

Exploring Arduino®

Tools and Techniques for
Engineering Wizardry

Jeremy Blum

Exploring Arduino®: Tools and Techniques for Engineering Wizardry

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-54936-0
ISBN: 978-1-118-54948-3 (ebk)
ISBN: 978-1-118-78616-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107
or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Web site is referred to in this work as a citation and/or a potential source of further information does not mean that
the author or the publisher endorses the information the organization or website may provide or recommendations
it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers
to media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013937652

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Arduino is a regis-
tered trademark of Arduino, LLC. All other trademarks are the property of their respective owners. John Wiley & Sons,
Inc. is not associated with any product or vendor mentioned in this book.

To my grandmother, whose lifelong curiosity and encouragement
inspires me to be a better person every day.

iv

Acquisitions Editor
Mary James

Project Editor
Jennifer Lynn

Technical Editor
Scott Fitzgerald

Production Editor
Daniel Scribner

Copy Editor
Keith Cline

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive
Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Compositor
Cody Gates,
Happenstance Type-O-Rama

Proofreader
James Saturnio, Word One

Indexer
John Sleeva

Cover Designer
Ryan Sneed

Cover Image
Courtesy of Jeremy Blum

Credits

 v

About the Author

Jeremy Blum recently received his Master’s degree in Electrical and Computer
Engineering from Cornell University, where he previously received his Bachelor’s
degree in the same field. At Cornell, he oversaw the design and creation of
several sustainable buildings around the world and domestically through his
founding and leadership of Cornell University Sustainable Design, a nationally
recognized sustainable design organization that has been specifically lauded
by the CEO of the U.S. and World Green Building Councils. In that vein, Jeremy
has applied his passion for electrical engineering to design solar home energy
monitoring systems, revolutionary fiber-optic LED lighting systems, and sun-
tracking smart solar panels. He is also responsible for helping to start a first-of-
its-kind entrepreneurial co-working space that contributes to the development
of dozens of student start-ups (including some of his own creation) every year.

Jeremy has designed award-winning prosthetic control methods, gesture-
recognition systems, and building-automation systems, among many other
things. He designed the electronics for the MakerBot Replicator 3D printers
(which are used by people around the world, and by notable organizations such
as NASA), and the prototype electronics and firmware for the MakerBot Digitizer
3D Scanner. As a researcher in the renowned Creative Machines Lab, he has
contributed to the creation of robots that can assemble themselves, self-learning
quadrupedal robots, and 3D printers that redefine personal manufacturing. He
has presented this research in peer-reviewed journals and at conferences as far
away as India.

Jeremy produces YouTube videos that have introduced millions of people to
engineering and are among the most popular Arduino tutorials on the Internet.
He is well known within the international open source and “maker” communi-
ties for his development of open source hardware projects and tutorials that

vi About the Technical Editor

have been featured on the Discovery Channel, and have won several awards
and hack-a-thons. Jeremy was selected by the American Institute of Electrical
and Electronics Engineers as the 2012 New Face of Engineering.

He offers engineering consulting services through his firm, Blum Idea Labs
LLC, and he teaches engineering and sustainability to young students in New
York City. Jeremy’s passion is improving people’s lives and our planet through
creative engineering solutions. You can learn more about Jeremy and his work
at his website: www.jeremyblum.com.

About the Technical Editor

Scott Fitzgerald is an artist and educator who has been using the Arduino plat-
form as a teaching tool and in his practice since 2006. He has taught physical
computing in the Interactive Telecommunications Program (ITP) of New York
University since 2005, introducing artists and designers to microcontrollers. Scott
works for the Arduino team, documenting new products and creating tutorials
to introduce people to the platform. He was technical editor of the second edi-
tion of Making Things Talk in 2011, and he authored the book that accompanies
the official Arduino Starter Kit in 2012.

 vii

Acknowledgments

First, I must thank my friends at Wiley publishing for helping to make this
possible: Mary James, for encouraging me to write this book in the first place;
and Jennifer Lynn, for keeping me on track as I worked through writing all the
chapters. I also owe a big thanks to Scott Fitzgerald for his critical eye in the
technical editing of this book.

Had it not been for the great folks at element14, I may never have gotten into
producing my Arduino Tutorial Series, a prelude to the book you are about
to read. Sabrina Deitch and Sagar Jethani, in particular, have been wonderful
partners with whom I’ve had the privilege to work.

I wrote the majority of this book while simultaneously completing my Master’s
degree and running two companies, so I owe a tremendous amount of gratitude
to my professors and peers who put up with me while I tried to balance all of
my responsibilities.

Finally, I want to thank my family, particularly my parents and my brother,
David, whose constant encouragement reminds me why I do the things I do.

 ix

Introduction	 xix

Part I Arduino Engineering Basics 1

Chapter 1 Getting Up and Blinking with the Arduino 3
Chapter 2 Digital Inputs, Outputs, and Pulse-Width Modulation 19
Chapter 3 Reading Analog Sensors 41

Part II Controlling Your Environment 61

Chapter 4 Using Transistors and Driving Motors 63
Chapter 5 Making Sounds 91
Chapter 6 USB and Serial Communication 107
Chapter 7 Shift Registers 145

Part III Communication Interfaces 161

Chapter 8 The I2C Bus 163
Chapter 9 The SPI Bus 181
Chapter 10 Interfacing with Liquid Crystal Displays 199
Chapter 11 Wireless Communication with XBee Radios 221

Part IV Advanced Topics and Projects 255

Chapter 12 Hardware and Timer Interrupts 257
Chapter 13 Data Logging with SD Cards 277
Chapter 14 Connecting Your Arduino to the Internet 313

Appendix Deciphering the ATMega Datasheet and Arduino Schematics 341

Index	 349

Contents at a Glance

 xi

Introduction	 xix

Part I Arduino Engineering Basics 1

Chapter 1 Getting Up and Blinking with the Arduino 3
Exploring the Arduino Ecosystem 4

Arduino Functionality 4
Atmel Microcontroller 6
Programming Interfaces 6
General I/O and ADCs 7
Power Supplies 7

Arduino Boards 8
Creating Your First Program 13

Downloading and Installing the Arduino IDE 13
Running the IDE and Connecting to the Arduino 14
Breaking Down Your First Program 16

Summary 18

Chapter 2 Digital Inputs, Outputs, and Pulse-Width Modulation 19
Digital Outputs 20

Wiring Up an LED and Using Breadboards 20
Working with Breadboards 21
Wiring LEDs 22

Programming Digital Outputs 24
Using For Loops 25

Pulse-Width Modulation with analogWrite() 27
Reading Digital Inputs 29

Reading Digital Inputs with Pulldown Resistors 29
Working with “Bouncy” Buttons 32

Building a Controllable RGB LED Nightlight 35
Summary 39

Contents

xii Contents

Chapter 3 Reading Analog Sensors 41
Understanding Analog and Digital Signals 42

Comparing Analog and Digital Signals 43
Converting an Analog Signal to a Digital One 44

Reading Analog Sensors with the Arduino: analogRead() 45
Reading a Potentiometer 45
Using Analog Sensors 50

Working with Analog Sensors to Sense Temperature 52
Using Variable Resistors to Make Your Own Analog Sensors 54

Using Resistive Voltage Dividers 55
Using Analog Inputs to Control Analog Outputs 56

Summary 59

Part II Controlling Your Environment 61

Chapter 4 Using Transistors and Driving Motors 63
Driving DC Motors 65

Handling High-Current Inductive Loads 65
Using Transistors as Switches 66
Using Protection Diodes 67
Using a Secondary Power Source 68
Wiring the Motor 68

Controlling Motor Speed with PWM 70
Using an H-Bridge to Control DC Motor Direction 72

Building an H-bridge Circuit 73
Operating an H-bridge Circuit 76

Driving Servo Motors 80
Understanding the Difference Between Continuous Rotation

and Standard Servos 80
Understanding Servo Control 80
Controlling a Servo 85

Building a Sweeping Distance Sensor 86
Summary 90

Chapter 5 Making Sounds 91
Understanding How Speakers Work 92

The Properties of Sound 92
How a Speaker Produces Sound 94

Using tone() to Make Sounds 95
Including a Definition File 95
Wiring the Speaker 96
Making Sound Sequences 99

Using Arrays 99
Making Note and Duration Arrays 100
Completing the Program 101

Understanding the Limitations of the tone() Function 102
Building a Micro Piano 102
Summary 105

 Contents xiii

Chapter 6 USB and Serial Communication 107
Understanding the Arduino’s Serial Communication

Capabilities 108
Arduino Boards with an Internal or External FTDI

USB-to-Serial Converter 110
Arduino Boards with a Secondary USB-Capable

ATMega MCU Emulating a Serial Converter 112
Arduino Boards with a Single USB-Capable MCU 114
Arduino Boards with USB-Host Capabilities 114

Listening to the Arduino 115
Using print Statements 115
Using Special Characters 117
Changing Data Type Representations 119

Talking to the Arduino 119
Reading Information from a Computer or Other Serial Device 120

Telling the Arduino to Echo Incoming Data 120
Understanding the Differences Between Chars and Ints 121
Sending Single Characters to Control an LED 122
Sending Lists of Values to Control an RGB LED 125

Talking to a Desktop App 127
Talking to Processing 127

Installing Processing 128
Controlling a Processing Sketch from Your Arduino 129
Sending Data from Processing to Your Arduino 132

Learning Special Tricks with the Arduino Leonardo
(and Other 32U4-Based Arduinos) 134

Emulating a Keyboard 135
Typing Data into the Computer 135
Commanding Your Computer to Do Your Bidding 139

Emulating a Mouse 140
Summary 144

Chapter 7 Shift Registers 145
Understanding Shift Registers 146

Sending Parallel and Serial Data 147
Working with the 74HC595 Shift Register 148

Understanding the Shift Register Pin Functions 148
Understanding How the Shift Register Works 149

Shifting Serial Data from the Arduino 151
Converting Between Binary and Decimal Formats 154

Controlling Light Animations with a Shift Register 154
Building a “Light Rider” 154
Responding to Inputs with an LED Bar Graph 157

Summary 160

xiv Contents

Part III Communication Interfaces 161

Chapter 8 The I2C Bus 163
History of the I2C Bus 164
I2C Hardware Design 164

Communication Scheme and ID Numbers 165
Hardware Requirements and Pull-Up Resistors 167

Communicating with an I2C Temperature Probe 167
Setting Up the Hardware 168
Referencing the Datasheet 169
Writing the Software 171

Combining Shift Registers, Serial Communication,
and I2C Communications 173

Building the Hardware for a Temperature Monitoring System 173
Modifying the Embedded Program 174
Writing the Processing Sketch 177

Summary 180

Chapter 9 The SPI Bus 181
Overview of the SPI Bus 182
SPI Hardware and Communication Design 183

Hardware Configuration 184
Communication Scheme 184

Comparing SPI to I2C 185
Communicating with an SPI Digital Potentiometer 185

Gathering Information from the Datasheet 186
Setting Up the Hardware 189
Writing the Software 190

Creating an Audiovisual Display Using
SPI Digital Potentiometers 193

Setting Up the Hardware 194
Modifying the Software 195

Summary 197

Chapter 10 Interfacing with Liquid Crystal Displays 199
Setting Up the LCD 200
Using the LiquidCrystal Library to Write to the LCD 203

Adding Text to the Display 204
Creating Special Characters and Animations 206

Building a Personal Thermostat 209
Setting Up the Hardware 210
Displaying Data on the LCD 211
Adjusting the Set Point with a Button 213
Adding an Audible Warning and a Fan 214
Bringing It All Together: The Complete Program 215
Taking This Project to the Next Level 219

Summary 219

 Contents xv

Chapter 11 Wireless Communication with XBee Radios 221
Understanding XBee Wireless Communication 222

XBee Radios 223
The XBee Radio Shield and Serial Connections 224

3.3V Regulator 226
Logic Level Shifting 226
Associate LED and RSSI LED 226
UART Selection Jumper or Switch 226
Hardware vs. Software Serial UART Connection Option 227

Configuring Your XBees 228
Configuring via a Shield or a USB Adapter 228

Programming Option 1: Using the Uno as a Programmer
(Not Recommended) 229

Programming Option 2: Using the SparkFun USB Explorer
(Recommended) 230

Choosing Your XBee Settings and Connecting Your XBee
to Your Host Computer 230

Configuring Your XBee with X-CTU 231
Configuring Your XBee with a Serial Terminal 235

Talking with Your Computer Wirelessly 236
Powering Your Remote Arduino 236

USB with a Computer or a 5V Wall Adapter 237
Batteries 237
Wall Power Adapters 239

Revisiting the Serial Examples: Controlling Processing
with a Potentiometer 239

Revisiting the Serial Examples: Controlling an RGB LED 243
Talking with Another Arduino: Building a Wireless Doorbell 246

System Design 246
Transmitter Hardware 247
Receiver Hardware 248
Transmitter Software 249
Receiver Software 250

Summary 252

Part IV Advanced Topics and Projects 255

Chapter 12 Hardware and Timer Interrupts 257
Using Hardware Interrupts 258

Knowing the Tradeoffs Between Polling and Interrupting 259
Ease of Implementation (Software) 260
Ease of Implementation (Hardware) 260
Multitasking 260
Acquisition Accuracy 261

Understanding the Arduino’s Hardware
Interrupt Capabilities 261

xvi Contents

Building and Testing a Hardware-Debounced
Button Interrupt Circuit 262

Creating a Hardware-Debouncing Circuit 262
Assembling the Complete Test Circuit 267
Writing the Software 267

Using Timer Interrupts 270
Understanding Timer Interrupts 270
Getting the Library 270
Executing Two Tasks Simultaneously(ish) 271

Building an Interrupt-Driven Sound Machine 272
Sound Machine Hardware 272
Sound Machine Software 273

Summary 275

Chapter 13 Data Logging with SD Cards 277
Getting Ready for Data Logging 278

Formatting Data with CSV Files 279
Preparing an SD Card for Data Logging 279

Interfacing the Arduino with an SD Card 284
SD Card Shields 284
SD Card SPI Interface 288
Writing to an SD Card 289
Reading from an SD Card 293

Using a Real-Time Clock 297
Understanding Real-Time Clocks 298

Using the DS1307 Real-Time Clock 298
Using the RTC Arduino Third-Party Library 299

Using the Real-Time Clock 300
Installing the RTC and SD Card Modules 300
Updating the Software 301

Building an Entrance Logger 305
Logger Hardware 306
Logger Software 307
Data Analysis 311

Summary 312

Chapter 14 Connecting Your Arduino to the Internet 313
The Web, the Arduino, and You 314

Networking Lingo 314
IP Address 314
Network Address Translation 315
MAC Address 316
HTML 316
HTTP 316
GET/POST 316
DHCP 316
DNS 317

 Contents xvii

Clients and Servers 317
Networking Your Arduino 317

Controlling Your Arduino from the Web 318
Setting Up the I/O Control Hardware 318
Designing a Simple Web Page 318
Writing an Arduino Server Sketch 320

Connecting to the Network and Retrieving an IP via DHCP 321
Replying to a Client Response 321
Putting It Together: Web Server Sketch 322

Controlling Your Arduino via the Network 326
Controlling Your Arduino over the Local Network 326
Using Port Forwarding to Control your Arduino

from Anywhere 327
Sending Live Data to a Graphing Service 329

Building a Live Data Feed on Xively 330
Creating a Xively Account 330
Creating a Data Feed 330
Installing the Xively and HttpClient Libraries 331
Wiring Up Your Arduino 332
Configuring the Xively Sketch and Running the Code 332
Displaying Data on the Web 335

Adding Feed Components 336
Adding an Analog Temperature Sensor 336
Adding Additional Sensor Readings to the Datastream 336

Summary 339

Appendix Deciphering the ATMega Datasheet
 and Arduino Schematics 341

Reading Datasheets 341
Breaking Down a Datasheet 341
Understanding Component Pin-outs 344

Understanding the Arduino Schematic 345

Index	 349

 xix

You have excellent timing. As I often like to say, “We’re living in the future.”
With the tools available to you today, many of which you’ll learn about in this
book, you have the opportunity and the ability to bend the physical world to
your whim. Until very recently, it has not been possible for someone to pick up
a microcontroller and have it controlling his or her world within minutes. As
you may have guessed, a microcontroller is a programmable platform that gives
you the power to define the operation of complex mechanical, electrical, and
software systems using relatively simple commands. The possibilities are end-
less, and the Arduino microcontroller platform will become your new favorite
tool as you explore the world of electronics, programming, human-computer
interaction, art, control systems, and more. Throughout the course of this book,
you’ll use the Arduino to do everything from detecting motion to creating wire-
less control systems to communicating over the Internet.

Whether you are completely new to any kind of engineering or are a seasoned
veteran looking to get started with embedded systems design, the Arduino is
great place to start. Are you looking for a general reference for Arduino develop-
ment? This book is perfect for you, too. This book walks you through a number
of particular projects, but you’ll also find it easy to return to the book for code
snippets, best practices, system schematics, and more. The electrical engineer-
ing, systems design, and programming practices that you’ll learn while reading
this book are widely applicable beyond the Arduino platform and will prepare
you to take on an array of engineering projects, whether they use the Arduino
or some other platform.

Introduction

xx Introduction

Who	This	Book	Is	For

This book is for Arduino enthusiasts of all experience levels. Chapters build
upon each other, utilizing concepts and project components from previous chap-
ters to develop more complex ideas. But don’t worry. Whenever you face new,
complex ideas, a cross-reference reminds you where you first encountered any
relevant building-block concepts so that you can easily refresh your memory.

This book assumes that you have little or no previous experience working
with programming or electrical engineering. To facilitate readers of various
experience levels, the book features a number of optional sections and sidebars,
or short excerpts, that explain a particular concept in greater detail. Although
these sidebars are not obligatory for you to gain a good understanding of how
to use the Arduino, they do provide a closer look at technical topics for the
more curious reader.

What	You’ll	Learn	in	This	Book

This book is not a recipe book. If you want to follow step-by-step instructions
that tell you exactly how to build a particular project without actually explain-
ing why you are doing what you are doing, this book is not for you. You can
think of this book as an introduction to electrical engineering, computer science,
product design, and high-level thinking using the Arduino as a vehicle to help
you experience these concepts in a hands-on manner.

When building hardware components of the Arduino projects demonstrated
in this book, you’ll learn not just how to wire things together, but how to read
schematics, why particular parts are used for particular functions, and how to
read datasheets that will allow you to choose appropriate parts to build your
own projects. When writing software, I provide complete program code, but
you will first be stepped through several iterative processes to create the final
program. This will help to reinforce specific program functions, good code-
formatting practices, and algorithmic understanding.

This book will teach physics concepts, algorithms, digital design principles,
and Arduino-specific programming concepts. It is my hope that working through
the projects in this book will not just make you a well-versed Arduino devel-
oper, but that it will also give you the skills you need to develop more-complex
electrical systems, and to pursue engineering endeavors in other fields, and
with different platforms.

 Introduction xxi

Features	Used	in	This	Book

The following features and icons are used in this book to help draw your atten-
tion to some of the most important or useful information in the book:

WARNING Be	sure	to	take	heed	when	you	see	one	of	these	asides.	When	par-
ticular	steps	could	cause	damage	to	your	electronics	if	performed	incorrectly,	
you’ll	see	one	of	these	asides.

TIP These	asides	contain	quick	hints	about	how	to	perform	simple	tasks	that	
might	prove	useful	for	the	task	at	hand.

NOTE These	asides	contain	additional	information	that	may	be	of	importance	
to	you,	including	links	to	videos	and	online	material	that	will	make	it	easier	to	fol-
lowing	along	with	the	development	of	a	particular	project.

SAMPLE HEADING

These	asides	go	into	additional	depth	about	the	current	topic	or	a	related	topic.

Getting	the	Parts

Lucky for you, you can easily obtain the components you need to execute the
projects in this book. This book’s partner, Newark element14, has created kits
specially designed for the contents of this book. You can even use the coupon
code at the back of this book to get a discount!

You should order the basic kit first. You can then purchase add-on kits as you
progress through the book. Don’t want to buy a kit? Don’t worry. At the begin-
ning of each chapter, you’ll find a detailed list of parts that you need to complete
that chapter. The companion website for this book, www.exploringarduino.com,
also provides links to where you can find the parts for each chapter.

NOTE Did	you	already	buy	this	book	as	a	bundle	from	Newark?	If	so,	you’re		
good	to	go.

xxii Introduction

What	You’ll	Need

In addition to the actual parts that you’ll use to build your Arduino projects,
there are a few other tools and materials that you’ll need on your Arduino
adventures. Most importantly, you’ll need a computer that is compatible with the
Arduino integrated development environment (IDE) (Max OSX 10.4+, Windows
XP+, or a Linux Distro). I will provide instructions for all operating systems
when warranted.

You may also want some additional tools that will be used throughout the book
to debug, assemble hardware, etc. These are not explicitly necessary to complete
the projects in this book. As you develop your electrical engineering skillset,
these tools will come in handy for other projects. I recommend the following:

■■ A soldering iron and solder (Note: You will not need to solder to com-
plete the projects in this book, but you may wish to assemble your own
circuits on a protoboard, or you may wish to purchase shields that require
soldering assembly.)

■■ A multimeter (This will be useful for debugging concepts within this
book, but is not explicitly required.)

■■ A set of small screwdrivers

■■ A hot glue gun

Source	Code	and	Digital	Content

The primary companion site for this book is www.exploringarduino.com, and it
is maintained by the author. You will find code downloads for each chapter on
this site (along with videos, links, and other useful materials). Wiley also main-
tains a repository of digital content that accompanies this book at www.wiley.com.
Specifically for this book, the code download is on the Download Code tab at
www.wiley.com/go/exploringarduino.

You can also search for the book at www.wiley.com by ISBN (the ISBN for this
book is 978-1-118-54936-0) to find the code.

At the beginning of each chapter, you can find the location of the major code
files for the chapter. Throughout each chapter, you can also find references to
the names of code files as needed in listing titles and text.

The code available at www.exploringarduino.com and www.wiley.com is
provided in compressed ZIP archives. After you download the code, just
decompress it with an appropriate compression tool.

NOTE Because	many	books	have	similar	titles,	you	may	find	it	easiest	to	search	
by	ISBN;	this	book’s	ISBN	is	978-1-118-54936-0.

 Introduction xxiii

Errata

We make every effort to ensure that there are no errors in the text or in the code.
However, no one is perfect, and mistakes do occur. If you find an error in this
book, such as a spelling mistake or faulty piece of code, we would be grateful
for your feedback. By sending in errata, you may save another reader hours of
frustration, and at the same time, you can help us provide even higher quality
information.

To find the errata page for this book, go to www.wiley.com/go/exploringarduino
and click the Errata link. On this page you can view all errata that has been
submitted for this book and posted by Wiley editors.

Supplementary	Material	and	Support

During your adventures with your Arduino, you’ll inevitably have questions
and perhaps run into problems. One of the best parts about using the Arduino is
the excellent support community that you can find on the Web. This extremely
active base of Arduino users will readily help you along your way. The follow-
ing are just a few resources that you’ll find helpful on your journey:

■■ Official Arduino Reference

www.arduino.cc/en/Reference/HomePage

■■ My Arduino Tutorial Series

www.jeremyblum.com/category/arduino-tutorials

■■ adafruit Industries’ Arduino Tutorial Series

learn.adafruit.com/category/learn-arduino

■■ SparkFun’s Electronics Tutorials

learn.sparkfun.com/tutorials

■■ The Official Arduino Forum

www.arduino.cc/forum

■■ The element14 Arduino Community

www.element14.com/community/groups/arduino

If you’ve exhausted all of those resources and still cannot solve your problem,
reach out to me on Twitter (@sciguy14); maybe I can help. You can also get in
touch with me directly via the contact page on my website (www.jeremyblum
.com/contact), but I generally don’t guarantee fast response times.

xxiv Introduction

What	Is	an	Arduino?

The best part about the Arduino prototyping platform is that it’s whatever you
want it to be. The Arduino could be an automatic plant-watering control system.
It can be a web server. It could even be a quadcopter autopilot.

The Arduino is a microcontroller development platform paired with an intui-
tive programming language that you develop using the Arduino integrated
development environment (IDE). By equipping the Arduino with sensors, actua-
tors, lights, speakers, add-on modules (called shields), and other integrated
circuits, you can turn the Arduino into a programmable “brain” for just about
any control system.

It’s impossible to cover everything that the Arduino is capable of, because the
possibilities are limited only by your imagination. Hence, this book serves as
a guide to get you acquainted with the Arduino’s functionality by executing a
number of projects that will give you the skills you need to develop your own
projects.

You’ll learn more about the Arduino and the available variations of the board
in Chapter 1, “Getting Up and Blinking with the Arduino.” If you’re eager to
know all the inner workings of the Arduino, you’re in luck: It is completely
open source, and all the schematics and documentation are freely available on
the Arduino website. Appendix A, “Deciphering the ATMega Datasheet and
Arduino Schematics,” covers some of the Arduino’s technical specifications.

An	Open	Source	Platform

If you’re new to the world of open source, you are in for a treat. This book does
not go into detail about the open source hardware movement, but it is worth
knowing a bit about the ideologies that make working with the Arduino so
wonderful. If you want a full rundown of what open source hardware is, check
out the official definitions on the Open Source Hardware Association website
(www.oshwa.org/definition).

NOTE Learn	all	about	the	open	source	movement	from	my	TEDx	Talk:	
	www.jeremyblum.com/portfolio/tedx-cornell-university-2011/.		
You	can	also	find	this	video	on	the	Wiley	website	shown	at	the	beginning	of		
this	Introduction.

Because the Arduino is open source hardware, all the design files, schematics,
and source code are freely available to everybody. Not only does this mean that
you can more easily hack the Arduino to serve a very particular function, but
you can also even integrate the Arduino platform into your designs, make and

 Introduction xxv

sell Arduino clones, and use the Arduino software libraries in other projects.
Although this book focuses mostly on using official Arduino hardware, you
could also use hundreds of Arduino derivative boards (often with particular
functions added on to them) to create the projects in this book.

The Arduino open source license also permits commercial reuse of their designs
(so long as you don’t utilize the Arduino trademark on your designs). So, if you
use an Arduino to prototype an exciting project and you want to turn it into a
commercial product, you can do that. For example, you’ll read about products
like the MakerBot Replicator 3D printer, which uses electronics based on the
Arduino Mega platform (www.thingiverse.com/thing:16058). (Full disclosure:
I designed that motherboard.)

Be sure to respect the licenses of the source code and hardware that you use
throughout this book. Some licenses require that you provide attribution to
the original author when you publish a design based on their previous work.
Others require that you always share improvements that you make under an
equivalent license. This sharing helps the community grow, and leads to all
the amazing online documentation and support that you’ll undoubtedly refer
to often during your Arduino adventures. All code examples that I’ve written
for this book (unless otherwise specified) are licensed under the GNU General
Public License (GPL), enabling you to use them for anything you want.

Beyond	This	Book

Some of you might already be familiar with my popular series of YouTube
Arduino and electronics tutorials (www.youtube.com/sciguy14). I refer to them
throughout this book as a way to see more-detailed walkthroughs of the topics
covered here. If you’re curious about some of the remarkable things that you
can do with clever combinations of electronics, microcontrollers, computer sci-
ence, and creativity, check out my portfolio (www.jeremyblum.com/portfolio)
for a sampling of projects. Like Arduino, most of what I do is released via open
source licenses that allow you to easily duplicate my work for your own needs.

I’m anxious to hear about what you do with the skills you acquire from this
book. I encourage you to share them with me and with the rest of the world.
Good luck on your Arduino adventures!

In	This	Part

Chapter 1: Getting Up and Blinking with the Arduino
Chapter 2: Digital Inputs, Outputs, and Pulse-Width Modulation
Chapter 3: Reading Analog Sensors

P a r t

I
Arduino Engineering Basics

 3

Parts You’ll Need for This Chapter:

Arduino Uno

USB cable

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, videos, and other digital content for this chapter can be
found at www.exploringarduino.com/content/ch1.

In addition, all code can be found at www.wiley.com/go/exploringarduino
on the Download Code tab. The code is in the chapter 01 download and indi-
vidually named according to the names throughout the chapter.

Now that you have some perspective on the Arduino platform and its ca-
pabilities, it’s time to explore your options in the world of Arduino. In this
chapter, you examine the available hardware, learn about the programming
environment and language, and get your first program up and running.
Once you have a grip on the functionality that the Arduino can provide,
you’ll write your first program and get the Arduino to blink!

C h a P t e r

1
Getting Up and Blinking

with the Arduino

4 Part I ■ Arduino Engineering Basics

NOTE To	follow	along	with	a	video	that	introduces	the	Arduino	platform,	visit	
www.jeremyblum.com/2011/01/02/arduino-tutorial-series-it-begins/.	
You	can	also	find	this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	
chapter.

Exploring	the	Arduino	Ecosystem

In your adventures with the Arduino, you’ll depend on three main components
for your projects:

■■ The Arduino board itself

■■ External hardware (including both shields and hand-made circuits, which
you’ll explore throughout this book)

■■ The Arduino integrated development environment, or Arduino IDE

All these system components work in tandem to enable you do just about
anything with your Arduino.

You have a lot of options when it comes to Arduino development boards, but
this book focuses on using official Arduino boards. Because the boards are all
designed to be programmable via the same IDE, you can generally use any of
the modern Arduino boards to complete the projects in this book with zero or
minor changes. However, when necessary, you’ll see caveats about using different
boards for various projects. The majority of the projects use the Arduino Uno.

You start by exploring the basic functionality baked in to every Arduino board.
Then you examine the differences between each modern board so that you can
make an informed decision when choosing a board to use for your next project.

Arduino	Functionality
All Arduino boards have a few key capabilities and functions. Take a moment
to examine the Arduino Uno (see Figure 1-1); it will be your base configuration.
These are some key components that you’ll be concerning yourself with:

■■ Atmel microcontroller

■■ USB programming/communication interface(s)

■■ Voltage regulator and power connections

■■ Breakout I/O pins

■■ Debug, Power, and RX/TX LEDs

■■ Reset button

■■ In-circuit serial programmer (ICSP) connector(s)

U
SB

 c
on

ne
ct

or

R
es

et
 b

ut
to

n

7–
12

VD
C

in
pu

t

Se
ri

al
-t

o-
U

SB
 c

ir
cu

itr
y

Ge
ne

ra
l I

/O

P
ow

er
 a

nd
 a

ux
ili

ar
y

pi
ns

M
CU

 p
ro

gr
am

m
in

g
co

nn
ec

to
r (

IC
SP

)

D
eb

ug
 L

ED

An
al

og
-t

o-
di

gi
ta

l c
on

ve
rt

er
 (A

D
C)

 in
pu

ts

A
TM

eg
a

32
8

M
C

U

Fi
gu

re
 1

-1
: A

rd
ui

no
 U

no
 c

om
po

ne
nt

s
C

re
di

t:
 A

rd
ui

no
, w
w
w
.
a
r
d
u
i
n
o
.
c
c

6 Part I ■ Arduino Engineering Basics

Atmel Microcontroller

At the heart of every Arduino is an Atmel microcontroller unit (MCU). Most
Arduino boards, including the Arduino Uno, use an AVR ATMega microcontroller.
The Arduino Uno in Figure 1-1 uses an ATMega 328p. The Due is an exception;
it uses an ARM Cortex microcontroller. This microcontroller is responsible for
holding all of your compiled code and executing the commands you specify. The
Arduino programming language gives you access to microcontroller peripherals,
including analog-to-digital converters (ADCs), general-purpose input/output
(I/O) pins, communication buses (including I2C and SPI), and serial interfaces.
All of this useful functionality is broken out from the tiny pins on the micro-
controller to accessible female headers on the Arduino that you can plug wires
or shields into. A 16 MHz ceramic resonator is wired to the ATMega’s clock
pins, which serves as the reference by which all program commands execute.
You can use the Reset button to restart the execution of your program. Most
Arduino boards come with a debug LED already connected to pin 13, which
enables you to run your first program (blinking an LED) without connecting
any additional circuitry.

Programming Interfaces

Ordinarily, ATMega microcontroller programs are written in C or Assembly
and programmed via the ICSP interface using a dedicated programmer (see
Figure 1-2). Perhaps the most important characteristic of an Arduino is that
you can program it easily via USB, without using a separate programmer. This
functionality is made possible by the Arduino bootloader. The bootloader is
loaded onto the ATMega at the factory (using the ICSP header), which allows a
serial USART (Universal Synchronous/Asynchronous Receiver/Transmitter) to
load your program on the Arduino without using a separate programmer. (You
can learn more about how the bootloader functions in “The Arduino Bootloader
and Firmware Setup” sidebar.)

In the case of the Arduino Uno and Mega 2560, a secondary microcontroller
(an ATMega 16U2 or 8U2 depending on your revision) serves as an interface
between a USB cable and the serial USART pins on the main microcontroller. The
Arduino Leonardo, which uses an ATMega 32U4 as the main microcontroller,
has USB baked right in, so a secondary microcontroller is not needed. In older
Arduino boards, an FTDI brand USB-to-serial chip was used as the interface
between the ATMega’s serial USART port and a USB connection.

 Chapter 1 ■ Getting Up and Blinking with the Arduino 7

Figure 1-2: AVR ISP MKII programmer

General I/O and ADCs

The part of the Arduino that you’ll care the most about during your projects is
the general-purpose I/O and ADC pins. All of these pins can be individually
addressed via the programs you’ll write. All of them can serve as digital inputs
and outputs. The ADC pins can also act as analog inputs that can measure volt-
ages between 0 and 5V (usually from resistive sensors). Many of these pins are
also multiplexed to serve additional functions, which you will explore during
your projects. These special functions include various communication interfaces,
serial interfaces, pulse-width-modulated outputs, and external interrupts.

Power Supplies

For the majority of your projects, you will simply use the 5V power that is
provided over your USB cable. However, when you’re ready to untether your
project from a computer, you have other power options. The Arduino can accept
between 6V and 20V (7-12V recommend) via the direct current (DC) barrel jack
connector, or into the Vin pin. The Arduino has built-in 5V and 3.3V regulators:

■■ 5V is used for all the logic on the board. In other words, when you toggle
a digital I/O pin, you are toggling it between 5V and 0V.

■■ 3.3V is broken out to a pin to accommodate 3.3V shields and external
circuitry.

C
re

di
t:

 ©
 2

01
3

A
tm

el
 C

or
po

ra
tio

n.

A
ll

ri
gh

ts
 r

es
er

ve
d.

8 Part I ■ Arduino Engineering Basics

THE ARDUINO BOOTLOADER AND FIRMWARE SETUP

A	bootloader	is	a	chunk	of	code	that	lives	in	a	reserved	space	in	the	program	
memory	of	the	Arduino’s	main	MCU.	In	general,	AVR	microcontrollers	are	
programmed	with	an	ICSP,	which	talks	to	the	microcontroller	via	a	serial	
peripheral	interface	(SPI).	Programming	via	this	method	is	fairly	straight-
forward,	but	necessitates	the	user	having	a	hardware	programmer	such	as	
an	STK500	or	an	AVR	ISP	MKII	programmer	(see	Figure	1-2).

When	you	first	boot	the	Arduino	board,	it	enters	the	bootloader,	which	
runs	for	a	few	seconds.	If	it	receives	a	programming	command	from	the	
IDE	over	the	MCU’s	UART	(serial	interface)	in	that	time	period,	it	loads	the	
program	that	you	are	sending	it	into	the	rest	of	the	MCU’s	program	memory.	
If	it	does	not	receive	a	programming	command,	it	starts	running	your	most	
recently	uploaded	sketch,	which	resides	in	the	rest	of	the	program	memory.

When	you	send	an	“upload”	command	from	the	Arduino	IDE,	it	instructs	
the	USB-to-serial	chip	(an	ATMega	16U2	or	8U2	in	the	case	of	the	Arduino	
Uno)	to	reset	the	main	MCU,	hence	forcing	it	into	the	bootloader.	Then,	your	
computer	immediately	begins	to	send	the	program	contents,	which	the	MCU	
is	ready	to	receive	over	its	UART	connection	(facilitated	by	the	USB-to-serial	
converter).

Bootloaders	are	great	because	they	enable	simple	programming	via	USB	
with	no	external	hardware.	However,	they	do	have	two	downsides:	

	■ First,	they	take	up	valuable	program	space.	If	you	have	written	a	com-
plicated	sketch,	the	approximately	2KB	of	space	taken	up	by	the	boot-
loader	might	be	really	valuable.	

	■ Second,	using	a	bootloader	means	that	your	program	will	always	be	
delayed	by	a	few	seconds	at	boot	as	the	bootloader	checks	for	a	pro-
gramming	request.	

If	you	have	a	programmer	(or	another	Arduino	that	can	be	programmed	to	
act	as	a	programmer),	you	can	remove	the	bootloader	from	your	ATMega	and	
program	it	directly	by	connecting	your	programmer	to	the	ICSP	header	and	
using	the	File	d	Upload	Using	Programmer	command	from	within	the	IDE.

Arduino	Boards
This book cannot possibly cover all the available Arduino boards; there are many,
and manufacturers are constantly releasing new ones with various features. The
following section highlights some of the features in the official Arduino boards.

The Uno (see Figure 1-3) is the flagship Arduino and will be used heavily
in this book. It uses a 16U2 USB-to-serial converter chip and an ATMega 328p
as the main MCU. It is available in both DIP and SMD versions (which defines
whether the MCU is removable).

 Chapter 1 ■ Getting Up and Blinking with the Arduino 9

Figure 1-3: The Arduino Uno

The Leonardo (see Figure 1-4) uses the 32U4 as the main microcontroller,
which has a USB interface built in. Therefore, it doesn’t need a secondary MCU
to perform the serial-to-USB conversion. This cuts down on the cost and enables
you to do unique things like emulate a joystick or a keyboard instead of a simple
serial device. You will learn how to use these features in Chapter 6, “USB and
Serial Communication.”

Figure 1-4: The Arduino Leonardo

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

10 Part I ■ Arduino Engineering Basics

The Mega 2560 (see Figure 1-5) employs an ATMega 2560 as the main MCU,
which has 54 general I/Os to enable you to interface with many more devices.
The Mega also has more ADC channels, and has four hardware serial interfaces
(unlike the one serial interface found on the Uno).

Figure 1-5: The Arduino Mega 2560

Unlike all the other Arduino variants, which use 8-bit AVR MCUs, the Due
(see Figure 1-6) uses a 32-bit ARM Cortex M3 SAM3X MCU. The Due offers
higher-precision ADCs, selectable resolution pulse-width modulation (PWM),
Digital-to-Analog Converters (DACs), a USB host connector, and an 84 MHz
clock speed.

Figure 1-6: The Arduino Due

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

 Chapter 1 ■ Getting Up and Blinking with the Arduino 11

The Nano (see Figure 1-7) is designed to be mounted right into a breadboard
socket. Its small form factor makes it perfect for use in more finished projects.

Figure 1-7: The Arduino Nano

The Mega ADK (see Figure 1-8) is very similar to the Mega 2560, except that
it has USB host functionality, allowing it to connect to an Android phone so
that it can communicate with apps that you write.

Figure 1-8: The Arduino Mega ADK

The LilyPad (see Figure 1-9) is unique because it is designed to be sewn into
clothing. Using conductive thread, you can wire it up to sewable sensors, LEDs,
and more. To keep size down, you need to program it using an FTDI cable.

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

C
re

di
t:

 C
oo

ki
ng

 H
ac

ks
,

w
w
w
.
c
o
o
k
i
n
g
h
a
c
k
s
.
c
o
m

12 Part I ■ Arduino Engineering Basics

Figure 1-9: The LilyPad Arduino

As explained in this book’s introduction, the Arduino is open source hardware.
As a result, you can find dozens and dozens of “Arduino compatible” devices
available for sale that will work just fine with the Arduino IDE and all the proj-
ects you’ll do in this book. Some of the popular third-party boards include the
Seeduino, the adafruit 32U4 breakout board, and the SparkFun Pro Mini Arduino
boards. Many third-party boards are designed for very particular applications, with
additional functionality already built in to the board. For example, the ArduPilot
is an autopilot board for use in autonomous DIY quadcopters (see Figure 1-10).
You can even find Arduino-compatible circuitry baked in to consumer devices
like the MakerBot Replicator and Replicator 2 3D printers.

Figure 1-10: Quadcopter and ArduPilot Mega controller

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

C
re

di
t:

 3
D

 R
ob

ot
ic

s,
 In

c.
,

w
w
w
.
3
d
r
o
b
o
t
i
c
s
.
c
o
m

 Chapter 1 ■ Getting Up and Blinking with the Arduino 13

Creating	Your	First	Program

Now that you understand the hardware that you’ll be using throughout this
book, you can install the software and run your first program. Start by down-
loading the Arduino software to your computer.

Downloading	and	Installing	the	Arduino	IDE
Access the Arduino website at www.arduino.cc and download the newest ver-
sion of the IDE from the Download page (see Figure 1-11).

Figure 1-11: The Arduino.cc Download page

After completing the download, unzip it. Inside, you’ll find the Arduino IDE.
New versions of the Windows IDE are available as an installer that you can
download and run, instead of downloading a ZIP file.

14 Part I ■ Arduino Engineering Basics

Running	the	IDE	and	Connecting	to	the	Arduino
Now that you have the IDE downloaded and ready to run, you can connect the
Arduino to your computer via USB, as shown in Figure 1-12. Mac and Linux
machines install the drivers (mostly) automatically.

If you are using OS X, the first time you plug in an Uno or a Mega 2560, you
will get a notification that a new network device has been added. Click the
Network Preferences button. In the new window, click Apply. Even though the
board will appear as “Not Configured” in the network device list, it will be
ready to use. Now, quit System Preferences.

If you are using a modern Arduino on a Windows computer, you will prob-
ably need to install drivers. You can skip the following directions if you are not
using a Windows computer that needs to have drivers installed. If you installed
the IDE using the Windows installer, then these steps have been completed for
you. If you downloaded the ZIP on your Windows machine, then you will need
to follow the directions shown next.

Figure 1-12: Arduino Uno connected to a computer via USB

 Chapter 1 ■ Getting Up and Blinking with the Arduino 15

On your Windows computer, follow these steps to install the drivers (instruc-
tions adapted from the Arduino.cc website):

 1. Wait for the automatic install process to fail.

 2. Open the Start menu, right-click My Computer, and select Properties.

 3. Choose Device Manager.

 4. Look under Ports (COM and LPT) for the Arduino that you connected.

 5. Right-click it and choose Update Driver Software.

 6. Choose to browse your computer for software.

 7. Select the appropriate driver from the drivers directory of the Arduino
IDE that you just downloaded (not the FTDI drivers directory).

 8. Windows will now finish the driver installation.

Now, launch the Arduino IDE. You’re ready to load your first program onto
your Arduino. To ensure that everything is working as expected, you’ll load the
Blink example program, which will blink the onboard LED. Most Arduinos have
an LED connected to pin 13. Navigate to File d Examples d Basic, and click the
Blink program. This opens a new IDE window with the Blink program already
written for you. First, you’ll program the Arduino with this example sketch,
and then you’ll analyze the program to understand the important components
so that you can start to write your own programs in the next chapter.

Before you load the program, you need to tell the IDE what kind of Arduino
you have connected and what port it is connected to. Go to Tools d Board and
ensure that the right board is selected. This example uses the Uno, but if you
are using a different board, select that one (assuming that it also has an LED
connected to pin 13).

The last step before programming is to tell the IDE what port your board is
connected to. Navigate to Tools d Serial Port and select the appropriate port.
On Windows machines, this will be COM*, where * is some number representing
the serial port number.

TIP If	you	have	multiple	serial	devices	attached	to	your	computer,	try	unplugging	
your	board	to	see	which	COM	port	disappears	from	the	menu;	then	plug	it	back	in	
and	select	that	COM	port.

On Linux and Mac computers, the serial port looks something like /dev/tty
.usbmodem* or /dev/tty.usbserial*, where * is a string of alphanumeric
characters.

16 Part I ■ Arduino Engineering Basics

You’re finally ready to load your first program. Click the Upload button () on
the top left of the IDE. The status bar at the bottom of the IDE shows a progress
bar as it compiles and uploads your program. When the upload completes, the
yellow LED on your Arduino should be blinking once per second. Congratulations!
You’ve just uploaded your first Arduino program.

Breaking	Down	Your	First	Program
Take a moment to deconstruct the Blink program so that you understand the
basic structure of programs written for the Arduino. Consider Figure 1-13. The
numbered callouts shown in the figure correspond to the following list.

Here’s how the code works, piece by piece:

 1. This is a multiline comment. Comments are important for documenting
your code. Everything you write between these symbols will not be com-
piled or even seen by your Arduino. Multiline comments start with /*
and end with */. Multiline comments are generally used when you have
to say a lot (like the description of this program).

 2. This is a single-line comment. When you put // on any line, the compiler
ignores all text after that symbol on the same line. This is great for anno-
tating specific lines of code or for “commenting out” a particular line of
code that you believe might be causing problems.

 3. This code is a variable declaration. A variable is a place in the Arduino’s
memory that holds information. Variables have different types. In this
case, it’s of type int, which means it will hold an integer. In this case, an
integer variable called led is being set to the value of 13, the pin that the
LED is connected to on the Arduino Uno. Throughout the rest of the pro-
gram, we can simply use led whenever we want to control pin 13. Setting
variables is useful because you can just change this one line if you hook
up your LED to a different I/O pin later on; the rest of the code will still
work as expected.

 4. void setup() is one of two functions that must be included in every
Arduino program. A function is a piece of code that does a specific task.
Code within the curly braces of the setup() function is executed once at
the start of the program. This is useful for one-time settings, such as setting
the direction of pins, initializing communication interfaces, and so on.

 Chapter 1 ■ Getting Up and Blinking with the Arduino 17

1

2

3

4

5

6
7
8
9

10

Figure 1-13: The components of the Blink program

 5. The Arduino’s digital pins can function as input or outputs. To configure
their direction, use the command pinMode(). This command takes two
arguments. An argument gives commands information on how they should
operate. Arguments are placed inside the parentheses following a com-
mand. The first argument to pinMode determines which pin is having its
direction set. Because you defined the led variable earlier in the program,
you are telling the command that you want to set the direction of pin 13.
The second argument sets the direction of the pin: INPUT or OUTPUT. Pins
are inputs by default, so you need to explicitly set them to outputs if you
want them to function as outputs. Because you want to light an LED, you
have set the led pin to an output (current is flowing out of the I/O pin).
Note that you have to do this only one time. It will then function as an
output for the rest of the program, or until you change it to an input.

