

inel << A2

σAA
inel =

∫
d2bpAA

inel(b) =
∫

d2b[1− exp(−TAA(b)σNN
inel)] ∼

∫
d2b if

TAA(b)σNN
inel >> 1

So σAA
inel = π(2RA)

2 (as expected: the hard spheres can collide as long
as their impact parameter is smaller than 2RA)
and c = [b/(2RA)]

2
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Challenge

Use information from the lecture to estimate the number of
participants in the centrality classes 0-5%, 5-10%,10-20% for Pb+Pb
at 2.76 TeV.
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Homework
In the hard sphere approximation, compute for Pb+Pb: TPb(0),
TPbPb(0), Npart(0), σPbPb

inel and the impact parameter interval
corresponding to the centrality bin 0-5%.
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Other references on this topic
I Michael L. Miller, Klaus Reygers, Stephen J. Sanders and

Peter Steinberg “Glauber Modeling in High-Energy Nuclear
Collisions” Annu. Rev. Nucl. Part. Sci. 57 (2007) 205

I R. Vogt, Ultrarelativistic Heavy-ion Collisions, Elsevier,
2007

I W. Florkowski, Phenomenology of Ultra-Relativistic
Heavy-Ion Collisions, World Scientific, 2010

I C.Y. Wong, Introduction to High-Energy Heavy-Ion
Collisions, World Scientific, 1994

I https:
//www.physi.uni-heidelberg.de/~reygers/
lectures/2019/qgp/qgp2019_02_kinematics.pdf

20 / 20

https://www.physi.uni-heidelberg.de/~reygers/lectures/2019/qgp/qgp2019_02_kinematics.pdf
https://www.physi.uni-heidelberg.de/~reygers/lectures/2019/qgp/qgp2019_02_kinematics.pdf
https://www.physi.uni-heidelberg.de/~reygers/lectures/2019/qgp/qgp2019_02_kinematics.pdf