18 Part I ■ Arduino Engineering Basics

 6. The second required function in all Arduino programs is void loop().
The contents of the loop function repeat forever as long as the Arduino
is on. If you want your Arduino to do something once at boot only, you
still need to include the loop function, but you can leave it empty.

 7. digitalWrite() is used to set the state of an output pin. It can set the pin
to either 5V or 0V. When an LED and resistor is connected to a pin, set-
ting it to 5V will enable you to light up the LED. (You learn more about
this in the next chapter.) The first argument to digitalWrite() is the pin
you want to control. The second argument is the value you want to set
it to, either HIGH (5V) or LOW (0V). The pin remains in this state until it is
changed in the code.

 8. The delay() function accepts one argument: a delay time in milliseconds.
When calling delay(), the Arduino stops doing anything for the amount
of time specified. In this case, you are delaying the program for 1000ms,
or 1 second. This results in the LED staying on for 1 second before you
execute the next command.

 9. Here, digitalWrite() is used to turn the LED off, by setting the pin state
to LOW.

 10. Again, we delay for 1 second to keep the LED in the off state before the
loop repeats and switches to the on state again.

That’s all there is to it. Don’t be intimidated if you don’t fully understand
all the code yet. As you put together more examples in the following chapters,
you’ll become more and more proficient at understanding program flow, and
writing your own code.

Summary

In this chapter you learned about the following:

■■ All the components that comprise an Arduino board

■■ How the Arduino bootloader allows you to program Arduino firmware
over a USB connection

■■ The differences between the various available Arduino boards

■■ How to connect and install the Arduino with your system

■■ How to load and run your first program

 19

Parts You’ll Need for This Chapter:

Arduino Uno

Small breadboard

Jumper wires

1 10kΩ resistor

3 220Ω resistors

USB cable

Pushbutton

5mm single-color LED

5mm common-cathode RGB LED

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, videos, and other digital content for this chapter can be found
at www.exploringarduino.com/content/ch2.

In addition, all code can be found at www.wiley.com/go/exploringarduino
on the Download Code tab. The code is in the chapter 02 download and indi-
vidually named according to the names throughout the chapter.

C h a P t e r

2
Digital Inputs, Outputs, and

Pulse-Width Modulation

20 Part I ■ Arduino Engineering Basics

Blinking an LED is great, as you learned in the preceding chapter, but what
makes the Arduino microcontroller platform so useful is that the system is
equipped with both inputs and outputs. By combining both, your opportunities
are nearly limitless. For example, you can use a magnetic reed switch to play
music when your door opens, create an electronic lockbox, or build a light-up
musical instrument!

In this chapter, you start to learn the skills you need to build projects like
these. You explore the Arduino’s digital input capabilities, learn about pullup
and pulldown resistors, and learn how to control digital outputs. Most Arduinos
do not have analog outputs, but it is possible to use digital pulse-width modula-
tion to emulate it in many scenarios. You learn about generating pulse-width
modulated signals in this chapter. You will also learn how to debounce digital
switches, a key skill when reading human input. By the end of the chapter, you
will be able to build and program a controllable RGB (Red, Green, Blue) LED
nightlight.

NOTE You	can	follow	along	with	a	video	as	I	teach	you	about	digital	inputs	and	
outputs,	debouncing,	and	pulse-width	modulation	(PWM):	www.jeremyblum.com/
2011/01/10/arduino-tutorial-2-now-with-more-blinky-things/.	You	can	
also	find	this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

If	you	want	to	learn	more	about	some	of	the	basics	of	electrical	engineering	
touched	on	in	this	chapter,	watch	this	video:	www.jeremyblum.com/2011/01/17/
electrical-engineering-basics-in-arduino-tutorial-3/.	You	can	also	
find	this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Digital	Outputs

In Chapter 1, “Getting Up and Blinking with the Arduino,” you learned how to
blink an LED. In this chapter, you will further explore Arduino digital output
capabilities, including the following topics:

■■ Setting pins as outputs

■■ Wiring up external components

■■ New programming concepts, including for loops and constants

■■ Digital versus analog outputs and pulse-width modulation (PWM)

Wiring	Up	an	LED	and	Using	Breadboards
In Chapter 1, you learned how to blink the onboard LED, but what fun is that?
Now it is time to whip out the breadboard and wire up an external LED to pin
9 of your Arduino. Adding this external LED will be a stepping-stone towards
helping you to understand how to wire up more complex external circuits in

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 21

the coming chapters. What’s more, pin 9 is PWM-enabled, which will enable
you to pursue the analog output examples later in this chapter.

Working with Breadboards

It is important to understand how breadboards work so that you can use them
effectively for the projects in this book. A breadboard is a simple prototyping
tool that easily allows you to wire up simple circuits without having to solder
together parts to a custom printed circuit board. First, consider the blue and
red lines that run the length of the board. The pins adjacent to these color-
coded lines are designed to be used as power and ground buses. All the red
pins are electrically connected, and are generally used for providing power. In
the case of most Arduinos and the projects in this book, this will generally be
at 5V. All the blue pins are electrically connected and are used for the ground
bus. All the vertically aligned pins are also connected in rows, with a division
in the middle to make it easy to mount integrated circuits on the breadboard.
Figure 2-1 highlights how the pins are electrically connected, with all the thick
lines representing connected holes.

Ground bus
Power bus

Prototyping area

Ground bus
Power bus

Figure 2-1: Breadboard electrical connections

22 Part I ■ Arduino Engineering Basics

Wiring LEDs

LEDs will almost certainly be one of the most-used parts in your projects through-
out this book. LEDs are polarized; in other words, it matters in what direction
you hook them up. The positive lead is called the anode, and the negative lead
is called the cathode. If you look at the clear top of the LED, there will usually
be a flat side on the lip of the casing. That side is the cathode. Another way to
determine which side is the anode and which is the cathode is by examining
the leads. The shorter lead is the cathode.

As you probably already know, LED stands for light-emitting diode. Like all
diodes, LEDs allow current to flow in only one direction—from their anode to
their cathode. Because current flows from positive to negative, the anode of the
LED should be connected to the current source (a 5V digital signal in this case),
and the cathode should be connected to ground. The resistor can be inserted in
series on either side of the LED. Resistors are not polarized, and so you do not
have to worry about their orientation.

You’ll wire the LED into pin 9 in series with a resistor. LEDs must always be
wired in series with a resistor to serve as a current limiter. The larger the resistor
value, the more it restricts the flow of current and the dimmer the LED glows.
In this scenario, you use a 220Ω resistor. Wire it up as shown in Figure 2-2.

Figure 2-2: Arduino Uno wired to an LED

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 23

OHM’S LAW AND THE POWER EqUATION

The	most	important	equation	for	any	electrical	engineer	to	know	is	Ohm’s	
law.	Ohm’s	law	dictates	the	relationship	between	voltage	(measured	in	volts),	
current	(measured	in	amps),	and	resistance	(measured	in	ohms	or	Ω)	in	a	cir-
cuit.	A	circuit	is	a	closed	loop	with	a	source	of	electrical	energy	(like	a	9V	bat-
tery)	and	a	load	(something	to	use	up	the	energy,	like	an	LED).	Before	delving	
into	the	law,	it	is	important	to	understand	what	each	term	means,	at	least	at	a	
basic	level:	

	■ Voltage	represents	the	potential	electrical	difference	between	two	points.	

	■ Current	flows	from	a	point	of	higher	potential	energy	to	lower	potential	
energy.	You	can	think	of	current	as	a	flow	of	water,	and	voltage	as	eleva-
tion.	Water	(or	current)	always	flows	from	high	elevation	(higher	volt-
age)	to	lower	elevation	(ground,	or	a	lower	voltage).	Current,	like	water	
in	a	river,	will	always	follow	the	path	of	least	resistance	in	a	circuit.

	■ Resistance,	in	this	analogy,	is	representative	of	how	easy	it	is	for	cur-
rent	to	flow.	When	the	water	(the	current)	is	flowing	through	a	narrow	
pipe,	less	can	pass	through	in	the	same	amount	of	time	as	through	a	
larger	pipe.	The	narrow	pipe	is	equivalent	to	a	high	resistance	value	
because	the	water	will	have	a	harder	time	flowing	through.	The	wider	
pipe	is	equivalent	to	a	low	resistance	value	(like	a	wire)	because	cur-
rent	can	flow	freely	through	it.	

Ohm’s	law	is	defined	as	follows:

V	=	IR

Where	V	is	Voltage	difference	in	volts,	I	is	Current	in	amps,	and	R	is	the	
Resistance	in	ohms.

In	a	circuit,	all	voltage	gets	used	up,	and	each	component	offers	up	some	
resistance	that	lowers	the	voltage.	Knowing	this,	the	above	equation	comes	
in	handy	for	things	like	figuring	out	what	resistor	value	to	match	up	with	an	
LED.	LEDs	have	a	predefined	voltage	drop	across	them	and	are	designed	to	
operate	at	a	particular	current	value.	The	larger	the	current	through	the	
LED,	the	brighter	the	LED	glows,	up	to	a	limit.	For	the	most	common	LEDs,	
the	maximum	current	designed	to	go	through	an	LED	is	20milliamps	(a	mil-
liamp	is	1/1000	of	an	amp	and	is	typically	abbreviated	as	mA).	The	voltage	
drop	across	an	LED	is	defined	in	its	datasheet.	A	common	value	is	around	2V.	
Consider	the	LED	circuit	shown	in	Figure	2-3.

Figure 2-3: Simple LED circuit
Continues

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

24 Part I ■ Arduino Engineering Basics

You	can	use	Ohm’s	law	to	decide	on	a	resistor	value	for	this	circuit.	
Assume	that	this	is	a	standard	LED	with	20mA	forward	current	and	a	2V	
drop	across	it.	Because	the	source	voltage	is	5V	and	it	ends	at	ground,	a	
total	of	5V	must	drop	across	this	circuit.	Since	the	LED	has	a	2V	drop,	the	
other	3V	must	drop	across	the	resistor.	Knowing	that	you	want	approxi-
mately	20mA	to	flow	through	these	components,	you	can	find	the	resistor	
value	by	solving	for	R:	

R	=	V/I

Where	V	=	3V	and	I	=	20mA.

Solving	for	R,	R	=	3V	/	0.02A	=	150Ω.	So,	with	a	resistor	value	of	150Ω,	
20mA	flows	through	both	the	resistor	and	LED.	As	you	increase	the	resis-
tance	value,	less	current	is	allowed	to	flow	through.	220Ω	is	a	bit	more	than	
150Ω,	but	still	allows	the	LED	to	glow	sufficiently	bright,	and	is	a	very	com-
monly	available	resistor	value.	

Another	useful	equation	to	keep	in	mind	is	the	power	equation.	The	power	
equation	tells	you	how	much	power,	in	watts,	is	dissipated	across	a	given	
resistive	component.	Because	increased	power	is	associated	with	increased	
heat	dissipation,	components	generally	have	a	maximum	power	rating.	You	
want	to	ensure	that	you	do	not	exceed	the	maximum	power	rating	for	resis-
tors	because	otherwise	they	might	overheat.	A	common	power	rating	for	
resistors	is	1/8	of	a	watt	(abbreviated	as	W,	milliwatts	as	mW).	The	power	
equation	is	as	follows:

P	=	IV

Where	P	is	power	in	watts,	and	I	and	V	are	still	defined	as	the	current	and	
voltage.

For	the	resistor	defined	earlier	with	a	voltage	drop	of	3V	and	a	current	of	
20mA,	P	=	3V	n	0.02A	=	60mW,	well	under	the	resistor’s	rating	of	1/8W,	or	
125mW.	So,	you	do	not	have	to	worry	about	the	resistor	overheating;	it	is	well	
within	its	operating	limits.

Programming	Digital	Outputs
By default, all Arduino pins are set to inputs. If you want to make a pin an
output, you need to first tell the Arduino how the pin should be configured.
In the Arduino programming language, the program requires two parts: the
setup() and the loop().

As you learned in Chapter 1, the setup() function runs one time at the start
of the program, and the loop() function runs over and over again. Because
you’ll generally dedicate each pin to serve as either an input or an output, it is

continued

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 25

common practice to define all your pins as inputs or outputs in the setup. You
start by writing a simple program that sets pin 9 as an output and turns it on
when the program starts.

To write this program, use the pinMode() command to set the direction of
pin 9, and use digitalWrite() to make the output high (5V). See Listing 2-1.

Listing 2-1: Turning on an LED—led.ino

const int LED=9; //define LED for pin 9

void setup()

{

 pinMode (LED, OUTPUT); //Set the LED pin as an output

 digitalWrite(LED, HIGH); //Set the LED pin high

}

void loop()

{

 //we are not doing anything in the loop!

}

Load this program onto your Arduino, wired as shown in Figure 2-2. In
this program, also notice that I used the const operator before defining the
pin integer variable. Ordinarily, you’ll use variables to hold values that may
change during program execution. By putting const before your variable dec-
laration, you are telling the compiler that the variable is “read only” and will
not change during program execution. All instances of LED in your program
will be “replaced” with 9 when they are called. When you are defining values
that will not change, using the const qualifier is recommended. In some of the
examples later in this chapter, you will define non-constant variables that may
change during program execution.

You must specify the type for any variable that you declare. In the preceding
case, it is an integer (pins will always be integers), so you should set it as such.
You can now easily modify this sketch to match the one you made in Chapter 1
by moving the digitalWrite() command to the loop and adding some delays.
Experiment with the delay values and create different blink rates.

Using	For	Loops
It’s frequently necessary to use loops with changing variable values to adjust
parameters of a program. In the case of the program you just wrote, you can
implement a for loop to see how different blink rates impact your system’s
operation. You can visualize different blink rates by using a for loop to cycle
through various rates. The code in Listing 2-2 accomplishes that.

26 Part I ■ Arduino Engineering Basics

Listing 2-2: LED with Changing Blink Rate—blink.ino

const int LED=9; //define LED for Pin 9

void setup()

{

 pinMode (LED, OUTPUT); //Set the LED pin as an output

}

void loop()

{

 for (int i=100; i<=1000; i=i+100)

 {

 digitalWrite(LED, HIGH);

 delay(i);

 digitalWrite(LED, LOW);

 delay(i);

 }

}

Compile the preceding code and load it onto your Arduino. What happens?
Take a moment to break down the for loop to understand how it works. The
for loop declaration always contains three semicolon-separated entries:

■■ The first entry sets the index variable for the loop. In this case, the index
variable is i and is set to start at a value of 100.

■■ The second entry specifies when the loop should stop. The contents of
the loop will execute over and over again while that condition is true. <=
indicates less than or equal to. So, for this loop, the contents will continue
to execute as long as the variable i is still less than or equal to 1000.

■■ The final entry specifies what should happen to the index variable at the
end of each loop execution. In this case, i will be set to its current value
plus 100.

To better understand these concepts, consider what happens in two passes
through the for loop:

 1. i equals 100.

 2. The LED is set high, and stays high for 100ms, the current value of i.

 3. The LED is set low, and stays low for 100ms, the current value of i.

 4. At the end of the loop, i is incremented by 100, so it is now 200.

 5. 200 is less than or equal to 1000, so the loop repeats again.

 6. The LED is set high, and stays high for 200ms, the current value of i.

 7. The LED is set low, and stays low for 200ms, the current value of i.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 27

 8. At the end of the loop, i is incremented by 100, so it is now 300.

 9. This process repeats until i surpasses 1000 and the outer loop function
repeats, setting the i value back to 100 and starting the process again.

Now that you’ve generated digital outputs from your Arduino, you’ll learn
about using PWM to create analog outputs from the I/O pins on your Arduino.

Pulse-Width	Modulation	with	analogWrite()

So, you have mastered digital control of your pins. This is great for blinking
LEDs, controlling relays, and spinning motors at a constant speed. But what if
you want to output a voltage other than 0V or 5V? Well, you can’t—unless you
are using the digital-to-analog converter (DAC) pins on the Due or are using
an external DAC chip.

However, you can get pretty close to generating analog output values by using
a trick called pulse-width modulation (PWM). Select pins on each Arduino can
use the analogWrite() command to generate PWM signals that can emulate a
pure analog signal when used with certain peripherals. These pins are marked
with a ~ on the board. On the Arduino Uno, Pins 3, 5, 6, 9, 10, and 11 are PWM
pins. If you’re using an Uno, you can continue to use the circuit from Figure 2-1
to test out the analogWrite() command with your LED. Presumably, if you
can decrease the voltage being dropped across the resistor, the LED should
glow more dimly because less current will flow. That is what you will try to
accomplish using PWM via the analogWrite() command. The analogWrite()
command accepts two arguments: the pin to control and the value to write to it.

The PWM output is an 8-bit value. In other words, you can write values from
0 to 28-1, or 0 to 255. Try using a similar for loop structure to the one you used
previously to cycle through varying brightness values (see Listing 2-3).

Listing 2-3: LED Fade Sketch—fade.ino

const int LED=9; //define LED for Pin 9

void setup()

{

 pinMode (LED, OUTPUT); //Set the LED pin as an output

}

void loop()

{

 for (int i=0; i<256; i++)

 {

 analogWrite(LED, i);

 delay(10);

28 Part I ■ Arduino Engineering Basics

 }

 for (int i=255; i>=0; i--)

 {

 analogWrite(LED, i);

 delay(10);

 }

}

What does the LED do when you run this code? You should observe the LED
fading from off to on, then from on to off. Of course, because this is all in the
main loop, this pattern repeats ad infinitum. Be sure to note a few differences
in this for loop. In the first loop, i++ is just shorthand code to represent i=i+1.
Similarly, i-- is functionally equivalent to i=i–1. The first for loop fades the
LED up, and the second loop fades it down.

PWM control can be used in lots of circumstances to emulate pure analog con-
trol, but it cannot always be used when you actually need an analog signal. For
instance, PWM is great for driving direct current (DC) motors at variable speeds
(you experiment with this in later chapters), but it does not work well for driving
speakers unless you supplement it with some external circuitry. Take a moment
to examine how PWM actually works. Consider the graphs shown in Figure 2-4.

Figure 2-4: PWM signals with varying duty cycles

PWM works by modulating the duty cycle of a square wave (a signal that
switches on and off). Duty cycle refers to the percentage of time that a square
wave is high versus low. You are probably most familiar with square waves that
have a duty cycle of 50%—they are high half of the time, and low half of the time.

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 29

The analogWrite() command sets the duty cycle of a square wave depending
on the value you pass to it:

■■ Writing a value of 0 with analogWrite() indicates a square wave with a
duty cycle of 0 percent (always low).

■■ Writing a 255 indicates a square wave with a duty cycle of 100 percent
(always high).

■■ Writing a 127 indicates a square wave with a duty cycle of 50 percent
(high half of the time, low half of the time).

The graphs in Figure 2-4 show that for a signal with a duty cycle of 25 percent,
it is high 25 percent of the time, and low 75 percent of the time. The frequency
of this square wave, in the case of the Arduino, is about 490Hz. In other words,
the signal varies between high (5V) and low (0V) about 490 times every second.

So, if you are not actually changing the voltage being delivered to an LED,
why do you see it get dimmer as you lower the duty cycle? It is really a result of
your eyes playing a trick on you! If the LED is switching on and off every 1ms
(which is the case with a duty cycle of 50 percent), it appears to be operating at
approximately half brightness because it is blinking faster than your eyes can
perceive. Therefore, your brain actually averages out the signal and tricks you
into believing that the LED is operating at half brightness.

Reading	Digital	Inputs

Now it is time for the other side of the equation. You’ve managed to successfully
generate both digital and analog(ish) outputs. The next step is to read digital
inputs, such as switches and buttons, so that you can interact with your project
in real time. In this section, you learn to read inputs, implement pullup and
pulldown resistors, and debounce a button in software.

Reading	Digital	Inputs	with	Pulldown	Resistors
You should start by modifying the circuit that you first built from Figure 2-1.
Following Figure 2-5, you’ll add a pushbutton and a pulldown resistor con-
nected to a digital input pin.

TIP Be	sure	to	also	connect	the	power	and	ground	buses	of	the	breadboard	to	
the	Arduino.	Now	that	you’re	using	multiple	devices	on	the	breadboard,	that	will	
come	in	handy.

Before you write the code to read from the pushbutton, it is important to
understand the significance of the pulldown resistor used with this circuit. Nearly

30 Part I ■ Arduino Engineering Basics

all digital inputs use a pullup or pulldown resistor to set the “default state” of
the input pin. Imagine the circuit in Figure 2-5 without the 10kΩ resistor. In this
scenario, the pin would obviously read a high value when the button is pressed.

But, what happens when the button is not being pressed? In that scenario, the
input pin you would be reading is essentially connected to nothing—the input
pin is said to be “floating.” And because the pin is not physically connected to
0V or 5V, reading it could cause unexpected results as electrical noise on nearby
pins causes its value to fluctuate between high and low. To remedy this, the
pulldown resistor is installed as shown in Figure 2-5.

Now, consider what happens when the button is not pressed with the pull-
down resistor in the circuit: The input pin will be connected through a 10kΩ
resistor to ground. While the resistor will restrict the flow of current, there
is still enough current flow to ensure that the input pin will read a low logic
value. 10kΩ is a fairly common pulldown resistor value. Larger values are said
to be weak pulldowns because it easier to overcome them, and smaller resistor
values are said to be strong pulldowns because it is easier for more current to flow
through them to ground. When the button is pressed, the input pin is directly
connected to 5V through the button.

Now, the current has two options:

■■ It can flow through a nearly zero resistance path to the 5V rail.

■■ It can flow through a high resistance path to the ground rail.

Figure 2-5: Wiring an Arduino to a button and an LED

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 31

Recall from the previous sidebar on Ohm’s law and the power equation that
current will always follow the path of the least resistance in a circuit. In this
scenario, the majority of the current flows through the button, and a high logic
level is generated on the input pin, because that is the path of least resistance.

NOTE This	example	uses	a	pulldown	resistor,	but	you	could	also	use	a	pullup	
resistor	by	connecting	the	resistor	to	5V	instead	of	ground	and	by	connecting	the	
other	side	of	the	button	to	ground.	In	this	setup,	the	input	pin	reads	a	high-logic	
value	when	the	button	is	unpressed	and	a	low-logic	value	when	the	button	is	being	
pressed.

Pulldown and pullup resistors are important because they ensure that the
button does not create a short circuit between 5V and ground when pressed
and that the input pin is never left in a floating state.

Now it is time to write the program for this circuit! In this first example, you
just have the LED stay on while the button is held down, and you have it stay
off while the button is unpressed (see Listing 2-4).

Listing 2-4: Simple LED Control with a Button—led_button.ino

const int LED=9; //The LED is connected to pin 9

const int BUTTON=2; //The Button is connected to pin 2

void setup()

{

 pinMode (LED, OUTPUT); //Set the LED pin as an output

 pinMode (BUTTON, INPUT); //Set button as input (not required)

}

void loop()

{

 if (digitalRead(BUTTON) == LOW)

 {

 digitalWrite(LED, LOW);

 }

 else

 {

 digitalWrite(LED, HIGH);

 }

}

Notice here that the code implements some new concepts, including
digitalRead and if/else statements. A new const int statement has been
added for the button pin. Further, this code defines the button pin as an input
in the setup function. This is not explicitly necessary, though, because pins
are inputs by default; it is shown for completeness. digitalRead() reads the

32 Part I ■ Arduino Engineering Basics

value of an input. In this case, it is reading the value of the BUTTON pin. If the
button is being pressed, digitalRead() returns a value of HIGH, or 1. If it is not
being pressed, it returns LOW, or 0. When placed in the if() statement, you’re
checking the state of the pin and evaluating if it matches the condition you’ve
declared. In this if() statement, you’re checking to see if the value returned by
digitalRead() is LOW. The == is a comparison operator that tests whether the
first item (digitalRead()) is equal to the second (LOW). If this is true (that is, the
button is not being pressed), the code inside the brackets executes, and the LED
set to LOW. If this is not true (the button is being pressed), the else statement is
executed, and the LED is turned HIGH.

That’s it! Program your circuit with this code and confirm that it works as
expected.

Working	with	“Bouncy”	Buttons
When was the last time you had to hold a button down to keep a light on?
Probably never. It makes more sense to be able to click the button once to turn it
on and to click the button again to turn it off. This way, you do not have to hold
the button down to keep the light on. Unfortunately, this is not quite as easy as
you might first guess. You cannot just look for the value of the switch to change
from low to high; you need to worry about a phenomenon called switch bouncing.

Buttons are mechanical devices that operate as a spring-damper system. In
other words, when you push a button down, the signal you read does not just
go from low to high, it bounces up and down between those two states for a
few milliseconds before it settles. Figure 2-6 illustrates the expected behavior
next to the actual behavior you might see when probing the button using an
oscilloscope (though this figure was generated using a MATLAB script):

Figure 2-6: Bouncing button effects.

The button is physically pressed at the 25ms mark. You would expect the
button state to be immediately read as a high logic level as the graph on the left

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 33

shows. However, the button actually bounces up and down before settling, as
the graph on the right shows.

If you know that the switch is going to do this, it is relatively straightforward
to deal with it in software. Next, you write switch-debouncing software that
looks for a button state change, waits for the bouncing to finish, and then reads
the switch state again. This program logic can be expressed as follows:

 1. Store a previous button state and a current button state (initialized
to LOW).

 2. Read the current button state.

 3. If the current button state differs from the previous button state, wait 5ms
because the button must have changed state.

 4. After 5ms, reread the button state and use that as the current button state.

 5. If the previous button state was low, and the current button state is high,
toggle the LED state.

 6. Set the previous button state to the current button state.

 7. Return to step 2.

This is a perfect opportunity to explore using functions for the first time.
Functions are blocks of code that can accept input arguments, execute code
based on those arguments, and optionally return a result. Without realizing it,
you’ve already been using predefined functions throughout your programs. For
example, digitalWrite() is a function that accepts a pin and a state, and writes
that state to the given pin. To simplify your program, you can define your own
functions to encapsulate actions that you do over and over again.

Within the program flow (listed in the preceding steps) is a series of repeat-
ing steps that need to be applied to changing variable values. Because you’ll
want to repeatedly debounce the switch value, it’s useful to define the steps for
debouncing as a function that can be called each time. This function will accept
the previous button state as an input and outputs the current debounced button
state. The following program accomplishes the preceding steps and switches
the LED state every time the button is pressed. You’ll use the same circuit as
the previous example for this. Try loading it onto your Arduino and see how
it works (see Listing 2-5).

Listing 2-5: Debounced Button Toggling—debounce.ino

const int LED=9; //The LED is connected to pin 9

const int BUTTON=2; //The Button is connected to pin 2

boolean lastButton = LOW; //Variable containing the previous

 //button state

boolean currentButton = LOW; //Variable containing the current

 //button state

34 Part I ■ Arduino Engineering Basics

boolean ledOn = false; //The present state of the LED (on/off)

void setup()

{

 pinMode (LED, OUTPUT); //Set the LED pin as an output

 pinMode (BUTTON, INPUT); //Set button as input (not required)

}

/*

* Debouncing Function

* Pass it the previous button state,

* and get back the current debounced button state.

*/

boolean debounce(boolean last)

{

 boolean current = digitalRead(BUTTON); //Read the button state

 if (last != current) //if it's different…

 {

 delay(5); //wait 5ms

 current = digitalRead(BUTTON); //read it again

 return current; //return the current value

}

void loop()

{

 currentButton = debounce(lastButton); //read deboucned state

 if (lastButton == LOW && currentButton == HIGH) //if it was pressed...

 {

 ledOn = !ledOn; //toggle the LED value

 }

 lastButton = currentButton; //reset button value

 digitalWrite(LED, ledOn); //change the LED state

}

Now, break down the code in Listing 2-5. First, constant values are defined
for the pins connected to the button and LED. Next, three Boolean variables are
declared. When the const qualifier is not placed before a variable declaration,
you are indicating that this variable can change within the program. By defin-
ing these values at the top of the program, you are declaring them as global
variables that can be used and changed by any function within this sketch.
The three Boolean variables declared at the top of this sketch are initialized as
well, meaning that they have been set to an initial value (LOW, LOW, and false
respectively). Later in the program, the values of these variables can be changed
with an assignment operator (a single equals sign: =).

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 35

Consider the function definition in the preceding code: boolean debounce(boolean
last). This function accepts a Boolean (a data type that has only two states: true/
false, high/low, on/off, 1/0) input variable called last and returns a Boolean
value representing the current debounced pin value. This function compares
the current button state with the previous (last) button state that was passed
to it as an argument. The != represents inequality and is used to compare the
present and previous button values in the if statement. If they differ, then the
button must have been pressed and the if statement will execute its contents.
The if statement waits 5ms before checking the button state again. This 5ms
gives sufficient time for the button to stop bouncing. The button is then checked
again to ascertain its stable value. As you learned earlier, functions can optionally
return values. In the case of this function, the return current statement returns
the value of the current Boolean variable when the function is called. current
is a local variable—it is declared and used only within the debounce function.
When the debounce function is called from the main loop, the returned value
is written to the global currentButton variable that was defined at the top of the
sketch. Because the function was defined as debounce, you can call the function
by writing currentButton = debounce(lastButton) from within the setup or
loop functions. currentButton will be set equal to the value that is returned by
the debounce function.

After you’ve called the function and populated the currentButton variable,
you can easily compare it to the previous button state by using the if statement
in the code. The && is a logical operator that means “AND”. By joining two or
more equality statements with an && in an if statement, you are indicating
that the contents of the if statement block should execute only if both of the
equalities evaluate to true. If the button was previously LOW, and is now HIGH,
you can assume that the button has been pressed, and you can invert the value
of the ledOn variable. By putting an ! in front of the ledOn variable, you reset
the variable to the opposite of whatever it currently is. The loop is finished off
by updating the previous button variable and writing the updated LED state.

This code should change the LED state each time the button is pressed. If
you try to accomplish the same thing without debouncing the button, you will
find the results unpredictable, with the LED sometimes working as expected
and sometimes not.

Building	a	Controllable	RGB	LED	Nightlight

In this chapter, you have learned how to control digital outputs, how to read
debounced buttons, and how to use PWM to change LED brightness. Using
those skills, you can now hook up an RGB LED and a debounced button to cycle

36 Part I ■ Arduino Engineering Basics

through some colors for a controllable RGB LED nightlight. It’s possible to mix
colors with an RGB LED by changing the brightness of each color.

In this scenario, you use a common cathode LED. That means that the LED has
four leads. One of them is a cathode pin that is shared among all three diodes,
while the other three pins connect to the anodes of each diode color. Wire that
LED up to three PWM pins through current-limiting resistors on the Arduino
as shown in the wiring diagram in Figure 2-7.

RGB LEDCurrent-limiting
resistors

Pulldown
resistor

Button

Figure 2-7: Nightlight wiring diagram

You can configure a debounced button to cycle through a selection of colors
each time you press it. To do this, it is useful to add an additional function to

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 37

set the RGB LED to the next state in the color cycle. In the following program
(see Listing 2-6), I have defined seven total color states, plus one off state for the
LED. Using the analogWrite() function, you can choose your own color-mixing
combinations. The only change to the loop() from the previous example is that
instead of flipping a single LED state, an LED state counter is incremented each
time the button is pressed, and it is reset back to zero when you cycle through
all the options. Upload this to your Arduino connected to the circuit you just
built and enjoy your nightlight. Modify the color states by changing the values
of analogWrite() to make your own color options.

Listing 2-6: Toggling LED Nightlight—rgb_nightlight.ino

const int BLED=9; //Blue LED on Pin 9

const int GLED=10; //Green LED on Pin 10

const int RLED=11; //Red LED on Pin 11

const int BUTTON=2; //The Button is connected to pin 2

boolean lastButton = LOW; //Last Button State

boolean currentButton = LOW; //Current Button State

int ledMode = 0; //Cycle between LED states

void setup()

{

 pinMode (BLED, OUTPUT); //Set Blue LED as Output

 pinMode (GLED, OUTPUT); //Set Green LED as Output

 pinMode (RLED, OUTPUT); //Set Red LED as Output

 pinMode (BUTTON, INPUT); //Set button as input (not required)

}

/*

* Debouncing Function

* Pass it the previous button state,

* and get back the current debounced button state.

*/

boolean debounce(boolean last)

{

 boolean current = digitalRead(BUTTON); //Read the button state

 if (last != current) //if it's different...

 {

 delay(5); //wait 5ms

 current = digitalRead(BUTTON); //read it again

 }

 return current; //return the current value

}

/*

* LED Mode Selection

* Pass a number for the LED state and set it accordingly.

*/

void setMode(int mode)

38 Part I ■ Arduino Engineering Basics

{

 //RED

 if (mode == 1)

 {

 digitalWrite(RLED, HIGH);

 digitalWrite(GLED, LOW);

 digitalWrite(BLED, LOW);

 }

 //GREEN

 else if (mode == 2)

 {

 digitalWrite(RLED, LOW);

 digitalWrite(GLED, HIGH);

 digitalWrite(BLED, LOW);

 }

 //BLUE

 else if (mode == 3)

 {

 digitalWrite(RLED, LOW);

 digitalWrite(GLED, LOW);

 digitalWrite(BLED, HIGH);

 }

 //PURPLE (RED+BLUE)

 if (mode == 4)

 {

 analogWrite(RLED, 127);

 analogWrite(GLED, 0);

 analogWrite(BLED, 127);

 }

 //TEAL (BLUE+GREEN)

 else if (mode == 5)

 {

 analogWrite(RLED, 0);

 analogWrite(GLED, 127);

 analogWrite(BLED, 127);

 }

 //ORANGE (GREEN+RED)

 else if (mode == 6)

 {

 analogWrite(RLED, 127);

 analogWrite(GLED, 127);

 analogWrite(BLED, 0);

 }

 //WHITE (GREEN+RED+BLUE)

 else if (mode == 7)

 {

 analogWrite(RLED, 85);

 analogWrite(GLED, 85);

 analogWrite(BLED, 85);

 }

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 39

 //OFF (mode = 0)

 else

 {

 digitalWrite(RLED, LOW);

 digitalWrite(GLED, LOW);

 digitalWrite(BLED, LOW);

 }

}

void loop()

{

 currentButton = debounce(lastButton); //read deboucned state

 if (lastButton == LOW && currentButton == HIGH) //if it was pressed...

 {

 ledMode++; //increment the LED value

 }

 lastButton = currentButton; //reset button value

 //if you've cycled through the different options,

 //reset the counter to 0

 if (ledMode == 8) ledMode = 0;

 setMode(ledMode); //change the LED state

}

This might look like a lot of code, but it is nothing more than a conglomera-
tion of code snippets that you have already written throughout this chapter.

How else could you modify this code? You could add additional buttons to
independently control one of the three colors. You could also add blink modes,
using code from Chapter 1 that blinked the LED. The possibilities are limitless.

Summary

In this chapter you learned about the following:

■■ How a breadboard works

■■ How to pick a resistor to current-limit an LED

■■ How to wire an external LED to your Arduino

■■ How to use PWM to write “analog” values to LEDs

■■ How to read a pushbutton

■■ How to debounce a pushbutton

■■ How to use for loops

■■ How to utilize pullup and pulldown resistors

 41

Parts You’ll Need for This Chapter

Arduino Uno

Small breadboard

Jumper wires

10kΩ potentiometer

10kΩ resistor (n2)

220Ω resistor (n3)

USB cable

Photoresistor

TMP36 temperature sensor (or any other 5V analog sensor)

5mm common-cathode RGB LED

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found at
www.exploringarduino.com/content/ch3.

In addition, all code can be found at www.wiley.com/go/exploringarduino on
the Download Code tab. The code is in the chapter 03 download and individu-
ally named according to the names throughout the chapter.

C h a P t e r

3

Reading Analog Sensors

42 Part I ■ Arduino Engineering Basics

The world around you is analog. Even though you might hear that the world
is “going digital,” the majority of observable features in your environment
will always be analog in nature. The world can assume an infinite number of
potential states, whether you are considering the color of sunlight, the tempera-
ture of the ocean, or the concentration of contaminants in the air. This chapter
focuses on developing techniques for discretizing these infinite possibilities
into palatable digital values that can be analyzed with a microcontroller system
like the Arduino.

In this chapter, you will learn about the differences between analog and
digital signals and how to convert between the two, as well as a handful of the
analog sensors that you can interface with your Arduino. Using skills that you
acquired in the preceding chapter, you will add light sensors for automatically
adjusting your nightlight. You will also learn how to send analog data from
your Arduino to your computer via a USB-to-serial connection, which opens up
enormous possibilities for developing more complex systems that can transmit
environmental data to your computer.

NOTE You	can	follow	along	with	a	video	as	I	teach	you	about	reading	from	analog	
inputs:	www.jeremyblum.com/2011/01/24/arduino-tutorial-4-analog-
inputs/.	You	can	also	find	this	video	on	the	Wiley	website	shown	at	the	beginning	
of	this	chapter.

If	you	want	to	learn	more	about	the	differences	between	analog	and	digital	sig-
nals,	check	out	this	video	that	explains	each	in	depth:	www.jeremyblum.com/
2010/06/20/lets-get-digital-or-analog/.	You	can	also	find	this	video	on	the	
Wiley	website	shown	at	the	beginning	of	this	chapter.

Understanding	Analog	and	Digital	Signals

If you want your devices to interface with the world, they will inevitably be
interfacing with analog data. Consider the projects you completed in the preced-
ing chapter. You used a switch to control an LED. A switch is a digital input—it
has only two possible states: on or off, high or low, 1 or 0, and so on. Digital
information (what your computer or the Arduino processes) is a series of binary
(or digital) data. Each bit has only has one of two values.

The world around you, however, rarely expresses information in only two
ways. Take a look out the window. What do you see? If it’s daytime, you prob-
ably see sunlight, trees moving in the breeze, and maybe cars passing or people
walking around. All these things that you perceive cannot readily be classified
as binary data. Sunlight is not on or off; its brightness varies over the course of
a day. Similarly, wind does not just have two states; it gusts at different speeds
all the time.

 Chapter 3 ■ Reading Analog Sensors 43

Comparing	Analog	and	Digital	Signals
The graphs in Figure 3-1 show how analog and digital signals compare to each
other. On the left is a square wave that varies between only two values: 0 and
5 volts. Just like with the button that you used in the preceding chapter, this
signal is only a “logic high” or “logic low” value. On the right is part of a cosine
wave. Although its bounds are still 0 and 5 volts, the signal takes on an infinite
number of values between those two voltages.

Figure 3-1: Analog and digital signals

Analog signals are those that cannot be discretely classified; they vary within
a range, theoretically taking on an infinite number of possible values within
that range. Think about sunlight as an example of an analog input you may
want to measure. Naturally, there is a reasonable range over which you might
measure sunlight. Often measured in lux, or luminous flux per unit area, you
can reasonably expect to measure values between 0 lux (for pitch black) and
130,000 lux in direct sunlight. If your measuring device were infinitely accurate,
you could measure an infinite number of values between those two. An indoor
setting might be 400 lux. If it were slightly brighter, it could be 401 lux, then 401.1
lux, then 401.11 lux, and so on. A computer system could never feasibly measure
an infinite number of decimal places for an analog value because memory and
computer power must be finite values. If that’s the case, how can you interface
your Arduino with the “real world?” The answer is analog-to-digital convert-
ers (ADC), which can convert analog values into digital representations with a
finite amount of precision and speed.

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

44 Part I ■ Arduino Engineering Basics

Converting	an	Analog	Signal	to	a	Digital	One
Suppose that you want to measure the brightness of your room. Presumably,
a good light sensor could produce a varying output voltage that changes with
the brightness of the room. When it is pitch black, the device would output 0V,
and when it’s completely saturated by light, it would output 5V, with values in
between corresponding to the varying amount of light. That’s all well and good,
but how do you go about reading those values with an Arduino to figure out
how bright the room is? You can use the Arduino’s analog-to-digital converter
(ADC) pins to convert analog voltage values into number representations that
you can work with.

The accuracy of an ADC is determined by the resolution. In the case of the
Arduino Uno, there is a 10-bit ADC for doing your analog conversions. “10-bit”
means that the ADC can subdivide (or quantize) an analog signal into 210 dif-
ferent values. If you do the math, you’ll find that 210 = 1024; hence, the Arduino
can assign a value from 0 to 1023 for any analog value that you give it. Although
it is possible to change the reference voltage, you’ll be using the default 5V
reference for the analog work that you do in this book. The reference voltage
determines the max voltage that you are expecting, and, therefore, the value
that will be mapped to 1023. So, with a 5V reference voltage, putting 0V on an
ADC pin returns a value of 0, 2.5V returns a value of 512 (half of 1023), and 5V
returns a value of 1023. To better understand what’s happening here, consider
what a 3-bit ADC would do, as shown in Figure 3-2.

Figure 3-2: 3-bit analog quantization

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

 Chapter 3 ■ Reading Analog Sensors 45

NOTE If	you	want	to	learn	more	about	using	your	own	reference	voltage	or	
using	a	different	internal	voltage	reference,	check	out	the	analogReference()	page	
on	the	Arduino	website:	www.arduino.cc/en/Reference/AnalogReference.

A 3-bit ADC has 3 bits of resolution. Because 23=8, there are 8 total logic lev-
els, from 0 to 7. Therefore, any analog value that is passed to a 3-bit ADC will
have to be assigned a value from 0 to 7. Looking at Figure 3-2, you can see that
voltage levels are converted to discrete digital values that can be used by the
microcontroller. The higher the resolution, the more steps that are available for
representing each value. In the case of the Arduino Uno, there are 1024 steps
rather than the 8 shown here.

Reading	Analog	Sensors	with	the	Arduino:	
analogRead()

Now that you understand how to convert analog signals to digital values,
you can integrate that knowledge into your programs and circuits. Different
Arduinos have different numbers of analog input pins, but you read them all
the same way, using the analogRead() command. First, you’ll experiment with
a potentiometer and a packaged analog sensor. Then, you’ll learn how voltage
dividers work, and how you can use them to make your own analog sensors
from devices that vary their resistance in response to some kind of input.

Reading	a	Potentiometer
The easiest analog sensor to read is a simple potentiometer (a pot, for short).
Odds are that you have tons of these around your home in your stereos, speakers,
thermostats, cars, and elsewhere. Potentiometers are variable voltage dividers
(discussed later in this chapter) that look like knobs. They come in lots of sizes
and shapes, but they all have three pins. You connect one of the outer pins to
ground, and the other to the 5V. Potentiometers are symmetrical, so it doesn’t
matter which side you connect the 5V and ground to. You connect the middle
pin to analog input 0 on your Arduino. Figure 3-3 shows how to properly hook
up your potentiometer to an Arduino.

As you turn the potentiometer, you vary the voltage that you are feeding into
analog input 0 between 0V and 5V. If you want, you can confirm this with a
multimeter in voltage measurement mode by hooking it up as shown Figure 3-4
and reading the display as you turn the knob. The red (positive) probe should
be connected to the middle pin, and the black (negative) probe should be con-
nected to whichever side is connected to ground. Note that your potentiometer
and multimeter might look different than shown here.

46 Part I ■ Arduino Engineering Basics

Figure 3-3: Potentiometer circuit

Before you use the potentiometer to control another piece of hardware, use the
Arduino’s serial communication functionality to print out the potentiometer’s
ADC value on your computer as it changes. Use the analogRead() function
to read the value of the analog pin connected to the Arduino and the Serial
.println() function to print it to the Arduino IDE serial monitor. Start by writ-
ing and uploading the program in Listing 3-1 to your Arduino.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 3 ■ Reading Analog Sensors 47

Figure 3-4: Multimeter measurement

Listing 3-1: Potentiometer Reading Sketch—pot.ino

//Potentiometer Reading Program

const int POT=0; //Pot on analog pin 0

int val = 0; //variable to hold the analog reading from the POT

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 val = analogRead(POT);

 Serial.println(val);

 delay(500);

}

48 Part I ■ Arduino Engineering Basics

You’ll investigate the functionality of the serial interface more in later chapters.
For now, just be aware that the serial interface to the computer must be started in
the setup. Serial.begin() takes one argument that specifies the communication
speed, or baud rate. The baud rate specifies the number of bits being transferred
per second. Faster baud rates enable you to transmit more data in less time, but
can also introduce transmission errors in some communication systems. 9600
baud is a common value, and it’s what you use throughout this book.

In each iteration through the loop, the val variable is set to the present value
that the ADC reports from analog pin 0. The analogRead() command requires
the number of the ADC pin to be passed to it. In this case, it’s 0 because that’s
what you hooked the potentiometer up to. You can also pass A0, though the
analogRead() function knows you must be passing it an analog pin number, so
you can pass 0 as shorthand. After the value has been read (a number between
0 and 1023), Serial.println() prints that value over serial to the computer’s
serial terminal, followed by a “newline” that advances the cursor to the next
line. The loop then delays for half a second (so that the numbers don’t scroll by
faster than you can read them), and the process repeats.

After loading this onto your Arduino, you’ll notice that the TX LED on your
Arduino is blinking every 500ms (at least it should be). This LED indicates that
your Arduino is transmitting data via the USB connection to the serial terminal
on your computer. You can use a variety of terminal programs to see what your
Arduino is sending, but the Arduino IDE conveniently has one built right in!
Click the circled button shown in Figure 3-5 to launch the serial monitor.

Figure 3-5: Serial monitor button

 Chapter 3 ■ Reading Analog Sensors 49

After launching the serial monitor, you should see a window with numbers
streaming by. Turn the dial and you’ll see the numbers go up and down to
correspond with the position of the potentiometer. If you turn it all the way in
one direction, the numbers should approach 0, and if you turn it all the way
in the other direction, the numbers should approach 1023. It will look like the
example shown in Figure 3-6.

Figure 3-6: Incoming serial data

NOTE If	you’re	getting	funky	characters,	make	sure	that	you	have	the	baud	rate	
set	correctly.	Because	you	set	it	to	9600	in	the	code,	you	need	to	set	it	to	9600	in	
this	window	as	well.

You’ve now managed to successfully turn a dial and make some numbers
change; pretty exciting, right? No? Well, this is the just the first step. Next, you
learn about other types of analog sensors and how you can use the data from
analog sensors to control other pieces of hardware. For now, you use the familiar
LED, but in later chapters you use motors and other output devices to visualize
your analog inputs.

50 Part I ■ Arduino Engineering Basics

Using	Analog	Sensors
Although potentiometers generate an analog voltage value on a pin, they aren’t
really sensors in the traditional sense. They “sense” your turning of the dial,
but that gets boring pretty quickly. The good news is that all kinds of sensors
generate analog output values corresponding to “real-world” action. Examples
of such include the following:

■■ Accelerometers that detect tilting (many smartphones and tablets now
have these)

■■ Magnetometers that detect magnetic fields (for making digital compasses)

■■ Infrared sensors that detect distance to an object

■■ Temperature sensors that can tell you about the operating environment
of your project

Many of these sensors are designed to operate in a manner similar to the
potentiometer you just experimented with: You provide them with a power (VCC)
and ground (GND) connection, and they output an analog voltage between VCC
and GND on the third pin that you hook up to your Arduino’s ADC.

For this next experiment, you get to choose what kind of analog sensor you
want to use. They all output a value between 0V and 5V when connected to
an Arduino, so they will all work the same for your purposes. Here are some
examples of sensors that you can use:

■■ Sharp Infrared Proximity Sensor
www.exploringarduino.com/parts/IR-Distance-Sensor

Connector: www.exploringarduino.com/parts/JST-Wire

The Sharp infrared distance sensors are popular for measuring the dis-
tance between your project and other objects. As you move farther from
the object you are aiming at, the voltage output decreases. Figure 5 in the
datasheet from the part webpage linked above shows the relationship
between voltage and measured distance.

■■ TMP36 Temperature Sensor
www.exploringarduino.com/parts/TMP36

The TMP36 temperature sensor easily correlates temperature readings
in Celsius with voltage output levels. Since every 10mV corresponds to
1$C, you can easily create a linear correlation to convert from the voltage
you measure back to the absolute temperature of the ambient environ-
ment: $C = [(Vout in mV) – 500]/10. The offset of –500 is for dealing with
temperatures below 0$C. The graph in Figure 3-7 (extracted from the
datasheet) shows this conversion.

 Chapter 3 ■ Reading Analog Sensors 51

Figure 3-7: Voltage to Temperature Correlation

■■ Triple Axis Analog Accelerometer
www.exploringarduino.com/parts/TriAxis-Analog-Accelerometer

Triple axis accelerometers are great for detecting orientation. Analog
accelerometers output an analog value corresponding to each axis of
movement: X, Y, and Z (each on a different pin). Using some clever math
(trigonometry and knowledge of gravity), you can use these voltage values
to ascertain the position of your project in 3D space! Importantly, many
of these sensors are 3.3V, so you will need to use the analogReference()
command paired with the AREF pin to set a 3.3V voltage reference to
enable you to get the full resolution out of the sensor.

■■ Dual Axis Analog Gyroscope
www.exploringarduino.com/parts/DualAxis-Analog-Gyroscope

Gyroscopes, unlike accelerometers, are not affected by gravity. Their analog
output voltages fluctuate in accordance with angular acceleration around
an axis. These prove particularly useful for detecting twisting motions.
For an example of a gyroscope in action with an Arduino, check out my
SudoGlove, a glove I designed that captures hand gestures to control
hardware like music synthesizers and RC cars: www.sudoglove.com. Like
accelerometers, be aware that many gyroscopes are 3.3V parts.

Now that you’ve chosen a sensor, it’s time to put that sensor to use.

C
re

di
t:

 A
na

lo
g

D
ev

ic
es

, I
nc

.,
w
w
w
.
a
n
a
l
o
g
.
c
o
m

.

52 Part I ■ Arduino Engineering Basics

Working with Analog Sensors to Sense Temperature

This simple example uses the TMP36 temperature sensor mentioned in the
previous section. However, feel free to use any analog sensor you can get your
hands on. Experiment with one of the examples listed earlier, or find your own.
(It should be 5V compliant if you are using the Arduino Uno.) The following
steps are basically the same for any analog sensor you might want to use.

To begin, wire up your RGB LED as you did in the preceding chapter, and
wire the temperature sensor up to analog input 0 as shown in the Figure 3-8.

Figure 3-8: Temperature sensor circuit

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 3 ■ Reading Analog Sensors 53

Using this circuit, you’ll make a simple temperature alert system. The light
will glow green when the temperature is within an acceptable range, will turn
red when it gets too hot, and will turn blue when it gets too cold.

First things first, you need to ascertain what values you want to use as your
cutoffs. Using the exact same sketch from Listing 3-1, use the serial monitor
to figure out what analog values correspond to the temperature cutoffs you
care about. My room is about 20$C, which corresponds to an analog reading
of about 143. These numbers might differ for you, so launch the sketch from
before, open the serial terminal, and take a look at the readings you are getting.
You can confirm the values mathematically using the graph from Figure 3-7.
In my case, a value of 143/1023 corresponds to a voltage input of about 700mV.
Deriving from the datasheet, the following equation can be used to convert
between the temperature ($C) and the voltage (mV):

Temperature($C) n 10 = voltage (mV) – 500

Plugging in the value of 700mV, you can confirm that it equates to a tempera-
ture of 20$C. Using this same logic (or by simply observing the serial window
and picking a value), you can determine that 22$C is a digital value of 147 and
18$C is a digital value of 139. Those values will serve as the cutoffs that will
change the color of the LED to indicate that it is too hot or too cold. Using the
if statements, the digitalWrite function, and the analogRead function that
you have now learned about, you can easily read the temperature, determine
what range it falls in, and set the LED accordingly.

NOTE Before	you	copy	the	code	in	Listing	3-2,	try	to	write	this	yourself	and	see	
whether	you	can	make	it	work.	After	giving	it	a	shot,	compare	it	with	the	code	here.	
How	did	you	do?

Listing 3-2: Temperature Alert Sketch—tempalert.ino

//Temperature Alert!

const int BLED=9; //Blue LED on pin 9

const int GLED=10; //Green LED on pin 10

const int RLED=11; //Red LED on pin 11

const int TEMP=0; //Temp Sensor is on pin A0

const int LOWER_BOUND=139; //Lower Threshold

const int UPPER_BOUND=147; //Upper Threshold

int val = 0; //Variable to hold analog reading

void setup()

{

 pinMode (BLED, OUTPUT); //Set Blue LED as Output

 pinMode (GLED, OUTPUT); //Set Green LED as Output

54 Part I ■ Arduino Engineering Basics

 pinMode (RLED, OUTPUT); //Set Red LED as Output

}

void loop()

{

 val = analogRead(TEMP);

 if (val < LOWER_BOUND)

 {

 digitalWrite(RLED, LOW);

 digitalWrite(GLED, LOW);

 digitalWrite(BLED, HIGH);

 }

 else if (val > UPPER_BOUND)

 {

 digitalWrite(RLED, HIGH);

 digitalWrite(GLED, LOW);

 digitalWrite(BLED, LOW);

 }

 else

 {

 digitalWrite(RLED, LOW);

 digitalWrite(GLED, HIGH);

 digitalWrite(BLED, LOW);

 }

}

This code listing doesn’t introduce any new concepts; rather, it combines what
you have learned so far to make a system that uses both inputs and outputs
to interact with the environment. To try it out, squeeze the temperature sensor
with your fingers or exhale on it to heat it up. Blow on it to cool it down.

Using	Variable	Resistors	to	Make	Your	Own	Analog	
Sensors

Thanks to physics, tons of devices change resistance as a result of physical action.
For example, some conductive inks change resistance when squished or flexed
(force sensors and flex sensors), some semiconductors change resistance when
struck by light (photoresistors), and some polymers change resistance when
heated or cooled (thermistors). These are just a few examples of components
that you can take advantage of to build your own analog sensors. Because these
sensors are changing resistance and not voltage, you need to create a voltage
divider circuit so that you can measure their resistance change.

 Chapter 3 ■ Reading Analog Sensors 55

Using	Resistive	Voltage	Dividers
A resistive voltage divider uses two resistors to output a voltage that is some
fraction of the input voltage. The output voltage is a function directly related to
the value of the two resistors. So, if one of the resistors is a variable resistor, you
can monitor the change in voltage from the voltage divider that results from the
varying resistance. The size of the other resistor can be used to set the sensitivity
of the circuit, or you can use a potentiometer to make the sensitivity adjustable.

First, consider a fixed voltage divider and the equations associated with it, as
shown in Figure 3-9. A0 in the Figure 3-9 refers to analog pin 0 on the Arduino.

Figure 3-9: Simple voltage divider circuit

The equation for a voltage divider is as follows:

Vout = Vin(R2/(R1 + R2))

In this case, the voltage input is 5V, and the voltage output is what you’ll be
feeding into one of the analog pins of the Arduino. In the case where R1 and
R2 are matched (both 10kΩ for example), the 5V is divided by 2 to make 2.5V at
the analog input. Confirm this by plugging values into the equation:

Vout = 5V(10k/(10k + 10k)) = 5V n .5 = 2.5V

56 Part I ■ Arduino Engineering Basics

Now, suppose one of those resistors is replaced with a variable resistor, such
as a photoresistor. Photoresistors (see Figure 3-10) change resistance depend-
ing on the amount of light that hits them. In this case, I’ll opt to use a 200kΩ
photoresistor. When in complete darkness, its resistance is about 200kΩ; when
saturated with light, the resistance drops nearly to zero. Whether you choose
to replace R1 or R2 and what value you choose to make the fixed resistor will
affect the scale and precision of the readings you receive. Try experimenting
with different configurations and using the serial monitor to see how your values
change. As an example, I will choose to replace R1 with the photoresistor, and
I’ll make R2 a 10kΩ resistor (see Figure 3-11). You can leave the RGB LED in place
for now, though you’ll only use one of the colors for this exercise.

Figure 3-10: Photoresistor

Load up your trusty serial printing sketch again (Listing 3-1) and try chang-
ing the lighting conditions over the photoresistor. Hold it up to a light and cup
it with your hands. Odds are, you aren’t going to be hitting the full range from
0 to 1023 because the variable resistor will never have a resistance of zero. Rather,
you can probably figure out the maximum and minimum values that you are
likely to receive. You can use the data from your photoresistor to make a more
intelligent nightlight. The nightlight should get brighter as the room gets darker,
and vice versa. Using your serial monitor sketch, pick the values that represent
when your room is at full brightness or complete darkness. In my case, I found
that a dark room has a value of around 200 and a completely bright room has
a value around 900. These values will vary for you based upon your lighting
conditions, the resistor value you are using, and the value of your photoresistor.

Using	Analog	Inputs	to	Control	Analog	Outputs
Recall that you can use the analogWrite() command to set the brightness of an
LED. However, it is an 8-bit value; that is, it accepts values between 0 and 255
only, whereas the ADC is returning values as high as 1023. Conveniently, the
Arduino programming language has two functions that are useful for mapping
between two sets of values: the map() and constrain() functions. The map()
function looks like this:

output = map(value, fromLow, fromHigh, toLow, toHigh)

C
re

di
t:

 e
le

m
en

t1
4,

 w
w
w
.
e
l
e
m
e
n
t
1
4
.
c
o
m

 Chapter 3 ■ Reading Analog Sensors 57

Figure 3-11: Photoresistor circuit

value is the information you are starting with. In your case, that’s the most
recent reading from the analog input. fromLow and fromHigh are the input
boundaries. These are values you found to correspond to the minimum and
maximum brightness in your room. In my case, they were 200 and 900. toLow
and toHigh are the values you want to map them to. Because analogWrite()
expects value between 0 and 255, you use those values. However, we want a
darker room to map to a brighter LED. Therefore, when the input from the ADC
is a low value, you want the output to the LED to be a high value, and vice versa.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

58 Part I ■ Arduino Engineering Basics

Conveniently, the map function can handle this automatically; simply swap
the high and low values so that the low value is 255 and the high value is 0.
The map() function creates a linear mapping. For example, if your fromLow and
fromHigh values are 200 and 900, respectively, and your toLow and toHigh values
are 255 and 0, respectively, 550 maps to 127 because 550 is halfway between
200 and 900 and 127 is halfway between 255 and 0. Importantly, however, the
map() function does not constrain these values. So, if the photoresistor does
measure a value below 200, it is mapped to a value above 255 (because you are
inverting the mapping). Obviously, you don’t want that because you can’t pass
a value greater than 255 to the analogWrite() function. You can deal with this
by using the constrain() function. The constrain() function looks like this:

output = constrain(value, min, max)

If you pass the output from the map function into the constrain function,
you can set the min to 0 and the max to 255, ensuring that any numbers above or
below those values are constrained to either 0 or 255. Finally, you can then use
those values to command your LED! Now, take a look at what that final sketch
will look like (see Listing 3-3).

Listing 3-3: Automatic Nightlight Sketch—nightlight.ino

//Automatic Nightlight

const int RLED=9; //Red LED on pin 9 (PWM)

const int LIGHT=0; //Lght Sensor on analog pin 0

const int MIN_LIGHT=200; //Minimum expected light value

const int MAX_LIGHT=900; //Maximum Expected Light value

int val = 0; //variable to hold the analog reading

void setup()

{

 pinMode(RLED, OUTPUT); //Set LED pin as output

}

void loop()

{

 val = analogRead(LIGHT); //Read the light sensor

 val = map(val, MIN_LIGHT, MAX_LIGHT, 255, 0); //Map the light reading

 val = constrain(val, 0, 255); //Constrain light value

 analogWrite(RLED, val); //Control the LED

}

 Chapter 3 ■ Reading Analog Sensors 59

Note that this code reuses the val variable. You can alternatively use a dif-
ferent variable for each function call. In functions such as map() where val is
both the input and the output, the previous value of val is used as the input,
and its value is reset to the updated value when the function has completed.

Play around with your nightlight. Does it work as expected? Remember, you
can adjust the sensitivity by changing the minimum and maximum bounds of
the mapping function or changing the fixed resistor value. Use the serial monitor
to observe the differences with different settings until you find one that works
the best. Can you combine this sketch with the color-selection nightlight that
you designed in the preceding chapter? Try adding a button to switch between
colors, and use the photoresistor to adjust the brightness of each color.

Summary

In this chapter you learned about the following:

■■ The differences between analog and digital signals

■■ How to convert analog signals to digital signals

■■ How to read an analog signal from a potentiometer

■■ How to display data using the serial monitor

■■ How to interface with packaged analog sensors

■■ How to create your own analog sensors

■■ How to map and constrain analog readings to drive analog outputs

P a r t

II
Controlling Your Environment

In	This	Part

Chapter 4: Using Transistors and Driving Motors
Chapter 5: Making Sounds
Chapter 6: USB and Serial Communication
Chapter 7: Shift Registers

 63

C h a P t e r

4
Using Transistors and

Driving Motors

Parts You’ll Need for This Chapter:

Arduino Uno

USB cable

9V battery

9V battery clip

5V L4940V5 linear regulator

22uF electrolytic capacitor

.1uF electrolytic capacitor

1uF ceramic capacitor

Blue LEDs (n4)

1kΩ resistors (n4)

PN2222 NPN BJT transistor

Jumper wires

Sharp GP2Y0A41SK0F IR distance sensor with cable

Hot glue or tape

Standard servo motor

64 Part II ■ Controlling Your Environment

DC motor

Breadboard

Potentiometer

SN754410 H-Bridge IC

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, videos, and other digital content for this chapter can be found
at www.exploringarduino.com/content/ch4.

The wiley.com code downloads for this chapter are found at www.wiley.com/
go/exploringarduino on the Download Code tab. The code is in the chapter 04
download and individually named according to the names throughout the chapter.

You’re now a master of observing information from the world around you.
But how can you control that world? Blinking LEDs and automatically adjust-
ing nightlights are a good start, but you can do so much more. Using assorted
types of motors and actuators, and with the help of transistors, you can use your
Arduino to generate physical action in the real world. By pairing motors with
your Arduino, you can drive robots, build mechanical arms, add an additional
degree of freedom to distance sensors, and much more.

In this chapter, you learn how to control inductive loads like direct current
(DC) motors, how to use transistors to switch high-current devices, and how
to interface with precision actuators (namely, servo motors). At the end of this
chapter, you build a sweeping distance sensor capable of identifying the loca-
tion of nearby obstacles. This sensor is perfect for mounting on a self-driving
robotic car, for example. Having completed this chapter, you’ll have all the skills
you need to build a machine that you can really interact with!

NOTE If	you	want	to	learn	all	about	motors	and	transistors,	check	out	this	video:		
www.jeremyblum.com/2011/01/31/arduino-tutorial-5-motors-and-

transistors/.	You	can	also	find	this	video	on	the	Wiley	website	shown	at	the	
beginning	of	this	chapter.

WARNING In	this	chapter,	you	use	a	9V	battery	so	that	you	can	power	motors	
that	require	more	power	than	what	the	Arduino	can	provide.	These	voltages	are	
still	not	high	enough	to	pose	a	danger	to	you,	but	if	hooked	up	improperly,	these	
batteries	can	damage	your	electronics.	As	you	make	your	way	through	the	exer-
cises	in	this	chapter,	follow	the	diagrams	and	instructions	carefully.	Avoid	short	
circuits	(connecting	power	directly	to	ground),	and	while	you’ll	be	sharing	the	
ground	line	between	power	supplies,	don’t	try	to	connect	two	separate	voltage	
sources	to	each	other.	For	example,	don’t	try	to	hook	both	the	9V	supply	and	the	
Arduino’s	5V	supply	into	the	same	supply	row	on	the	breadboard.

 Chapter 4 ■ Using Transistors and Driving Motors 65

Driving	DC	Motors

DC motors, which you can find in numerous devices around your home, rotate
continuously when a DC voltage is applied across them. Such motors are com-
monly found as the driving motors in radio control (RC) cars, and as the motors
that make the discs spin in your DVD player. DC motors are great because they
come in a huge array of sizes and are generally very cheap. By adjusting the
voltage you apply to them, you can change their rotation speed. By reversing
the direction of the voltage applied to them, you can change their direction of
rotation as well. This is generally done using an H-bridge, which you learn
about later in this chapter.

Brushed DC motors, such as the one you are using for this chapter, employ
stationary magnets and a spinning coil. Electricity is transferred to the coil
using “brushes,” hence the reason they are called brushed DC motors. Unlike
brushless DC motors (such as stepper motors), brushed DC motors are cheap
and have easier speed control. However, brushed DC motors do not last as long
because the brushes can wear out over time. These motors work through an
inductive force. When current passes through the spinning coil, it generates a
magnetic field that is either attracted to or repelled by the stationary magnets
depending on the polarity. By using the brushes to swap the polarity each half-
rotation, you can generate angular momentum. The exact same configuration
can be used to create a generator if you manually turn the armature. This will
generate a fluctuating magnetic field that will, in turn, generate current. This is
how hydroelectric generators work—falling water turns the shaft, and a current
is produced. This capability to create current in the opposite direction is why
you will use a diode later in this chapter to ensure that the motor cannot send
current back into your circuit when it is forcibly turned.

Handling	High-Current	Inductive	Loads
DC motors generally require more current than the Arduino’s built-in power
supply can provide, and they can create harmful voltage spikes due to their induc-
tive nature. To address this issue, you first learn how to effectively isolate a DC
motor from your Arduino, and then how to power it using a secondary supply.
A transistor will allow the Arduino to switch the motor on and off safely, as well
as to control the speed using the pulse-width modulation (PWM) techniques
that you learned about in Chapter 3, “Reading Analog Sensors.” Reference the
schematic shown in Figure 4-1 as you learn about the various components that
go into connecting a DC motor to an Arduino with a secondary power supply.
Make sure you understand all of these concepts before you actually start wiring.

66 Part II ■ Controlling Your Environment

Figure 4-1: DC motor control schematic

Before you hook up your DC motor, it’s important to understand what all
these components are doing:

■■ Q1 is an NPN bipolar-junction transistor (BJT) used for switching the
separate 9V supply to the motor. There are two types of BJTs, NPN and
PNP, which refer to the different semiconductor “doping” techniques
used to create the transistor. This book will focus on using NPN BJTs.
You can simplistically think of an NPN transistor as a voltage-controlled
switch that allows you to inhibit or allow current flow.

■■ A 1kΩ resistor is used to separate the transistor’s base pin from the control
pin of the Arduino.

■■ U1 is the DC motor.

■■ C1 is for filtering noise caused by the motor.

■■ D1 is a diode used to protect the power supply from reverse voltage
caused by the motor acting like an inductor.

Using Transistors as Switches

Transistors can do an exceptional number of tasks, from making amplifiers to
making up the CPU inside your computer and smartphone. You can use a single

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

 Chapter 4 ■ Using Transistors and Driving Motors 67

transistor to make a simple electrically controlled switch. Every BJT has three
pins (see Figure 4-2): the emitter (E), the collector (C), and the base (B).

1E
2B

3C

C

B

E

Figure 4-2: An NPN BJT

Current flows in through the collector and out of the emitter. By modulating
the base pin, you can control whether current is permitted to flow. When a suf-
ficiently high voltage is applied to the base, current is allowed to flow through
the transistor, and the motor spins as a result. The 5V generated by the Arduino
I/O pins more than suffices to turn on the transistor. By taking advantage of
PWM, you can control the speed of the motor by rapidly turning the transistor
on and off. Because the motor can maintain momentum, the duty of the cycle
of the PWM signal determines the motor’s speed. The transistor is essentially
connecting and disconnecting one terminal of the motor from the ground and
determining when a complete circuit can be made with the battery.

Using Protection Diodes

It is important to consider issues caused by DC motors acting like inductors.
(Inductors are electrical devices that store energy in their magnetic fields and
resist changes in current.) As the DC motor spins, energy is built up and stored
in the inductance of the motor coils. If power is instantaneously removed from
the motor, the energy is dissipated in the form of an inverted voltage spike,
which could prove harmful to the power supply. That’s where protection diodes
come in. By putting the diode across the motor, you ensure that the current
generated by the motor flows through the diode and that the reverse voltage
cannot exceed the forward voltage of the diode (because diodes allow current
to flow in one direction only). This will also absorb any current generated by
you forcibly turning the motor.

68 Part II ■ Controlling Your Environment

Using a Secondary Power Source

Note, as well, from the circuit diagram shown in Figure 4-1 that the power sup-
ply to the motor is 9V, instead of the usual 5V from the USB connection that
you’ve been using. For the purposes of this experiment, a 9V battery suffices,
but you could also use an AC-DC wall adapter. The reason for using a power
source separate from the Arduino’s built-in 5V supply is twofold:

 1. By using a separate supply, you reduce the chances that improper wiring
of a higher-power circuit could harm your Arduino.

 2. You can take advantage of higher current limits and higher voltages.

Some DC motors can consume more current than the Arduino 5V supply can
source. Further, many motors are rated at voltages higher than 5V. Although they
might spin at 5V, you can reach their max speed at only 9V or 12V (depending
on the motor specifications).

Note that you must connect the ground of both your secondary power supply
and the Arduino ground. This connection ensures a common reference point
between the voltage levels in the two parts of the circuit.

Wiring the Motor

Now that you understand the intricacies of controlling a brushed DC motor, it’s
time to get it wired up on your breadboard. Try to wire it by only referencing
the previous schematic (shown in Figure 4-1). After you’ve tried to assemble
the circuit using only the schematic, reference the graphical version shown in
Figure 4-3 to confirm that you wired it correctly.

It’s important to get good at reading electrical schematics without having to
look at a graphical layout. Did you wire it correctly? Remember to check for the
following as you wire up the circuit:

 1. Make sure that you’ve connected the ground from your 9V battery to the
ground from your Arduino. You might want to use the horizontal bus on
the breadboard to accomplish this, as shown in Figure 4-3.

 2. Make sure that the 9V supply is not connected to the 5V supply. In fact,
you don’t even need to wire the 5V supply to the breadboard.

 3. Make sure that the orientation of your transistor is correct. If you aren’t
using the same NPN BJT listed in the parts list for this chapter, reference
the datasheet to ensure that the emitter, base, and collector are connected
to the same pins. If they are not, adjust your wiring.

 Chapter 4 ■ Using Transistors and Driving Motors 69

Capacitor

Transistor
Battery

DC motor Diode

Figure 4-3: DC Motor wiring

 4. Make sure that the orientation of the diode is correct. Current flows from
the side with no stripe to the side with the stripe. The stripe on the physi-
cal device matches the line in the schematic symbol. You use a ceramic
capacitor for this exercise, so the polarity doesn’t matter.

Next up, it’s time to get this motor spinning. You might want to attach a piece
of tape or a wheel to the end of the motor so that you can more easily see the
speed at which it is spinning. Before you write the program, you can confirm
that the circuit is working correctly by providing power to the Arduino over
the USB connection, plugging in the 9V battery, and connecting the transistor’s
base pin (after the resistor) directly to 5V from the Arduino. This simulates a
logic high command and should make the motor spin. Connecting that same
wire to ground will ensure that it does not spin. If this doesn’t work, check your
wiring before moving on to the next step: programming.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

70 Part II ■ Controlling Your Environment

Controlling	Motor	Speed	with	PWM
First up, you can use a program very similar to the one you used to adjust LED
brightness of your nightlight in Chapter 3 to adjust the speed of your motor. By
sending varying duty-cycle signals to the transistor, the current flow through
the motor rapidly starts and stops resulting in a change in velocity. Try out the
program in Listing 4-1 to repeatedly ramp the motor speed up and down.

Listing 4-1: Automatic Speed Control—motor.ino

//Simple Motor Speed Control Program

const int MOTOR=9; //Motor on Digital Pin 9

void setup()

{

 pinMode (MOTOR, OUTPUT);

}

void loop()

{

 for (int i=0; i<256; i++)

 {

 analogWrite(MOTOR, i);

 delay(10);

 }

 delay(2000);

 for (int i=255; i>=0; i--)

 {

 analogWrite(MOTOR, i);

 delay(10);

 }

 delay(2000);

}

If everything is hooked up correctly, this code should slowly ramp the motor
speed up, then back down again in a loop. Using these techniques, you could
easily make a simple roving robot.

Next up, you can combine your new knowledge of DC motors with your
knowledge of analog sensors. Using a potentiometer, you can manually adjust
the motor speed. To begin, add a potentiometer to analog pin 0, as shown in
Figure 4-4. Note that you must connect the 5V pin from the Arduino to the
power rail on the breadboard if you want to connect the potentiometer to that
row on the board.

 Chapter 4 ■ Using Transistors and Driving Motors 71

Capacitor

Transistor
Battery

DC motor Diode Potentiometer

Figure 4-4: Adding a potentiometer

You can now modify the program to control the motor speed based on the
present setting of the potentiometer. With the potentiometer at zero, the motor
stops; with the potentiometer rotated fully, the motor runs at full speed. Recall
that the Arduino is running quite fast; it’s actually running through the loop
several thousand times every second! Therefore, you can simply check the
potentiometer speed each time through the loop and adjust the motor speed
after each check. It checks often enough that motor speed adjusts in real time
with the potentiometer. The code in Listing 4-2 does the trick. Create a new
sketch (or update your previous sketch to match this code) and upload it to your
Arduino from the integrated development environment (IDE).

Listing 4-2: Adjustable Speed Control—motor_pot.ino

//Motor Speed Control with a Pot

const int MOTOR=9; //Motor on Digital Pin 9

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

72 Part II ■ Controlling Your Environment

const int POT=0; //POT on Analog Pin 0

int val = 0;

void setup()

{

 pinMode (MOTOR, OUTPUT);

}

void loop()

{

 val = analogRead(POT);

 val = map(val, 0, 1023, 0, 255);

 analogWrite(MOTOR, val);

}

A lot of this code should look familiar from your previous experience dealing
with analog sensors. Note that the constrain function is not required when
using a potentiometer, because you can use the entire input range, and the value
will never go below 0 or above 1023. After uploading the code to your Arduino,
adjust the pot and observe the speed of the motor changing accordingly.

Using	an	H-Bridge	to	Control	DC	Motor	Direction
So, you can change DC motor speed. This is great for making wheels on an
Arduino-controlled robot… as long as you only want it to drive forward. Any
useful DC motor needs to be able to spin in two directions. To accomplish this,
you can use a handy device called an H-bridge. The operation of an H-bridge
can best be explained with a diagram (see Figure 4-5).

Figure 4-5: H-bridge operation

 Chapter 4 ■ Using Transistors and Driving Motors 73

Can you figure out why it’s called an H-bridge? Notice that the motor in com-
bination with the four switches forms an uppercase H. Although the diagram
shows them as switches, the switching components are actually transistors,
similar to the ones you used in the previous exercise. Some additional circuitry,
including protection diodes, is also built in to the H-bridge integrated circuit.

The H-bridge has four main states of operation: open, braking, forward, and
backward. In the open state, all the switches are open and the motor won’t spin.
In the forward state, two diagonally opposing switches are engaged, causing
current to flow from 9V, through the motor, and down to ground. When the
opposing switches are flipped, current then runs through the motor in the
opposite direction, causing it to spin in the opposite direction. If the H-bridge
is put in the braking state, all residual motion caused by momentum is ceased,
and the motor stops.

CREATING SHORT CIRCUITS WITH H-BRIDGES

Be	aware	of	one	extremely	important	consideration	when	using	H-bridges.	
What	would	happen	if	both	switches	on	the	left	or	both	switches	on	the	
right	were	opened?	It	would	cause	a	direct	short	between	9V	and	ground.	
If	you’ve	ever	shorted	a	9V	battery	before,	you	know	that	this	is	not	some-
thing	you	want	to	do.	A	shorted	battery	heats	up	very	quickly,	and,	in	rare	
circumstances,	could	burst	or	leak.	Furthermore,	a	short	could	destroy	
the	H-bridge	or	other	parts	of	the	circuit.	An	H-bridge	is	a	rare	scenario	
where	you	could	potentially	destroy	a	piece	of	hardware	by	programming	
something	wrong.	For	this	experiment,	you	use	SN754410	Quadruple	Half-H	
Driver.	This	chip	has	a	built-in	thermal	shutdown	that	should	kick	in	before	a	
short	circuit	destroys	anything,	but	it’s	still	a	good	idea	to	be	cautious.

To	ensure	that	you	don’t	blow	anything	up,	always	disable	the	chip	before	
flipping	the	states	of	any	of	the	switches.	This	ensures	that	a	short	cannot	be	
created	even	when	you	quickly	switch	between	motor	directions.	You’ll	use	
three	control	pins:	one	for	controlling	the	top	two	gates,	one	for	controlling	
the	bottom	two	gates,	and	one	for	enabling	the	circuit.

Building an H-bridge Circuit

With the preceding considerations in mind, it’s time to build the circuit. The
H-bridge chip you use is the SN754410 Quadruple Half-H driver. Two Half-H
drivers are combined into one Full-H driver, such as the one shown in Figure 4-5.
For this exercise, you just use two of the four Half-H drivers to drive one DC
motor. If you want to make an RC car, for example, you could use this chip to
control two DC motors (one for the left wheels and one for the right wheels).
Before you actually get it wired up, take a look at the pin-out and logic table
from the part’s datasheet (see Figure 4-6).

74 Part II ■ Controlling Your Environment

Figure 4-6: H-bridge pin-out and logic table

Pin numbering on integrated circuits (ICs) always starts at the top-left pin
and goes around the part counter-clockwise. Chips will always have some kind
of indicator to show which pin is Pin 1, so that you don’t plug the IC in upside-
down. On through-hole parts (which is what you will use exclusively in this
chapter), a half circle on one end of the chip indicates the top of the chip (where
Pin 1 is located). Some chips may have a small circle marked next to pin one on
the plastic casing in addition to, or instead of the half-circle.

Let’s run through the pins and how you’ll be using them:

■■ GND (Pins 4, 5, 12, & 13): The four pins in the middle connect to a shared
ground between your 9V and 5V supplies.

■■ VCC2 (Pin 8): VCC2 supplies the motor current, so you connect it to 9V.

■■ VCC1 (Pin 16): VCC1 powers the chip’s logic, so you connect it to 5V.

■■ 1Y and 2Y (Pins 3 and 6): These are the outputs from the left driver. The
motor wires connect to these pins.

■■ 1A and 2A (Pins 2 and 7): The states of the switches on the left are con-
trolled by these pins, so they are connected to I/O pins on the Arduino
for toggling.

■■ 1,2EN (Pin 1): This pin is used to enable or disable the left driver. It is
connected to a PWM pin on the Arduino, so that speed can be controlled
dynamically.

■■ 3Y and 4Y (Pins 11 and 14): These are the outputs from the right driver.
Because you are using the left driver only, you can leave these disconnected.

■■ 3A and 4A (Pins 10 and 15): The states of the switches on the right are
controlled by these pins, but you are using only the left driver in this
example, so you can leave them disconnected.

Im
ag

e
us

ed
 w

ith
 p

er
m

is
si

on
 c

ou
rt

es
y

of

Te
xa

s
In

st
ru

m
en

ts
.

 Chapter 4 ■ Using Transistors and Driving Motors 75

■■ 3,4EN (Pin 9): This pin is used to enable or disable the right driver. Because
you will not be using the right driver, you can disable it by connecting
this pin directly to GND.

For reference, confirm your wiring with Figure 4-7. Keep the potentiometer
wired as it was before.

H-bridge

Battery

DC motor

Potentiometer

Figure 4-7: H-bridge wiring diagram

You can confirm that the circuit is working before you program it by hooking
up the enable pin to 5V, hooking up one of the A pins to ground, and the other A
pin to 5V. You can reverse direction by swapping what the A pins are connected to.

WARNING You	should	disconnect	the	9V	battery	while	swapping	the	A	pins	to	
ensure	that	you	can’t	possibly	cause	an	accidental	short	circuit	within	the	H-bridge.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

76 Part II ■ Controlling Your Environment

Operating an H-bridge Circuit

Next up, you write a program to control the motor’s direction and speed using
the potentiometer and the H-bridge. Setting the potentiometer in a middle range
stops the motor, setting the potentiometer in a range above the middle increases
the speed forward, and setting the potentiometer in a range below the middle
increases the speed backward. This is another perfect opportunity to employ
functions in your Arduino program. You can write a function to stop the motor,
one to cause it spin forward at a set speed, and one to cause it to spin backward
at a set speed. Ensure that you correctly disable the H-bridge at the beginning of
the function before changing the motor mode; doing so reduces the probability
that you will make a mistake and accidentally short out the H-bridge.

Following the logic diagram from Figure 4-6, you can quickly figure out how
you need to control the pins to achieve the desired results:

■■ To stop current flow through the device, set the enable pin low.

■■ To set the switches for rotation in one direction, set one high, the other low.

■■ To set switches for rotation in the opposite direction, swap which is high
and which is low.

■■ To cause the motor to stop immediately, set both switches low.

NOTE Always	disable	the	current	flow	before	changing	the	state	of	the	switches	
to	ensure	that	a	momentary	short	cannot	be	created	as	the	switches	flip.	

First, you should devise the functions that safely execute the previously
described motions. Create a new Arduino sketch and start by writing your
new functions:

//Motor goes forward at given rate (from 0-255)

void forward (int rate)

{

 digitalWrite(EN, LOW);

 digitalWrite(MC1, HIGH);

 digitalWrite(MC2, LOW);

 analogWrite(EN, rate);

}

//Motor goes backward at given rate (from 0-255)

void reverse (int rate)

{

 digitalWrite(EN, LOW);

 digitalWrite(MC1, LOW);

 digitalWrite(MC2, HIGH);

 analogWrite(EN, rate);

 Chapter 4 ■ Using Transistors and Driving Motors 77

}

//Stops motor

void brake ()

{

 digitalWrite(EN, LOW);

 digitalWrite(MC1, LOW);

 digitalWrite(MC2, LOW);

 digitalWrite(EN, HIGH);

}

Note that at the beginning of each function the EN pin is always set low, and
then the MC1 and MC2 pins (Motor Control pins) are adjusted. When that is
done, the current flow can be reenabled. To vary the speed, just use the same
technique you did before. By using PWM, you can change the duty with which
the EN pin is toggled, thus controlling the speed. The rate variable must be
between 0 and 255. The main loop takes care of making the right rate from the
input potentiometer data.

Next, consider the main program loop:

void loop()

{

 val = analogRead(POT);

 //go forward

 if (val > 562)

 {

 velocity = map(val, 563, 1023, 0, 255);

 forward(velocity);

 }

 //go backward

 else if (val < 462)

 {

 velocity = map(val, 461, 0, 0, 255);

 reverse(velocity);

 }

 //brake

 else

 {

 brake();

 }

}

In the main loop, the potentiometer value is read, and the appropriate func-
tion can be called based on the potentiometer value. Recall that analog inputs

78 Part II ■ Controlling Your Environment

are converted to digital values between 0 and 1023. Refer to Figure 4-8 to better
understand the control scheme and compare that with the preceding loop code.

Figure 4-8: Motor control plan.

When the potentiometer is within the 100 units surrounding the midpoint,
the brake function is called. As the potentiometer value increases from 562 to
1023, the speed forward increases. Similarly, the speed increases in the reverse
direction between potentiometer values of 462 and 0. The map function should
look familiar to you from the previous chapter. Here, when determining the
reverse speed, note the order of the variables: 461 is mapped to 0, and 0 is
mapped to 255; the map function can invert the mapping when the variables
are passed in descending order. Putting the loop together with the functions,
and the setup, you get a completed program that looks like the one shown in
Listing 4-3. Ensure that your program matches the one here and load it onto
your Arduino.

Listing 4-3: H-Bridge Potentiometer Motor Control—hbridge.ino

//Hbridge Motor Control

const int EN=9; //Half Bridge 1 Enable

const int MC1=3; //Motor Control 1

const int MC2=2; //Motor Control 2

const int POT=0; //POT on Analog Pin 0

int val = 0; //for storing the reading from the POT

int velocity = 0; //For storing the desired velocity (from 0-255)

void setup()

{

 pinMode(EN, OUTPUT);

 pinMode(MC1, OUTPUT);

 pinMode(MC2, OUTPUT);

 brake(); //Initialize with motor stopped

}

void loop()

{

 val = analogRead(POT);

 //go forward

 if (val > 562)

 {

 Chapter 4 ■ Using Transistors and Driving Motors 79

 velocity = map(val, 563, 1023, 0, 255);

 forward(velocity);

 }

 //go backward

 else if (val < 462)

 {

 velocity = map(val, 461, 0, 0, 255);

 reverse(velocity);

 }

 //brake

 else

 {

 brake();

 }

}

//Motor goes forward at given rate (from 0-255)

void forward (int rate)

{

 digitalWrite(EN, LOW);

 digitalWrite(MC1, HIGH);

 digitalWrite(MC2, LOW);

 analogWrite(EN, rate);

}

//Motor goes backward at given rate (from 0-255)

void reverse (int rate)

{

 digitalWrite(EN, LOW);

 digitalWrite(MC1, LOW);

 digitalWrite(MC2, HIGH);

 analogWrite(EN, rate);

}

//Stops motor

void brake ()

{

 digitalWrite(EN, LOW);

 digitalWrite(MC1, LOW);

 digitalWrite(MC2, LOW);

 digitalWrite(EN, HIGH);

}

Does everything work as expected? If not, make sure that you wired up your
circuit correctly. As an additional challenge, grab a second DC motor and hook
it up to the other half of the H-bridge chip. You should be able to drive two
motors simultaneously with minimal effort.

80 Part II ■ Controlling Your Environment

Driving	Servo	Motors

DC motors serve as excellent drive motors, but they are not as ideal for precision
work because no feedback occurs. In other words, without using an external
encoder of some kind, you will never know the absolute position of a DC motor.
Servo motors, or servos, in contrast, are unique in that you command them to
rotate to a particular angular position and they stay there until you tell them
to move to a new position. This is important for when you need to move your
system to a known position. Examples include actuating door locks, moving
armatures to specific rotations, and precisely controlling the opening of an
aperture. In this section, you learn about servo motors and how to control them
from your Arduino.

Understanding	the	Difference	Between	Continuous	Rotation	
and	Standard	Servos
You can buy both standard and continuous rotation servos. Unmodified servos
always have a fixed range (usually from 0 to 180 degrees) because there is a
potentiometer in line with the drive shaft, which is used for reporting the pres-
ent position. Servo control is achieved by sending a pulse of a particular length.
The length of the pulse, in the case of a standard rotation servo, determines the
absolute position that the servo will rotate to. If you remove the potentiometer,
however, the servo is free to rotate continuously, and the pulse length sets the
speed of the motor instead.

In this book, you use standard servos that rotate to an absolute position. You
can experiment with continuous rotation servos either by opening a standard
servo and carefully removing the potentiometer, or by buying premodified
servos configured for continuous rotation.

Understanding	Servo	Control
Unlike their DC motor counterparts, servo motors have three pins: power (usu-
ally red), ground (usually brown or black), and signal (usually white or orange).
These wires are color-coded, typically in the same order, and generally look
like the ones shown in Figure 4-9. Some manufactures may use non-standard
ordering, so always be sure to check the datasheet to ensure you are wiring
the servo correctly.

The coloring might vary slightly between servos, but the color schemes listed
previously are the most common. (Check the servo’s documentation if you’re
unsure.) Like DC motors, servos can draw quite a bit of a current (usually

 Chapter 4 ■ Using Transistors and Driving Motors 81

more than the Arduino can supply). Although you can sometimes run one or
two servos directly from the Arduino’s 5V supply, you learn here how to use a
separate power supply for the servos so that you have the option to add more
if you need to.

Figure 4-9: Servo motors

Servos have a dedicated control pin, unlike DC motors, that instructs them
what position to turn to. The power and ground lines of a servo should always
be connected to a steady power source.

Servos are controlled using adjustable pulse widths on the signal line. For
a standard servo, sending a 1ms 5V pulse turns the motor to 0 degrees, and
sending a 2ms 5V pulse turns the motor to 180 degrees, with pulse lengths in
the middle scaling linearly. A 1.5ms pulse, for example, turns the motor to 90
degrees. Once a pulse has been sent, the servo turns to that position and stays
there until another pulse instruction is received. However, if you want a servo to
“hold” its position (resist being pushed on and try to maintain the exact position),
you just resend the command once every 20ms. The Arduino servo commands
that you will later employ take care of this for you. To better understand how
servo control works, study the timing diagram shown in Figure 4-10.

U
se

d
w

ith
 p

er
m

is
si

on
 fr

om
 P

ar
al

la
x

In
c.

 C
op

yr
ig

ht
 ©

 2
01

3
P

ar
al

la
x

In
c.

A

ll
ri

gh
ts

 r
es

er
ve

d.

82 Part II ■ Controlling Your Environment

Figure 4-10: Servo motor timing diagram

Note that in each of the examples in Figure 4-10 the pulse is sent every 20ms.
As the pulse length increases from 1ms to 2ms, the angle of rotation of the
motor (shown to the right of the pulse graph) increases from 0 to 180 degrees.

As mentioned before, servos can draw more current than your Arduino may
be able to provide. However, most servos are designed to run at 5V, not 9V or
12V like a DC motor. Even though the voltage is the same as that of an Arduino,
you want to use a separate power source that can supply more current.

To do this, you learn here how to use a 9V battery and a linear regulator to
generate a 5V supply from your 9V battery. A linear regulator is an extremely
simple device that generally has three pins: input voltage, output voltage, and
ground. The ground pin is connected to both the ground of the input supply
and to the ground of the output. In the case of linear-voltage regulators, the
input voltage always must be higher than the output voltage, and the output
voltage is set at a fixed value depending on the regulator you use.

The voltage drop between the input and the output is burned off as heat,
and the regulator takes care of ensuring that the output always remains the
same, even as the voltage of the input drops (in the case of a battery discharg-
ing over time). For these experiments, you use an L4940V5 5V voltage regulator.
It’s capable of supplying up to 1.5 amps at 5V. Figure 4-11 shows a schematic of
how to hook up the regulator.

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

 Chapter 4 ■ Using Transistors and Driving Motors 83

Figure 4-11: 5V Linear regulator schematic

Note the capacitors on each side of the regulator. These are called decoupling
capacitors; they are used to smooth out the voltage signal from each supply volt-
age by charging and discharging to oppose ripples in the voltage. Most linear
regulator datasheets include a suggested circuit that includes ideal values and
types for these capacitors based on your use case scenario. Also keep in mind
that the 5V rail created by this regulator should be kept separate from the 5V
power rail of the Arduino. Their grounds, however, should be tied together.

Using all this information, it’s time to wire up a servo. Referencing Figure 4-12,
wire the servo, the 5V regulator, and the potentiometer. Leave the potentiometer
connected to analog pin 0, connect the servo control pin to pin 9, and ensure
that the 5V regulator supplies the servo’s power.

While wiring, keep in mind a few important things. First, ensure that you
have the orientation of the regulator correct. With the metal tab on the side
farthest from you, connect the battery to the leftmost pin, the ground to the
center pin, and the servo’s power line to the right pin. Second, if using polarized
electrolytic capacitors (as in Figure 4-12), make sure to put them in the correct
direction. The stripe indicates the negative terminal and should be connected
to the common ground. Make sure that the pins don’t touch; otherwise, it could
cause a short. After you’re all wired up, move on to the next section to learn
how to program the servo controller.

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

84 Part II ■ Controlling Your Environment

Decoupling capacitors
Battery

5V regulator Potentiometer
Servo

Figure 4-12: Servo experiment wiring diagram

UNDERSTANDING LINEAR REGULATORS AND THE LIMITS OF
ARDUINO POWER SUPPLIES

Why	is	it	necessary	to	use	an	external	power	supply	when	certain	items	
require	more	current?	There	are	few	reasons.	The	I/O	pins	cannot	supply	
more	than	40	milliamps	(mA)	each.	Because	a	DC	or	servo	motor	can	con-
sume	hundreds	of	milliamps,	the	I/O	pins	are	not	capable	of	driving	them	
directly.	Even	if	they	were,	you	wouldn’t	want	to	because	of	the	damage	that	
can	be	caused	by	inductive	voltage	spikes.	

It	makes	sense	that	you	need	to	use	an	external	supply	with	a	DC	motor	
because	you	need	the	higher	voltage,	but	why	does	a	servo	need	an	external	
supply	if	it	is	at	the	same	voltage	as	the	Arduino?	The	Arduino	generates	the	
5V	used	for	the	logic	either	directly	from	the	USB	or	by	using	a	built-in	linear	
regulator	with	the	DC	barrel	jack	as	the	supply	voltage.	When	you	use	USB,	
a	maximum	of	500mA	is	available	to	the	Arduino	and	all	its	peripherals,	
because	that	is	what	the	USB	specification	allows.	When	you	use	an	external	
supply	of	sufficient	current,	the	built-in	regulator	can	supply	up	to	1	amp	to	
the	components	on	the	5V	rail.	

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tiz

in
g.

 Chapter 4 ■ Using Transistors and Driving Motors 85

Servos	have	a	tendency	to	consume	current	in	bursts	as	they	turn.	They	
generally	consume	little	current	while	stationary,	and	they	consume	several	
hundred	milliamps	for	a	few	milliseconds	when	they	are	actuated.	These	
current	spikes	can	ripple	on	the	5V	line,	and	can	even	be	seen	in	other	com-
ponents,	like	LEDs.	By	keeping	the	supply	for	the	servo	on	a	separate	rail,	
you	ensure	that	this	does	not	happen.	

Insufficient	current	for	a	servo	might	also	cause	it	to	behave	erratically.	
When	you	finish	the	final	project	for	this	chapter,	try	hooking	the	servo	sup-
ply	pin	up	to	the	built-in	5V	rail.	(Don’t	worry;	this	won’t	damage	anything.)	
When	the	servo	is	powered	over	USB,	you	may	see	the	servo	doing	all	kinds	
of	unexpected	motions	due	to	an	insufficient	current	supply.	Naturally,	the	
degree	of	this	behavior	depends	on	the	specification	of	your	particular	servo.

Controlling	a	Servo
The Arduino IDE includes a built-in library that makes controlling servos a
breeze. A software library is a collection of code that is useful, but not always
needed in sketches. The Arduino IDE contains a number of libraries for com-
mon tasks. The servo library abstracts the timing routines you would need to
write out on your own for pulsing the servo pin. All you have to do is attach a
servo “object” to a particular pin and give it an angle to rotate to. The library
takes care of the rest, even setting the pin as an output. The simplest way to
test out the functionality of your servo is to map the potentiometer directly to
servo positions. Turning the potentiometer to 0 moves the servo to 0 degrees,
and moving it to 1023 moves the servo to 180 degrees. Create a new sketch with
the code from Listing 4-4 and load it onto your Arduino to see this functional-
ity in action.

Listing 4-4: Servo Potentiometer Control—servo.ino

//Servo Potentiometer Control

#include <Servo.h>

const int SERVO=9; //Servo on Pin 9

const int POT=0; //POT on Analog Pin 0

Servo myServo;

int val = 0; //for storing the reading from the POT

void setup()

{

 myServo.attach(SERVO);

86 Part II ■ Controlling Your Environment

}

void loop()

{

 val = analogRead(POT); //Read Pot

 val = map(val, 0, 1023, 0, 179); //scale it to servo range

 myServo.write(val); //sets the servo

 delay(15); //waits for the servo

}

The include statement at the top of the program adds the functionality of
the servo library to your sketch. Servo myServo makes a servo object called
myServo. In your code, whenever you want to tell the servo what to do, you’ll
refer to myServo. In setup(), attaching the servo initializes everything necessary
to control the servo. You can add multiple servos by calling the objects different
things and attaching a different pin to each one. In loop(), the pot is read, scaled
to an appropriate value for the servo control, and is then “written” to the servo
by pulsing the appropriate pin. The 15ms delay ensures that the servo reaches
its destination before you try to send it another command.

Building	a	Sweeping	Distance	Sensor

To wrap up this chapter, you apply your knowledge from the past few chapters
to build a light-up sweeping distance sensor. The system consists of an infrared
(IR) distance sensor mounted on a servo motor and four LEDs. As the servo motor
cycles, it pans the distance sensor around the room, allowing you to roughly
determine where objects are close and where they are far. The four LEDs cor-
respond to four quadrants of the sweep and change brightness depending on
how close an object is in that quadrant.

Because IR light is a part of the electromagnetic spectrum that humans
cannot see, a system like this can be implemented to create “night vision.”
The IR distance sensor works by shining an IR LED and using some fairly
complex circuitry to calculate the angle at which that IR light returns to a
photo sensor mounted next to the IR LED. Using analog voltages created by
the IR photo sensor readings, the distance is calculated and converted to
an analog voltage signal that you can read into the microcontroller. Even if
the room is dark and you cannot see how close an object is, this sensor can
because it is using a wavelength of light that the human eye cannot detect.

Different models of IR rangefinders may have different interfaces. If you’re
using a rangefinder that is different than the one used in this example, check
the datasheet to make sure it sends out a variable voltage as an output.

 Chapter 4 ■ Using Transistors and Driving Motors 87

NOTE You	can	watch	a	demo	video	of	the	sweeping	distance	sensor	online:		
www.exploringarduino.com/content/ch4.	You	can	also	find	this	video	on	the	
Wiley	website	shown	at	the	beginning	of	this	chapter.

Start by hot-gluing your distance sensor to the top of a servo motor, as shown
in Figure 4-13. I like to use hot glue because it holds well and is fairly easy to
remove if you need to. However, you could also use super glue, putty, or tape
to get the job done.

Figure 4-13: IR distance sensor mounted to the servo

Next, hook your servo up to your Arduino, using the 5V regulator to power
it, just as you did before. The IR distance sensor replaces the potentiometer and
plugs into analog pin 0. Four LEDs plug into pins 3, 5, 6, and 11 through 1kΩ
resistors. The Arduino Uno has six total PWM pins, but pins 9 and 10 cannot
create PWM signals (using analogWrite) when you are using the servo library.
This is because the servo library uses the same hardware timer as the one used
to control PWM on those two pins. Hence, the other four PWM pins were chosen.
(If you want to do this project with more LEDs, either use the Arduino Mega
or implement a software PWM solution, something this book does not cover.)
Follow the wiring diagram in Figure 4-14 to confirm that you have everything
wired up correctly. I chose to use blue LEDs, but you can use any color you want.
After you have it all wired up, consider taping it down, as shown in Figure 4-13.

88 Part II ■ Controlling Your Environment

Decoupling
capacitorsBattery

5V regulator LEDs
Servo

IR distance
sensor

Figure 4-14: Sweeping distance sensor wiring diagram

The last step is to program the sensor. The system works in the following
manner: Rotate to a given position, measure the distance, convert it to a value
that can be used for the LED, change that LED’s brightness, move to the next
position, and so on, and so forth. Listing 4-5 shows the code to accomplish this.
Copy it into a new sketch and upload it to your Arduino.

Listing 4-5: Sweeping Distance Sensor—sweep.ino

//Sweeping Distance Sensor

#include <Servo.h>

 const int SERVO =9; //Servo on Pin 9

 const int IR =0; //IR Distance Sensor on Analog Pin 0

 const int LED1 =3; //LED Output 1

 const int LED2 =5; //LED Output 2

 const int LED3 =6; //LED Output 3

 const int LED4 =11; //LED Output 4

Servo myServo; //Servo Object

int dist1 = 0; //Quadrant 1 Distance

int dist2 = 0; //Quadrant 2 Distance

int dist3 = 0; //Quadrant 3 Distance

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tiz

in
g.

 Chapter 4 ■ Using Transistors and Driving Motors 89

int dist4 = 0; //Quadrant 4 Distance

void setup()

{

 myServo.attach(SERVO); //Attach the Servo

 pinMode(LED1, OUTPUT); //Set LED to Output

 pinMode(LED2, OUTPUT); //Set LED to Output

 pinMode(LED3, OUTPUT); //Set LED to Output

 pinMode(LED4, OUTPUT); //Set LED to Output

}

void loop()

{

 //Sweep the Servo into 4 regions and change the LEDs

 dist1 = readDistance(15); //Measure IR Distance at 15 degrees

 analogWrite(LED1, dist1); //Adjust LED Brightness

 delay(300); //delay before next measurement

 dist2 = readDistance(65); //Measure IR Distance at 65 degrees

 analogWrite(LED2, dist2); //Adjust LED Brightness

 delay(300); //delay before next measurement

 dist3 = readDistance(115); //Measure IR Distance at 115 degrees

 analogWrite(LED3, dist3); //Adjust LED Brightness

 delay(300); //delay before next measurement

 dist4 = readDistance(165); //Measure IR Distance at 165 degrees

 analogWrite(LED4, dist4); //Adjust LED Brightness

 delay(300); //delay before next measurement

}

int readDistance(int pos)

{

 myServo.write(pos); //Move to given position

 delay(600); //Wait for Servo to move

 int dist = analogRead(IR); //Read IR Sensor

 dist = map(dist, 50, 500, 0, 255); //scale it to LED range

 dist = constrain(dist, 0, 255); //Constrain it

 return dist; //Return scaled distance

}

The program employs a simple function that rotates the servo to the requested
degree, takes the distance measurement, scales it, and then returns it to the
loop(). Which map you choose for the LED range depends on the setup of your
system. I found that the closest object I wanted to detect registered around 500,
and the farthest object was around 50, so the map() was set accordingly. loop()
executes this function for each of the four LEDs, then repeats. When complete,
your system should function similarly to the one shown in the demo video
listed at the beginning of this section.

90 Part II ■ Controlling Your Environment

Summary

In this chapter you learned about the following:

■■ DC motors use electromagnetic induction to create mechanical action
from changes in current.

■■ Motors are inductive loads that must utilize proper protection and power
circuitry to interface safely with your Arduino.

■■ DC motor speed and direction can be controlled with PWM and an H-bridge.

■■ Servo motors enable precise positioning and can be controlled using the
Arduino Servo library.

■■ A linear regulator can be used to create a secondary 5V supply from a
9V battery.

■■ IR distance sensors return analog values representing distances detected
by bouncing infrared light off objects.

■■ Code commenting is critical for easing debugging and sharing.

 91

Parts You’ll Need for This Chapter

Arduino Uno

USB cable

Pushbuttons (n5)

10kΩ resistors (n5)

150Ω resistor

Jumper wires

Breadboard

10KΩ potentiometer

8Ω loudspeaker

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found at
www.exploringarduino.com/content/ch5.

The wiley.com code downloads for this chapter are found at www.wiley.com/
go/exploringarduino on the Download Code tab. The code is in the chapter 05
download and individually named according to the names throughout the chapter.

C h a P t e r

5

Making Sounds

92 Part II ■ Controlling Your Environment

Humans have five senses. As you might have guessed, you won’t be interfacing
your sense of taste with too many electronics; licking your Arduino is a poor
idea. Similarly, smell won’t generally come into play. In fact, if you can smell your
electronics, something is probably burning (and you should stop what you’re
doing). That just leaves the senses of touch, sight, and sound. You’ve already
interfaced with potentiometers and buttons that take advantage of your sense of
touch, and you’ve hooked up LEDs that interface with you sense of sight. Now,
what about your auditory senses? This chapter focuses on using the Arduino to
make sounds so that you can more easily gather feedback from your projects.

You can generate sound with an Arduino in a number of ways. The simplest
method is to use the tone() function, which this chapter focuses on most heavily.
However, you can also use various shields that add more complex, music-playing
capabilities to Arduino with the help of some external processing. (Shields are
add-on boards that attach to the top of your Arduino to add specific function-
ality. You won’t use any in this chapter, but you’ll be using assorted shields in
some of the later chapters.) If you own the Arduino Due, you can use its true
digital-to-analog converter (DAC) to produce sounds.

Understanding	How	Speakers	Work

Before you can make sounds with your Arduino, you need to understand what
sounds are and how humans perceive them. In this first section, you learn about
how sound waves are generated, their properties, and how manipulation of
those properties can produce music, voices, and so on.

The	Properties	of	Sound
Sound is transmitted through the air as a pressure wave. As an object such as
a speaker, a drum, or a bell vibrates, that object also vibrates the air around it.
As the air particles vibrate, they transfer energy to the particles around them,
vibrating these particles as well. In this fashion, a pressure wave is transferred
from the source to your eardrum, by creating a chain reaction of vibrating par-
ticles. So, why do you need to know this to understand how to make sounds
with your Arduino?

You can control two properties of these vibrating particles with your Arduino:
frequency and amplitude. The frequency represents how quickly the air particles
vibrate back and forth, and the amplitude represents the magnitude of their
vibrations. In the physical sense, higher amplitude sounds are louder, and lower
amplitude sounds are quieter. High-frequency sounds are a higher pitch (like a
soprano), and low-frequency sounds are a lower pitch (like bass). Consider the
diagram in Figure 5-1, which shows sinusoidal representations of sound waves
of various amplitudes and frequencies.

 Chapter 5 ■ Making Sounds 93

Figure 5-1: Sound waves of varying frequencies and amplitudes

Figure 5-1 shows three piano notes: low, middle, and soprano C. Each one
shows the given frequencies at both low and high amplitudes. As an example,
to understand frequency and amplitude, focus on middle C. Middle C has a
frequency of 261.63 Hertz (Hz). In other words, a speaker, a guitar string, or
a piano string would complete 261.63 oscillations per second. By taking the
reciprocal of that value, you can find the period of the wave, which is easy to
see in Figure 5-1. 1/261.63 equals 3.822 milliseconds, which is the width of one
complete oscillation in the graph. Using the Arduino, you can set that period
for a square wave and thus adjust the tone of the note.

Importantly, the Arduino (excluding the Due’s true DAC) cannot actually
make a sinusoidal wave that you might observe in the real world. A square
wave is a digital periodic wave—it also oscillates between a high and a low
value, but it switches instantaneously, instead of slowly like a sine wave. This
still creates a pressure wave that results in sound, but it isn’t quite as “pretty”
sounding as a sinusoidal wave.

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

94 Part II ■ Controlling Your Environment

As for the amplitude, you can control that by changing the amount of the
current permitted to flow through the speaker. Using a potentiometer in-line
with the speaker, you can dynamically adjust the volume level of the speaker.

How	a	Speaker	Produces	Sound
Speakers, much like the motors that you learned about in the preceding chapter,
take advantage of electromagnetic forces to turn electricity into motion. Try
holding a piece of metal up to the rear of your speaker. Did you notice anything
interesting? The metal probably sticks to the rear of your speaker, because all
speakers have a sizeable permanent magnet mounted to the back. Figure 5-2
shows a cross section of a common speaker.

Figure 5-2: Speaker cross section

The permanent magnet is mounted behind the voice coil and pole piece shown
in the image. As you send a sinusoidal voltage signal (or a square wave in the
case of the Arduino) into the leads of the coil, the changing current induces a
magnetic field that causes the pole piece and diaphragm to vibrate up and down
as the permanent magnet is attracted to and then repulsed by the magnetic
field that you have generated. This back-and-forth vibration, in turn, vibrates
the air in front of the speaker, effectively creating a sound wave that can travel
to your eardrum.

G
N

U
 F

re
e

D
oc

um
en

ta
tio

n
Li

ce
ns

e

 Chapter 5 ■ Making Sounds 95

Using	tone()	to	Make	Sounds

The Arduino IDE includes a built-in function for easily making sounds of arbi-
trary frequencies. The tone() function generates a square wave of the selected
frequency on the output pin of your choice. The tone() function accepts three
arguments, though the last one is optional:

■■ The first argument sets the pin to generate the tone on.

■■ The second argument sets the frequency of the tone.

■■ The third (optional) argument sets the duration of the tone. If the third
argument is not set, the tone continues playing until you call noTone().

Because tone() uses one of the ATMega’s hardware timers, you can start a
tone and do other things with your Arduino while it continues to play sound
in the background.

In the following sections, you learn how to play arbitrary sound sequences.
Once you’ve gotten that working, you can use tone() as a response to various
inputs (buttons, distance sensors, accelerometers, etc.). At the end of the chapter,
you build a simple five-button piano that you can play.

Including	a	Definition	File
When it comes to playing music, a definition file that maps frequencies to note
names proves useful. This makes it more intuitive to play simple musical clips.
For those familiar with reading sheet music, you know that notes are denoted
with letters representing their pitch. The Arduino IDE includes a header file
that correlates each of these notes with its respective frequency. Instead of dig-
ging through the Arduino install directory to find it, just visit the Exploring
Arduino Chapter 5 webpage, and download the pitch file to your desktop
(www.exploringarduino.com/content/ch5). You’ll place it in your sketch direc-
tory after you’ve created it.

Next, open your Arduino IDE and save the blank sketch that is automatically
created when you open the IDE. As you’ve probably already noticed, when you
save a sketch, it actually saves a folder with that name and places an .ino file
inside of that folder. By adding other files to that folder, you can include them in
your program, all while keeping your code better organized. Copy the pitches.h
file you saved to the desktop into the folder created by the IDE; then close the
Arduino IDE. Open your .ino file in the Arduino IDE and notice the two tabs
that now appear (see Figure 5-3).

96 Part II ■ Controlling Your Environment

Figure 5-3: Arduino IDE with a secondary header file

Click the pitches.h tab to see the contents of the file. Notice that it’s just a list
of definition statements, which map human-readable names to given frequency
values. Simply having the header file in the IDE does not suffice, though. To
ensure that the compiler actually uses those definitions when compiling your
program for the Arduino, you need to tell the compiler to look for that file. Doing
so is easy. Just add this line of code to the top of your .ino file:

#include "pitches.h" //Header file with pitch definitions

To the compiler, this is essentially the same thing as copying and pasting the
contents of the header file into the top of your main file. However, this keeps
the file neater and easier for you to read. In the next sections, you write the code
for the rest of this file so that you can actually use the pitch definitions that you
have just imported.

Wiring	the	Speaker
Now that you have your pitches header file included, you’re ready to build a test
circuit and to write a simple program that can play some music. The electrical
setup is fairly simple and just involves hooking up a speaker to an output pin
of your Arduino. However, remember what you’ve learned in previous chapters
about current-limiting resistors.

Just as with LEDs, you want to put a current-limiting resistor in series with
the speaker to ensure that you don’t try to draw too much current from one of
the Arduino’s I/O pins. As you learned previously, each I/O pin can supply only
a max of 40mA, so pick a resistor that prevents you from exceeding that. The

 Chapter 5 ■ Making Sounds 97

speaker that comes with this book’s kit has an internal resistance of 8Ω (as do
most loudspeakers that you can buy); this resistance comes from the windings
of wire that make up the electromagnet. Recall that Ohm’s law states that V =
IR. In this scenario, the I/O pin is outputting 5V, and you don’t want to exceed
40mA. Solving for R, you find that the minimum resistance must be: R = 5V /
40mA = 125Ω. 8Ω is already accounted for by the speaker, so your in-line resistor
must be at least 125Ω – 8Ω = 117Ω. The nearest common resistor is 150Ω, so you
can use that. By adjusting that resistor value, you can change the volume of the
speaker. To make this as easy as possible, you can use a potentiometer in-line
with the 150Ω resistor, as shown in Figure 5-4. In the schematic, R1 is the 150Ω
resistor, and R2 is the potentiometer.

Figure 5-4: Speaker wiring with volume adjustment knob

Note that unlike in your previous usages of potentiometers this configuration
uses only two pins: the middle (or wiper) pin goes to the speaker, and either one

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

98 Part II ■ Controlling Your Environment

of the end pins connects to the 150Ω resistor. When the knob is turned all the
way toward the unconnected terminal, the entire resistance of the potentiometer
is added to the series resistance of the 150Ω resistor, and the volume lowers.
When the knob is turned all the way toward the connected end terminal, it
adds no resistance to the series, and the speaker is at max volume. Referencing
the schematic in Figure 5-4, wire your speaker to the Arduino. Then, confirm
your wiring using the diagram in Figure 5-5.

Figure 5-5: Speaker wiring diagram

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 5 ■ Making Sounds 99

Speakers do not have a polarity; you can connect them in either direction.
After wiring your speaker successfully, you’re ready to make music!

Making	Sound	Sequences
To play back some songs, you first learn about using arrays to store multiple
values easily. You then implement a simple loop to iterate through the arrays
of notes and play them back on the speaker.

Using Arrays

An array is a sequence of values that are related in some way. By grouping them
together, it is an ideal format to iterate through. You can think of an array as a
numbered list. Each position has an index that indicates its location in the list,
and each index has a value that you want to store. You use an array here to store
the list of notes that you want to play, in the order that you want to play them.

To ensure that the Arduino’s memory is properly managed, you need to
declare arrays with a known length. You can do this either by explicitly specify-
ing the number of items or by simply populating the array with all the values
you are interested in. For example, if you want to make an array that contains
four integer values, you could create it like this:

int numbers[4];

You can optionally initialize the values when you declare it. If you initialize
the values, specifying the length in the brackets is optional. If unspecified, the
length is assumed to equal the number elements that you initialized:

//Both of these are acceptable

int numbers[4] = {-7, 0, 6, 234};

int numbers[] = {-7, 0, 6, 234};

Note that arrays are zero indexed. In other words, the first number is at
position 0, the second is at position 1, and so forth. You can access the elements
in an array at any given index by putting the index of the relevant value in a
square bracket after the variable name. If you want to set the brightness of an
LED connected to pin 9 to the third entry in an array, for example, you can do
so like this:

analogWrite(9,numbers[2]);

100 Part II ■ Controlling Your Environment

Note that because numbering starts at zero, the index of 2 represents the third
value in the array. If you want to change one of the values of the array, you can
do so in a similar fashion:

numbers[2] = 10;

Next, you will use arrays (as shown in these examples) to create a structure
that can hold the sequence of notes that you want to play on your speaker.

Making Note and Duration Arrays

To store the info about the song you want to play, you can use two arrays of the
same length. The first contains the list of pitches, and the second contains the
list of durations for which each note should play in milliseconds. You can then
iterate through the indices of these arrays and play back your tune.

Using the meager musical skills that I’ve maintained from my music classes
back in high school, I’ve assembled a short and catchy tune:

//Note Array

int notes[] = {

 NOTE_A4, NOTE_E3, NOTE_A4, 0,

 NOTE_A4, NOTE_E3, NOTE_A4, 0,

 NOTE_E4, NOTE_D4, NOTE_C4, NOTE_B4, NOTE_A4, NOTE_B4, NOTE_C4, NOTE_D4,

 NOTE_E4, NOTE_E3, NOTE_A4, 0

};

//The Duration of each note (in ms)

int times[] = {

 250, 250, 250, 250,

 250, 250, 250, 250,

 125, 125, 125, 125, 125, 125, 125, 125,

 250, 250, 250, 250

};

Note that both arrays are the same length: 20 items. Notice that some of the
notes are specified as 0. These are musical rests (unplayed beats). Each note pairs
with a duration from the second array. For those familiar with music theory,
note that I’ve made quarter notes 250ms and eighth notes 125ms. The song is
in “four-four” time, in musical terms.

Try out this given note sequence, first; then try to create your own!

NOTE Listen	to	a	recording	of	this	tune,	played	by	an	Arduino:		
www.exploringarduino.com/content/ch5.	You	can	also	find	this		
recording	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

 Chapter 5 ■ Making Sounds 101

Completing the Program

The last step is to actually add playback functionality to the sketch. This can be
accomplished with a simple for loop that goes through each index in the array,
and plays the given note for the given duration. Since you presumably don’t
want to listen to this over and over again, you can put the playback functionality
in the setup() function so that it only happens once. You can restart playback
by hitting the Reset button. Listing 5-1 shows the complete playback program.

Listing 5-1: Arduino Music Player—music.ino

//Plays a song on a speaker

#include "pitches.h" //Header file with pitch definitions

const int SPEAKER=9; //Speaker Pin

//Note Array

int notes[] = {

 NOTE_A4, NOTE_E3, NOTE_A4, 0,

 NOTE_A4, NOTE_E3, NOTE_A4, 0,

 NOTE_E4, NOTE_D4, NOTE_C4, NOTE_B4, NOTE_A4, NOTE_B4, NOTE_C4, NOTE_D4,

 NOTE_E4, NOTE_E3, NOTE_A4, 0

};

//The Duration of each note (in ms)

int times[] = {

 250, 250, 250, 250,

 250, 250, 250, 250,

 125, 125, 125, 125, 125, 125, 125, 125,

 250, 250, 250, 250

};

void setup()

{

 //Play each note for the right duration

 for (int i = 0; i < 20; i++)

 {

 tone(SPEAKER, notes[i], times[i]);

 delay(times[i]);

 }

}

void loop()

{

 //Press the Reset button to play again.

}

102 Part II ■ Controlling Your Environment

If you want to make your own music, make sure that the arrays remain of an
equal length and that you change the upper bound on the for() loop. Because
the tone() function can run in the background, it’s important to use the delay()
function. By delaying the code for an amount of time equal to the duration of the
note, you ensure that the Arduino doesn’t play the next note until the previous
not has finished playing for the time you specified.

Understanding	the	Limitations	of	the	tone()	Function
The tone() function does have a few limitations to be aware of. Like the servo
library, tone() relies on a hardware timer that is also used by the board’s pulse-
width modulation (PWM) functionality. If you use tone(), PWM does not work
right on pins 3 and 11 (on boards other than the Mega).

Also remember that the Arduino I/O pins are not digital-to-analog convert-
ers (DACs). Hence, they output only a square wave at the provided frequency,
not a sine wave. Although this suffices for making tones with a speaker, you’ll
find it undesirable for playing back music. If you want to play back wave files,
your options include using a music-playing shield (such as the adafruit Wave
Shield or the SparkFun MP3 shield), implementing a DAC converter, or using the
built-in DAC available on the Arduino Due using the Due-only Audio library.

The last limitation is that you can use the tone() function on only one pin
at a time, so it isn’t ideal for driving multiple speakers. If you want to drive
multiple speakers at the same time from a standard Arduino, you have to use
manual timer interrupt control, something you learn more about in Chapter 12,
“Hardware and Timer Interrupts.”

NOTE To	read	a	tutorial	on	advanced	multispeaker	control	with	an	Arduino,	visit		
www.jeremyblum.com/2010/09/05/driving-5-speakers-simultaneously-

with-an-arduino/.	You	can	also	find	this	tutorial	on	the	Wiley	website	shown	at	
the	beginning	of	this	chapter.

Building	a	Micro	Piano

Playing back sequences of notes is great for adding audio feedback to projects
you’ve already created. For example, consider replacing or augmenting a green
confirmation LED with a confirmation sound. But, what if you want to dynami-
cally control the sound? To wrap up this chapter, you build a simple pentatonic
piano. The pentatonic scale consists of just five notes per octave rather than the
usual seven. Interestingly, the notes of a pentatonic scale have minimal disso-
nance between pitches, meaning they always sound good together. So, it makes
a lot of sense to use pentatonic notes to make a simple piano.

 Chapter 5 ■ Making Sounds 103

NOTE The	SudoGlove,	among	others	things,	is	a	control	glove	that	can	synthesize	
music	using	the	pentatonic	scale.	You	can	learn	more	about	it	at	www.sudoglove.com.

To make your Arduino piano, you use this pentatonic scale: C, D, E, G, A.
You can choose what octave to use based on your preference. I chose to use the
fourth octave from the header file.

First, wire five buttons up to your Arduino. As with the buttons in Chapter 2,
“Digital Inputs, Outputs, and Pulse-Width Modulation” you use 10kΩ pull-down
resistors with the buttons. In this scenario, you do not need to debounce the but-
tons because the note will be played only while the desired button is held down.
Wire the buttons as shown in Figure 5-6 and keep the speaker wired as you had
it previously.

Figure 5-6: Micro piano wiring diagram

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

104 Part II ■ Controlling Your Environment

The code for the piano is actually very simple. In each iteration through the
loop, each button is checked. So long as a button is pressed, a note is played. Here,
tone() is used without a duration because the note will play as long as the button
is held. Instead, noTone() is called at the end of loop() to ensure that the speaker
stops making noise when all the buttons have been released. Because only a few
notes are needed, you can copy the values from the header file that you care about
directly into the main program file. In a new sketch, load up the code shown in
Listing 5-2 and upload it to your Arduino. Then, jam away on your piano!

Listing 5-2: Pentatonic Micro Piano—piano.ino

//Pentatonic Piano

//C D E G A

#define NOTE_C 262 //Hz

#define NOTE_D 294 //Hz

#define NOTE_E 330 //Hz

#define NOTE_G 392 //Hz

#define NOTE_A 440 //Hz

const int SPEAKER=9; //Speaker on pin 9

const int BUTTON_C=7; //Button pin

const int BUTTON_D=6; //Button pin

const int BUTTON_E=5; //Button pin

const int BUTTON_G=4; //Button pin

const int BUTTON_A=3; //Button pin

void setup()

{

 //No setup needed

 //Tone function sets outputs

}

void loop()

{

 while (digitalRead(BUTTON_C))

 tone(SPEAKER, NOTE_C);

 while(digitalRead(BUTTON_D))

 tone(SPEAKER, NOTE_D);

 while(digitalRead(BUTTON_E))

 tone(SPEAKER, NOTE_E);

 while(digitalRead(BUTTON_G))

 tone(SPEAKER, NOTE_G);

 while(digitalRead(BUTTON_A))

 tone(SPEAKER, NOTE_A);

 //Stop playing if all buttons have been released

 noTone(SPEAKER);

}

 Chapter 5 ■ Making Sounds 105

Each while() loop will continuously call the tone() function at the appro-
priate frequency for as long as the button is held down. The button can be read
within the while() loop evaluation to avoid having to first save the reading to
a temporary value. digitalRead() returns a Boolean “true” whenever a button
input goes high; the value can be evaluated directly by the while() loop. To
keep your code neater, you don’t need to use brackets for the contents of a loop
if the contents are only one line, as in this example. If you have multiple lines,
you must use curly brackets as you have in previous examples.

NOTE To	watch	a	demo	video	of	the	micro	piano,	visit	www.exploringarduino.com/
content/ch5.	You	can	also	find	this	video	on	the	Wiley	website	shown	at	the	begin-
ning	of	this	chapter.

Summary

In this chapter you learned about the following:

■■ Speakers create a pressure wave that travels through the air and is per-
ceived as sound by your ears.

■■ Changing electric current induces a magnetic field that can be used to
create sound from a speaker.

■■ The tone() function can be used to generate sounds of arbitrary frequen-
cies and durations.

■■ The Arduino programming language supports the use of arrays for iterat-
ing through sequences of data.

■■ Speaker volume can be adjusted using a potentiometer in series with
a speaker.

 107

Parts You’ll Need for This Chapter

Arduino Uno

Arduino Leonardo

USB cable (A to B for Uno)

USB cable (A to Micro B for Leonardo)

LED

RGB LED (common cathode)

150Ω resistor

220Ω resistor (n3)

10kΩ resistor (n2)

Pushbutton

Photoresistor

TMP36 temperature sensor

Two-axis joystick (SparkFun, Parallax, or adafruit suggested)

Jumper wires

Breadboard

Potentiometer

C h a P t e r

6

USB and Serial Communication

108 Part II ■ Controlling Your Environment

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found at
www.exploringarduino.com/content/ch6.

In addition, all code can be found at www.wiley.com/go/exploringarduino on
the Download Code tab. The code is in the chapter 06 download and individu-
ally named according to the names throughout the chapter.

Perhaps the most important part of any Arduino is its capability to be pro-
grammed directly via a USB serial port. This feature enables you to program the
Arduino without any special hardware, such as an AVR ISP MKII. Ordinarily,
microcontrollers rely on a dedicated piece of external hardware (such as the
MKII) to serve as a programmer that connects between your computer and the
microcontroller you are trying to program. In the case of the Arduino, this pro-
grammer is essentially built into the board, instead of being a piece of external
hardware. What’s more, this gives you a direct connection to the ATMega’s
integrated Universal Synchronous/Asynchronous Receiver and Transmitter
(USART). Using this interface, you can send information between your host
computer and the Arduino, or between the Arduino and other serial-enabled
components (including other Arduinos).

This chapter covers just about everything you could want to know about con-
necting an Arduino to your computer via USB and transmitting data between
the two. Different Arduinos have different serial capabilities, so this chapter
covers each of them, and you build sample projects with each serial commu-
nication technology to get yourself acquainted with how to take advantage of
them as best as possible. Note that, as a result of this, the parts list includes
several types of Arduinos. Depending on which Arduino you are trying to
learn about, you can pick and choose which sections to read, which examples
to explore, and which parts from the parts list you actually need for your
Arduino explorations.

Understanding	the	Arduino’s	Serial	Communication	
Capabilities

As already alluded to in the introduction to this chapter, the different Arduino
boards offer lots of different serial implementations, both in terms of how the
hardware implements the USB-to-serial adapters and in terms of the software
support for various features. First, in this section, you learn about the various
serial communication hardware interfaces offered on different Arduino boards.

 Chapter 6 ■ USB and Serial Communication 109

NOTE To	learn	all	about	serial	communication,	check	out	this	tutorial:		
www.jeremyblum.com/2011/02/07/arduino-tutorial-6-serial-

communication-and-processing/.	You	can	also	find	this	tutorial	on	the		
Wiley	website	shown	at	the	beginning	of	this	chapter.

To begin, you need to understand the differences between serial and USB.
Depending on how old you are, you might not even remember serial (or techni-
cally, RS-232) ports, because they have been primarily replaced by USB. Figure 6-1
shows what a standard serial port looks like.

Figure 6-1: Serial port

The original Arduino boards came equipped with a serial port that you con-
nected to your computer with a 9-pin serial cable. Nowadays, few computers still
have these ports, although you can use adapters to make DB-9 (the type of 9-pin
connector) serial ports from USB ports. Microcontrollers like the ATMega328P
that you find on the Arduino Uno have one hardware serial port. It includes a
transmit (TX) and receive (RX) pin that can be accessed on digital pins 0 and
1. As explained in the sidebar in Chapter 1, “Getting Up and Blinking with the
Arduino,” the Arduino is equipped with a bootloader that allows you to pro-
gram it over this serial interface. To facilitate this, those pins are “multiplexed”
(meaning that they are connected to more than one function); they connect,
indirectly, to the transmit and receive lines of your USB cable. However, serial
and USB are not directly compatible, so one of two methods is used to bridge

110 Part II ■ Controlling Your Environment

the two. Option one is to use a secondary integrated circuit (IC) to facilitate
the conversion between the two (either on or off the Arduino board). This is
the type of interface present on an Uno, where an intermediary IC facilitates
USB-to-serial communication. Option two is to opt for a microcontroller that
has a USB controller built in (such as the Arduino Leonardo’s 32U4 MCU).

Arduino	Boards	with	an	Internal	or	External	FTDI	USB-to-
Serial	Converter
As just explained, many Arduino boards (and Arduino clones) use a secondary
integrated circuit to facilitate the USB-to-serial conversion. The “FTDI” chip
is a popular chip that has just one function: convert between serial and USB.
When your computer connects to an FTDI chip, it shows up in your computer
as a “Virtual Serial Port” that you can access as if it was a DB9 port wired right
into your computer. Figure 6-2 shows the bottom of an Arduino Nano, which
utilizes an integrated FTDI chip.

FTDI chip

Figure 6-2: Arduino Nano with integrated FTDI chip shown

 Chapter 6 ■ USB and Serial Communication 111

NOTE For	your	computer	to	communicate	with	a	FTDI	serial-to-USB	adapter,	you	
need	to	install	drivers.	You	can	find	the	most	recent	versions	for	Windows,	OS	X,	
and	Linux	at	www.ftdichip.com/Drivers/VCP.htm.	This	is	also	linked	from	the	
Chapter	6	page	on	the	Exploring	Arduino	website.

On some boards, usually to reduce board size, the FTDI chip is external to the
main board, with a standardized 6-pin “FTDI connector” left for connecting to
either an FTDI cable (A USB cable with an FTDI chip built in to the end of the
cable) or a small FTDI breakout board. Figures 6-3 and 6-4 show these options.

Figure 6-3: FTDI cable

Figure 6-4: SparkFun FTDI adapter board

C
re

di
t:

 a
da

fr
ui

t I
nd

us
tr

ie
s,

 w
w
w
.
a
d
a
f
r
u
i
t
.
c
o
m

.

112 Part II ■ Controlling Your Environment

Using a board with a removable FTDI programmer is great if you are design-
ing a project that will not need to be connected to a computer via USB to run.
This will reduce cost if you are making several devices, and will reduce overall
size of the finished product.

Following is a list of Arduino boards that use an onboard FTDI chip. Note,
new Arduino boards no longer use an FTDI chip, so most of these have been
discontinued. However, there are still many clones of these boards available
for purchase, so they are listed here for completeness:

■■ Arduino Nano

■■ Arduino Extreme

■■ Arduino NG

■■ Arduino Diecimila

■■ Arduino Duemilanove

■■ Arduino Mega (original)

Following is a list of Arduino boards that use an external FTDI programmer:

■■ Arduino Pro

■■ Arduino Pro Mini

■■ LilyPad Arduino

■■ Arduino Fio

■■ Arduino Mini

■■ Arduino Ethernet

Arduino	Boards	with	a	Secondary	USB-Capable	ATMega	
MCU	Emulating	a	Serial	Converter
The Arduino Uno was the first board to introduce the use of an integrated circuit
other than the FTDI chip to handle USB-to-serial conversion. Functionally, it
works exactly the same way, with a few minor technical differences. Figure 6-5
shows the Uno’s 8U2 serial converter (now a 16U2 on newer revisions).

Following is a brief list of the differences:

■■ First, in Windows, boards with this new USB-to-serial conversion solu-
tion require a custom driver to be installed. This driver comes bundled
with the Arduino IDE when you download it. (Drivers are not needed
for OS X or Linux.)

 Chapter 6 ■ USB and Serial Communication 113

■■ Second, the use of this second microcontroller unit (MCU) for the conver-
sion allowed a custom Arduino vendor ID and product ID to be reported
to the host computer when the board is connected. When an FTDI-based
board was connected to a computer, it just showed up as generic USB-serial
device. When an Arduino using a non-FTDI converter IC (an ATMega
8U2 in the case of early Arduino Unos, now a 16U2) is connected, it is
identified to the computer as an Arduino.

Atmel 8U2
or 16U2 chip

Figure 6-5: View of the Arduino Uno’s 8U2 serial converter chip

■■ Lastly, because the secondary MCU is fully programmable (it’s running
a firmware stack called LUFA that emulates a USB-to-serial converter),
you can change its firmware to make the Arduino show up as something
different from a virtual serial port, such as a joystick, keyboard, or MIDI
device. If you were to make this sort of change, the USB-to-serial LUFA
firmware would not be loaded, and you would have to program the
Arduino directly using the in-circuit serial programmer with a device
like the AVR ISP MKII.

114 Part II ■ Controlling Your Environment

Following is a list of Arduino boards that use an onboard secondary MCU
to handle USB-to-serial conversion:

■■ Arduino Uno

■■ Arduino Mega 2560

■■ Arduino Mega ADK (based on 2560)

■■ Arduino Due (can also be programmed directly)

Arduino	Boards	with	a	Single	USB-Capable	MCU
The Arduino Leonardo was the first board to have only one chip that acts both
as the user-programmable MCU and as the USB interface. The Leonardo (and
similar Arduino boards) employs the ATMega 32U4 microcontroller, a chip
that has direct USB communication built in. This feature results in several new
features and improvements.

First, board cost is reduced because fewer parts are required, and because
one less factory programming step is needed to produce the boards. Second,
the board can more easily be used to emulate USB devices other than a serial
port (such as a keyboard, mouse, or joystick). Third, the single ordinary USART
port on the ATMega does not have be multiplexed with the USB programmer,
so communication with the host computer and a secondary serial device (such
as a GPS unit) can happen simultaneously.

Following is a list of Arduino boards that use a single USB-capable MCU:

■■ Arduino Due (can also be programmed via secondary MCU)

■■ LilyPad Arduino USB

■■ Arduino Esplora

■■ Arduino Leonardo

■■ Arduino Micro

Arduino	Boards	with	USB-Host	Capabilities
Some Arduino boards can connect to USB devices as a host, enabling you to con-
nect traditional USB devices (keyboards, mice, Android phones) to an Arduino.
Naturally, there must be appropriate drivers to support the device you are con-
necting to. For example, you cannot just connect a webcam to an Arduino Due
and expect to be able to snap photos with no additional work. The Due presently

 Chapter 6 ■ USB and Serial Communication 115

supports a USB host class that enables you to plug a keyboard or mouse into
the Due’s on-the-go USB port to control it. The Arduino Mega ADK uses the
Android Open Accessory Protocol (AOA) to facilitate communication between
the Arduino and an Android device. This is primarily used for controlling
Arduino I/O from an application running on the Android device.

Two Arduino boards that have USB-host capabilities are the Arduino Due
and the Arduino Mega ADK (based on Mega 2560).

Listening	to	the	Arduino

The most basic serial function that you can do with an Arduino is to print to
the computer’s serial terminal. You’ve already done this in several of the previ-
ous chapters. In this section, you explore the functionality in more depth, and
later in the chapter you build some desktop apps that respond to the data you
send instead of just printing it to the terminal. This process is the same for all
Arduinos.

Using	print	Statements
To print data to the terminal, you only need to utilize three functions:

■■ Serial.begin(baud_rate)

■■ Serial.print("Message")

■■ Serial.println("Message")

where baud_rate and "Message" are variables that you specify.

As you’ve already learned, Serial.begin() must be called once at the start
of the program in setup() to prepare the serial port for communication. After
you’ve done this, you can freely use Serial.print() and Serial.println()
functions to write data to the serial port. The only difference between the two
is that Serial.println() adds a carriage return at the end of the line (so that
the next thing printed will appear on the following line). To experiment with
this functionality, wire up a simple circuit with a potentiometer connected to
pin A0 on the Arduino, as shown in Figure 6-6.

116 Part II ■ Controlling Your Environment

Figure 6-6: Potentiometer wiring diagram

After wiring your potentiometer, load on the simple program shown in
Listing 6-1 that will read the value of the potentiometer and print it as both a
raw value and a percentage value.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 6 ■ USB and Serial Communication 117

Listing 6-1: Potentiometer Serial Print Test Program—pot.ino

//Simple Serial Printing Test with a Potentiometer

const int POT=0; //Pot on analog pin 0

void setup()

{

 Serial.begin(9600); //Start serial port with baud = 9600

}

void loop()

{

 int val = analogRead(POT); //Read potentiometer

 int per = map(val, 0, 1023, 0, 100); //Convert to percentage

 Serial.print("Analog Reading: ");

 Serial.print(val); //Print raw analog value

 Serial.print(" Percentage: ");

 Serial.print(per); //Print percentage analog value

 Serial.println("%"); //Print % sign and newline

 delay(1000); //Wait 1 second, then repeat

}

Using a combination of Serial.print() and Serial.println() statements,
this code prints both the raw and percentage values once per second. Note that
by our using Serial.println() only on the last line, each previous transmis-
sion stays on the same line.

Open the serial monitor from the Arduino IDE and ensure that your baud
rate is set to 9600 to match the value set in the Arduino sketch. You should see
the values printing out once per second as you turn the potentiometer.

Using	Special	Characters
You can also transmit a variety of “special characters” over serial, which allow
you to change the formatting of the serial data you are printing. You indicate
these special characters with a slash escape character (\) followed by a com-
mand character. There are a variety of these special characters, but the two of
greatest interest are the tab and newline characters. To insert a tab character,
add a \t to the string. To insert a newline character, add a \n to the string. This
proves particularly useful if you want a newline to be inserted at the beginning
of a string, instead of at the end as the Serial.println() function does. If, for
some reason, you actually want to print \n or \t in the string, you can do so by
printing \\n or \\t, respectively. Listing 6-2 is a modification of the previous
code to use these special characters to show data in a tabular format.

118 Part II ■ Controlling Your Environment

Listing 6-2: Tabular Printing using Special Characters—pot_tabular.ino

//Tabular serial printing test with a potentiometer

const int POT=0; //Pot on analog pin 0

void setup()

{

 Serial.begin(9600); //Start Serial Port with Baud = 9600

}

void loop()

{

 Serial.println("\nAnalog Pin\tRaw Value\tPercentage");

 Serial.println("--");

 for (int i = 0; i < 10; i++)

 {

 int val = analogRead(POT); //Read potentiometer

 int per = map(val, 0, 1023, 0, 100); //Convert to percentage

 Serial.print("A0\t\t");

 Serial.print(val);

 Serial.print("\t\t");

 Serial.print(per); //Print percentage analog value

 Serial.println("%"); //Print % sign and newline

 delay(1000); //Wait 1 second, then repeat

 }

}

As you turn the potentiometer, the output from this program should look
something like the results shown in Figure 6-7.

Figure 6-7: Screenshot of serial terminal with tabular data

 Chapter 6 ■ USB and Serial Communication 119

Changing	Data	Type	Representations
The Serial.print() and Serial.println() functions are fairly intelligent when
it comes to printing out data in the format you are expecting. However, you have
options for outputting data in various formats, including hexadecimal, octal,
and binary. Decimal-coded ASCII is the default format. The Serial.print()
and Serial.println() functions have an optional second argument that speci-
fies the print format. Table 6-1 includes examples of how you would print the
same data in various formats and how it would appear in your serial terminal.

Table 6-1: Serial Data Type Options

DATA TYPE EXAMPLE CODE SERIAL OUTPUT

Decimal Serial.println(23); 23

Hexadecimal Serial.println(23, HEX); 17

Octal Serial.println(23, OCT) 27

Binary Serial.println(23, BIN) 00010111

Talking	to	the	Arduino

What good is a conversation with your Arduino if it’s only going in one direc-
tion? Now that you understand how the Arduino sends data to your computer,
let’s spend some time discussing how to send commands from your computer
to the Arduino. You’ve probably already noticed that the Arduino IDE serial
monitor has a text entry field at the top, and a drop-down menu at the bottom.
Figure 6-8 highlights both.

Figure 6-8: Screenshot of serial terminal highlighting text entry field and Line Ending
Options drop-down menu

120 Part II ■ Controlling Your Environment

First, make sure that the drop-down is set to Newline. The drop-down menu
determines what, if anything, is appended to end of your commands when you
send them to the Arduino. The examples in the following sections assume that
you have Newline selected, which just appends a \n to the end of anything
that you send from the text entry field at the top of the serial monitor window.

Unlike with some other terminal programs, the Arduino IDE serial monitor
sends your whole command string at one time (at the baud rate you specify)
when you press the Enter key or the Send button. This is in contrast to other
serial terminals like PuTTy (linked from this chapter’s digital content page at
www.exploringarduino.com) that send characters as you type them.

Reading	Information	from	a	Computer	or	Other	Serial	Device
You start by using the Arduino IDE serial monitor to send commands manually
to the Arduino. Once that’s working, you’ll learn how to send multiple com-
mand values at once and how to build a simple graphical interface for sending
commands.

It’s important to recall that the Arduino’s serial port has a buffer. In other
words, you can send several bytes of data at once and the Arduino will queue
them up and process them in order based on the content of your sketch. You
do not need to worry about sending data faster than your loop time, but you
do need to worry about sending so much data that it overflows the buffer and
information is lost.

Telling the Arduino to Echo Incoming Data

The simplest thing you can do is to have the Arduino echo back everything that
you send it. To accomplish this, the Arduino basically just needs to monitor its
serial input buffer and print any character that it receives. To do this, you need
to implement two new commands from the Serial object:

■■ Serial.available() returns the number of characters (or bytes) that are
currently stored in the Arduino’s incoming serial buffer. Whenever it’s
more than zero, you will read the characters and echo them back to the
computer.

■■ Serial.read() reads and returns the next character that is available in
the buffer.

Note that each call to Serial.read() will only return 1 byte, so you need to
run it for as long as Serial.available() is returning a value greater than zero.
Each time Serial.read() grabs a byte, that byte is removed from the buffer,
as well, so the next byte is ready to be read. With this knowledge, you can now
write and load the echo program in Listing 6-3 on to your Arduino.

 Chapter 6 ■ USB and Serial Communication 121

Listing 6-3: Arduino Serial Echo Test—echo.ino

//Echo every character

char data; //Holds incoming character

void setup()

{

 Serial.begin(9600); //Serial Port at 9600 baud

}

void loop()

{

 //Only print when data is received

 if (Serial.available() > 0)

 {

 data = Serial.read(); //Read byte of data

 Serial.print(data); //Print byte of data

 }

}

Launch the serial monitor and type anything you want into the text entry
field. As soon as you press Send, whatever you typed is echoed back and dis-
played in the serial monitor. You have already selected to append a “newline”
to the end of each command, which will ensure that each response is on a new
line. That is why Serial.print() is used instead of Serial.println() in the
preceding sketch.

Understanding the Differences Between Chars and Ints

When you send an alphanumeric character via the serial monitor, you aren’t actu-
ally passing a “5”, or an “A”. You’re sending a byte that the computer interprets
as a character. In the case of serial communication, the ASCII character set is
used to represent all the letters, number, symbols, and special commands that
you might want to send. The base ASCII character set, shown in Figure 6-9, is a
7-bit set and contains a total of 128 unique characters or commands.

When reading a value that you’ve sent from the computer, as you did in
Listing 6-3, the data must be read as a char type. Even if you are only expecting
to send numbers from the serial terminal, you need to read values as a character
first, and then convert as necessary. For example, if you were to modify the code
to declare data as type int, sending a value of 5 would return 53 to the serial
monitor because the decimal representation of the character 5 is the number
53. You can confirm this by looking at the ASCII reference table in Figure 6-9.

122 Part II ■ Controlling Your Environment

Figure 6-9: ASCII table

However, you’ll often want to send numeric values to the Arduino. So how
do you do that? You can do so in a few ways. First, you can simply compare the
characters directly. If you want to turn an LED on when you send a 1, you can
compare the character values like this: if (Serial.read() == '1'). Note that
the single quotes around the '1' indicate that it should be treated like a character.

A second option is to convert each incoming byte to an integer by subtracting
the zero-valued character, like this: int val = Serial.read() - '0'. However,
this doesn’t work very well if you intend to send numbers that are greater than 9,
because they will be multiple digits. To deal with this, the Arduino IDE includes
a handy function called parseInt() that attempts to extract integers from a
serial data stream. The examples that follow elaborate on these techniques.

Sending Single Characters to Control an LED

Before your dive into parsing larger strings of multiple-digit numbers, start by
writing a sketch that uses a simple character comparison to control an LED.

C
re

di
t:

 B
en

 B
or

ow
ie

c,
 w
w
w
.
b
e
n
b
o
r
o
w
i
e
c
.
c
o
m

.

 Chapter 6 ■ USB and Serial Communication 123

You’ll send a 1 to turn an LED on, and a 0 to turn it off. Wire an LED up to pin
9 of your Arduino as shown in Figure 6-10.

Figure 6-10: Single LED connected to Arduino on pin 9

As explained in the previous section, when only sending a single character,
the easier thing to do is to do a simple character comparison in an if statement.
Each time a character is added to the buffer, it is compared to a '0' or a '1', and
the appropriate action is taken. Load up the code in Listing 6-4 and experiment
with sending a 0 or a 1 from the serial terminal.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

124 Part II ■ Controlling Your Environment

Listing 6-4: Single LED Control using Characters—single_char_control.ino

//Single Character Control of an LED

const int LED=9;

char data; //Holds incoming character

void setup()

{

 Serial.begin(9600); //Serial Port at 9600 baud

 pinMode(LED, OUTPUT);

}

void loop()

{

 //Only act when data is available in the buffer

 if (Serial.available() > 0)

 {

 data = Serial.read(); //Read byte of data

 //Turn LED on

 if (data == '1')

 {

 digitalWrite(LED, HIGH);

 Serial.println("LED ON");

 }

 //Turn LED off

 else if (data == '0')

 {

 digitalWrite(LED, LOW);

 Serial.println("LED OFF");

 }

 }

}

Note that an else if statement is used instead of a simple else statement.
Because your terminal is also set to send a newline character with each trans-
mission, it’s critical to clear these from the buffer. Serial.read() will read in
the newline character, see that is not equivalent to a '0' or a '1', and it will be
overwritten the next time Serial.read() is called. If just an else statement were
used, both '0' and '\n' would trigger turning the LED off. Even when sending
a '1', the LED would immediately turn off again when the '\n' was received!

 Chapter 6 ■ USB and Serial Communication 125

Sending Lists of Values to Control an RGB LED

Sending a single command character is fine for controlling a single digital pin,
but what if you want to accomplish some more complex control schemes? This
section explores sending multiple comma-separate values to simultaneously
command multiple devices. To facilitate testing this, wire up a common cathode
RGB LED as shown in Figure 6-11.

Figure 6-11: RGB LED connected to Arduino

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

126 Part II ■ Controlling Your Environment

To control this RGB LED, you send three separate 8-bit values (0–255) to set
the brightness of each LED color. For example, to set all the colors to full bright-
ness, you send “255,255,255”. This presents a few challenges:

■■ You need to differentiate between numbers and commas.

■■ You need to turn this sequence of characters into integers that you can
pass to analogWrite() functions.

■■ You need to be able to handle the fact that values could be one, two, or
three digits.

Thankfully, the Arduino IDE implements a very handy function for identifying
and extracting integers: Serial.parseInt(). Each call to this function waits until
a non-numeric value enters the serial buffer, and converts the previous digits
into an integer. The first two values are read when the commas are detected,
and the last value is read when the newline is detected.

To test this function for yourself, load the program shown in Listing 6-5 on
to your Arduino.

Listing 6-5: RGB LED Control via Serial—list_control.ino

//Sending Multiple Variables at Once

//Define LED pins

const int RED =11;

const int GREEN =10;

const int BLUE =9;

//Variables for RGB levels

int rval = 0;

int gval = 0;

int bval = 0;

void setup()

{

 Serial.begin(9600); //Serial Port at 9600 baud

 //Set pins as outputs

 pinMode(RED, OUTPUT);

 pinMode(GREEN, OUTPUT);

 pinMode(BLUE, OUTPUT);

}

void loop()

{

 //Keep working as long as data is in the buffer

 while (Serial.available() > 0)

 Chapter 6 ■ USB and Serial Communication 127

 {

 rval = Serial.parseInt(); //First valid integer

 gval = Serial.parseInt(); //Second valid integer

 bval = Serial.parseInt(); //Third valid integer

 if (Serial.read() == '\n') //Done transmitting

 {

 //set LED

 analogWrite(RED, rval);

 analogWrite(GREEN, gval);

 analogWrite(BLUE, bval);

 }

 }

}

The program keeps looking for the three integer values until a newline is
detected. Once this happens, the values that were read are used to set the bright-
ness of the LEDs. To use this, open the serial monitor and enter three values
between 0 and 255 separated by a comma, like "200,30,180". Try mixing all
kinds of pretty colors!

Talking	to	a	Desktop	App

Eventually, you’re bound to get bored of doing all your serial communication
through the Arduino serial monitor. Conveniently, just about any desktop pro-
gramming language you can think of has libraries that allow it to interface with
the serial ports in your computer. You can use your favorite desktop program-
ming language to write programs that send serial commands to your Arduino
and that react to serial data being transmitted from the Arduino to the computer.

In this book, Processing is the desktop programming language of choice
because it is very similar to the Arduino language that you have already become
familiar with. In fact, the Arduino programming language is based on Processing!
Other popular desktop languages (that have well-documented serial commu-
nication libraries) include Python, PHP, Visual Basic, C, and more. First, you’ll
learn how to read transmitted serial data in Processing, and then you’ll learn
how you can use Processing to create a simple graphical user interface (GUI)
to send commands to your Arduino.

Talking	to	Processing
Processing has a fairly simple programming interface, and it’s similar to the
one you’ve already been using for the Arduino. In this section, you install
Processing, and then write a simple graphical interface to generate a graphical

128 Part II ■ Controlling Your Environment

output based on serial data transmitted from your Arduino. Once that’s work-
ing, you implement communication in the opposite direction to control your
Arduino from a GUI on your computer.

Installing Processing

First things first, you need to install Processing on your machine. This is the
same process that you followed in the first chapter to get the Arduino IDE
installed. Visit http://processing.org/download/ (or find the download link
on the digital content page for this chapter on www.exploringarduino.com) and
download the compressed package for your operating system. Simply unzip it
to your preferred location and you are ready to go! Run the Processing applica-
tion, and you should see an IDE that looks like the one shown in Figure 6-12.

Figure 6-12: The Processing IDE. Does it look familiar?

 Chapter 6 ■ USB and Serial Communication 129

Controlling a Processing Sketch from Your Arduino

For your first experiment with Processing, you use a potentiometer connected
to your Arduino to control the color of a window on your computer. Wire up
your Arduino with a potentiometer, referencing Figure 6-6 again. You already
know the Arduino code necessary to send the analog values from the potenti-
ometer to your computer. The fact that you are now feeding the serial data into
Processing does not have any impact on the way you transmit it.

Reference the code in Listing 6-6 and load it on to your Arduino. It sends an
updated value of the potentiometer to the computer’s serial port every 50 mil-
liseconds. The 50ms is important; if you were to send it as fast as possible, the
Processing sketch wouldn’t be able to handle it as quickly as you are sending it,
and you would eventually overflow the serial input buffer on your computer.

Listing 6-6: Arduino Code to send Data to the Computer—pot_to_processing/arduino_
read_pot

//Sending POT value to the computer

const int POT=0; //Pot on analog pin 0

int val; //For holding mapped pot value

void setup()

{

 Serial.begin(9600); //Start Serial

}

void loop()

{

 val = map(analogRead(POT), 0, 1023, 0, 255); //Read and map POT

 Serial.println(val); //Send value

 delay(50); //Delay so we don't flood

 //the computer

}

Now comes the interesting part: writing a Processing sketch to do something
interesting with this incoming data. The sketch in Listing 6-7 reads the data
in the serial buffer and adjusts the brightness of a color on the screen of your
computer based on the value it receives. First, copy the code from Listing 6-7
into a new Processing sketch. You need to change just one important part. The
Processing sketch needs to know which serial port to expect data to arrive on.
This is the same port that you’ve been programming the Arduino from. In the

130 Part II ■ Controlling Your Environment

following listing, replace "COM3" with your serial port number. Remember that
on Linux and Mac it will look like /dev/ttyUSB0, for example. You can copy the
exact name from within the Arduino IDE if you are unsure.

port = new Serial(this, "COM3", 9600); //setup serial

Listing 6-7: Processing Code to Read Data and Change Color on the Screen—pot_to_
processing/processing_display_color

//Processing Sketch to Read Value and Change Color on the Screen

//Import and initialize serial port library

import processing.serial.*;

Serial port;

float brightness = 0; //For holding value from pot

void setup()

{

 size(500,500); //Window size

 port = new Serial(this, "COM3", 9600); //Set up serial

 port.bufferUntil('\n'); //Set up port to read until

 //newline

}

void draw()

{

 background(0,0,brightness); //Updates the window

}

void serialEvent (Serial port)

{

 brightness = float(port.readStringUntil('\n')); //Gets val

}

After you’ve loaded the code into your Processing IDE and set the serial
port properly, make sure that the Arduino serial monitor isn’t open. Only one
program on your computer can have access to the serial port at a time. Click
the Run button in the Processing IDE (the button in the top left of the window
with a triangle); when you do so, a small window will pop up (see Figure 6-13).
As you turn the potentiometer, you should see the color of the window change
from black to blue.

Now that you’ve seen it working, let’s walk through the code to gain a better
understanding of how the Processing sketch is working. Unlike in Arduino,
the serial library is not imported automatically. By calling import processing
.serial.*; and Serial port; you are importing the serial library and mak-
ing a serial object called port.

 Chapter 6 ■ USB and Serial Communication 131

Figure 6-13: Example windows from Processing sketch

Like the Arduino, Processing has a setup() function that runs once at the
beginning of the sketch. In this sketch, it sets up the serial port and creates a
window of size 500n500 pixels with the command size(500,500). The command
port = new Serial(this, "COM3", 9600) tells Processing everything it needs
to know about creating the serial port. The instance (referred to as “port”) will
run in this sketch and communicate on COM3 (or whatever your serial port is)
at 9600 baud. The Arduino and the program on your computer must agree on
the speed at which they communicate; otherwise, you’ll get garbage characters.
port.bufferUntil('\n') tells Processing to buffer the serial input and not do
anything with the information until it sees a newline character.

Instead of loop(), Processing defines other special functions. This program uses
draw() and serialEvent(). The draw() function is similar to Arduino’s loop();
it runs continuously and updates the display. The background() function sets the
color of the window by setting red, green, and blue values (the three arguments
of the function). In this case, the value from the potentiometer is controlling the
blue intensity, and red and green are set to 0. You can change what color your pot
is adjusting simply by swapping which argument brightness is filling in. RGB
color values are 8-bit values ranging from 0 to 255, which is why the potentiometer
is mapped to those values before being transmitted.

serialEvent() is called whenever the bufferUntil() condition that you
specified in the setup() is met. Whenever a newline character is received, the
serialEvent() function is triggered. The incoming serial information is read
as a string with port.readStringUntil('\n'). You can think of a string as an
array of text. To use the string as a number, you must convert it to a floating-
point number with float(). This sets the brightness variable, changing the
background color of the application window.

To stop the application and close the serial port, click the Stop button in the
Processing IDE; it’s the square located next to the Run button.

132 Part II ■ Controlling Your Environment

SUDOGLOVE PROCESSING DEBUGGER

The	SudoGlove	is	a	control	glove	that	drives	RC	cars	and	controls	other	
hardware.	I	developed	a	Processing	debugging	display	that	graphically	
shows	the	values	of	various	sensors.	You	can	learn	more	about	it	here:		
www.sudoglove.com.

Download	the	source	code	for	the	Processing	display	here:		
www.jeremyblum.com/2011/03/25/processing-based-sudoglove-

visual-debugger/.	You	can	also	find	this	source	code	on	the	Wiley		
website	shown	at	the	beginning	of	this	chapter.

Sending Data from Processing to Your Arduino

The obvious next step is to do the opposite. Wire up an RGB LED to your
Arduino as shown in Figure 6-11 and load on the same program from earlier
that you used to receive a string of three comma-separated values for setting the
red, green, and blue intensities (Listing 6-5). Now, instead of sending a string
of three values from the serial monitor, you select a color using a color picker.

Load and run the code in Listing 6-8 in Processing, remembering to adjust the
serial port number accordingly as you did with the previous sketch. Processing
sketches automatically load collateral files from a folder called “data” in the
sketch folder. The hsv.jpg file is included in the code download for this chapter.
Download it and place it in a folder named “data” in the same directory as your
sketch. Processing defaults to saving sketches in your Documents folder. The
structure will look similar to the one shown in Figure 6-14.

Figure 6-14: Folder structure

The image in the data folder will serve as the color selector.

 Chapter 6 ■ USB and Serial Communication 133

Listing 6-8: Processing Sketch to Set Arduino RGB Colors— processing_control_RGB/
processing_control_RGB

import processing.serial.*; //Import serial library

PImage img; //Image object

Serial port; //Serial port object

void setup()

{

 size(640,256); //Size of HSV image

 img = loadImage("hsv.jpg"); //Load in background image

 port = new Serial(this, "COM9", 9600); //Open serial port

}

void draw()

{

 background(0); //Black background

 image(img,0,0); //Overlay image

}

void mousePressed()

{

 color c = get(mouseX, mouseY); //Get the RGB color where mouse was

pressed

 String colors = int(red(c))+","+int(green(c))+","+int(blue(c))+"\n"; //

extract

values from color

 print(colors); //Print colors for debugging

 port.write(colors); //Send values to Arduino

}

When you execute the program, you should see a screen like the one shown in
Figure 6-15 pop up. Click different colors and the RGB values will be transmitted
to the Arduino to control the RGB LED’s color. Note that the serial console also
displays the commands being sent to assist you in any debugging.

After you’ve finished staring at all the pretty colors, look back at the code and
consider how it’s working. As before, the serial library is imported and a serial
object called port is created. A PImage object call img is also created. This will
hold the background image. In the setup(), the serial port is initialized, the
display window is set to the size of the image, and image is imported into the
image object by calling img = loadImage(“hsv.jpg”).

In the draw() function, the image is loaded in the window with image(img,0,0).
img is the image you want to draw in the window, and 0, 0 are coordinates where
the image will start to be drawn. 0,0 is the top left of the application window.

134 Part II ■ Controlling Your Environment

Figure 6-15: Processing color selection screen

Every time the mouse button is pressed, the mousePressed() function is called.
The color of the pixel where you clicked is saved to a color object named c. The
get() method tells the application where to get the color from (in this case, the
location of the mouse’s X and Y position in the sketch). The sketch converts the
object c into a string that can be sent to the Arduino by converting to integers
representing red, green, and blue. These values are also printed to the Processing
console so that you can see what is being sent.

Ensure that the Arduino is connected and programmed with the code from
Listing 6-5. Run the processing sketch (with the correct serial port specified) and
click around the color map to adjust the color of the LED connected to your Arduino.

Learning	Special	Tricks	with	the	Arduino	Leonardo	
(and	Other	32U4-Based	Arduinos)

The Leonardo, in addition to other Arduinos that implement MCUs that con-
nect directly to USB, has the unique ability to emulate nonserial devices such
as a keyboard or mouse. In this section you learn about using a Leonardo to

 Chapter 6 ■ USB and Serial Communication 135

emulate these devices. You need to be extremely careful to implement these
functions in a way that does not make reprogramming difficult. For example, if
you write a sketch that emulates a mouse and continuously moves your pointer
around the screen, you might have trouble clicking on the Upload button in the
Arduino IDE! In this section, you learn a few tricks that you can use to avoid
these circumstances.

TIP If	you	get	stuck	with	a	board	that’s	too	hard	to	program	due	to	its	keyboard	or	
mouse	input,	hold	down	the	Reset	button	and	release	it	while	pressing	the	Upload	
button	in	the	Arduino	IDE	to	reprogram	it.

When you first connect a Leonardo to a Windows computer, you need to install
drivers, just as you did with the Arduino Uno in the first chapter. Follow the
same directions at http://arduino.cc/en/Guide/ArduinoLeonardoMicro#toc8
for Leonardo-specific instructions. (These instructions are also linked from the
digital content page for this chapter from www.exploringarduino.com.)

Emulating	a	Keyboard
Using the Leonardo’s unique capability to emulate USB devices, you can easily
turn your Arduino into a keyboard. Emulating a keyboard allows you to easily
send key-combination commands to your computer or type data directly into
a file that is open on your computer.

Typing Data into the Computer

The Leonardo can emulate a USB keyboard, sending keystrokes and key com-
binations. This section explores how to use both concepts. First, you write a
simple program that records data from a few analog sensors into a comma-
separated-value (.csv) format that you can later open up with Excel or Google
spreadsheets to generate a graph of the values.

Start by opening the text editor of your choice and saving a blank document
with a .csv extension. To do this, you can generally choose the file type in the
Save dialog, select “All Files,” and manually type the file name with the exten-
sion, such as “data.csv.” The demo video also shows how to create a .csv file.

Next, create a simple circuit like the one shown in Figure 6-16. It will monitor
both light and temperature levels using analog sensors that you have already
seen in Chapter 3, “Reading Analog Sensors.” In addition to the sensors, the
circuit includes a button for turning the logging functionality on and off, and
an LED that will indicate whether it is currently logging data.

136 Part II ■ Controlling Your Environment

Indicator LED Temperature sensor PhotoresistorEnable button

Figure 6-16: Temperature and light sensor circuit

Using the same debouncing function that you implemented in Chapter 2,
“Digital Inputs, Outputs, and Pulse-Width Modulation,” you use the pushbutton
to toggle the logging mode on and off. While in logging mode, the Arduino polls
the sensors and “types” those values into your computer in a comma-separated
format once every second. An indicator LED remains illuminated while you are
logging data. Because you want the Arduino to be constantly polling the state

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 6 ■ USB and Serial Communication 137

of the button, you cannot use a delay() function to wait 1000ms between each
update. Instead, you use the millis() function, which returns the number of
milliseconds since the Arduino was last reset. You can make the Arduino send
data every time the millis() function returns a multiple of 1000ms, effectively
creating a nonblocking 1-second delay between transmissions. To do this, you
can use the modulo operator (%). Modulo returns the remainder of a division. If,
for example, you executed 1000%1000, you would find that the result is 0 because
1000/1000=1, with a remainder of 0. 1500%1000, on the other hand, would return
500 because 1500/1000 is equal to 1, with a remainder of 500. If you take the
modulus of millis() with 1000, the result is zero every time millis() reaches
a value that is a multiple of 1000. By checking this with an if() statement, you
can execute code once every second.

Examine the code in Listing 6-9 and load it onto your Arduino Leonardo.
Ensure that you’ve selected “Arduino Leonardo” from the Tools > Board menu
in the Arduino IDE.

Listing 6-9: Temperature and Light Data Logger—csv_logger.ino

//Light and Temp Logger

const int TEMP =0; //Temp sensor on analog pin 0

const int LIGHT =1; //Light sensor on analog pin 1

const int LED =3; //Red LED on pin 13

const int BUTTON =2; //The button is connected to pin 2

boolean lastButton = LOW; //Last button state

boolean currentButton = LOW; //Current button state

boolean running = false; //Not running by default

int counter = 1; //An index for logged data entries

void setup()

{

 pinMode (LED, OUTPUT); //Set blue LED as output

 Keyboard.begin(); //Start keyboard emulation

}

void loop()

{

 currentButton = debounce(lastButton); //Read debounced state

 if (lastButton == LOW && currentButton == HIGH) //If it was pressed…

 running = !running; //Toggle running state

 lastButton = currentButton; //Reset button value

 if (running) //If logger is running

138 Part II ■ Controlling Your Environment

 {

 digitalWrite(LED, HIGH); //Turn the LED on

 if (millis() % 1000 == 0) //If time is multiple

 //of 1000ms

 {

 int temperature = analogRead(TEMP); //Read the temperature

 int brightness = analogRead(LIGHT); //Read the light level

 Keyboard.print(counter); //Print the index number

 Keyboard.print(","); //Print a comma

 Keyboard.print(temperature); //Print the temperature

 Keyboard.print(","); //Print a comma

 Keyboard.println(brightness); //Print brightness, newline

 counter++; //Increment the counter

 }

 }

 else

 {

 digitalWrite(LED, LOW); //If logger not running, turn LED off

 }

}

/*

* Debouncing Function

* Pass it the previous button state,

* and get back the current debounced button state.

*/

boolean debounce(boolean last)

{

 boolean current = digitalRead(BUTTON); //Read the button state

 if (last != current) //If it's different…

 {

 delay(5); //Wait 5ms

 current = digitalRead(BUTTON); //Read it again

 }

 return current; //Return the current

 //value

}

Before you test the data logger, let’s highlight some of the new functionality
that has been implemented in this sketch. Similarly to how you initialized the
serial communication, the keyboard communication is initialized by putting
Keyboard.begin() in the setup().

Each time through loop(), the Arduino checks the state of the button and runs
the debouncing function that you are already familiar with. When the button
is pressed, the value of the running variable is inverted. This is accomplished
by setting it to its opposite with the ! operator.

While the Arduino is in running mode, the logging step is executed only every
1000ms using the logic described previously. The keyboard functions work very
similarly to the serial functions. Keyboard.print() “types” the given string into

 Chapter 6 ■ USB and Serial Communication 139

your computer. After reading the two analog sensors, the Arduino sends the
values to your computer as keystrokes. When you use Keyboard.println(),
the Arduino emulates pressing the Enter or Return key on your keyboard after
sending the given string. An incrementing counter and both analog values are
entered in a comma-separated format.

Follow the demo video from this chapter’s web page to see this sketch in
action. Make sure that your cursor is actively positioned in a text document,
and then press the button to start logging. You should see the document begin
to populate with data. Hold your hand over the light sensor to change the value
or squeeze the temperature sensor to see the value increase. When you have
finished, press the button again to stop logging. After you save your file, you
can import it into the spreadsheet application of your choice and graph it over
time. This is shown in the demo video.

NOTE To	watch	a	demo	video	of	the	live	temperature	and	light	logger,	visit		
www.exploringarduino.com/content/ch6.	You	can	also	find	this	video	on		
the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Commanding Your Computer to Do Your Bidding

In addition to typing like a keyboard, you can also use the Leonardo to emu-
late key combinations. On Windows computers, pressing the Windows+L keys
locks the computer screen (On Linux, you can use Control+Alt+L). Using that
knowledge paired with a light sensor, you can have your computer lock auto-
matically when you turn the lights off. OS X uses the Control+Shift+Eject, or
Control+Shift+Power keys to lock the machine, which can’t be emulated by the
Leonardo because it cannot send an Eject or Power simulated button press. In
this example, you learn how to lock a Windows computer. You can continue to
use the same circuit shown in Figure 6-16, though only the light sensor will be
used in this example.

Run the previous sketch at a few different light levels and see how the light
sensor reading changes. Using this information, you should pick a threshold
value below which you will want your computer to lock. (In my room, I found
that with the lights off the value was about 300, and it was about 700 with the
lights on. So, I chose a threshold value of 500.) When the light sensor value drops
below that value, the lock command will be sent to the computer. You might
want to adjust this value for your environment.

Load the sketch in Listing 6-10 on to your Arduino. Just make sure you have
your threshold set to a reasonable value first, by testing what light levels in your
room correspond to various analog levels. If you pick a poorly calibrated value,
it might lock your computer as soon as you upload it!

140 Part II ■ Controlling Your Environment

Listing 6-10: Light-Based Computer Lock—lock_computer.ino

//Locks your computer when you turn off the lights

const int LIGHT =1; //Light sensor on analog pin 1

const int THRESHOLD =500; //Brightness must drop below this level

 //to lock computer

void setup()

{

 Keyboard.begin();

}

void loop()

{

 int brightness = analogRead(LIGHT); //Read the light level

 if (brightness < THRESHOLD)

 {

 Keyboard.press(KEY_LEFT_GUI);

 Keyboard.press('l');

 delay(100);

 Keyboard.releaseAll();

 }

}

After loading the program, try flipping the lights off. Your computer should
lock immediately. The following video demo shows this in action. This sketch
implements two new keyboard functions: Keyboard.press() and Keyboard
.releaseAll(). Running Keyboard.press() is equivalent to starting to hold a
key down. So, if you want to hold the Windows key and the L key down at the
same time, you run Keyboard.press() on each. Then, you delay for a short period
of time and run the Keyboard.releaseAll()function to let go of, or release,
the keys. Special keys are defined on the Arduino website: http://arduino.cc/
en/Reference/KeyboardModifiers. (This definition table is also linked from
the content page for this chapter at www.exploringarduino.com/content/ch6.)

NOTE To	watch	a	demo	video	of	the	light-activated	computer	lock,	visit		
www.exploringarduino.com/content/ch6.	You	can	also	find	this	video		
on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Emulating	a	Mouse
Using a two-axis joystick and some pushbuttons, you can use an Arduino
Leonardo to make your own mouse! The joystick will control the mouse location,
and the buttons will control the left, middle, and right buttons of the mouse.

 Chapter 6 ■ USB and Serial Communication 141

Just like with the keyboard functionality, the Arduino language has some great
functions built in that make it easy to control mouse functionality.

First things first, get your circuit set up with a joystick and some buttons as
shown in Figure 6-17. Don’t forget that your buttons need to have pull-down
resistors! The joystick will connect to analog pins 0 and 1. (Joysticks are actually
just two potentiometers hooked up to a knob.) When you move the joystick all
the way in the x direction, it maxes out the x potentiometer, and the same goes
for the y direction.

Joystick Left
mouse
button

Middle
mouse
button

Right
mouse
button

Figure 6-17: Joystick Leonardo mouse circuit

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

142 Part II ■ Controlling Your Environment

The diagram shows a SparkFun joystick, but any will do. (In the video described
after the listing, I used a Parallax joystick.) Depending on the orientation of the
joystick, you might need to adjust the bounds of the map function or swap the
x/y in the code below.

After you’ve wired the circuit, it’s time to load some code onto the Leonardo.
Load up the code in Listing 6-11 and play with the joystick and buttons; the
pointer on your screen should respond accordingly.

Listing 6-11: Mouse Control Code for the Leonardo—mouse.ino

// Make a Mouse!

const int LEFT_BUTTON =4; //Input pin for the left button

const int MIDDLE_BUTTON =3; //Input pin for the middle button

const int RIGHT_BUTTON =2; //Input pin for the right button

const int X_AXIS =0; //Joystick x-axis analog pin

const int Y_AXIS =1; //Joystick y-axis analog pin

void setup()

{

 Mouse.begin();

}

void loop()

{

 int xVal = readJoystick(X_AXIS); //Get x-axis movement

 int yVal = readJoystick(Y_AXIS); //Get y-axis movement

 Mouse.move(xVal, yVal, 0); //Move the mouse

 readButton(LEFT_BUTTON, MOUSE_LEFT); //Control left button

 readButton(MIDDLE_BUTTON, MOUSE_MIDDLE); //Control middle button

 readButton(RIGHT_BUTTON, MOUSE_RIGHT); //Control right button

 delay(5); //This controls responsiveness

}

//Reads joystick value, scales it, and adds dead range in middle

int readJoystick(int axis)

{

 int val = analogRead(axis); //Read analog value

 val = map(val, 0, 1023, -10, 10); //Map the reading

 if (val <= 2 && val >= -2) //Create dead zone to stop mouse

drift

 return 0;

 else //Return scaled value

 return val;

 Chapter 6 ■ USB and Serial Communication 143

}

//Read a button and issue a mouse command

void readButton(int pin, char mouseCommand)

{

 //If button is depressed, click if it hasn't already been clicked

 if (digitalRead(pin) == HIGH)

 {

 if (!Mouse.isPressed(mouseCommand))

 {

 Mouse.press(mouseCommand);

 }

 }

 //Release the mouse if it has been clicked.

 else

 {

 if (Mouse.isPressed(mouseCommand))

 {

 Mouse.release(mouseCommand);

 }

 }

}

This is definitely one of the more complicated sketches that have been covered
so far, so it’s worth stepping through it to both understand the newly introduced
functions and the program flow used to make the joystick mouse.

Each of the button and joystick pins are defined at the top of the sketch, and
the mouse library is started in the setup. Each time through the loop, the joystick
values are read and mapped to movement values for the mouse. The mouse
buttons are also monitored and the button presses are transmitted if necessary.

A readJoystick() function was created to read the joystick values and map
them. Each joystick axis has a range of 1024 values when read into the analog-to-
digital converter (ADC). However, mouse motions are relative. In other words,
passing a value of 0 to Mouse.move() for each axis will result in no movement
on that axis. Passing a positive value for the x-axis will move the mouse to the
right, and a negative value will move it to the left. The larger the value, the
more the mouse will move. Hence, in the readJoystick() function, a value of
0 to 1023 is mapped to a value of –10 to 10. A small buffer value around 0 is
added where the mouse will not move. This is because even while the joystick
is in the middle position, the actual value may fluctuate around 512. By setting
the desired distance back to 0 after being mapped within a certain range, you
guarantee that the mouse will not move on its own while the joystick is not being
actuated. Once the values are ascertained, Mouse.move() is given the x and y
values to move the mouse. A third argument for Mouse.move() determines the
movement of the scroll wheel.

144 Part II ■ Controlling Your Environment

To detect mouse clicks, the readButton() function was created so that it can
be repeated for each of the three buttons to detect. The function detects the cur-
rent state of the mouse with the Mouse.isPressed() command and controls the
mouse accordingly using the Mouse.press() and Mouse.release() functions.

NOTE To	watch	a	demo	video	of	the	joystick	mouse	controlling	a	computer	
pointer,	check	out	www.exploringarduino.com/content/ch6.	You	can	also	
find	this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Summary

In this chapter you learned about the following:

■■ Arduinos connect to your computer via a USB-to-serial converter.

■■ Different Arduinos facilitate a USB-to-serial conversion using either dedi-
cated ICs or built-in USB functionality.

■■ Your Arduino can print data to your computer via your USB serial
connection.

■■ You can use special serial characters to format your serial printing with
newlines and tabs.

■■ All serial data is transmitted as character that can be converted to integers
in a variety of ways.

■■ You can send comma-separated integer lists and use integrated functions
to parse them into commands for your sketch.

■■ You can send data from your Arduino to a Processing desktop application.

■■ You can receive data from a Processing application on your desktop to
control peripherals connected to your Arduino.

■■ An Arduino Leonardo can be used to emulate a keyboard or mouse.

 145

Parts You’ll Need for This Chapter

Arduino Uno

USB cable (A to B for Uno)

Red LEDs (n8)

Yellow LEDs (n3)

Green LEDs (n5)

220Ω resistors (n8)

SN74HC595N shift register DIP IC

Sharp GP2Y0A41SK0F IR distance sensor with cable

Jumper wires

Breadboard

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, videos, and other digital content for this chapter can be found at
www.exploringarduino.com/content/ch7.

In addition, all code can be found at www.wiley.com/go/exploringarduino on
the Download Code tab. The code is in the chapter 07 download and individu-
ally named according to the names throughout the chapter.

C h a P t e r

7

Shift Registers

146 Part II ■ Controlling Your Environment

As you chug away building exciting new projects with your Arduino, you
might already be thinking: “What happens when I run out of pins?” Indeed,
one of the most common projects with the Arduino is using the platform to put
an enormous number of blinking LEDs on just about anything. Light up your
room! Light up your computer! Light up your dog! Okay, maybe not that last one.

But there’s a problem. What happens when you want to start blinking 50 LEDs
(or controlling other digital outputs) but you’ve used up all of your I/O pins? That’s
where shift registers can come in handy. With shift registers, you can expand
the I/O capabilities of your Arduino without having to pay a whole lot more
for a more expensive microcontroller with additional I/O pins. In this chapter,
you’ll learn how shift registers work, and you’ll implement both the software
and hardware necessary to interface your Arduino with shift registers for the
purpose of expanding digital output capabilities of your Arduino. Completing
the exercises in this chapter will familiarize you with shift registers, and will
help you to make a more informed design decision when you are developing a
project with a large number of digital outputs.

CHOOSING THE RIGHT ARDUINO FOR THE JOB

This	chapter,	like	most	of	the	earlier	chapters,	uses	the	Arduino	Uno	as	the	
development	platform.	Any	other	Arduino	will	work	just	as	well	to	complete	
the	exercises	in	this	chapter,	but	it’s	worth	considering	why	you	might	want	
to	use	one	Arduino	over	another	for	a	particular	project	you	may	be	pursu-
ing.	For	example,	you	might	already	be	wondering	why	you	wouldn’t	just	use	
an	Arduino	with	more	I/O	pins,	such	as	the	Mega2560	or	the	Due.	Of	course,	
that	is	a	completely	reasonable	way	to	complete	projects	that	require	more	
outputs.	However,	as	an	engineer,	you	should	always	be	mindful	of	other	
considerations	when	designing	a	new	project.	If	you	only	need	the	process-
ing	power	of	an	Uno,	but	you	need	more	digital	outputs,	for	example,	adding	
a	few	shift	registers	will	be	considerably	cheaper	than	upgrading	your	entire	
platform,	and	will	also	be	more	compact.	As	a	tradeoff,	it	will	also	require	
you	to	write	slightly	more	complex	code,	and	it	might	necessitate	more	
debugging	time	to	get	it	working	right.

Understanding	Shift	Registers

A shift register is a device that accepts a stream of serial bits and simultaneously
outputs the values of those bits onto parallel I/O pins. Most often, these are
used for controlling large numbers of LEDs, such as the configurations found

 Chapter 7 ■ Shift Registers 147

in seven-segment displays or LED matrices. Before you dive into using a shift
register with your Arduino, consider the diagram in Figure 7-1, which shows
the inputs and outputs to a serial-to-parallel shift register. Variations to this
diagram throughout the chapter illustrate how various inputs affect the outputs.

Figure 7-1: Shift register input/output diagram

The eight circles represent LEDs connected to the eight outputs of the shift
register. The three inputs are the serial communication lines that connect the
shift register to the Arduino.

Sending	Parallel	and	Serial	Data
There are essentially two ways to send multiple bits of data. Recall that the
Arduino, like all microcontrollers, is digital; it only understands 1s and 0s.
So, if you want sufficient data to control eight LEDs digitally (each one on or
off), you need to find a way to transmit 8 total bits of information. In previ-
ous chapters, you did this in a parallel fashion by using the digitalWrite()
and analogWrite() commands to exert control over multiple I/O pins. For an
example of parallel information transmission, suppose that you were to turn
on eight LEDs with eight digital outputs; all the bits would be transmitted on
independent I/O pins at roughly the same time. In Chapter 6, “USB and Serial

148 Part II ■ Controlling Your Environment

Communication,” you learned about serial transmission, which transmits 1 bit
of data at time. Shift registers allow you to easily convert between serial and
parallel data transmission techniques. This chapter focuses on serial-to-parallel
shift registers, sometimes called serial in, parallel out (SIPO) shift registers.
With these handy devices, you can “clock in” multiple bytes of data serially,
and output them from the shift register in a parallel fashion. You can also chain
together shift registers, and thus control hundreds of digital outputs from just
three Arduino I/O pins.

Working	with	the	74HC595	Shift	Register
The particular shift register you’ll be using is the 74HC595 shift register. Take
a look at the pin-out diagram from the datasheet shown in Figure 7-2.

Figure 7-2: Shift register pin-out diagram

Understanding the Shift Register Pin Functions

Following is a breakdown of the shift register pin functions:

■■ Pins QA through QH represent the eight parallel outputs from the shift
register (connected to the circles shown in Figure 7-1).

C
re

di
t:

 Im
ag

e
us

ed
 w

ith
 p

er
m

is
si

on
 c

ou
rt

es
y

of
 T

ex
as

 In
st

ru
m

en
ts

,
w
w
w
.
t
i
.
c
o
m

.

 Chapter 7 ■ Shift Registers 149

■■ VCC will connect to 5V.

■■ GND will connect to a shared ground with the Arduino.

■■ The SER pin is represented by the DATA input in Figure 7-1. This is the
pin where you will feed in 8 sequential bit values to set the values of the
parallel outputs.

■■ The SRCLK pin is represented by the CLOCK pin in Figure 7-1. Every
time this pin goes high, the values in the shift register shift by 1 bit. It
will be pulsed eight times to pull in all the data that you are sending on
the data pin.

■■ The RCLK pin is represented by the LATCH pin in Figure 7-1. Also known
as the register clock pin, the latch pin is used to “commit” your recently
shifted serial values to the parallel outputs all at once. This pin allows
you to sequentially shift data into the chip and have all the values show
up on the parallel outputs at the same time.

You will not be using the SRCLR or OE pins in these examples, but you
might want to use them for your project, so it’s worth understanding what they
do. OE stands for output enable. The bar over the pin name indicates that it is
active low. In other words, when the pin is held low, the output will be enabled.
When it is held high, the output will be disabled. In these examples, this pin
will be connected directly to ground, so that the parallel outputs are always
enabled. You could alternatively connect this to an I/O pin of the Arduino to
simultaneously turn all the LEDs on or off. The SRCLR pin is the serial clear
pin. When pulled low, it empties the contents of the shift register. For your
purposes in this chapter, you tie it directly to 5V to prevent the shift register
values from being cleared.

Understanding How the Shift Register Works

The shift register is a synchronous device; it only acts on the rising edge of
the clock signal. Every time the clock signal transitions from low to high, all
the values currently stored in the eight output registers are shifted over one
position. (The last one is either discarded or output on the QH’ pin if you are
cascading registers.) Simultaneously, the value currently on the DATA input
is shifted into the first position. By doing this eight times, the present values
are shifted out and the new values are shifted into the register. The LATCH
pin is set high at the end of this cycle to make the newly shifted values appear
on the outputs. The flowchart shown in Figure 7-3 further illustrates this

150 Part II ■ Controlling Your Environment

program flow. Suppose, for example, that you want to set every other LED
to the ON state (QA, QC, QE, QG). Represented in binary, you want the output
of the parallel pins on the shift register to look like this: 10101010.

Figure 7-3: Shifting a value into a shift register

 Chapter 7 ■ Shift Registers 151

Now, follow the steps for writing to the shift register above. First, the LATCH
pin is set low so that the current LED states are not changed while new values
are shifted in. Then, the LED states are shifted into the registers in order on the
CLOCK edge from the DATA line. After all the values have been shifted in, the
LATCH pin is set high again, and the values are outputted from the shift register.

Shifting	Serial	Data	from	the	Arduino
Now that you understand what’s happening behind the scenes, you can write
the Arduino code to control the shift register in this fashion. As with all your
previous experiments, you use a convenient function that’s built in to the Arduino
IDE to shift data into the register IC. You can use the shiftOut() function to
easily shift out 8 bits of data onto an arbitrary I/O pin. It accepts four parameters:

■■ The data pin number

■■ The clock pin number

■■ The bit order

■■ The value to shift out

If, for example, you want to shift out the alternating pattern described in the
previous section, you could use the shiftOut() function as follows:

shiftOut(DATA, CLOCK, MSBFIRST, B10101010);

The DATA and CLOCK constants are set to the pin numbers for those lines.
MSBFIRST indicates that the most significant bit will be sent first (the leftmost
bit when looking at the binary number to send). You could alternatively send
the data with the LSBFIRST setting, which would start by transmitting the bits
from the right side of the binary data. The final parameter is the number to be
sent. By putting a capital B before the number, you are telling the Arduino IDE
to interpret the following numbers as a binary value rather than as a decimal
integer.

Next, you build a physical version of the system that you just learned about
in the previous sections. First, you need to get the shift register wired up to
your Arduino:

■■ The DATA pin will connect to pin 8.

■■ The LATCH pin will connect to pin 9.

■■ The CLOCK pin will connect to pin 10.

Don’t forget to use current limiting resistors with your LEDs. Reference the
diagram shown in Figure 7-4 to set up the circuit.

152 Part II ■ Controlling Your Environment

Figure 7-4: Eight LED shift register circuit diagram

Now, using your understanding of how shift registers work, and your under-
standing of the shiftOut() function, you can use the code in Listing 7-1 to write
the alternating LED pattern to the attached LEDs.

Listing 7-1: Alternating LED Pattern on a Shift Register—alternate.ino

const int SER =8; //Serial output to shift register

const int LATCH =9; //Shift register latch pin

const int CLK =10; //Shift register clock pin

void setup()

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 7 ■ Shift Registers 153

{

 //Set pins as outputs

 pinMode(SER, OUTPUT);

 pinMode(LATCH, OUTPUT);

 pinMode(CLK, OUTPUT);

 digitalWrite(LATCH, LOW); //Latch low

 shiftOut(SER, CLK, MSBFIRST, B10101010); //Shift most sig. bit first

 digitalWrite(LATCH, HIGH); //Latch high - show pattern

}

void loop()

{

 //Do nothing

}

Because the shift register will latch the values, you need to send them only
one time in the setup; they then stay at those values until you change them to
something else. This program follows the same steps that were shown graphi-
cally in Figure 7-3. The LATCH pin is set low, the 8 bits of data shifted in using
the shiftOut() function, and then the LATCH pin is set high again so that the
shifted values are output on the parallel output pins of the shift register IC.

DAISY CHAINING SHIFT REGISTERS

Getting	eight	digital	outputs	from	three	I/O	pins	is	a	pretty	good	tradeoff,	but	
what	if	you	could	get	even	more?	You	can!	By	daisy	chaining	multiple	shift	
registers	together,	you	could	theoretically	add	hundreds	of	digital	outputs	
to	your	Arduino	using	just	three	pins.	If	you	do	this,	you’ll	probably	want	to	
use	a	beefier	power	supply	than	just	USB.	The	current	requirements	of	a	few	
dozen	LEDs	can	add	up	very	quickly.	

Recall	from	the	pin-out	in	Figure	7-2	that	there	is	an	unused	pin	called	
QH’.	When	the	oldest	value	is	shifted	out	of	the	shift	register,	it	isn’t	dis-
carded;	it’s	actually	sent	out	on	that	pin.	By	connecting	the	QH’	to	the	DATA	
pin	of	another	shift	register,	and	sharing	the	LATCH	and	CLOCK	pins	with	the	
first	shift	register,	you	can	create	a	16-bit	shift	register	that	controls	twice	
as	many	pins.	

You	can	keep	adding	more	and	more	shift	registers,	each	connected	to	the	
last	one,	to	add	a	crazy	of	number	outputs	to	your	Arduino.	You	can	try	this	
out	by	hooking	up	another	shift	register	as	described	and	simply	executing	
the	shiftOut() function in	your	code	twice.	(Each	call	to	shiftOut()	can	
handle	only	8	bits	of	information.)

154 Part II ■ Controlling Your Environment

Converting	Between	Binary	and	Decimal	Formats
In Listing 7-1, the LED state information was written as a binary string of digits.
This string helps you visualize which LEDs will be turned on and off. However,
you can also write the pattern as a decimal value by converting between base2
(binary) and base10 (decimal) systems. Each bit in a binary number (starting
from the rightmost, or least significant, bit) represents an increasing power of 2.
Converting binary representations to decimal representations is very straight-
forward. Consider the binary number from earlier displayed in Figure 7-5 with
the appropriate decimal conversion steps.

Figure 7-5: Binary to decimal conversion

The binary value of each bit represents an incrementing power of 2. In the
case of this number, bits 7, 5, 3, and 1 are high. So, to find the decimal equiva-
lent, you add 27, 25, 23, and 21. The resulting decimal value is 170. You can prove
to yourself that this value is equivalent by substituting it into the code listed
earlier. Replace the shiftOut() line with this version:

shiftOut(SER, CLK, MSBFIRST, 170);

You should see the same result as when you used the binary notation.

Controlling	Light	Animations	with	a	Shift	Register

In the previous example, you built a static display with a shift register. However,
you’ll probably want to display more dynamic information on your LEDs. In
the next two examples, you use a shift register to control a lighting effect and
a physical bar graph.

Building	a	“Light	Rider”
The light rider is a neat effect that makes it looks like the LEDs are chasing each
other back and forth. Continue to use the same circuit that you used previously.
The shiftOut() function is very fast, and you can use it to update the shift

 Chapter 7 ■ Shift Registers 155

register several thousand times per second. Because of this, you can quickly
update the shift register outputs to make dynamic lighting animations. Here,
you light up each LED in turn from left to right, then from right to left. Watch the
demo video linked at the end of this section to see this finished circuit in action.

You first want to figure out each animation state so that you can easily cycle
through them. For each time step, the LED currently illuminated turns off, and
the next light turns on. When the lights reach the end, the same thing happens
in reverse. The timing diagram in Figure 7-6 shows how the lights will look
for each time step and the decimal value required to turn that specific LED on.

Figure 7-6: Light rider animation steps

156 Part II ■ Controlling Your Environment

Recalling what you learned earlier in the chapter, convert the binary values
for each light step to decimal values that can easily be cycled through. Using a
for loop, you can cycle through an array of each of these values and shift them
out to the shift register one at the time. The code in Listing 7-2 does just that.

Listing 7-2: Light Rider Sequence Code—lightrider.ino

//Make a light rider animation

const int SER =8; //Serial output to shift register

const int LATCH =9; //Shift register latch pin

const int CLK =10; //Shift register clock pin

//Sequence of LEDs

int seq[14] = {1,2,4,8,16,32,64,128,64,32,16,8,4,2};

void setup()

{

 //Set pins as outputs

 pinMode(SER, OUTPUT);

 pinMode(LATCH, OUTPUT);

 pinMode(CLK, OUTPUT);

}

void loop()

{

 for (int i = 0; i < 14; i++)

 {

 digitalWrite(LATCH, LOW); //Latch low - start sending

 shiftOut(SER, CLK, MSBFIRST, seq[i]); //Shift most sig. bit first

 digitalWrite(LATCH, HIGH); //Latch high - stop sending

 delay(100); //Animation speed

 }

}

By adjusting the value within the delay function, you can change the speed
of the animation. Try changing the values of the seq array to make different
pattern sequences.

NOTE To	watch	a	demo	video	of	the	light	rider,	check	out	www.exploringarduino
.com/content/ch7.	You	can	also	find	this	video	on	the	Wiley	website	shown	at	the	
beginning	of	this	chapter.

 Chapter 7 ■ Shift Registers 157

Responding	to	Inputs	with	an	LED	Bar	Graph
Using the same circuit but adding an IR distance sensor, you can make a bar
graph that responds to how close you get. To mix it up a bit more, try using
multiple LED colors. The circuit diagram in Figure 7-7 shows the circuit modi-
fied with different colored LEDs and an IR distance sensor.

Figure 7-7: Distance-responsive bar graph

Using the knowledge you already have from working with analog sensors
and the shift register, you should be able to make thresholds and set the LEDs
accordingly based on the distance reading. Figure 7-8 shows the decimal values
that correspond to each binary representation of LEDs.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

158 Part II ■ Controlling Your Environment

Figure 7-8: Bar graph decimal representations

As you discovered in Chapter 3, “Reading Analog Sensors,” the range of usable
values for the IR distance sensor is not the full 10-bit range. (I found that a max
value of around 500 worked for me, but your setup will probably differ.) Your
minimum might not be 0 either. It’s best to test the range of your sensor and fill
in appropriate values. You can place all the bar graph decimal representations
in an array of nine values. By mapping the IR distance sensor (and constraining
it) from 0 to 500 down to 0 to 8, you can quickly and easily assign distances to
bar graph configurations. The code in Listing 7-3 shows this method in action.

 Chapter 7 ■ Shift Registers 159

Listing 7-3: Bar Graph Distance Control—bargraph.ino

//A bar graph that responds to how close you are

const int SER =8; //Serial output to shift register

const int LATCH =9; //Shift register latch pin

const int CLK =10; //Shift register clock pin

const int DIST =0; //Distance sensor on analog pin 0

//Possible LED settings

int vals[9] = {0,1,3,7,15,31,63,127,255};

//Maximum value provided by sensor

int maxVal = 500;

//Minimum value provided by sensor

int minVal = 0;

void setup()

{

 //Set pins as outputs

 pinMode(SER, OUTPUT);

 pinMode(LATCH, OUTPUT);

 pinMode(CLK, OUTPUT);

}

void loop()

{

 int distance = analogRead(DIST);

 distance = map(distance, minVal, maxVal, 0, 8);

 distance = constrain(distance,0,8);

 digitalWrite(LATCH, LOW); //Latch low - start sending

 shiftOut(SER, CLK, MSBFIRST, vals[distance]); //Send data, MSB first

 digitalWrite(LATCH, HIGH); //Latch high - stop sending

 delay(10); //Animation speed

}

Load the above program on to your Arduino, and move your hand back and
forth in front of the distance sensor—you should see the bar graph respond
by going up and down in parallel with your hand. If you find that the graph
hovers too much at “all on” or “all off”, try adjusting the maxVal and minVal
values to better fit the readings from your distance sensor. To test the values
you are getting at various distances, you can initialize a serial connection in
the setup() and call Serial.println(distance); right after you perform the
analogRead(DIST); step.

160 Part II ■ Controlling Your Environment

NOTE To	watch	a	demo	video	of	the	distance	responsive	bar	graph,	visit		
www.exploringarduino.com/content/ch7.	You	can	also	find	this	video	on		
the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Summary

In this chapter you learned about the following:

■■ How a shift register works

■■ The differences between serial and parallel data transmission

■■ The differences between decimal and binary data representations

■■ How to create animations using a shift register

P a r t

III
Communication Interfaces

In	This	Part

Chapter 8: The I2C Bus
Chapter 9: The SPI Bus
Chapter 10: Interfacing with Liquid Crystal Displays
Chapter 11: Wireless Communication with XBee Radios

 163

C h a P t e r

8

The I2C Bus

Parts You’ll Need for This Chapter

Arduino Uno

USB cable (A to B for Uno)

Red LED

Yellow LEDs (n3)

Green LEDs (n4)

220Ω resistors (n8)

4.7kΩ resistors (n2)

SN74HC595N shift register DIP IC

TC74A0-5.0VAT I2C temperature sensor

Jumper wires

Breadboard

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found
at www.exploringarduino.com/content/ch8.

In addition, all code can be found at www.wiley.com/go/exploringarduino on
the Download Code tab. The code is in the chapter 08 download and individu-
ally named according to the names throughout the chapter.

164 Part III ■ Communication Interfaces

You’ve already learned how to connect both analog and digital inputs/outputs,
but what about more complicated devices? The Arduino can expand its capabilities
by interfacing with a variety of external components. Many integrated circuits
implement standardized digital communication protocols to facilitate communi-
cation between your microcontroller and a wide array of possible modules. This
chapter explores the I2C bus (pronounced “eye squared see” or “eye two see”).

The I2C bus enables robust, high-speed, two-way communication between
devices while using a minimal number of I/O pins to facilitate communication.
An I2C bus is controlled by a master device (usually a microcontroller), and
contains one or more slave devices that receive information from the master.
In this chapter, you learn about the I2C protocol, and you implement it to com-
municate with a digital I2C temperature sensor capable of returning measure-
ments as degree values rather than as arbitrary analog values. You build upon
knowledge from previous chapters by combining what you learn in this chapter
to expand earlier projects.

NOTE Follow	the	steps	of	this	chapter	with	this	tutorial	video:	www.jeremyblum
.com/2011/02/13/arduino-tutorial-7-i2c-and-processing/.	You	can	also	
find	this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

History	of	the	I2C	Bus

When it comes to communication protocols, understanding how the protocol
evolved over time makes it a lot easier to understand why it works the way it
does. The I2C protocol was invented by Phillips in the early 1980s to allow for
relatively low-speed communication between various ICs. The protocol was
standardized by the 1990s, and other companies quickly began to adopt the
protocol, releasing their own compatible chips. Generically, the protocol is known
as the “two-wire” protocol because two lines are used for communication, a
clock and data line. Although not all two-wire protocol devices have paid the
license fee to be called I2C devices, they are commonly all referred to as I2C.
This is similar to how Kleenex® is often used to refer to all tissues, even those
that aren’t manufactured by Kleenex®. If you find a device that says it uses the
“two-wire” communication protocol, you can be fairly certain that it will work
in the ways described in this chapter.

I2C	Hardware	Design

Figure 8-1 shows a common reference setup for an I2C communication system.
Unlike previous digital communication that you’ve seen in this book, I2C is
unique in that multiple devices all share the same communication lines: a clock

 Chapter 8 ■ The I2C Bus 165

signal (SCL) and a bidirectional data line used for sending information back
and forth between the master and the slaves (SDA). Notice, as well, that the I2C
bus requires pull-up resistors on both data lines.

Figure 8-1: I2C reference hardware configuration

Communication	Scheme	and	ID	Numbers
The I2C bus allows multiple slave devices to share communication lines with
a single master device. In this chapter, the Arduino acts as the master device.
The bus master is responsible for initiating all communications. Slave devices
cannot initiate communications; they can only respond to requests that are
sent by the master device. Because multiple slave devices share the same com-
munication lines, it’s very important that only the master device can initiate
communication. Otherwise, multiple devices may try to talk at the same time
and the data would get garbled.

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

166 Part III ■ Communication Interfaces

All commands and requests sent from the master are received by all devices
on the bus. Each I2C slave device has a unique 7-bit address, or ID number. When
communication is initiated by the master device, a device ID is transmitted. I2C
slave devices react to data on the bus only when it is directed at their ID number.
Because all the devices are receiving all the messages, each device on the I2C
bus must have a unique address. Some I2C devices have selectable addresses,
whereas others come from the manufacturer with a fixed address. If you want
to have multiple numbers of the same device on one bus, you need to identify
components that are available with different IDs.

Temperature sensors, for example, are commonly available with various pre-
programmed I2C addresses because it is common to want more than one on a
single I2C bus. In this chapter, you use the TC74 temperature sensor. A peek at
the TC74 datasheet reveals that it is available with a variety of different addresses.
Figure 8-2 shows an excerpt of the datasheet. In this chapter, you use TC74A0-
5.0VAT, which is the 5V, T0-220 version of the IC with an address of 1001000.

Figure 8-2: TC74 address options

You can purchase this particular IC with eight different ID numbers; hence,
you could put up to eight of them on one I2C bus and read each of them inde-
pendently. While you’re writing programs to interface with this temperature
sensor later in this chapter, make sure to be aware of the ID of the device you
ordered so that you send the right commands!

Other I2C chips, such as the AD7414 and AD7415, have address select (AS)
pins that allow you to configure the I2C address of the device. Take a look at
the excerpt from the AD7414 datasheet in Figure 8-3.

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

 Chapter 8 ■ The I2C Bus 167

Figure 8-3: AD7414 addressing

As shown in Figure 8-3, the AD7414 is available in four versions, two with
an AS pin and two without. The versions with AS pins can each have three
possible ID numbers depending on whether the AS pin is left disconnected, is
tied to VCC, or is tied to GND.

Hardware	Requirements	and	Pull-Up	Resistors
You may have noticed in Figure 8-1 that the standard I2C bus configuration
requires pull-up resistors on both the clock and data lines. The value for these
resistors depends on the slave devices and how many of them are attached. In
this chapter, you use 4.7kΩ resistors for both pull-ups; this is a fairly standard
value that will be specified by many datasheets.

Communicating	with	an	I2C	Temperature	Probe

The steps for communicating with different I2C devices vary based on the
requirements of the specific device. Thankfully, you can use the Arduino I2C
library to abstract away most of the difficult timing work. In this section of the
chapter, you talk to the I2C temperature sensor described earlier. You learn how
to interpret the datasheet information as you progress so that you can apply
these concepts to other I2C devices with relative ease.

The basic steps for controlling any I2C device are as follows:

 1. Master sends a start bit.

 2. Master sends 7-bit slave address of device it wants to talk to.

 3. Master sends read (1) or write (0) bit depending on whether it wants to
write data into an I2C device’s register or if it wants to read from one of
the I2C device’s registers.

 4. Slave responds with an “acknowledge” or ACK bit (a logic low).

C
re

di
t:

 A
na

lo
g

D
ev

ic
es

, I
nc

.,
w
w
w
.
a
n
a
l
o
g
.
c
o
m

.

168 Part III ■ Communication Interfaces

 5. In write mode, master sends 1 byte of information at a time, and slave
responds with ACKs. In read mode, master receives 1 of byte information
at a time and sends an ACK to the slave after each byte.

 6. When communication has been completed, the master sends a stop bit.

Setting	Up	the	Hardware
To confirm that your first program works as expected, you can use the serial
monitor to print out temperature readings from an I2C temperature sensor to
your computer. Because this is a digital sensor, it prints the temperature in
degrees. Unlike the temperature sensors that you used in previous chapters,
you do not have to worry about converting an analog reading to an actual
temperature. How convenient! Now, wire a temperature senor to the Arduino
as shown in Figure 8-4.

Figure 8-4: Temperature sensor

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 8 ■ The I2C Bus 169

Note that the SDA and SCL pins are wired to pins A4 and A5, respectively.
Recall from earlier in the chapter that the SDA and SCL are the two pins used
for communicating with I2C devices—they carry data and clock signals, respec-
tively. You’ve already learned about multiplexed pins in previous chapters. On
the Arduino, pins A4 and A5 are multiplexed between the analog-to-digital
converter (ADC) and the hardware I2C interface. When you initialize the Wire
library in your code, those pins connect to the ATMega’s I2C controller, enabling
you to communicate with the Wire object to I2C devices via those pins. When
using the Wire library, you cannot use pins A4 and A5 as analog inputs because
they are reserved for communication with I2C devices.

Referencing	the	Datasheet
Next up, you need to write the software that instructs the Arduino to request
data from the I2C temperature sensor. The Arduino Wire library makes this
fairly easy. To use it properly, you need to know how to read the datasheet
to determine the communication scheme that this particular chip uses. Let’s
dissect the communication scheme presented in the datasheet using what you
already know about how I2C works. Consider the diagrams from the datasheet
shown in Figures 8-5 and 8-6.

Figure 8-5: TC74 sensor communication scheme

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

170 Part III ■ Communication Interfaces

Figure 8-6: TC74 register information

You can both read from and write to this IC, as shown in the datasheet in
Figure 8-5. The TC74 has two registers, one that contains the current temperature in
Celsius and one that contains configuration information about the chip (including
standby state and data-ready state). Table 4-1 of the datasheet shows this. You don’t

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

 Chapter 8 ■ The I2C Bus 171

need to mess with the configuration info; you only want to read the temperature
from the device. Tables 4-3 and 4-4 within Figure 8-6 show how the temperature
information is stored within the 8-bit data register.

The “Read Byte Format” section of Figure 8-5 outlines the process of reading
the temperature from the TC74:

 1. Send to the device’s address in write mode and write a 0 to indicate that
you want to read from the data register.

 2. Send to the device’s address in read mode and request 8 bits (1 byte) of
information from the device.

 3. Wait to receive all 8 bits of temperature information.

Now that you understand the steps necessary to request information from
this device, you should be able to better understand how similar I2C devices
would also work. When it doubt, search the web for code examples that show
how to connect your Arduino to various I2C devices. Next up, you write the
code that executes the three steps outlined earlier.

Writing	the	Software
Arduino’s I2C communication library is called the Wire library. After you’ve
included it at the top of your sketch, you can easily write to and read from I2C
devices. As a first step for your I2C temperature sensor system, load up the code
in Listing 8-1, which takes advantage of the functions built in to the Wire library.
See whether you can match up various Wire commands in the following code
with the steps outlined in the previous section.

Listing 8-1: I2C Temperature Sensor Printing Code—read_temp.ino

//Reads Temp from I2C temperature sensor

//and prints it on the serial port

//Include Wire I2C library

#include <Wire.h>

int temp_address = 72; //1001000 written as decimal number

void setup()

{

 //Start serial communication at 9600 baud

Serial.begin(9600);

 //Create a Wire object

 Wire.begin();

}

void loop()

172 Part III ■ Communication Interfaces

{

 //Send a request

 //Start talking to the device at the specified address

 Wire.beginTransmission(temp_address);

 //Send a bit asking for register zero, the data register

 Wire.write(0);

 //Complete Transmission

 Wire.endTransmission();

 //Read the temperature from the device

 //Request 1 Byte from the specified address

 Wire.requestFrom(temp_address, 1);

 //Wait for response

 while(Wire.available() == 0);

 //Get the temp and read it into a variable

 int c = Wire.read();

 //Do some math to convert the Celsius to Fahrenheit

 int f = round(c*9.0/5.0 +32.0);

 //Send the temperature in degrees C and F to the serial monitor

 Serial.print(c);

 Serial.print("C ");

 Serial.print(f);

 Serial.println("F");

 delay(500);

}

Consider how the commands in this program relate to previously mentioned
steps. Wire.beginTransmission() starts the communication with a slave device
with the given ID. Next, the Wire.write() command sends a 0, indicating that
you want to be reading from the temperature register. You then send a stop bit
with the Wire.endTransmission() to indicate that you have finished writing to
the device. With the next three steps, the master reads from the slave I2C device.
Because you issue a Wire.requestFrom() command, the master will expect to
receive 1 byte of data back from the slave. The Wire.available() command
within the while() loop will block the program from executing the rest of the
code until data is available on the I2C line. This gives the slave device time to
respond. Finally, the 8-bit value is read into an integer variable with a Wire.
read() command.

The program in Listing 8-1 also handles converting the Celsius temperature to
Fahrenheit, for those who are not metrically inclined. You can find the formula

 Chapter 8 ■ The I2C Bus 173

for this conversion with a simple web search. I’ve chosen to round the result to
a whole number.

Now, run the preceding code on your Arduino and open up the serial moni-
tor on your computer. You should see an output that looks something like that
shown in Figure 8-7.

Figure 8-7: I2C temperature sensor serial output

Combining	Shift	Registers,	Serial	Communication,	
and	I2C	Communications

Now that you have a simple I2C communication scheme set up with serial
printing, you can apply some of your knowledge from previous chapters to
do something more interesting. You use the shift register graph circuit from
Chapter 7, “Shift Registers,” along with a Processing desktop sketch to visualize
temperature in the real world and on your computer screen.

Building	the	Hardware	for	a	Temperature	Monitoring	
System
First things first, get the system wired up. You’re essentially just combining the
shift register circuit from the previous chapter with the I2C circuit from this
chapter. Your setup should look like Figure 8-8.

174 Part III ■ Communication Interfaces

Figure 8-8: I2C temperature sensor with shift register bar graph (part of the TC74 has
been made transparent so you can see the wires that connect behind it)

Modifying	the	Embedded	Program
You need to make two adjustments to the previous Arduino program to make
serial communication with Processing easier, and to implement the shift register
functionality. First, modify the print statements in the program you just wrote
to look like this:

Serial.print(c);

Serial.print("C,");

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 8 ■ The I2C Bus 175

Serial.print(f);

Serial.print("F.");

Processing needs to parse the Celsius and Fahrenheit temperature data. By
replacing the spaces and carriage returns with commas and periods, you can
easily look for these delimiting characters and use them to parse the data.

Next, you need to add the shift register code from the previous chapter, and
map the LED levels appropriately to the temperature range that you care about.
If you a need a refresher on the shift register code that you previously wrote,
take another look at Listing 7-3; much of the code from that program will be
reused here, with a few small tweaks. To begin, change the total number of
light variables from nine to eight. With this change, you always leave one LED
on as an indication that the system is working (the 0 value is eliminated from
the array). You need to accommodate for that change in the variable value map-
ping, and you need to map a range of temperatures to LED states. Check out the
complete code sample in Listing 8-2 to see how that is accomplished. I chose to
make my range from 24°C to 31°C (75°F to 88°F), but you can choose any range.

Listing 8-2: I2C Temperature Sensors Code with Shift Register LEDs and Serial
Communication—temp_unit.ino

//Reads temp from I2C temperature sensor

//Show it on the LED bar graph, and show it in Processing

//Include Wire I2C library

#include <Wire.h>

const int SER =8; //Serial Output to Shift Register

const int LATCH =9; //Shift Register Latch Pin

const int CLK =10; //Shift Register Clock Pin

int temp_address = 72;

//Possible LED settings

int vals[8] = {1,3,7,15,31,63,127,255};

void setup()

{

 //Instantiate serial communication at 9600 bps

 Serial.begin(9600);

 //Create a Wire Object

 Wire.begin();

 //Set shift register pins as outputs

 pinMode(SER, OUTPUT);

 pinMode(LATCH, OUTPUT);

176 Part III ■ Communication Interfaces

 pinMode(CLK, OUTPUT);

}

void loop()

{

 //Send a request

 //Start talking to the device at the specified address

 Wire.beginTransmission(temp_address);

 //Send a bit asking for register zero, the data register

 Wire.write(0);

 //Complete Transmission

 Wire.endTransmission();

 //Read the temperature from the device

 //Request 1 Byte from the specified address

 Wire.requestFrom(temp_address, 1);

 //Wait for response

 while(Wire.available() == 0);

 //Get the temp and read it into a variable

 int c = Wire.read();

 //Map the temperatures to LED settings

 int graph = map(c, 24, 31, 0, 7);

 graph = constrain(graph,0,7);

 digitalWrite(LATCH, LOW); //Latch low - start sending data

 shiftOut(SER, CLK, MSBFIRST, vals[graph]); //Send data, most

 //significant bit first

 digitalWrite(LATCH, HIGH); //Latch high - stop sending data

 //Do some math to convert the Celsius to Fahrenheit

 int f = round(c*9.0/5.0 +32.0);

 Serial.print(c);

 Serial.print("C,");

 Serial.print(f);

 Serial.print("F.");

 delay(500);

}

After loading this on to your Arduino, you can see the LEDs changing color
with the temperature. Try squeezing the temperature sensor with you finger-
tips to make the temperature go up. You should see a response in the LEDs.
Next, you write a Processing sketch that displays the temperature value on the
computer in an easy-to-read format.

 Chapter 8 ■ The I2C Bus 177

Writing	the	Processing	Sketch
At this point, your Arduino is already transmitting easy-to-parse data to your
computer. All you need to do is write a Processing program that can interpret
it and display it in an attractive way.

Because you’ll be updating text in real time, you need to first learn how to
load fonts into Processing. Open Processing to create a new, blank sketch. Save
the sketch before continuing. Then, navigate to Tools > Create Font. You’ll get
a screen that looks like Figure 8-9.

Figure 8-9: Processing font creator

Pick your favorite font and choose a size. (I recommend a size around 200 for
this exercise.) After doing so, click OK. The font is then automatically gener-
ated and added to the “data” subfolder of your Processing sketch folder. The
Processing sketch needs to accomplish a few things:

■■ Generate a graphical window on your computer showing the temperature
in both Celsius and Fahrenheit.

■■ Read the incoming data from the serial port, parse it, and save the values
to local variables that can be displayed on the computer.

■■ Continually update the display with the new values received over serial.

178 Part III ■ Communication Interfaces

Copy the code from Listing 8-3 into your Processing sketch and adjust the
serial port name to the right value for your computer and the name of the font
you created. Then, ensure your Arduino is connected and click the Run icon
to watch the magic!

Listing 8-3: Processing Sketch for Displaying Temperature Values—display_temp.pde

//Displays the temperature recorded by an I2C temp sensor

import processing.serial.*;

Serial port;

String temp_c = "";

String temp_f = "";

String data = "";

int index = 0;

PFont font;

void setup()

{

 size(400,400);

//Change "COM9" to the name of the serial port on your computer

 port = new Serial(this, "COM9", 9600);

 port.bufferUntil('.');

//Change the font name to reflect the name of the font you created

 font = loadFont("AgencyFB-Bold-200.vlw");

 textFont(font, 200);

}

void draw()

{

 background(0,0,0);

 fill(46, 209, 2);

 text(temp_c, 70, 175);

 fill(0, 102, 153);

 text(temp_f, 70, 370);

}

void serialEvent (Serial port)

{

 data = port.readStringUntil('.');

 data = data.substring(0, data.length() - 1);

 //Look for the comma between Celcius and Farenheit

 index = data.indexOf(",");

 //Fetch the C Temp

 temp_c = data.substring(0, index);

 //Fetch the F temp

 temp_f = data.substring(index+1, data.length());

}

 Chapter 8 ■ The I2C Bus 179

As in previous Processing examples that you’ve run, the sketch starts by
importing the serial library and setting up the serial port. In setup(), you are
defining the size of the display window, loading the font you just created, and
setting up the serial port to buffer until it receives a period. draw() fills the
background in black and prints out the Celsius and Fahrenheit values in two
colors. With the fill() command, you are telling Processing to make the next
element it adds to the screen that color (in RGB values). serialEvent() is called
whenever the bufferUntil() event is triggered. It reads the buffer into a string,
and then breaks it up based on the location of the comma. The two temperature
values are stored in variables that get printed out in the application window.

When you execute the program, the output should look like the results shown
in Figure 8-10.

Figure 8-10: Processing temperature display

When you squeeze the sensor, the Processing display should update, and the
lights on your board should illuminate.

NOTE To	watch	a	demo	video	of	the	temperature	monitoring	hardware	and	
Processing	system,	check	out	www.exploringarduino.com/content/ch8.	
You	can	also	find	this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	
chapter.

180 Part III ■ Communication Interfaces

Summary

In this chapter you learned about the following:

■■ I2C uses two data lines to enable digital communication between the Arduino
and multiple slave devices (so long as they have different addresses).

■■ The Arduino Wire library can be used to facilitate communicate with I2C
devices connected to pins A4 and A5.

■■ I2C communication can be employed alongside shift registers and serial
communication to create more complex systems.

■■ You can create fonts in Processing to generate dynamically-updating
on-screen displays.

■■ Processing can be used to display parsed serial data obtained from I2C
devices connected to the Arduino.

 181

Parts You’ll Need for This Chapter

Arduino Uno

USB cable (A to B for Uno)

Red LED

Yellow LED

Green LED

Blue LED

100Ω resistors (n4)

Speaker

Jumper wires

Breadboard

MCP4231 Digital SPI Potentiometer IC (n2)

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found at
www.exploringarduino.com/content/ch9.

In addition, all code can be found at www.wiley.com/go/exploringarduino on
the Download Code tab. The code is in the chapter 09 download and individu-
ally named according to the names throughout the chapter.

C h a P t e r

9

The SPI Bus

182 Part III ■ Communication Interfaces

You’ve already learned about two important digital communication methods
available to you on the Arduino: the I2C bus and the serial UART bus. In this
chapter, you learn about the third digital communication method supported by
the Arduino hardware: The Serial Peripheral Interface bus (or SPI bus for short).

Unlike the I2C bus, the SPI bus uses separate lines for sending and receiving
data, and it employs an additional line for selecting which slave device you are
talking to. This adds additional wires, but also eliminates the issue of needing
different slave device addresses. SPI is generally easier to get running than I2C
and can run at a faster speed. In this chapter, you use the Arduino’s built-in SPI
library and hardware to communicate with a digitally controllable potentiometer.
You use the potentiometer to control both LED brightness and speaker volume,
allowing you to make a simple audio/visual display.

NOTE Follow	the	steps	of	this	chapter	with	this	tutorial	video,	www.jeremyblum
.com/2011/02/20/arduino-tutorial-8-spi-interfaces.	You	can	also	find	
this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Overview	of	the	SPI	Bus

Originally created by Motorola, the SPI bus is a full-duplex serial communica-
tion standard that enables simultaneous bidirectional communication between a
master device and one or more slave devices. Because the SPI protocol does not
follow a formal standard, it is common to find SPI devices that operate slightly
different (the number of transmitted bits may differ, or the slave select line
might be omitted, among other things). This chapter focuses on implementing
the most commonly accepted SPI commands (which are the ones that are sup-
ported by the Arduino IDE).

WARNING Bear	in	mind	that	SPI	implementations	can	vary,	so	reading	the	
datasheet	is	extremely	important.

SPI can act in four main ways, which depend on the requirements of your
device. SPI devices are often referred to as slave devices. SPI devices are synchro-
nous, meaning that data is transmitted in sync with a shared clock signal (SCLK).
Data can be shifted into the slave device on either the rising or falling edge of
the clock signal (called the clock phase), and the SCLK default state can be set to
either high or low (called the clock polarity). Because there are two options for each,
you can configure the SPI bus in a total of four ways. Table 9-1 shows each of the
possibilities and the modes that they correspond to in the Arduino SPI library.

 Chapter 9 ■ The SPI Bus 183

Table 9-1: SPI Communication Modes

SPI MODE CLOCk POLARITY CLOCk PHASE

Mode 0 Low at Idle Data Capture on Clock Rising Edge

Mode 1 Low at Idle Data Capture on Clock Falling Edge

Mode 2 High at Idle Data Capture on Clock Falling Edge

Mode 3 High at Idle Data Capture on Clock Rising Edge

SPI	Hardware	and	Communication	Design

The SPI system setup is relatively simple. Three pins are used for communicat-
ing between a master and all slave devices:

■■ Shared/Serial Clock (SCLK)

■■ Master Out Slave In (MOSI)

■■ Master In Slave Out (MISO)

Each slave device also requires an additional slave select (SS) pin. Hence, the
total number of I/O pins required on the master device will always be 3 + n,
where n is the number of slave devices. Figure 9-1 shows an example SPI system
with two slave devices.

Figure 9-1: SPI reference hardware configuration

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

184 Part III ■ Communication Interfaces

Hardware	Configuration
Four data lines, at a minimum, are present in any SPI system. Additional SS
lines are added for each slave device appended to the network. Before you learn
how to actually send and receive data to and from an SPI device, you need to
understand what these I/O lines do and how they should be wired. Table 9-2
describes these lines.

Table 9-2: SPI Communication Lines

SPI COMMUNICATION LINE DESCRIPTION

MOSI Used for sending serial data from the master device
to a slave device.

MISO Used for sending serial data from a slave device to
the master device.

SCLK The signal by which the serial data is synchronized
with the receiving device, so it knows when to read
the input.

SS A line indicating slave device selection. Pulling it low
means you are speaking with that slave device.

Unlike with the I2C bus, pull-up resistors are not required, and communica-
tion is fully bidirectional. To wire an SPI device to the Arduino, all you have to
do is connect the MOSI, MISO, SCLK, and SS pins and you’ll be ready to use to
the SPI communication library.

NAMING CONVENTIONS

Because	SPI	is	not	a	universal	standard,	some	devices	and	manufacturers	
may	use	different	names	for	the	SPI	communication	lines.	Slave	select	is	
sometimes	referred	to	as	chip	select	(CS),	serial	clock	is	sometimes	just	
called	clock	(CLK),	MOSI	and	MISO	pins	on	slave	devices	are	sometimes	
abbreviated	to	serial	data	in	(SDI),	and	serial	data	out	(SDO).

Communication	Scheme
The SPI communication scheme is synced with the clock signal and depends on
the state of the SS line. Because all devices on the bus share the MOSI, MISO, and
SCLK lines, all commands sent from the master arrive at each slave. The SS pin
tells the slave whether it should ignore this data or respond to it. Importantly,
this means that you must make sure to only have one SS pin set low (the active
mode) at a time in any program that you write.

 Chapter 9 ■ The SPI Bus 185

The basic process for communicating with an SPI device is as follows:

 1. Set the SS pin low for the device you want to communicate with.

 2. Toggle the clock line up and down at a speed less than or equal to the
transmission speed supported by the slave device.

 3. For each clock cycle, send 1 bit on the MOSI line, and receive 1 bit on the
MISO line.

 4. Continue until transmitting or receiving is complete, and stop toggling
the clock line.

 5. Return the SS pin to high state.

Note that on every clock cycle a bit must be sent and received, but that bit does
not necessarily need to mean anything. For example, later in this chapter you will
use a digital potentiometer in a scenario in which the Arduino will send data but
does not need to receive anything back from the slave. So, it will clock data out
on the MOSI pin and will just ignore anything that comes back on the MISO pin.

Comparing	SPI	to	I2C

Many kinds of devices, including accelerometers, digital potentiometers, and
displays, are available in both SPI and I2C versions. So how do you decide?
Table 9-3 lists some of the trade-offs between I2C and SPI. Ultimately, which
one you choose to use will depend on what you believe is easier to implement,
and best suited for your situation. Most beginners find that they can get SPI
working more easily than I2C.

Table 9-3: SPI and I2C Comparison

SPI ADVANTAGES I2C ADVANTAGES

Can operate at higher speeds Requires only two communication lines

Generally easier to work with Built-in Arduino hardware support

No pull-up resistors needed

Built-in Arduino hardware support

Communicating	with	an	SPI	Digital	Potentiometer

Now that you’ve got all the basics down, it’s time to actually implement what
you’ve learned. You’ll start by controlling LED brightness using a digital poten-
tiometer (a DigiPot for short). Specifically, you’ll use the Microchip MCP4231
103E Digital Potentiometer IC. (Several versions of this chip are available, each
with different potentiometer resistance values.) When looking for an integrated

186 Part III ■ Communication Interfaces

circuit (IC) like this to use on your breadboard, you want to look for the dual
in-line package (DIP) version of the chip. Just a like a regular potentiometer, a
DigiPot has an adjustable wiper that determines the resistance between the wiper
terminal and one of the end terminals. The MCP4231 has two potentiometers
on one chip. Each pot has a resolution of 7 bits, resulting in 129 wiper positions,
(the extra position results from the chip’s direct taps to power or ground) which
vary the resistance between 0 and 10kΩ. First, you will use the DigiPot to adjust
LED brightness. After you get it working with LEDs, you will use it to control
speaker volume. When you finish, you will have a platform that you can use to
develop more complicated audio/visual projects.

Gathering	Information	from	the	Datasheet
First things first, you always need to consult the datasheet. A quick Google
search for “MCP4231” will turn up the datasheet. You can also find a link to the
datasheet from the Exploring Arduino website: www.exploringarduino.com/
content/ch9. The datasheet answers the following questions:

■■ What is the pin-out of the IC, and which pins are the control pins?

■■ What is the resistance of the potentiometer in my chip?

■■ Which SPI commands must be sent to control the two digital wipers?

To help you reference this information, Figures 9-2 through 9-4 show some
of the key parts of this datasheet. First, take a look at the pin-out presented on
the first page of the datasheet.

Figure 9-2: MCP4231 Pin-out diagram

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

 Chapter 9 ■ The SPI Bus 187

The pin-out should usually be your first step when getting ready to work
with a new device. Following is a breakdown of all the pins and their functions:

■■ Pins P0A, P0W, and P0B: These are the pins for the first digitally con-
trolled potentiometer.

■■ Pins P1A, P1W, and P1B: These are the pins for the second digitally
controlled potentiometer.

■■ VDD: Connects to your 5V supply.

■■ VSS: Connects to ground.

■■ CS: CS is the SS pin for the SPI interface, and the bar above it indicates that it
is active low. (0V means the chip is selected, and 5V means it is not selected.)

■■ SDI and SDO: These pins correspond to serial data in and out, respec-
tively (a.k.a. MOSI and MISO).

■■ SCK: This is the SPI clock line that was explained earlier in the chapter.

■■ SHDN and WP: These stand for shut down and write protect, respectively.
For this chip, it is revealed later in the datasheet that the WP pin is actually
NC (not connected). You can ignore this pin. The SHDN pin is active low,
like the CS pin. When held low, the hardware “disconnects” the wiper
from the internal resistor network. You always want your potentiometer to
be active, so in these examples the SHDN pin is connected directly to 5V.

The next thing worth considering is the resistance of the potentiometer and
wiper. Just like an ordinary potentiometer, there is a fixed resistance between
the A and B terminals of each digital potentiometer. The wiper itself also has
a resistance that you should take into account. Consider the information from
the fifth page of the datasheet (see Figure 9-3).

Figure 9-3: MCP4231 AC/DC characteristics table

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

188 Part III ■ Communication Interfaces

First, note the resistance of the potentiometer, denoted by RAB. Four available
variants of this chip are available, each with a different resistance value, ranging
from 5kΩ to 100kΩ. The devices themselves are marked with their variation.
In this chapter, you use the 103 variant, which has a resistance of about 10kΩ.
Importantly, DigiPots are generally not very accurate devices. You can see from
the datasheet that the actual resistance for your device may vary as much as
±20%! Also worth noting is the wiper resistance. The actual wiper pin has a
resistance somewhere between 75 and 160Ω. This can be significant, especially
when driving a speaker or an LED.

You also need to understand the SPI commands that you must to issue to the
device to control it. In the case of the MCP4231, you issue two commands to the
device: The first specifies the register to control (there is one register for each
DigiPot), and the second specifies the value to set the potentiometer. Take a look at
the SPI communication specification excerpted from the datasheet in Figure 9-4.

Figure 9-4: MCP4231 SPI command formats

You can see from the diagram that two command types are available: an 8-bit
command and a 16-bit command. The 8-bit command allows you to increment
the potentiometer with a single byte of communication, whereas the 16-bit com-
mand allows you to set the state of the potentiometer arbitrarily. To keep things
simple, focus on using the 16-bit command, because it offers more flexibility.
Over the SPI bus, you transmit a memory address, a command (read, write,
increment, or decrement), and a data value (0–128).

The datasheet also indicates the memory addresses associated with each
potentiometer. The value of potentiometer 0 is located in memory address 0, and
potentiometer 1 is located in memory address 1. Using this information, you
can construct the necessary command bytes for writing to each of the pots. To
write to potentiometer 0, you transmit 00000000 in binary, followed by a value
from 0 to 128. To write to potentiometer 1, you transmit 00010000 in binary
followed by a value from 0 to 128. Referencing Figure 9-4, the first four digits
are the memory address, the next two are the command (00 means write), and

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

 Chapter 9 ■ The SPI Bus 189

the next 2 bits are the first 2 data bits, which should always be 0 because the
potentiometer can only be as high as 128.

This is all the information you need to wire the DigiPot correctly and to
send SPI commands to it from your Arduino. Now, you wire it up to control
the brightness of some LEDs.

Setting	Up	the	Hardware
To fully flesh out your knowledge of SPI communication, you’ll use two MCP44231
DigiPot ICs, for a total of four controllable potentiometer channels. Each one
is used to control the brightness of two LEDs by varying the series resistance
in-line with the LED. When used in this fashion, you need to use only two
terminals of each potentiometer. One end of each potentiometer connects to
the 5V rail (through a resistor), and the wiper pin connects to the anode of the
LED. Consider the schematic Figure 9-5, which shows this connection scheme.

Figure 9-5: Potentiometer LED setup

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

190 Part III ■ Communication Interfaces

The cathode of the LED is connected to ground. When the wiper for the
potentiometer is digitally turned to its maximum value, current flows from the
5V rail, through the 100Ω resistor, through the wiper (which has a resistance of
~75Ω), then through the LED. Alternatively, when the wiper is turned all the way
down, current flows through the 100Ω resistor, through the entire resistance of
the potentiometer (10kilohms), through the wiper, and then through the LED.
Even when the potentiometer is turned all the way, the minimum resistance
in series with the LED will be 175Ω (enough to safely current-limit it). As the
DigiPots are adjusted, the resistance increases and decreases, changing the cur-
rent through the LED and, therefore, its brightness. This method of brightness
control can prove very useful if you have exhausted all of your pulse-width
modulation (PWM)-capable pins.

Now, wire up the two digital potentiometers to the SPI bus and to the LEDs,
as shown in the previous schematic using the information from the datasheet
about the pin-out. On the Arduino Uno, pin 13 is SCK, pin 12 is MISO, and pin
11 is MOSI. Pin 10 is commonly used for SS, so use that for one of the chips.
For the other, use pin 9. After you have wired up everything, it should look
something like Figure 9-6. Remember that the SCK, MISO, and MOSI lines are
shared between both devices.

Double-check that your wiring matches the wiring diagram, and then move
on to the next section, where you write the software that will control the LED
brightness.

Writing	the	Software
To confirm that your wiring is working and that you can successfully use the
SPI library, you’ll write a simple program to simultaneously adjust the bright-
ness of all four LEDs using the four potentiometers on the two ICs.

As with I2C, a convenient library is built right in to the Arduino IDE that
makes SPI communication very easy. All you need to do is import the library
and “write” data to the SPI bus using the integrated commands. Of course, you
also have to toggle the SS pins for whatever device you are controlling. So, pull-
ing together all the knowledge from earlier in this chapter, here are the steps
you need to complete to send a command to change the brightness of an LED
on one of the SPI digital potentiometers:

 1. Bring the SS pin for the chip low.

 2. Send the appropriate register/command byte to choose which potenti-
ometer you are going to write to.

 3. Send a value between 0 and 128.

 4. Bring the SS pin for this chip high.

 Chapter 9 ■ The SPI Bus 191

Figure 9-6: Potentiometer LED setup

The code in Listing 9-1 executes all these steps and includes a function for
passing the SS pin, register byte, and command to a given chip via SPI. The SPI
.begin() command enables you to initialize the SPI interface on the hardware
SPI pins of the Arduino, and you can use SPI.transfer() to actually send data
over the SPI bus.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

192 Part III ■ Communication Interfaces

Listing 9-1: SPI Control of Multiple Digital Potentiometers—SPI_led.ino

//Changes LED brightness using voltage input instead of PWM

//Include SPI library

#include <SPI.h>

//When using the SPI library, you only have to worry

//about picking your slave selects

//By default, 11 = MOSI, 12 = MISO, 13 = CLK

const int SS1=10; //Slave Select Chip 1

const int SS2=9; //Slave Select Chip 2

const byte REG0=B00000000; //Register 0 Write command

const byte REG1=B00010000; //Register 1 Write command

void setup()

{

 //Set pin directions for SS

 pinMode(SS1, OUTPUT);

 pinMode(SS2, OUTPUT);

 //Initialize SPI

 SPI.begin();

}

//This will set 1 LED to the specififed level

//Chip 1 (SS 10) Register 0 is Red

//Chip 1 (SS 10) Resiter 1 is Yellow

//Chip 2 (SS 9) Register 0 is Green

//Chip 2 (SS 9) Register 1 is Blue

void setLed(int SS, int reg, int level)

{

 digitalWrite(SS, LOW); //Set the given SS pin low

 SPI.transfer(reg); //Choose the register to write to

 SPI.transfer(level); //Set the LED level (0-128)

 digitalWrite(SS, HIGH); //Set the given SS pin high again

}

void loop()

{

 for (int i=0; i<=128; i++)

 {

 setLed(SS1, REG0, i);

 setLed(SS1, REG1, i);

 setLed(SS2, REG0, i);

 setLed(SS2, REG1, i);

 delay(10);

 }

 delay(300);

 for (int i=128; i>=0; i--)

 Chapter 9 ■ The SPI Bus 193

 {

 setLed(SS1, REG0, i);

 setLed(SS1, REG1, i);

 setLed(SS2, REG0, i);

 setLed(SS2, REG1, i);

 delay(10);

 }

 delay(300);

}

In Listing 9-1, SS for chip 1 is connected to pin 10, and SS for chip 2 is
connected to pin 9. You can cross reference this with the hardware connec-
tions that you made while wiring the system in the previous section. The
byte register values at the top of the file are the same binary sequences that
you determined from the datasheet earlier in this chapter. When you put a B
before a string of 0s and 1s when creating a byte variable, you are telling the
Arduino compiler that what follows is in binary format, and not the default
decimal format that you use elsewhere in your program. The setLed() func-
tion accepts an SS pin number, a register byte, and potentiometer level value.
This function uses the information to transmit the data to the appropriate
chip. In loop(), all the LEDs are ramped up, then back down again, with
short delays so that the transition does not occur so fast that you cannot see
it. When you load this onto your Arduino, you should observe all four lights
changing intensity in tandem as the potentiometers are all adjusted.

NOTE To	watch	a	demo	video	of	the	SPI	digital	potentiometer	color	adjuster,	
visit	www.exploringarduino.com/content/ch9.	You	can	also	find	this	video	
on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Now that you have this simple example working, you can move on to the
next section, where you increase the complexity of the system by turning it into
an audiovisual display.

Creating	an	Audiovisual	Display	Using	SPI	Digital	
Potentiometers

Changing LED brightness is a good test to confirm your understanding of SPI
communication, but it is also something that you can do with PWM. Next, you
integrate some technology that you cannot replicate with a PWM interface:
sound. As you learned in Chapter 5, “Making Sounds,” the Arduino IDE has a
tone library that allows you to easily produce square waves from any pin on the
Arduino to drive a speaker. Although this allows you to easily create a range of
frequencies, it does not allow you to change the volume of the audio, because
that is a function of the waveform’s amplitude. You have already learned how

194 Part III ■ Communication Interfaces

to put an ordinary potentiometer in series with a speaker to adjust its volume.
Now, you use the SPI DigiPot to adjust speaker volume digitally.

NOTE Intentionally,	this	project	is	designed	as	a	jumping-off	point;	you	make	
a	simple	audiovisual	display	that	you	can	expand	on	in	software	to	create	much	
more	inspired	projects.	Get	this	example	working	first;	then,	see	how	you	can	
build	upon	it	to	make	something	truly	personal.	This	exercise	offers	an	ideal	
opportunity	to	get	creative	with	your	Arduino.

Setting	Up	the	Hardware
The setup here is similar to what you used to adjust LED brightness. In fact, to
keep things interesting, you keep three of the LEDs in place and replace one of
them with a speaker. However, for the speaker, one end of the digital potenti-
ometer connects through a resistor to an I/O pin of the Arduino that will adjust
the frequency of the speaker. The generated square wave passes through the
DigiPot, which then adds a series resistance, thus dropping the voltage to the
speaker, changing its amplitude. Remove one of the LEDs, put a speaker in its
place, and connect that DigiPot to an I/O pin on the Arduino, as shown in the
wiring diagram in Figure 9-7.

Figure 9-7: Potentiometer LED setup

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 9 ■ The SPI Bus 195

You might also want to consider adding some analog sensors to this later to
experiment with using light, movement, and sound to control the output from
your audiovisual display system.

Modifying	the	Software
To get started with this setup, make some simple modifications to your previ-
ous program for controlling the LEDs. Add a pin variable for the speaker, as
well as a variable to set to the frequency of the speaker. (You’ll have it change
throughout the program to keep things exciting.) Inside loop(), you can option-
ally add some iterators that increase the speaker frequency on each run through
the loop. You can use the exact same setLed() function as before to set the
speaker volume, but the name is now a bit misleading, so you might want to
rename the function for clarity. In the complete code shown in Listing 9-2, it
has been renamed to setReg().

Listing 9-2: LED and Speaker Volume SPI Digital Potentiometer Control—LED_speaker.ino

//Changes LED brightness using voltage input instead of PWM

//Controls speaker volume and tone

//Include SPI library

#include <SPI.h>

const int SPEAKER=8; //Speaker Pin

int freq = 100;

//When using the SPI library, you only have to worry

//about picking your slave selects

//By default, 11 = MOSI, 12 = MISO, 13 = CLK

const int SS1=10; //Slave Select Chip 1

const int SS2=9; //Slave Select Chip 2

const byte REG0=B00000000; //Register 0 Write command

const byte REG1=B00010000; //Register 1 Write command

void setup()

{

 //Set pin directions for SS

 pinMode(SS1, OUTPUT);

 pinMode(SS2, OUTPUT);

 //Initialize SPI

 SPI.begin();

}

//This will set one pot to the specififed level

//Chip 1 (SS 10) Register 0 is Red

196 Part III ■ Communication Interfaces

//Chip 1 (SS 10) Resiter 1 is Yellow

//Chip 2 (SS 9) Register 0 is Green

//Chip 2 (SS 9) Register 1 is the Speaker

void setReg(int SS, int reg, int level)

{

 digitalWrite(SS, LOW); //Set the given SS pin low

 SPI.transfer(reg); //Choose the register to write to

 SPI.transfer(level); //Set the LED level (0-128)

 digitalWrite(SS, HIGH); //Set the given SS pin high again

}

void loop()

{

 tone(SPEAKER, freq); //Set speaker to given frequency

 for (int i=0; i<=128; i++)

 {

 setReg(SS1, REG0, i);

 setReg(SS1, REG1, i);

 setReg(SS2, REG0, i);

 setReg(SS2, REG1, i);

 delay(10);

 }

 delay(300);

 for (int i=128; i>=0; i--)

 {

 setReg(SS1, REG0, i);

 setReg(SS1, REG1, i);

 setReg(SS2, REG0, i);

 setReg(SS2, REG1, i);

 delay(10);

 }

 delay(300);

 freq = freq+100;

 if (freq > 2000) freq = 100;

}

Load this program onto your Arduino, and in addition to the lights chang-
ing intensity, the speaker will change volume. On each cycle, the frequency
is incremented by 100Hz until it reaches 2000Hz. This is controlled by the if
statement at the end of loop(). The for loops that are controlling LED brightness
and volume do not need to change at all from what you wrote in Listing 9-1,
because speaker volume is being controlled by the same potentiometer action
that is controlling the LEDs.

 Chapter 9 ■ The SPI Bus 197

This is just a starting point. You now have sufficient knowledge to really make
this multimedia platform into something exciting. Here are some suggestions:

■■ Correlate sound frequency and volume with sensor inputs (for example,
an infrared [IR] distance sensor can control the frequency of the speaker
based on movement in front of the unit).

■■ Correlate LED intensity with a different metric such as temperature.

■■ Add a debounced pushbutton to allow you to dynamically choose the
volume or frequency of the speaker.

■■ Program light sequences that match up with simple music.

NOTE To	watch	a	demo	video	of	the	audiovisual	platform	in	action:	
	www.exploringarduino.com/content/ch9.	You	can	also	find	this	video		
on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Summary

In this chapter you learned about the following:

■■ The SPI bus uses two data lines, a clock line, and a slave select line. An
additional slave select line is added for each slave device, but the other
three lines are shared on the bus.

■■ The Arduino SPI library can be used to facilitate easy communication
between the Arduino and slave devices.

■■ You can talk to multiple SPI devices over the same bus lines by using
multiple SS pins.

■■ You can control SPI potentiometers using the Arduino Library.

■■ You learned how to dive deeper into understanding and working with
datasheets.

■■ You learned how to simultaneously adjust speaker volume and frequency
using the tone library paired with an SPI digital potentiometer.

 199

Parts You’ll Need for This Chapter

Arduino Uno

USB cable (A to B for Uno)

Speaker

Pushbuttons (n2)

Small DC fan

16x2 character LCD

4.7kΩ resistors (n2)

10kΩ resistors (n2)

150Ω resistor

10kΩ potentiometer

TC74A0-5.0VAT I2C temperature sensor

Jumper wires

Breadboard

C h a P t e r

10
Interfacing with

Liquid Crystal Displays

200 Part III ■ Communication Interfaces

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found
at www.exploringarduino.com/content/ch10.

In addition, all code can be found at www.wiley.com/go/exploringarduino on
the Download Code tab. The code is in the chapter 10 download and individually
named according to the names throughout the chapter.

One of the best things about designing embedded systems is the fact that they
can operate independently of a computer. Up until now, you’ve been tethered to
the computer if you want to display any kind of information more complicated
than an illuminated LED. By adding a liquid crystal display (LCD) to your
Arduino, you can more easily display complex information (sensor values, tim-
ing information, settings, progress bars, etc.) directly on your Arduino project
without having to interface with the serial monitor through the computer.

In this chapter, you learn how to connect an LCD to your Arduino, and you
learn how to use the Arduino LiquidCrystal library to write text and arbitrary
custom characters to your LCD. After you have the basics down, you add some
components from previous chapters to make a simple thermostat capable of
obtaining local temperature data, reporting it to you, and controlling a fan to
compensate for heat. An LCD will give you live information, a speaker will
alert you when the temperature is getting too hot, and the fan will turn on to
automatically cool you down.

NOTE To	watch	a	video	tutorial	about	interfacing	to	an	LCD,	check	out		
www.jeremyblum.com/2011/07/31/tutorial-13-for-arduino-liquid-

crystal-displays.	You	can	also	find	this	video	on	the	Wiley	website	shown	at	
the	beginning	of	this	chapter.

Setting	Up	the	LCD

To complete the examples in this chapter, you use a parallel LCD screen. These
are extremely common and come in all kinds of shapes and sizes. The most
common is a 16n2 character display with a single row of 16 pins (14 if it does not
have a backlight). In this chapter, you use a 16-pin LCD display that can show
a total of 32 characters (16 columns and 2 rows).

If your display didn’t come with a 16-pin header already soldered on, you
need to solder one on so that you can easily install it in your breadboard. With
the header successfully soldered on, your LCD should look like the one shown
in Figure 10-1, and you can insert it into your breadboard.

Next, you wire up your LCD to a breadboard and to your Arduino. All of these
parallel LCD modules have the same pin-out and can be wired in one of two
modes: 4-pin or 8-pin mode. You can accomplish everything you might want to
do using just 4 pins for communication; that’s how you’ll wire it up. There are also

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 201

pins for enabling the display, setting the display to command mode or character
mode, and for setting it to read/write mode. Table 10-1 describes all of these pins.

Figure 10-1: LCD with Headers soldered on

Table 10-1: Parallel LCD Pins

PIN NUMBER PIN NAME PIN PURPOSE

1 VSS Ground connection

2 VDD +5V connection

3 V0 Contrast adjustment (to potentiometer)

4 RS Register selection (Character vs. Command)

5 RW Read/write

6 EN Enable

7 D0 Data line 0 (unused)

8 D1 Data line 1 (unused)

9 D2 Data line 2 (unused)

10 D3 Data line 3 (unused)

11 D4 Data line 4

12 D5 Data line 3

13 D6 Data line 6

14 D7 Data line 7

15 A Backlight anode

16 K Backlight cathode

202 Part III ■ Communication Interfaces

Here’s a breakdown of the pin connections:

■■ The contrast adjustment pin changes how dark the display is. It connects
to the center pin of a potentiometer.

■■ The register selection pin sets the LCD to command or character mode,
so it knows how to interpret the next set of data that is transmitted via
the data lines. Based on the state of this pin, data sent to the LCD is either
interpreted as a command (for example, move the cursor) or characters
(for example, the letter a).

■■ The RW pin is always tied to ground in this implementation, meaning
that you are only writing to the display and never reading from it.

■■ The EN pin is used to tell the LCD when data is ready.

■■ Data pins 4–7 are used for actually transmitting data, and data pins 0–3
are left unconnected.

■■ You can illuminate the backlight by connecting the anode pin to 5V and
the cathode pin to ground if you are using an LCD with a built-in resistor
for the backlight. If you are not, you must put a current-limiting resistor
in-line with the anode or cathode pin. The datasheet for your device will
generally tell you if you need to do this.

You can connect the communication pins of the LCD to any I/O pins on the
Arduino. In this chapter, they are connected as shown in Table 10-2.

Table 10-2: Communication Pins Connections

LCD PIN ARDUINO PIN NUMBER

RS Pin 2

EN Pin 3

D4 Pin 4

D5 Pin 5

D6 Pin 6

D7 Pin 7

Reference the wiring diagram shown in Figure 10-2 and hook up your LCD
accordingly.

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 203

Figure 10-2: LCD wired to breadboard and Arduino

Now your LCD is ready for action! Once you get the code loaded in the next
section, you can start displaying text on the screen. The potentiometer will
adjust the contrast between the text and the background color of the screen.

Using	the	LiquidCrystal	Library	to	Write	to	the	LCD

The Arduino IDE includes the LiquidCrystal library, a set of functions that
makes it very easy to interface with the parallel LCD that you are using. The
LiquidCrystal library has an impressive amount of functionality, including
blinking the cursor, automatically scrolling text, creating custom characters,
and changing the direction of text printing. This chapter does not cover every
function, but instead gives you the tools you need to understand to interface

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

204 Part III ■ Communication Interfaces

with the display using the most important functions. You can find descriptions
of the library functions and examples illustrating their use on the Arduino
website: http://arduino.cc/en/Reference/LiquidCrystal (also linked from
www.exploringarduino.com/content/ch10).

Adding	Text	to	the	Display
In this first example, you add some text and an incrementing number to the
display. This exercise demonstrates how to initialize the display, how to write
text, and how to move the cursor. First, include the LiquidCrystal library:

#include <LiquidCrystal.h>

Then, initialize an LCD object, as follows:

LiquidCrystal lcd (2,3,4,5,6,7);

The arguments for the LCD initialization represent the Arduino pins con-
nected to RS, EN, D4, D5, D6, and D7, in that order. In the setup, you call the
library’s begin() function to set up the LCD display with the character size.
(The one I’m using is a 16n2 display, but you might be using another size, such
as a 20n4.) The arguments for this command represent the number of columns
and the number of rows, respectively:

lcd.begin(16, 2);

After doing that, you can call the library’s print() and setCursor() com-
mands to print text to a given location on the display. For example, if you want
to print my name on the second line, you issue these commands:

lcd.setCursor(0,1);

lcd.print("Jeremy Blum");

The positions on the screen are indexed starting with (0,0) in the top-left
position. The first argument of setCursor() specifies which column number,
and the second specifies which row number. By default, the starting location is
(0,0). So, if you call print() without first changing the cursor location, the text
starts in the top-left corner.

WARNING The	library	does	not	check	for	strings	that	are	too	long.	So,	if	you	
try	to	print	a	string	starting	at	position	0	that	is	longer	than	the	number	of	charac-
ters	in	the	row	you	are	addressing,	you	might	notice	strange	behavior.	Make	sure	
to	check	that	whatever	you	are	printing	will	fit	on	the	display!

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 205

Using this knowledge, you can now write a simple program that displays
some text on the first row and that prints a counter that increments once every
second on the second row. Listing 10-1 shows the complete program to accom-
plish this. Load it on to your Arduino and confirm that it works as expected. If
you don’t see anything, adjust the contrast with the potentiometer.

Listing 10-1: LCD Text with an Incrementing Number—LCD_text.ino

//LCD text with incrementing number

//Include the library code:

#include <LiquidCrystal.h>

//Start the time at 0

int time = 0;

//Initialize the library with the numbers of the interface pins

LiquidCrystal lcd(2, 3, 4, 5, 6, 7);

void setup()

{

 //Set up the LCD's number of columns and rows:

 lcd.begin(16, 2);

 //Print a message to the LCD.

 lcd.print("Jeremy's Display");

}

void loop()

{

 //Move cursor to second line, first position

 lcd.setCursor(0,1);

 //Print Current Time

 lcd.print(time);

 //Wait 1 second

 delay(1000);

 //Increment the time

 time++;

}

This program combines all the steps that you learned about earlier. The
library is first included at the top of the program. A time variable is initial-
ized to 0, so that it can be incremented once per second during the loop(). A
LiquidCrysal object called lcd is created with the proper pins assigned based
on the circuit you’ve already wired up. In the setup, the LCD is configured as
having 16 columns and 2 rows, by calling lcd.begin(16,2). Because the first
line never changes, it can be written in the setup. This is accomplished with a
call to lcd.print(). Note that the cursor position does not need to be set first,

206 Part III ■ Communication Interfaces

because you want to the text to be printed to position (0,0), which is already
the default starting location. In the loop, the cursor is always set back to posi-
tion (0,1) so that the number you print every second overwrites the previous
number. The display updates once per second with the incremented time value.

Creating	Special	Characters	and	Animations
What if you want to display information that cannot be expressed using normal
text? Maybe you want to add a Greek letter, a degree sign, or some progress
bars. Thankfully, the LiquidCrystal library supports the definition of custom
characters that can be written to the display. In the next example, you use this
capability to make an animated progress bar that scrolls across the display.
After that, you take advantage of custom characters to add a degree sign when
measuring and displaying temperature.

Creating a custom character is pretty straightforward. If you take a close look
at your LCD, you’ll see that each character block is actually made up of a 5n8
grid of pixels. To create a custom character, you simply have to define the value
of each of these pixels and send that information to the display. To try this out,
you make a series of characters that will fill the second row of the display with
an animated progress bar. Because each character space is 5 pixels wide, there
will be a total of five custom characters: one with one column filled, one with
two columns filled, and so on.

At the top of your sketch where you want to use the custom characters, cre-
ate a byte array with 1s representing pixels that will be turned on and with 0s
representing pixels that will be turned off. The byte array representing the char-
acter that fills the first column (or the first 20% of the character) looks like this:

byte p20[8] = {

 B10000,

 B10000,

 B10000,

 B10000,

 B10000,

 B10000,

 B10000,

 B10000,

};

I chose to call this byte array p20, to represent that it is filling 20 percent of
one character block (the p stands for percent).

In the setup() function, call the createChar() function to assign your byte
array to a custom character ID. Custom character IDs start at 0 and go up to 7, so

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 207

you can have a total of eight custom characters. To map the 20% character byte
array to custom character 0, type the following within your setup() function:

lcd.createChar(0, p20);

When you’re ready to write a custom character to the display, place the cursor
in the right location and use the library’s write() function with the ID number:

lcd.write((byte)0);

In the preceding line, (byte) casts, or changes, the 0 to a byte value. This is
necessary only when writing character ID 0 directly (without a variable that is
defined to 0), to prevent the Arduino compiler from throwing an error caused by
the variable type being ambiguous. Try removing the “byte cast” and observe
the error that the Arduino IDE displays. You can write other character IDs
without it, like this:

lcd.write(1);

Putting this all together, you can add the rest of the characters and put two
nested for() loops in your program loop to handle updating the progress bar.
The completed code looks like the code shown in Listing 10-2.

Listing 10-2: LCD Updating Progress Bar Code—LCD_progress_bar.ino

//LCD with Progress Bar

//Include the library code:

#include <LiquidCrystal.h>

//Initialize the library with the numbers of the interface pins

LiquidCrystal lcd(2, 3, 4, 5, 6, 7);

//Create the progress bar characters

byte p20[8] = {

 B10000,

 B10000,

 B10000,

 B10000,

 B10000,

 B10000,

 B10000,

 B10000,

};

208 Part III ■ Communication Interfaces

byte p40[8] = {

 B11000,

 B11000,

 B11000,

 B11000,

 B11000,

 B11000,

 B11000,

 B11000,

};

byte p60[8] = {

 B11100,

 B11100,

 B11100,

 B11100,

 B11100,

 B11100,

 B11100,

 B11100,

};

byte p80[8] = {

 B11110,

 B11110,

 B11110,

 B11110,

 B11110,

 B11110,

 B11110,

 B11110,

};

byte p100[8] = {

 B11111,

 B11111,

 B11111,

 B11111,

 B11111,

 B11111,

 B11111,

 B11111,

};

void setup()

{

 //Set up the LCDs number of columns and rows:

 lcd.begin(16, 2);

 // Print a message to the LCD.

 lcd.print("Jeremy's Display");

 //Make progress characters

 lcd.createChar(0, p20);

 lcd.createChar(1, p40);

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 209

 lcd.createChar(2, p60);

 lcd.createChar(3, p80);

 lcd.createChar(4, p100);

}

void loop()

{

 //Move cursor to second line

 lcd.setCursor(0,1);

 //Clear the line each time it reaches the end

 //with 16 " " (spaces)

 lcd.print(" ");

 //Iterate through each character on the second line

 for (int i = 0; i<16; i++)

 {

 //Iterate through each progress value for each character

 for (int j=0; j<5; j++)

 {

 lcd.setCursor(i, 1); //Move the cursor to this location

 lcd.write(j); //Update progress bar

 delay(100); //Wait

 }

 }

}

At the beginning of each pass through the loop, the 16-character-long string
of spaces is written to the display, clearing the progress bar before it starts again.
The outer for() loop iterates through all 16 positions. At each character posi-
tion, the inner for() loop keeps the cursor there and writes an incrementing
progress bar custom character to that location. The byte cast is not required here
because the ID 0 is defined by the j variable in the for() loop.

NOTE To	watch	a	demo	video	of	the	updating	progress	bar,	visit		
www.exploringarduino.com/content/ch10.	You	can	also	find	this		
video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Building	a	Personal	Thermostat

Now, let’s make this display a bit more useful. To do so, you add the temperature
sensor from Chapter 8, “The I2C Bus,” a fan, and the speaker from Chapter 5,
“Making Sounds.” The display shows the temperature and the current fan state.
When it gets too hot, the speaker makes a noise to alert you, and the fan turns
on. When it gets sufficiently cool again, the fan turns off. Using two pushbuttons
and the debounce code in Listing 2-5 in Chapter 2, “Digital Inputs, Outputs,
and Pulse-Width Modulation,” you add the ability to increment or decrement
the desired temperature.

210 Part III ■ Communication Interfaces

Setting	Up	the	Hardware
The hardware setup for this project is a conglomeration of previous projects. If
you want the fan to have some oomph, you can drive it with a transistor and
an external voltage supply (like the DC motor from Chapter 4, “DC Motors,
Transistors, and Servos”). A low-power DC fan hooked directly to a 5V I/O pin
will suffice to show that it spins when it should. It will be accelerating slowly
enough that you don’t need to worry too much about inductive spikes. If you
actually want it to make a breeze, use the same schematic that you used for
driving a DC motor in Chapter 4 (see Figure 4-1).

To wire the project, leave the LCD and trim potentiometer in the same loca-
tion they were in for the previous example.

The two buttons have one side connected to power; the other side is connected
to ground through 10kΩ pull-down resistors and to the Arduino.

The speaker is connected to an I/O pin through a 150Ω resistor and to ground.
The frequency of the sound will be set in the program.

You hook up the I2C temperature sensor exactly as you did in Chapter 8.
Placing it in front of the LCD’s contrast potentiometer allows you to conserve
some breadboard space and to fit everything onto the same half-size bread-
board that you’ve been using so far. The diagram in Figure 10-3 shows the
complete wiring setup with everything you need to create this project. The
symbol for the TC74 temperature sensor has been made partially transparent
so that you can see the potentiometer behind it.

Figure 10-3: LCD thermostat system

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 211

Displaying	Data	on	the	LCD
Having some parameters in place beforehand makes writing information to the
LCD screen easier. First, use degrees Celsius for the display, and second, assume
that you’ll always be showing two digits for the temperature. Once the software
is running, the LCD display will look something like Figure 10.4.

Figure 10-4: LCD display

The "Current:" and "Set:" strings are static; they can be written to the
screen once at the beginning and left there. Similarly, because the temperatures
are assumed to be two digits, you can statically place both "$C" strings into the
correct locations. The current reading will be displayed in position (8,0) and
will be updated on every run through the loop(). The desired, or set, tempera-
ture will be placed in position (8,1) and updated every time a button is used
to adjust its value. The fan indicator in the lower right of the display will be at
position (15,1). It should update to reflect the fan’s state every time it changes.

The degree symbol, fan off indicator, and fan on indicator are not part of the
LCD character set. Before using them in your sketch, you need to create them as
byte arrays at the beginning of your program, as shown in the following snippet.

//Custom degree character

byte degree[8] = {

 B00110,

 B01001,

 B01001,

 B00110,

 B00000,

 B00000,

 B00000,

 B00000,

};

212 Part III ■ Communication Interfaces

//Custom "fan on" indicator

byte fan_on[8] = {

 B00100,

 B10101,

 B01110,

 B11111,

 B01110,

 B10101,

 B00100,

 B00000,

};

//Custom "fan off" indicator

byte fan_off[8] = {

 B00100,

 B00100,

 B00100,

 B11111,

 B00100,

 B00100,

 B00100,

 B00000,

};

Writing these characters will be done in setup(). Move the cursor to the right
locations, and with the LCD library’s write() and print() functions, update
the screen, as shown in the following snippet.

//Make custom characters

lcd.createChar(0, degree);

lcd.createChar(1, fan_off);

lcd.createChar(2, fan_on);

//Print a static message to the LCD

lcd.setCursor(0,0);

lcd.print("Current:");

lcd.setCursor(10,0);

lcd.write((byte)0);

lcd.setCursor(11,0);

lcd.print("C");

lcd.setCursor(0,1);

lcd.print("Set:");

lcd.setCursor(10,1);

lcd.write((byte)0);

lcd.setCursor(11,1);

lcd.print("C");

lcd.setCursor(15,1);

lcd.write(1);

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 213

You also update the fan indicator and temperature values each time through
loop(). You need to move the cursor to the right location each time before you
update these characters.

Adjusting	the	Set	Point	with	a	Button
In Chapter 2, you used a debounce() function. Here, you modify it slightly to
use it with multiple buttons. One button will increase the set point, and the
other will decrease it. You need to define variables for holding the previous
and current button states:

//Variables for debouncing

boolean lastDownTempButton = LOW;

boolean currentDownTempButton = LOW;

boolean lastUpTempButton = LOW;

boolean currentUpTempButton = LOW;

You can modify the debounce() function to support multiple buttons. To
accomplish this, add a second argument that specifies which button you want
to debounce:

//A debouncing function that can be used by both buttons

boolean debounce(boolean last, int pin)

{

 boolean current = digitalRead(pin);

 if (last != current)

 {

 delay(5);

 current = digitalRead(pin);

 }

 return current;

}

In loop(), you want to check both buttons using the debounce() function,
change the set_temp variable as needed, and update the set value that is dis-
played on the LCD:

//Debounce both buttons

currentDownTempButton = debounce(lastDownTempButton, DOWN_BUTTON);

currentUpTempButton = debounce(lastUpTempButton, UP_BUTTON);

//Turn down the set temp

if (lastDownTempButton == LOW && currentDownTempButton == HIGH)

{

 set_temp--;

}

214 Part III ■ Communication Interfaces

//Turn up the set temp

else if (lastUpTempButton == LOW && currentUpTempButton == HIGH)

{

 set_temp++;

}

//Print the set temp

lcd.setCursor(8,1);

lcd.print(set_temp);

//Update the button state with the current

lastDownTempButton = currentDownTempButton;

lastUpTempButton = currentUpTempButton;

The preceding code snippet first runs the debounce() function for each but-
ton, and then adjusts the set temperature variable if one of the buttons has been
pressed. Afterward, the temperature displayed on the LCD is updated, as are
the button state variables.

Adding	an	Audible	Warning	and	a	Fan
In this section, you add code to control the fan and the speaker. Although the
LCD showing you live information is nice, you’ll often find it useful to have
an additional form of feedback to tell you when something is happening. For
example, the speaker beeps when the fan turns on. In this example, you use
tone() paired with delay() and a notone() command. You could instead add a
duration argument to tone() to determine the duration of the sound. You want
to make sure that the tone plays only one time so (and does not beep forever
when above the set temperature).

Using a state variable, you can detect when the speaker has beeped and thus
keep it from beeping again until after the temperature dips below the set tem-
perature and resets the state variable.

When the fan turns on, an indicator changes on the LCD (represented by the
custom character you defined at the top of the program). The following code
snippet checks the temperature and controls the speaker, the fan indicator on
the LCD, and the fan:

//If it's too hot!

if (c >= set_temp)

{

 //Check if the speaker has already beeped

 if (!one_time)

 {

 tone(SPEAKER, 400);

 delay(500);

 one_time = true;

 }

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 215

 //Turn off the speaker when it's done

 else

 {

 noTone(SPEAKER);

 }

 //Turn the Fan on and update display

 digitalWrite(FAN, HIGH);

 lcd.setCursor(15,1);

 lcd.write(2);

}

//If it's not too hot!

else

{

 //Make sure the speaker is off

 //reset the "one beep" variable

 //update the fan state and LCD display

 noTone(SPEAKER);

 one_time = false;

 digitalWrite(FAN, LOW);

 lcd.setCursor(15,1);

 lcd.write(1);

}

The one_time variable is used to make sure that the beep plays only one time
instead of continuously. Once the speaker has beeped for 500ms at 400Hz, the
variable is set to true and is reset to false only when the temperature drops
back below the desired temperature.

Bringing	It	All	Together:	The	Complete	Program
It’s time to bring all the parts together into a cohesive whole. You need to make
sure that you include the appropriate libraries, define the pins, and initialize
the state variables at the top of the sketch. Listing 10-3 shows the complete pro-
gram. Load it on to your Arduino and compare your results to the demo video
showing the system in action.

Listing 10-3: Personal Thermostat Program—LCD_thermostat.ino

//Keep yourself cool! This is a thermostat.

//This assumes temperatures are always two digits

//Include Wire I2C library and set the address

#include <Wire.h>

#define TEMP_ADDR 72

//Include the LCD library and initialize:

#include <LiquidCrystal.h>

216 Part III ■ Communication Interfaces

LiquidCrystal lcd(2, 3, 4, 5, 6, 7);

//Custom degree character

byte degree[8] = {

 B00110,

 B01001,

 B01001,

 B00110,

 B00000,

 B00000,

 B00000,

 B00000,

};

//Custom "fan on" indicator

byte fan_on[8] = {

 B00100,

 B10101,

 B01110,

 B11111,

 B01110,

 B10101,

 B00100,

 B00000,

};

//Custom "fan off" indicator

byte fan_off[8] = {

 B00100,

 B00100,

 B00100,

 B11111,

 B00100,

 B00100,

 B00100,

 B00000,

};

//Pin Connections

const int SPEAKER =8;

const int DOWN_BUTTON =9;

const int UP_BUTTON =10;

const int FAN =11;

//Variables for debouncing

boolean lastDownTempButton = LOW;

boolean currentDownTempButton = LOW;

boolean lastUpTempButton = LOW;

boolean currentUpTempButton = LOW;

int set_temp = 23; //The Default desired temperature

boolean one_time = false; //Used for making the speaker beep only 1 time

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 217

void setup()

{

 pinMode(FAN, OUTPUT);

 //Create a wire object for the temp sensor

 Wire.begin();

 //Set up the LCD's number of columns and rows

 lcd.begin(16, 2);

 //Make custom characters

 lcd.createChar(0, degree);

 lcd.createChar(1, fan_off);

 lcd.createChar(2, fan_on);

 //Print a static message to the LCD

 lcd.setCursor(0,0);

 lcd.print("Current:");

 lcd.setCursor(10,0);

 lcd.write((byte)0);

 lcd.setCursor(11,0);

 lcd.print("C");

 lcd.setCursor(0,1);

 lcd.print("Set:");

 lcd.setCursor(10,1);

 lcd.write((byte)0);

 lcd.setCursor(11,1);

 lcd.print("C");

 lcd.setCursor(15,1);

 lcd.write(1);

}

//A debouncing function that can be used by multiple buttons

boolean debounce(boolean last, int pin)

{

 boolean current = digitalRead(pin);

 if (last != current)

 {

 delay(5);

 current = digitalRead(pin);

 }

 return current;

}

void loop()

{

 //Get the Temperature

 Wire.beginTransmission(TEMP_ADDR); //Start talking

 Wire.write(0); //Ask for register zero

 Wire.endTransmission(); //Complete transmission

 Wire.requestFrom(TEMP_ADDR, 1); //Request 1 byte

218 Part III ■ Communication Interfaces

 while(Wire.available() == 0); //Wait for response

 int c = Wire.read(); //Get the temp in C

 lcd.setCursor(8,0); //Move the cursor

 lcd.print(c); //Print this new value

 //Debounce both buttons

 currentDownTempButton = debounce(lastDownTempButton, DOWN_BUTTON);

 currentUpTempButton = debounce(lastUpTempButton, UP_BUTTON);

 //Turn down the set temp

 if (lastDownTempButton== LOW && currentDownTempButton == HIGH)

 {

 set_temp--;

 }

 //Turn up the set temp

 else if (lastUpTempButton== LOW && currentUpTempButton == HIGH)

 {

 set_temp++;

 }

 //Print the set temp

 lcd.setCursor(8,1);

 lcd.print(set_temp);

 lastDownTempButton = currentDownTempButton;

 lastUpTempButton = currentUpTempButton;

 //It's too hot!

 if (c >= set_temp)

 {

 //So that the speaker will only beep one time...

 if (!one_time)

 {

 tone(SPEAKER, 400);

 delay(500);

 one_time = true;

 }

 //Turn off the speaker if it's done

 else

 {

 noTone(SPEAKER);

 }

 //Turn the fan on and update display

 digitalWrite(FAN, HIGH);

 lcd.setCursor(15,1);

 lcd.write(2);

 }

 //It't not to hot!

 else

 {

 //Make sure the speaker is off, reset the "one beep" variable

 //Update the fan state, and LCD display

 noTone(SPEAKER);

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 219

 one_time = false;

 digitalWrite(FAN, LOW);

 lcd.setCursor(15,1);

 lcd.write(1);

 }

}

You no longer need to have the Arduino and components tethered to the
computer to see what the temperature is. If you like, you can plug in a battery
or wall power supply and place it anywhere in your room.

NOTE To	watch	a	demo	video	of	this	personal	thermostat	in	action,	check	out	
www.exploringarduino.com/content/ch10.	You	can	also	find	this	video	on	
the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Taking	This	Project	to	the	Next	Level
You could expand the functionality of this program in all kinds of ways. Here
are a few suggestions for further improvements you can make:

■■ Add a transistor to the fan so that it can draw more current and move
more air.

■■ Use pulse-width modulation (PWM) to control fan speed so that it changes
according to how far over the set temperature you are.

■■ Add LED indicators that display visual alerts.

■■ Make the speaker alert into a melody instead of a tone.

■■ Add a light sensor and automatically adjust the backlight brightness of
the display using an SPI potentiometer from Chapter 9, “The SPI Bus,”
based on the brightness of the room.

Summary

In this chapter you learned about the following:

■■ Parallel LCDs can be interfaced with the Arduino through a standard
wiring scheme.

■■ You can create custom characters for your LCD by generating arbitrary
bitmaps.

■■ You can modify your debounce function from Chapter 2 to debounce
multiple buttons.

■■ You combine multiple sensors, motors, buttons, and displays into one
coherent project.

 221

Parts You’ll Need for This Chapter

Two Arduinos (Unos and/or Leonardos recommended)

USB cables for programming Arduinos

Power supplies for each Arduino (optionally power over USB)

SparkFun USB XBee Explorer

XBee Series 1 radio (n2)

XBee shields (n2)

Pushbutton

Piezo buzzer

Common cathode RGB LED

10KΩ resistor

10KΩ potentiometer

150Ω resistor

220Ω resistors (n3)

Jumper wires

Breadboards (n2)

C h a P t e r

11
Wireless Communication with

XBee Radios

222 Part III ■ Communication Interfaces

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found at
www.exploringarduino.com/content/ch11.

In addition, all code can be found at www.wiley.com/go/exploringarduino on
the Download Code tab. The code is in the chapter 11 download and individually
named according to the names throughout the chapter.

It’s time to untether! A common requirement in many microcontroller projects
is wireless connectivity. There are many ways to achieve wireless connectivity,
but one of the easiest methods with the Arduino is to use XBee radios, which
are produced by a company named Digi. XBees act as a wireless serial pass-
through, allowing you to use the serial printing and reading commands you’ve
already learned about. This chapter focuses only on XBee communication, but
does cover some of the caveats that you must understand when using any form
of wireless communication.

XBees make it easy to communicate wirelessly between the Arduino and
your computer or between multiple Arduinos. In this chapter, you learn how
to facilitate both.

NOTE To	follow	a	video	tutorial	about	using	XBee	radios,	visit	www.jeremyblum
.com/2011/02/27/arduino-tutorial-9-wireless-communication/.	You	can	
also	find	this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Understanding	XBee	Wireless	Communication

The name says it all: Wireless communication permits two or more devices to
talk to each other without wires tethering them together. Wireless transmitters
operate by transmitting data in the form of radio waves through free space
by a process of electromagnetic radiation at a particular frequency. Different
frequencies are used by different transmission technologies to prevent “crowd-
ing” of certain parts of the available electromagnetic spectrum. Governmental
agencies, such as the Federal Communications Commission (FCC) in the USA,
regulate this spectrum and publish rules specifying which frequencies can be
used for what. The XBee radio transmits data 2.4GHz. You might recognize this
frequency because many devices around your home use it. It falls within the
ISM (Industrial, Scientific, and Medical) band, a set of frequencies set aside for
unlicensed wireless communication use. Your WiFi router probably operates at
this frequency as well. The XBee modules use the IEEE 802.15.4 standard, which
specifies a set of operating rules for wireless personal area networks (PANs).

XBees are generally used in a PAN point-to-point or a point-to-multipoint
configuration; Figure 11-1 shows examples of both. Point-to-point is useful when
you want to simply replace wired serial communication between two remote
units. Point-to-multipoint is often used for distributed sensor networks.

 Chapter 11 ■ Wireless Communication with XBee Radios 223

Figure 11-1: PAN configurations

XBee	Radios
XBee radios can communicate in an application programming interface (API) mode,
and a simple serial pass-through mode. In API mode, they can directly transmit
digital or analog I/O pin states. This enables you to have a microcontroller-free
weather station transmitter, for example. In this chapter, you use the XBees as a
simple serial pass-through. Serial data sent into one radio comes out of another
and vice versa. Using this method, you can use the XBees as a drop-in replace-
ment for a wired serial connection (either between two Arduinos or between an
Arduino and your computer).

XBees have 20 pins and are, for the most part, pin compatible with each
other. This chapter uses Series 1 XBees, which use the 802.15.4 standard. They
are capable of point-to-point and point-to-multipoint communication, but they
do not implement the ZigBee standard, a mesh networking standard found in
Series 2/ZB XBee radios. If you aren’t sure what kind of XBees you have, you
probably have Series 1. They look like the ones in Figure 11-2.

Figure 11-2: XBee Series 1 radios

C
re

di
t:

 S
pa

rk
Fu

n
[P

ho
to

gr
ap

he
r

Ju
an

 P
eñ

a]
,

w
w
w
.
s
p
a
r
k
f
u
n
.
c
o
m

.

224 Part III ■ Communication Interfaces

NOTE Series	1	and	Series	2	modules	are	not	compatible	with	each	other.	You	
can	use	either	one	(as	long	as	both	radios	are	the	same	series),	but	I	strongly	rec-
ommend	using	Series	1	if	you	are	just	starting	out.	Series	1	modules	require	less	
configuration	and	are	a	lot	easier	to	set	up.

There are other differences in each series of XBee as well. There are Pro and
non-Pro versions of most XBee modules. The Pro versions are completely com-
patible with their non-Pro counterparts, but consume more power, cost more,
are slightly longer, and have a significantly longer range (about 1 mile versus
300 feet). I recommend starting out with the cheaper, non-Pro version, and
upgrading later if you find you need more range.

Also, some radios are available in 2.4GHz and 900MHz versions. 900MHz
falls in another portion of the ISM band and is legal for personal use in some
countries, but not in others. 900MHz, because it is a lower frequency, achieves
better range and is better at penetrating walls. The 900MHz modules and 2.4GHz
modules cannot communicate with each other.

Finally, the XBee modules come with various antenna options: built-in wire
antennas, trace antennas, chip antennas, and external antenna connectors. Pick
whichever option suits your needs; you can generally get better range with an
external antenna, but it will take up more space.

This chapter uses non-Pro, Series 1, 2.4GHz XBees with chip antennas in
serial pass-through mode. Familiarize yourself with the module pin-out from
the datasheet shown in Figure 11-3.

Most of the details will be abstracted away by the XBee shield (explained in
the next section), but you should be aware of the fact that the XBee is a 3.3V
module; it needs a 3.3V power supply.

WARNING If	you	supply	an	XBee	radio	with	5V	on	the	supply	pin,	you	will	ruin	
the	component.

The	XBee	Radio	Shield	and	Serial	Connections
In this chapter, you learn to use the XBee radio in conjunction with a shield
that makes it easy to connect the module to your Arduino. A number of XBee
Arduino shields are available, so my descriptions here are general so that they
apply to any shield you might use. All the shields essentially do the same thing,
but with some minor differences, as explained in this section. Figure 11-4 shows
examples of the most common XBee shields.

 Chapter 11 ■ Wireless Communication with XBee Radios 225

Figure 11-3: XBee series 1 pin-out

Figure 11-4: Various XBee shields

Most XBee shields implement a number of key features, as explained in detail
in the following sections.

C
re

di
t:

 D
ig

i I
nt

er
na

tio
na

l,
In

c.
, w
w
w
.
d
i
g
i
.
c
o
m

Credits: Arduino, www.arduino.cc; SparkFun
[Photographer Juan Peña], www.sparkfun.com;
Cooking Hacks, www.cooking-hacks.com

226 Part III ■ Communication Interfaces

3.3V Regulator

Most Arduinos (excluding the Due) operate at 5V logic levels; 0V indicates a
logical low, and 5V indicates a logical high. The XBee, however, operates at 3.3V
logic level, and it must be supplied with 3.3V power. Although the Arduino does
have a small 3.3V regulator onboard, it does not supply enough current for the
XBee, so most shields implement an LDO (low dropout) linear regulator that
drops the 5V supply down to 3.3V for feeding into the VCC pin of the XBee.

Logic Level Shifting

The UART TX and RX pins of the Arduino and the XBee need to be connected;
here too, however, you need to consider the fact that the XBee is a 3.3V part.
Data transmitted from the XBee to the Arduino does not need to be level shifted
(although some shields will do it anyways). This is because 3.3V is still above
the threshold to be read as a logical high by the Arduino RX I/O pin. The data
transmitted from the Arduino to the XBee, however, must be shifted down to
3.3V before it can be fed into the DI I/O pin of the XBee. Different shields use
different methods to accomplish this.

Associate LED and RSSI LED

Most shields have an “associate” LED that blinks whenever the XBee is powered
up and in use as a simple serial pass-though. It is generally used when running
the XBee in API mode, which you do not do in this chapter.

The RSSI LED, also present on most XBee shields, lights up briefly when data
is being received.

UART Selection Jumper or Switch

The XBee radio communicates with your Arduino via a serial Universal
Asynchronous Receiver/Transmitter (UART) connection (RX and TX). In the
case of the Arduinos other than the Mega and Due, there is only one available
UART that is duplexed to the USB serial connection that you use for commu-
nicating with your computer for programming and debugging. The Leonardo
(and similar boards) has just one UART, but it can be dedicated to the RX/TX
pins, because the USB programming interface connects to the microcontroller
unit (MCU) directly. In the case of the Uno, this raises a question: How can the
XBee module and your computer’s interface both be connected to the Arduino’s
single UART at the same time? When the shield is attached, the connection of
the RX and TX pins looks like the diagram shown in Figure 11-5.

 Chapter 11 ■ Wireless Communication with XBee Radios 227

Figure 11-5: Colliding UART communication lines

Note the collision callout in Figure 11-5. Consider what would happen if both
the XBee and your computer tried to transmit data to the Arduino. How does the
Arduino know where the data is coming from? More importantly, what happens
if both try to transmit to the Arduino at the same time? The data will “collide,”
causing garbled data that cannot be properly interpreted by the Arduino.

Because of this collision condition, and complexities regarding the drivers
for these I/O ports, you cannot program the Arduino or talk to it from your
computer while the XBee is connected to the Arduino’s serial port. You can deal
with this in two ways:

■■ You can unplug the XBee shield every time you want to program your
Arduino.

■■ You can use a jumper or switch on the XBee shield to switch whether or
not the XBee is connected through to the Arduino.

When you want to program your Arduino, you need to either remove the
XBee shield, or be sure to set your shield’s jumper/switch so that the XBee is
disconnected.

Hardware vs. Software Serial UART Connection Option

In this chapter, you use only the “hardware” UART port of your Arduino to
communicate with your XBee (pins 0 and 1 on your Arduino). As explained
in the preceding section, these pins are also used for the USB connection to

228 Part III ■ Communication Interfaces

your computer. Most shields only allow a connection between the XBee and
Arduino on the hardware serial UART port. If your shield supports it, you
can avoid unplugging your XBee to program to your Arduino by using the
SoftwareSerial library. The library allows you to define two arbitrary digital
pins on your Arduino to act as RX/TX pins for talking with your XBee. For
this to work, your XBee shield must have jumpers that enable you to choose
which Arduino pins the RX/TX lines from the XBee connection. The SparkFun
XBee shield has a switch that allows to you connect the RX/TX pins to pins
2 and 3 instead of pins 0 and 1. If your shield supports this, you can use the
SoftwareSerial commands throughout this chapter in place of the traditional
Serial commands when communicating with the XBee radio.

Configuring	Your	XBees

Before you can actually use your XBees, you need to configure them to talk to
each other. Out of the box, XBees can already talk to each other; they are set
to a default channel and are in broadcast mode. In other words, they send and
receive with any other similarly configured XBee within range. Although this
is okay, at some point you may want to use multiple XBee setups within range
of each other, change communication speed, or otherwise configure them in
a way unique to your setup. Here, you learn how to configure your XBees to
speak specifically to each other.

Configuring	via	a	Shield	or	a	USB	Adapter
You can program XBees, just like you can program your Arduino, via a USB
serial connection. You can program an XBee in two ways. The first option is
to use the USB-serial converter that is built in to your Arduino (via the FTDI
chip or 8U2/16U2 Atmel chip that was explained in Chapter 6, “USB and Serial
Communication”). The second option is to use a dedicated XBee USB adapter.
I strongly recommend getting an XBee USB adapter; it will make it easier to
handle communication between an Arduino and your computer later in this
chapter. In this chapter, I use the popular SparkFun XBee USB Explorer (see
Figure 11-6) to program the XBees.

 Chapter 11 ■ Wireless Communication with XBee Radios 229

Figure 11-6: SparkFun USB Explorer

Programming Option 1: Using the Uno as a Programmer
(Not Recommended)

I do not recommend using an Arduino Uno as the programmer for your XBee;
it you can damage your Arduino if you are not careful. If you want to program
your XBee using your Arduino, you need to deal with the problem of colliding
serial data that was explained in the preceding section. You will need to (care-
fully) physically remove the ATMega chip from the Arduino. This is possible
with the Uno, but not possible with the Uno SMD version or any other board
that has the ATMega chip soldered onto the board rather than in a socket.

After removing the ATMega chip, attach the XBee shield and the XBee radio
and connect your Arduino to your computer via USB. Now, all serial commands
you send will go to the XBee rather than to your ATMega chip. (Check the spe-
cific documentation for your board to see whether you need to set a jumper or
switch for the communication to happen.)

C
re

di
t:

 S
pa

rk
Fu

n
[P

ho
to

gr
ap

he
r

Ju
an

 P
eñ

a]
,

w
w
w
.
s
p
a
r
k
f
u
n
.
c
o
m

230 Part III ■ Communication Interfaces

Programming Option 2: Using the SparkFun USB Explorer
(Recommended)

Using an XBee-USB adapter is easy: Plug the XBee into the socket on the adapter,
connect it your computer with the USB cable, and you are ready to program. The
SparkFun board uses the same FTDI chip that older Arduinos used for serial-USB
communication. Later in the chapter, this adapter is used to facilitate wireless
communication between your computer and an Arduino with an XBee shield.

Choosing	Your	XBee	Settings	and	Connecting	Your	XBee	to	
Your	Host	Computer
You have an enormous number of configuration options for your XBees, and
covering all of them could constitute its own book. Here, we cover the most
important values that you need to configure:

■■ ID: Personal area network (PAN) ID. All XBees that you want to talk to
each other must be assigned to the same PAN ID.

■■ MY: My address. This is a unique address identifying each XBee within
a certain personal area network.

■■ DL: Destination address. This is the unique address of the XBee that you
want this XBee to talk/listen to.

■■ BD: Baud rate. The rate at which the radios communicate with. We will
use 9600 baud for this value, which is the default.

These values are shown in Figure 11-7 for a two-XBee system using the values
that you will configure in the next step.

Figure 11-7: XBee point-to-point system

XB
ee

 P
ho

to
 C

re
di

t:
 S

pa
rk

Fu
n

[P
ho

to
gr

ap
he

r
Ju

an
 P

eñ
a]

,
w
w
w
.
s
p
a
r
k
f
u
n
.
c
o
m

 Chapter 11 ■ Wireless Communication with XBee Radios 231

Note that the MY and DL values for each XBee are swapped with each other
because one XBee’s destination address is the other’s source address. (The ID
that I use in these examples for the PAN is 1234, but you can choose another
four-digit hex PAN ID if you desire.) The BD is set to 3, the default value. Instead
of setting it to the actual baud rate, you set it to a number that represents the
baud rate. The baud values are related to BD values follows:

■■ 0: 1200 baud

■■ 1: 2400 baud

■■ 2: 4800 baud

■■ 3: 9600 baud (Default)

■■ 4: 19200 baud

■■ 5: 38400 baud

■■ 6: 57600 baud

■■ 7: 115200 baud

Connect your XBee to your computer using either of the two methods described
earlier. Make sure to insert the XBee in the right direction. After connecting it,
you need to identify the serial port that it is connected to. You can do this the
same way you did for the Arduino in Chapter 1, “Getting Up and Blinking with
the Arduino.” Note down what serial port the XBee connected to.

Configuring	Your	XBee	with	X-CTU
Next, you program your XBees with the values specified in Figure 11-7. If you
are using Windows, you can use an application called X-CTU to do this using a
graphical interface. I recommend this method if you have access to a Windows
computer. If you don’t have a Windows computer, skip to the next section, where
you learn how to configure your XBees using a serial terminal in Linux or OS X.

A quick Google search for “X-CTU” will return the most up-to-date download
link for the application from the Digi website. The installer is also linked from
the web page for the chapter: www.exploringarduino.com/content/ch11. Find
a download link, then complete the following steps:

 1. Download the installer, install X-CTU, and launch the application. Once
launched, you should see a window like the one in Figure 11-8. A list of
available Com ports appears on the left side of the window.

232 Part III ■ Communication Interfaces

Figure 11-8: Main X-CTU window

 2. Select the Com port that your XBee explorer is connected to and click the
Test/Query button highlighted in Figure 11-8. If this is a new XBee that is
configured using default settings (a 9600 baud rate), the window shown
in Figure 11-9 should pop up confirming the current configuration info
has been read from the radio.

Figure 11-9: X-CTU query confirmation

 Chapter 11 ■ Wireless Communication with XBee Radios 233

 3. Navigate to the Modem Configuration screen and click the Read button to
display all the available configuration options on your XBee and what they
are currently set to. The result should look something like Figure 11-10.

Figure 11-10: X-CTU modem configuration

 4. Now, you set the PAN ID, source address, and destination address. You
can set many other configuration options as well, but we focus on just these
settings in this book. To change a setting, just click it to make it editable.
Set the following:

 ID 1234

 DL 1001

 MY 1000

 5. Click the Write button at the top of the window to write these values into
your XBee. When you do this, those values should turn blue. Figure 11-11
highlights these values.

234 Part III ■ Communication Interfaces

Figure 11-11: Settings written to XBee

You have now configured your first XBee! Now, carefully remove this XBee
from the USB explorer and install the other XBee. Perform the same steps previ-
ously listed with your second XBee, but switch the DL and MY values so that
the XBees talk to each other. Figure 11-12 shows the completed configuration
for this second XBee.

Figure 11-12: Settings written to second XBee

 Chapter 11 ■ Wireless Communication with XBee Radios 235

Both of your XBees are now configured and ready for communication with
each other. By assigning them a nondefault PAN ID, you reduce the risk that
they will interfere with other XBee networks. If you’ve successfully configured
the radios, you can skip to the section “Talking with Your Computer Wirelessly.”

Configuring	Your	XBee	with	a	Serial	Terminal
If you don’t have Windows, you need to do your XBee configuration through
a serial terminal, because X-CTU is Windows only. This process is the same
for both Linux and Mac machines. You use the “screen” application that comes
bundled with the system accessible. As in the first chapter, use the Arduino
integrated development environment (IDE) to figure out what the device name
is for your USB-serial adapter when it is plugged it in. You can find the name
by looking in the Tools menu, under “Serial Port.”

After identifying the device name, open a terminal (you can find the terminal
by searching for it in your system’s search box) and complete the following steps:

 1. In the terminal, enter the command screen /dev/ttyUSB6 9600 (replacing
/dev/yytUSB6 with the name of your serial port) and press Enter.

When you press Enter, a connection is initiated to the XBee serial terminal,
and the screen goes blank. Once connected to the radio, as you type the
commands, they will not appear in the terminal. The XBee does not echo
your text back to you.

First, I explain the programming process, and then I provide a list of
commands to enter in the terminal. To program the XBee, you need to
complete these steps:

 a. Put the XBee in programming mode.

 b. Set the PAN ID (ATID).

 c. Set the source address (ATMY).

 d. Set the destination address (ATDL).

 e. Write the settings to the XBee’s nonvolatile memory (ATWR).

Once you enter programming mode, entry of the other commands is time
sensitive. If you wait too long between entering commands, you’ll exit
programming mode and have to reenter it. This timeout happens after
only a few seconds, so try to be quick. Remember that as you type your
commands are not shown. Furthermore, after each command, a carriage
return is not added to the terminal, so you will be typing “on top of” your
previous commands. Steps 2-7 describe the commands you actually need
to enter into the terminal to program your XBee.

236 Part III ■ Communication Interfaces

 2. Type +++ and wait; do not press Enter. The terminal will reply with an
“OK” indicating that the XBee has entered programming mode.

 3. Type ATID1234 and press Enter. This sets the PAN ID to 1234.

 4. Type ATMY1000 and press Enter. This sets the source address to 1000.

 5. Type ATDL1001 and press Enter. This sets the destination address to 1001.

 6. Type ATWR and press Enter. This commits the settings that you just entered
to nonvolatile memory. Nonvolatile memory is not deleted when power
is removed from the XBee.

 7. If you want, you can confirm that the values have been written by enter-
ing ATID, ATMY, or ATDL without numbers afterward and pressing Enter.
This prints the current values to the display.

NOTE If	at	any	time	you	are	exited	from	the	programming	mode,	you	can	reen-
ter	it	by	typing	+++	and	picking	up	where	you	left	off.	

After completing all the preceding steps, carefully replace the XBee with
your other module. Then, run through the same steps, but swap the values for
ATMY and ATDL so that the XBees are set up to talk to each other.

Your XBees are now configured, and you’re ready to have them talk to each
other! If you’re having trouble with the configuration, watch the video mentioned
at the beginning of this chapter; it walks through the configuration steps visually.

Talking	with	Your	Computer	Wirelessly

Now that you know how to configure your XBees, it’s time to start using them.
First, you use them to replace the USB cable between your computer and your
Arduino. You cannot download programs to your Arduino via an XBee connec-
tion without hardware modifications, so you still upload and test your programs
via a USB connection. Then, you untether and replace the USB connection with
a wireless XBee connection.

Powering	Your	Remote	Arduino
Your remote Arduino will not be connected to your computer via USB, so you
need to power it somehow. You have a few options for doing this, as described
in this section.

 Chapter 11 ■ Wireless Communication with XBee Radios 237

USB with a Computer or a 5V Wall Adapter

This connection method defeats the point of going wireless, but you can leave
the Arduino plugged into your computer via USB. The USB cable will provide
5V power to your Arduino, and the XBee will communicate with a separate USB
XBee Explorer plugged into a different USB port on your computer. This is fine
for testing your wireless communication, but is a bit silly for any practical appli-
cation. If you go this route, make sure to choose the serial port connected to the
USB Explorer to receive communication in the serial monitor or in Processing.

You can also use the 5V USB connection with a wall adapter. This makes a
bit more sense because you are no longer tethered to same computer that you
are programming from. If you have a smartphone, you probably already have
one of these adapters; they are commonly used for charging iPhones, Android
devices, and other smartphones and tablets. Figure 11-13 shows a standard USB
wall adapter for U.S. outlets.

Figure 11-13: 5V USB wall adapter

Batteries

You can also power the Arduino using batteries. One of the most popular meth-
ods is to use a 9V battery hooked into the direct current (DC) power jack or the
“Vin” input pin. Both of these inputs feed into the Arduino’s onboard linear 5V
regulator, which generates a clean 5V signal for your microcontroller and other
logic. Figure 11-14 shows an example of a 9V battery pack with an integrated
switch and DC power jack from adafruit.com.

C
re

di
t:

 a
da

fr
ui

t I
nd

us
tr

ie
s,

 w
w
w
.
a
d
a
f
r
u
i
t
.
c
o
m

238 Part III ■ Communication Interfaces

Figure 11-14: 9V battery pack

9V batteries are expensive, so some people prefer to use a AA battery pack.
An average AA battery has a nominal voltage of 1.5V. Hence, it’s fairly common
to put four of these in series to generate about 6V total. Connecting four AA bat-
teries to the Vin pin or the barrel jack input of the Arduino sends power through
the voltage regulator, which has a small “dropout” voltage. (A dropout voltage
is the minimum voltage that must exist between the input and output voltages.)
On the Arduino, the 5V regulator has a dropout of approximately 1V (though
this varies with temperature and current consumption). The input from a AA
battery pack (with four batteries) is generally around 5.5V. With a 1V drop, you
can generally expect that the Arduino logic will be operating around 4.5V. The
ATMega is rated to run at this voltage (it can actually run all the way down to
1.8V), but you should be aware that all your logic will be operating at a slightly
lower voltage than when you are on USB.

C
re

di
t:

 a
da

fr
ui

t I
nd

us
tr

ie
s,

 w
w
w
.
a
d
a
f
r
u
i
t
.
c
o
m

 Chapter 11 ■ Wireless Communication with XBee Radios 239

Wall Power Adapters

A third option for powering your remote Arduino is to use a wall adapter. These
plug into an ordinary outlet and have a barrel jack connector on the other end for
connecting to your Arduino. There are three important specifications you need
to check for when choosing a wall power adapter: the physical characteristics
of the jack, the supplied voltage, and the maximum current output capabilities.

The Arduino requires a 2.1mm center-positive DC barrel jack plug. In other
words, the inside of the jack should be at a positive voltage, and the outside con-
tact should be connected to ground. This is generally indicated on the charger
by a symbol that looks like the one in Figure 11-15.

Figure 11-15: Center-positive symbol

Because the Arduino has a built-in voltage regulator, you can use any DC
voltage between 7V and 12V. This voltage will also be available on the Vin pin,
which can prove useful for powering higher-power devices such as motors.

All DC wall adapters are also rated for the maximum current that they sup-
ply. The higher the current, the more things you will be able to power with it.
A 1-amp supply is fairly common and provides more than enough power for
your Arduino’s 5V regulated logic and some additional components.

Revisiting	the	Serial	Examples:	Controlling	Processing	with	
a	Potentiometer
At this point, you’re finally ready to start doing some wireless communication.
Because XBee is nothing more than a serial pass-through, you can start by test-
ing your setup with the examples you already created in Chapter 6. You need
to complete the following steps:

 1. Upload the sketch that allows you to change the color of a Processing
window using a potentiometer connected to your Arduino.

Do this before you install the XBee shield on to your Arduino, because of
the shared UART complexities that were discussed earlier in the chapter.

240 Part III ■ Communication Interfaces

If your shield has a jumper or switch to select whether or not the XBee is
connected to the UART, you can use that while programming. (Check the
documentation for your particular shield if you’re unsure.)

The sketch that reads the pot and transmits it to the computer is repeated
in Listing 11-1 for your reference.

Listing 11-1: Arduino Code to send Data to the Computer—pot_to_processing/arduino_
read_pot

//Sending POT value to the computer

const int POT=0; //Pot on analog pin 0

int val; //For holding mapped pot value

void setup()

{

 Serial.begin(9600); //Start serial

}

void loop()

{

 val = map(analogRead(POT), 0, 1023, 0, 255); //Read and map POT

 Serial.println(val); //Send value

 delay(50); //Delay so we don't

 //flood the computer

}

 2. Unplug the Arduino from your computer and install the XBee shield along
with the XBee. Connect a potentiometer to analog input 0 as shown in the
wiring diagram in Figure 11-16.

 3. Power this Arduino using one of the methods described in the previous
section. I chose to use a USB cable with a wall power adapter, but any of
the methods described would work fine.

 4. Connect your XBee USB Explorer with the other programmed XBee
radio to your computer with a USB cable. (Alternatively, you can use
another Arduino board connected to an XBee Shield with the ATMega
chip removed.) If the radios are configured correctly, you should see the
RX light on the USB XBee Explorer flashing rapidly as it receives data.

 Chapter 11 ■ Wireless Communication with XBee Radios 241

Figure 11-16: Wiring diagram showing Arduino with XBee shield and potentiometer

 5. Before using this to control the Processing sketch, you can open a serial
monitor window from the Arduino IDE to see the input coming in through
your XBee. Select the serial port that your Explorer is connected to and
open the serial monitor to see the values streaming in (see Figure 11-17).

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

242 Part III ■ Communication Interfaces

Figure 11-17: Wireless incoming data shown with the serial monitor

 6. After you have confirmed that data is coming in, close the serial monitor
and run the Processing sketch to adjust the window’s color based on the
incoming data.

Before starting the sketch, ensure that you have the proper serial port
selected. Listing 11-2 repeats the code.

Listing 11-2: Processing Code to Read Data and Change Color on the Screen— pot_to_
processing/processing_display_color

//Processing Sketch to Read Value and Change Color on the Screen

//Import and initialize serial port library

import processing.serial.*;

Serial port;

float brightness = 0; //For holding value from pot

void setup()

{

 size(500,500); //Window size

 port = new Serial(this, "COM3", 9600); //Set up serial

 port.bufferUntil('\n'); //Set up port to read

 //until newline

}

void draw()

{

 Chapter 11 ■ Wireless Communication with XBee Radios 243

 background(0,0,brightness); //Updates the window

}

void serialEvent (Serial port)

{

 brightness = float(port.readStringUntil('\n')); //Gets val

}

When you run the sketch, it should work just as it did when you were con-
nected directly to the Arduino with a USB cable. Run around your house or
office (if you are using a battery pack) and control the colors on your screen.

Revisiting	the	Serial	Examples:	Controlling	an	RGB	LED
You’ve now confirmed that you can send data wirelessly from your Arduino
to the computer. Next, you use the RGB LED control sketch from Chapter 6 to
confirm that you can wirelessly send commands from your computer to your
Arduino. After confirming that you can successfully send data between your
Arduino and the computer wirelessly, you can design any number of exciting
applications; you’ll find some ideas listed on the webpage for this chapter.

Again, the first step is to load the appropriate program (see Listing 11-3) on
to your Arduino. Use the same program that you used in chapter six. It accepts
a string of RGB values and sets an RGB LED accordingly.

Listing 11-3: RGB LED Control via Serial— processing_control_RGB/list_control

//Sending Multiple Variables at Once

//Define LED Pins

const int RED =11;

const int GREEN =10;

const int BLUE =9;

//Variables for RGB levels

int rval = 0;

int gval = 0;

int bval = 0;

void setup()

{

 Serial.begin(9600); //Serial port at 9600 baud

 //Set pins as outputs

 pinMode(RED, OUTPUT);

 pinMode(GREEN, OUTPUT);

244 Part III ■ Communication Interfaces

 pinMode(BLUE, OUTPUT);

}

void loop()

{

 //Keep working as long as data is in the buffer

 while (Serial.available() > 0)

 {

 rval = Serial.parseInt(); //First valid integer

 gval = Serial.parseInt(); //Second valid integer

 bval = Serial.parseInt(); //Third valid integer

 if (Serial.read() == '\n') //Done transmitting

 {

 //set LED

 analogWrite(RED, rval);

 analogWrite(GREEN, gval);

 analogWrite(BLUE, bval);

 }

 }

}

Next, wire up the Arduino just as you did in Chapter 6 (with the addition of
the wireless shield and XBee radio), as shown in Figure 11-18.

As in the previous section, connect your USB Explorer to your computer and
launch the Processing sketch, which is shown in Listing 11-4. Make sure you
put the hsv.jpg file into the data folder of the sketch, as you did in Chapter 6 (It
is included in the online code download). Before running the sketch, be sure
to set the serial port name to the correct value.

Listing 11-4: Processing Sketch to Set Arduino RGB Colors —processing_control_RGB/
processing_control_RGB

import processing.serial.*; //Import serial library

PImage img; //Image object

Serial port; //Serial port object

void setup()

{

 size(640,256); //Size of HSV image

 img = loadImage(“hsv.jpg”); //Load in background image

 port = new Serial(this, “COM9”, 9600); //Open serial port

}

void draw()

{

 background(0); //Black background

 image(img,0,0); //Overlay image

}

 Chapter 11 ■ Wireless Communication with XBee Radios 245

void mousePressed()

{

 color c = get(mouseX, mouseY); //Get the RGB color where mouse

 //was pressed

 String colors = int(red(c))+”,”+int(green(c))+”,”+int(blue(c))+”\n”;

 //extract values from color

 print(colors); //Print colors for debugging

 port.write(colors); //Send values to Arduino

}

Figure 11-18: Arduino wired to XBee shield and RGB LED

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

246 Part III ■ Communication Interfaces

When you run this sketch, the color picker should appear just as it did in
Chapter 6. Click a color. It will be transmitted to the remote Arduino, and the
RGB LED will become the color you’ve picked. The values transmitted should
show up in the Processing terminal as well. At this point, you’ve completely
tested that your XBees can communicate back and forth with a computer. In the
next section, you use the techniques that you developed here to communicate
directly between two Arduinos.

Talking	with	Another	Arduino:	Building	a	Wireless	
Doorbell

Facilitating wireless communication between Arduinos is extremely useful.
You can use multiple Arduino nodes to create sensor networks, transmit con-
trol commands (for a radio-controlled [RC] car, for example), or to facilitate
remote monitoring of an electrical system. In this section, you use two Arduinos
equipped with XBees to make a doorbell for your home, apartment, or office.
A remote Arduino at your door will respond to button presses from a visitor.
When a visitor “rings” the doorbell, your other Arduino will light up and make
sounds to indicate that you have a visitor. You might want to watch the video
demo of the system in action at www.exploringarduino.com/content/ch11
before you build the project.

System	Design
The system you’ll build consists of two Arduinos. Each will have an XBee shield
and a radio. One Arduino can be placed outside of your home or apartment for
people to press the button, and the other can be placed anywhere inside to alert
you when somebody rings the doorbell. The range of the two units depends
on the type of XBees, how many walls are between the two units, and other
environmental factors.

Because just making a generic buzzer is boring, the receiving Arduino will
flash multicolor lights and alternate tones to get your attention. You can easily
customize the system to add your own sound effects. While the outdoor system
in this example will be a simple pushbutton, you could replace the pushbutton
with an IR sensor, light sensor, or occupancy sensor to automatically determine
when somebody is approaching.

When designing a multifaceted system, it’s good engineering practice to devise
a high-level system design, such as the one shown in Figure 11-19. The level of
detail that you use when designing such a diagram is up to you. Designing
a simple diagram like the one shown here will help you to devise a plan for
building each part of the individual system.

 Chapter 11 ■ Wireless Communication with XBee Radios 247

Figure 11-19: Wireless doorbell system diagram

Transmitter	Hardware
First, build the hardware for the doorbell component, which will be referred to
as the transmitter. You need a button with a pull-down resistor, connected to
a digital input on an Arduino with a mounted XBee shield (see Figure 11-20).

Figure 11-20: Wireless doorbell transmitter Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

248 Part III ■ Communication Interfaces

It doesn’t matter what kind of Arduino you use in your system, but it is
important to note that serial communication on boards like the Leonardo works
differently than on the Uno. The Leonardo and Micro have a single MCU to
control serial communication and program execution, whereas the Uno and
Mega have separate processors. To demonstrate these differences, I chose to use
a Leonardo for the transmitter. The circuit for either type of board is the same;
software differences are addressed next.

Because the transmitter will presumably not be near a computer, choose one
of the power options from earlier in the chapter that doesn’t require power over
USB from a computer. In the video demo, I used a 9V battery connected to the
barrel jack connector. If you want this to be a bit more permanent, you might
want to power the circuit using a DC wall adapter.

TIP If	you	are	interested	in	making	something	a	bit	more	polished,	you	could	buy	a	
large,	wired	pushbutton	and	wire	it	through	the	wall	to	the	Arduino	on	the	other	side.

Receiver	Hardware
Next, build the component that will notify you when the transmitter’s button
is pressed. This will be your receiver. The hardware for this circuit consists of
an Arduino with an XBee shield and radio, an RGB LED, resistors, and a small
Piezo speaker. Follow the wiring diagram in Figure 11-21. Note that only the
red and green LEDs are used in the sketch, so adding a resistor for the blue LED
resistor is not necessary. You could also install a potentiometer in-line with the
speaker to make the volume adjustable.

Figure 11-21: Wireless doorbell receiver

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 11 ■ Wireless Communication with XBee Radios 249

You need to pick an Arduino and power supply. While any type of board
will work, I am using an Uno. I chose a USB cable connected to a wall adapter
for power. You could just as easily use a battery or a USB connection to your
computer. You can expand the functionality of the receiver by adding more
lights, motors, or controlling a Processing sketch on your computer.

Transmitter	Software
Once your hardware is all set up, you need to write the software for both ends
of the system. Bear in mind that there are myriad ways to set up this commu-
nication scheme, and just one methodology is outlined here.

For this setup, you have the transmitter sending a value every 50ms. It will
be '0' when the button is not pressed and '1' when the button is pushed. It’s
not necessary to debounce the button, because you are not looking for button
clicks; the receiver will ring as long as the transmitter button is held down.

The code changes slightly depending on what kind of Arduino you are using.
In the case of the Arduino Uno (or any other Arduino that has a separate Atmel
or FTDI chip for handling serial communication), the main MCU UART con-
nection is shared between the USB port and the RX/TX pins (pins 0 and 1) on
the Arduino. If using an Uno or Mega (or any other Arduino with a separate
USB-serial chip), you need to remove the XBee shield to program the Arduino,
or adjust the jumpers/switch if your shield has that functionality. On these
boards, Serial refers to both USB and UART communication over pins 0 and 1.

If you are using the Leonardo, or another Arduino that has USB communica-
tion integrated, you use Serial to talk over USB and Serial1 to talk over the
RX/TX pins. You do not need to remove an XBee shield to program a board
like the Leonardo because the UART is not shared. The code in Listing 11-5 is
written for the Leonardo and other similar Arduinos. If you are using an Uno-
based platform, replace references to Serial1 with Serial.

Listing 11-5: Doorbell Transmitter—doorbell/transmitting_arduino

//Code running on an Arduino to transmit the doorbell push

const int BUTTON =12; //Button on pin 12

void setup()

{

 //NOTE: On the Leonardo, the RX/TX serial pins are

 //not multiplexed with USB like they are on Uno.

 //This sketch is written for the Leonardo (Serial1 = RX/TX pins)

 //If you are using the Uno, change Serial1 to Serial, here and below

 Serial1.begin(9600); //Start serial

}

250 Part III ■ Communication Interfaces

void loop()

{

 Serial1.println(digitalRead(BUTTON)); //Send the button's state

 delay(50); //Small delay so we don't flood the receiver

}

In the setup, the serial port connected to the XBee starts to run at 9600 baud.
Every 50ms, the value of the digital input is read and printed out to the radio.
digitalRead() can be placed directly inside of the println statement because
the output value doesn’t need to be used anywhere else in the program.

Receiver	Software
The receiver software is more complicated than the transmitter program. The
example code provided in Listing 11-6 was written for an Arduino Uno. If you
are using a Leonardo-type board, replace Serial with Serial1.

This software needs to listen to the serial port, determine whether the remote
button is being pressed, and modulate light/sound while still listening for new
incoming data. The last part is what makes this program tricky; you need to
use a “nonblocking” technique so that program doesn’t have to call delay()
at any point. A blocking function is anything that prevents the system from
performing other tasks. delay() is an example of a blocking function. When it
is invoked, nothing else happens in the program until delay() has finished. If
you were to use a delay() statement in a communication scheme like this, you
would run into two problems: The receiver’s response to the transmitter’s signal
would not be instantaneous, and the input buffer could overflow because the
transmitter may be sending data at a rate faster than the receiver can read it.

The goal is to have the light blink back and forth between red and green,
and to have the Piezo’s pitch go back and forth between two frequencies. You
can’t use a delay() for the reasons mentioned earlier. Instead of a delay(), you
use the millis() function, which returns the number of milliseconds since
the Arduino started running the sketch. The light and speaker switch at a rate
of once every 100ms. So, you store the time at which the previous switch was
made and look for a new millis() value to be at least 100ms greater than the
previous switch time. When that happens, you swap the pins for the LED and
adjust the frequency. Also in loop(), you check the serial buffer for a '0' or
'1' and adjust the lights and sound accordingly.

The setup()initializes the program’s values. To facilitate switching, you keep
track of the pin states of the LEDs. You also keep track of the current frequency
and the previous toggle time returned from millis().

Consider the code in Listing 11-6 and load it on to your receiving Arduino.
Before uploading the code, remember to set any necessary jumpers or remove
the XBee shield to program the board.

 Chapter 11 ■ Wireless Communication with XBee Radios 251

Listing 11-6: Doorbell Receiver—doorbell/receiving_arduino

//Code running on an Arduino to receive doorbell value

const int RED =11; //Red LED on pin 11

const int GREEN =10; //Green LED on pin 10

const int SPEAKER =8; //Speaker on pin 8

char data; //Char to hold incoming serial data

int onLED = GREEN; //Initially on LED

int offLED = RED; //Initially off LED

int freq = 131; //Initial speaker frequency

unsigned long prev_time = 0; //Timer for toggling the LED and speaker

void setup()

{

 Serial.begin(9600); //Start serial

}

void loop()

{

 //Handle light and sound toggling

 //If 100ms have passed

 if (millis() >= prev_time + 100)

 {

 //Toggle the LED state

 if (onLED == GREEN)

 {

 onLED = RED;

 offLED = GREEN;

 }

 else

 {

 onLED = GREEN;

 offLED = RED;

 }

 //Toggle the frequency

 if (freq == 261){

 freq = 131;

 } else {

 freq = 261;

 }

 //Set the current time in ms to the

 //Previous time for the next trip through the loop

 prev_time = millis();

 }

 //Check if serial data is available

 if (Serial.available() > 0)

 {

252 Part III ■ Communication Interfaces

 //Read byte of data

 data = Serial.read();

 //If the button is pressed, play tone and turn LED on

 if (data == '1')

 {

 digitalWrite(onLED, HIGH);

 digitalWrite(offLED, LOW);

 tone(SPEAKER, freq);

 }

 //If the button is not pressed, turn the sound and light off

 else if (data == '0')

 {

 digitalWrite(onLED, LOW);

 digitalWrite(offLED, LOW);

 noTone(SPEAKER);

 }

 }

}

The first if() statement in loop() checks the elapsed time since it last ran.
If it’s been at least 100ms, it’s time to switch the lights and frequency. By checking
the current states, you can alternate values for the light and frequency. You set the
offLED when the other light gets turned on. At the end of the if() statement, the
previous time is set to the present time so that the process can be repeated.

The second large if() statement in loop() checks incoming serial data. When
a '0' is received, everything gets turned off. When there is a '1', the light and
speaker turn on according to the values set earlier in loop().

NOTE Watch	a	demo	video	of	the	wireless	Arduino	doorbell	at	www.explorin-
garduino.com/content/ch11.	You	can	also	find	this	video	on	the	Wiley	website	
shown	at	the	beginning	of	this	chapter.

Summary

In this chapter, you learned about the following:

■■ There are a wide range of available XBee models.

■■ You must convert between 5V and 3.3V logic levels to use an XBee with
most Arduinos.

■■ You can configure XBee using either X-CTU on Windows, or the terminal
on Linux and Mac.

 Chapter 11 ■ Wireless Communication with XBee Radios 253

■■ There are a variety of options for powering your Arduino that do not
require you to stay connected to your computer via USB.

■■ You can communicate wirelessly between your computer and an Arduino
using XBees.

■■ You can communicate wirelessly between two Arduinos using XBees.

■■ The millis() function can be used with state variables to create “non-
blocking” code that implements time delays.

P a r t

IV
Advanced Topics and Projects

In	This	Part

Chapter 12: Hardware and Timer Interrupts
Chapter 13: Datalogging with SD Cards
Chapter 14: Connecting Your Arduino to the Internet

 257

Parts You’ll Need for This Chapter

Arduino (Uno recommended)

USB cables for programming Arduino

Pushbutton

Piezo buzzer

Common cathode RGB LED

10kΩ resistor

100Ω resistor

150Ω resistor

220Ω resistors (n3)

10uF electrolytic capacitor

74HC14 hex inverting Schmitt trigger IC

Jumper wires

Breadboard

C h a P t e r

12

Hardware and Timer Interrupts

258 Part IV ■ Advanced Topics and Projects

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found at www
.exploringarduino.com/content/ch12.

In addition, all code can be found at w w w.wiley.com/re mtitle
.cgi?isbn=1118549368 on the Download Code tab. The code is in the chapter 12
download and individually named according to the names throughout the chapter.

Up to this point, every Arduino program you’ve written has been synchro-
nous. This presents a few problems, namely that using delay() can preclude
your Arduino from doing other things. In the preceding chapter, you created
a software timer using millis() to avoid the synchronous blocking nature of
delay(). In this chapter, you take this idea a step further by adding both timer
and hardware interrupts. Interrupts make it possible to execute code asynchro-
nously by triggering certain events (time elapsed, input state change, and so on).
Interrupts, as their name implies, allow you to stop whatever your Arduino is
currently doing, complete a different task, and then return to what the Arduino
was previously executing. In this chapter, you learn how to execute interrupts
when timed events occur or when input pins change state. You will use this
knowledge to build a “nonblocking” hardware interrupt system, as well as a
sound machine using timer interrupts.

NOTE Follow	a	video	tutorial	about	interrupts	and	hardware	debouncing:	
	www.jeremyblum.com/2011/03/07/arduino-tutorial-10-interrupts-
and-hardware-debouncing.	You	can	also	find	this	video	on	the	Wiley	website	
shown	at	the	beginning	of	this	chapter.

Using	Hardware	Interrupts

Hardware interrupts are trigged depending on the state (or change in state), of
an input I/O pin. Hardware interrupts can be particularly useful if you want to
change some state variable within your code without having to constantly poll
the state of a button. In some previous chapters, you used a software debounce
routine along with a check for the button state each time through the loop. This
works great if the other content in your loop does not take a long time to execute.

Suppose, however, that you want to run a procedure in your loop that takes
awhile. For example, perhaps you want to slowly ramp up the brightness of an
LED or the speed of a motor using a for() loop with some delay() statements.
If you want button presses to adjust the color or speed of such an LED fade, you
will miss any presses of the button that occur while the delay() is happening.
Ordinarily, human reaction time is slow enough that you can execute many
functions within the loop() of an Arduino program, and can poll a button once
every time you go through the loop without missing the button press. However,
when there are “slow” components to your code within the loop(), you risk
missing external inputs.

 Chapter 12 ■ Hardware and Timer Interrupts 259

That’s where interrupts come in. Select pins on your Arduino (or all pins
on the Due) can function as external hardware interrupts. Hardware within
the ATMega knows the state of these pins and can report their values to your
code asynchronously. Hence, you can execute your main program, and have it
“interrupted” to run a special function whenever an external interrupt event
is detected. This interrupt can happen anywhere in the program’s execution.
Figure 12-1 shows what this process could look like in practice.

Figure 12-1: How an external interrupt affects program flow

Knowing	the	Tradeoffs	Between	Polling	and	Interrupting
Hardware interrupts are an alternative to repeatedly polling external inputs
in loop(). They are not better or worse; instead, there are tradeoffs between
using the two. When designing a system, you must consider all your options
and choose the appropriate one for your application. This section describes the

260 Part IV ■ Advanced Topics and Projects

main differences between polling inputs and using interrupts so that you can
decide for yourself which option is best for your particular project.

Ease of Implementation (Software)

Thanks to the excellent programming language that has been constructed for
the Arduino, attaching external interrupts in software is actually very straight-
forward. Using polling to detect inputs to the Arduino is still easier because
all you have to do is call digitalRead(). If you don’t need to use hardware
interrupts, don’t bother to use them over polling, because it does require you
to write a little more code.

Ease of Implementation (Hardware)

For most digital inputs, the hardware for an input that triggers via polling or
interrupting is exactly the same, because you are just looking for a state change
in the input. However, in one situation you need to adjust your hardware if you
are using an edge-triggered interrupt: bouncy inputs. As discussed in Chapter 2,
“Digital Inputs, Outputs, and Pulse-Width Modulation,” many buttons (some-
thing you will commonly want to use to trigger an input) bounce when you
press them. This can be a significant problem because it will cause the interrupt
routine to trigger multiple times when you want it to trigger only once. What’s
worse, it is not possible to use the software debouncing function that you had
previously written because you cannot use a delay() in an interrupt routine.
Therefore, if you need to use a bouncy input with a hardware interrupt, you
need to first debounce it with hardware. If your input does not bounce (like a
rotary encoder) you don’t have to worry, and your hardware will be no different
than it was with a polling setup.

Multitasking

One of the primary reasons for using interrupts is to enable pseudo-multitasking.
You can never achieve true multitasking on an Arduino because there is only
one microcontroller unit (MCU), and because it can execute only one command
at a time. However, because it executes commands so quickly, you can use inter-
rupts to “weave” tasks together so that they appear to execute simultaneously.
For instance, using interrupts, you can be dimming LEDs with delay() while
appearing to simultaneously respond to a button input that adjusts the fade speed
or color. When polling an external input, you can only read the input once you
get to a digitalRead() in your program loop, meaning that having “slower”
functions in your program could make it hard to effectively listen for an input.

 Chapter 12 ■ Hardware and Timer Interrupts 261

Acquisition Accuracy

For certain fast acquisition tasks, interrupting is an absolute necessity. For
example, suppose that you are using a rotary encoder. Rotary encoders are
commonly mounted on direct current (DC) motors and send a pulse to the
microcontroller every time some percentage of a revolution is completed. You
can use them to create a feedback system for DC motors that allows you to keep
track of their position, instead of just their speed. This enables you dynamically
adjust speed based on torque requirements or to keep track of how much a DC
motor has moved. However, you need to be absolutely sure that every pulse is
captured by the Arduino. These pulses are fairly short (much shorter than a
pulse created by you manually pushing a button) and can potentially be missed
if you check for them by polling within loop(). In the case of a rotary encoder
that triggers only once per revolution, missing a pulse causes your program to
believe that the motor is moving at half of its actual speed! To ensure that you
capture timing for important events like this, using a hardware input is a must.
If you are using a slowly changing input (like a button), polling might suffice.

Understanding	the	Arduino’s	Hardware	Interrupt	
Capabilities
With most Arduino boards, you can use only certain pins as interrupts. Interrupts
are referred to by an ID number that corresponds to a particular pin. The excep-
tion is the Due, on which all the pins can act as interrupts, and you reference
them by pin number. If you are not using the Due, consult Table 12-1 to determine
what pins on your Arduino can act as interrupts and what ID number they are.

Table 12-1: Available Hardware Interrupts on Various Arduinos

BOARD INT 0 INT 1 INT 2 INT 3 INT 4 INT 5

Uno, Ethernet Pin 2 Pin 3 - - - -

Mega2560 Pin 2 Pin 3 Pin 21 Pin 20 Pin 19 Pin 18

Leonardo Pin 3 Pin 2 Pin 0 Pin 1 - -

These IDs are used in conjunction with attachInterrupt(). The first argu-
ment is the ID (in the case of the boards in Table 12-1) or the pin number (in the
case of the Due). If, on the Uno, you want to attach an interrupt to physical pin
2 on the board, the first argument of attachInterrupt() would be 0 because
pin 2 is attached to interrupt 0 on the Uno. The Uno (and other ATMega328-
based boards) support just two external interrupts, whereas the Mega and the
Leonardo support more external interrupts.

262 Part IV ■ Advanced Topics and Projects

Hardware interrupts work by “attaching” interrupt pins to certain functions.
So, the second argument of attachInterrupt() is a function name. If you want
to toggle the state of a Boolean variable every time an interrupt is triggered,
you might write a function like this, which you pass to attachInterrupt():

void toggleLed()

{

 var = !var;

}

When this function is called, the Boolean var is toggled to the opposite of its
previous state, and the rest of your program continues running where it left off.

The final argument passed to attachInterrupt() is the trigger mode. Arduino
interrupts can be triggered on LOW, CHANGE, RISING, or FALLING. (The Due can
also be triggered on HIGH.) CHANGE, RISING, and FALLING are the most common
things to trigger on because they cause an interrupt to execute exactly one time
when an external input changes state, like a button going from LOW to HIGH.
The transition from LOW to HIGH is RISING, and from HIGH to LOW is FALLING. It
is less common to trigger on LOW or HIGH because these cause the interrupt to
fire continuously as long as that state is true, effectively blocking the rest of the
program from running.

Building	and	Testing	a	Hardware-Debounced	Button	
Interrupt	Circuit
To test out your newfound knowledge, you construct a circuit with an RGB
LED and a hardware-debounced pushbutton. The LED fades up and down on
a selected color. When the button is pressed, the LED immediately changes the
fade color to another one, while using delay() to accomplish the fading.

Creating a Hardware-Debouncing Circuit

As you learned in the Chapter 2, most buttons actually “bounce” up and down
when you press them. This action presents a serious problem when you are
using hardware interrupts because it might cause an action to be triggered more
times than you intended. Luckily, you can debounce a button in hardware so
that you always get a clean signal going into your microcontroller.

First, take a look at an ordinary button signal hooked up using a pull-up
resistor. Using a pull-up resistor instead of a pull-down does exactly what you
would expect: By default, the button state is pulled high by the resistor; when
the button is pressed, it connects ground to the I/O pin and input goes low.

 Chapter 12 ■ Hardware and Timer Interrupts 263

You use a pull-up circuit instead of a pull-down in this example and invert the
output later. Figure 12-2 shows the button signal being probed with an oscillo-
scope. When I press the button, it bounces up and down before finally settling
at a low state.

Figure 12-2: Ordinary pushbutton bouncing before settling

If you trigger an interrupt off this signal, it executes the interrupt function
three times in a row. But, using something called a resistor-capacitor network
(commonly called an RC circuit), you can prevent this.

If you connect a capacitor across the terminal of the switch and a resistor in
series with the switch, it creates a resistor-capacitor network. While the switch
is not pressed, the capacitor charges through the resistors. When you push the
button, the capacitor starts to discharge, and the output goes high. If the button
bounces up and down for a few milliseconds, the resistors recharge the capacitor
while the switch momentarily opens, allowing it to maintain the voltage level
at the output. Through this process, you get a signal that transitions between
high and low only one time in a period determined by the values of the resis-
tor and capacitor. Such a circuit would look like the one shown in Figure 12-3.

264 Part IV ■ Advanced Topics and Projects

Figure 12-3: Creating a debounce circuit: adding a capacitor and a resistor

Adding the resistor in series with the switch (R2 in Figure 12-3) is not com-
pletely necessary; without it, the capacitor would discharge (almost) instantly
and would still be recharged quickly enough by R1. However, this rapid dis-
charge over the switch could damage cheap buttons. Including the 100Ω resis-
tor decreases the discharge time and keeps all your components safe. This,
however, adds a discharge curve to your output. You can see this effect in the
oscilloscope in Figure 12-4.

Figure 12-4: Signal bouncing removed with a RC circuit

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

 Chapter 12 ■ Hardware and Timer Interrupts 265

The RC circuit that you just created will make a “curved” input signal to
the Arduino’s I/O pin. Our interrupt is looking for an edge, which is detected
when a shift from high to low or from low to high occurs at a certain speed.
The “sharpness” of this edge is called the hysteresis of the signal edge, and it
might not be sharp enough with the smoothing caused by the capacitor. You
can increase the sharpness of this falling signal with a Schmitt trigger. Schmitt
triggers are integrated circuits (ICs) that create a sharp edge when the input
signal surpasses a certain threshold. The output from the trigger can then be
fed right into the Arduino’s I/O pin. In this case, you use an inverting Schmitt
trigger, the 74HC14 IC. This chip has six separate inverting Schmitt triggers in
it, but you use only one. Inspect the datasheet image of the IC in Figure 12-5.

Figure 12-5: Inverting Schmitt trigger pin-out

C
re

di
t:

 Im
ag

es
 c

ou
rt

es
y

of
 S

TM
ic

ro
el

ec
tr

on
ic

s.
 U

se
d

w
ith

 p
er

m
is

si
on

, w
w
w
.
s
t
.
c
o
m

.

266 Part IV ■ Advanced Topics and Projects

The output from your debounce circuit will go through one of these inverting
Schmitt triggers before finally being fed into the Arduino. The resulting circuit
diagram looks Figure 12-6.

Figure 12-6: Final step for creating a debounce circuit: adding an inverting Schmitt trigger

Because this is an inverting trigger, the signal will also be flipped. So, when
the button is held down, the final signal will be a logical high, and vice versa.
So, in the next step, when you write the code, you want to look for a rising edge
to detect when the button is first pressed. The final output signal looks like a
nice, clean, bounce-free signal (see Figure 12-7).

Figure 12-7: Final output of debounce circuit

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

 Chapter 12 ■ Hardware and Timer Interrupts 267

You’ve now got a nice clean signal that you can feed into your hardware
interrupt function!

Assembling the Complete Test Circuit

From a schematic level, you now understand how to wire up a button debouncer.
For the tests that you’ll run momentarily, you use an RGB LED in tandem with
a button to test your hardware-debouncing and interrupt code. Wire up a com-
plete circuit as shown in the wiring diagram in Figure 12-8.

Figure 12-8: Complete hardware interrupt wiring diagram

Writing the Software

It’s now time to write a simple program to test both your debouncing and the
hardware interrupt capabilities of the Arduino. The most obvious and useful
implementation of hardware interrupts on the Arduino is to allow you to listen
for external inputs even while running timed operations that use delay(). There
are many scenarios where this might happen, but a simple one occurs when
fading an LED using pulse-width modulation (PWM) via analogWrite(). In
this sketch, you have one of the three RGB LEDs always fading up and down

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

268 Part IV ■ Advanced Topics and Projects

slowly from 0 to 255 and back again. Every time you press the button, the color
that is being faded immediately changes. This would not be possible using
polling because you would only be checking the button state after completing
a fade cycle; you would almost certainly miss the button press.

First, you need to understand volatile variables. Whenever a variable will be
changing within an interrupt, it must be declared as volatile. This is necessary
to ensure that the compiler handles the variable correctly. To declare a variable
as volatile, simply add volatile before the declaration:

volatile int selectedLED = 9;

To ensure that your Arduino is listening for an interrupt, you use attachIn-
terrupt() in setup(). The inputs to the function are the ID of the interrupt (or
the pin number for the Due), the function that should be run when an interrupt
occurs, and the triggering mode (RISING, FALLING, and so on). In this program,
the button is connected to interrupt 0 (pin 2 on the Uno), it runs the swap()
function when triggered, and it triggers on the rising edge:

attachInterrupt(0, swap, RISING);

You need to write swap() and add it to your program; this is included in the
complete program code shown in Listing 12-1. That’s all you have to do! After
you’ve attached the interrupt and written your interrupt function, you can write
the rest of your program to do whatever you want. Whenever the interrupt is
triggered, the rest of program pauses, the interrupt function runs, and then your
program resumes where it left off. Because interrupts pause your program, they
are generally very short and do not contain delays of any kind. In fact, delay()
does not even work inside of an interrupt-triggered function. Understanding
all of this, you can now write the following program to cycle through all the
LED colors and switch them based on your button press.

Listing 12-1: Hardware Interrupts for Multitasking—hw_multitask.ino

//Use Hardware-Debounced Switch to Control Interrupt

//Button pins

const int BUTTON_INT =0; //Interrupt 0 (pin 2 on the Uno)

const int RED =11; //Red LED on pin 11

const int GREEN =10; //Green LED on pin 10

const int BLUE =9; //Blue LED on pin 9

 Chapter 12 ■ Hardware and Timer Interrupts 269

//Volatile variables can change inside interrupts

volatile int selectedLED = RED;

void setup()

{

 pinMode (RED, OUTPUT);

 pinMode (GREEN, OUTPUT);

 pinMode (BLUE, OUTPUT);

 //The pin is inverted, so we want to look at the rising edge

 attachInterrupt(BUTTON_INT, swap, RISING);

}

void swap()

{

 //Turn off the current LED

 analogWrite(selectedLED, 0);

 //Then, choose a new one.

 if (selectedLED == GREEN)

 selectedLED = RED;

 else if (selectedLED == RED)

 selectedLED = BLUE;

 else if (selectedLED == BLUE)

 selectedLED = GREEN;

}

void loop()

{

 for (int i = 0; i<256; i++)

 {

 analogWrite(selectedLED, i);

 delay(10);

 }

 for (int i = 255; i>= 0; i--)

 {

 analogWrite(selectedLED, i);

 delay(10);

 }

}

When you load this up, your RGB LED should start fading back and forth on
one color. Every time you press the button, a new color will take over, with the
same brightness as the previous color.

NOTE You	can	watch	a	demo	video	of	the	Hardware	Interrupted	Arduino	with	
button	debouncing	at	www.exploringarduino.com/content/ch12.	You	can	
also	find	this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

270 Part IV ■ Advanced Topics and Projects

Using	Timer	Interrupts

Hardware interrupts are not the only kind of interrupt you can trigger on
an Arduino; there are also timer-based interrupts. The ATMega328 (the chip
used in the Uno) has three hardware timers, which you can use for all kinds
of different things. In fact, the default Arduino library already uses these tim-
ers to increment millis(), operate delay(), and enable PWM output with
analogWrite(). Although not officially supported by the Arduino programming
language (yet), you can also take manual control of one of these timers to initi-
ate timed functions, generate arbitrary PWM signals on any pin, and more. In
this section, you learn how to use a third-party library (the TimerOne library)
to take manual control of the 16-bit Timer1 on the ATMega328-based Arduinos.
Similar libraries are available for doing these tricks on the Leonardo, and other
Arduino boards, but this section focuses on the Uno.

N OT E Timer1	is	used	to	enable	PWM	output	on	pins	9	and	10;	so	when	you	
use	this	library,	you	will	be	unable	to	run	analogWrite()	on	those	pins.

Understanding	Timer	Interrupts
Just like a timer on your watch, timers on the Arduino count up from zero,
incrementing with every clock cycle of the oscillating crystal that drives the
Arduino. Timer1 is a 16-bit timer, meaning that it can count up from zero to 216-1,
or 65,535. Once that number is reached, it resets back to zero and starts counting
again. How quickly it reaches that number depends on the clock divider. With
no divider, the clock would go through 16 million cycles per second (16MHz),
and would overflow and reset this counter many times per second. However,
you can “divide” the clock, an approach taken by many underlying Arduino
functions and libraries. The TimerOne library abstracts away much of the com-
plexity of dealing with the timer, allowing you to simply set a trigger period.
Using the timer, a function can be triggered every set number of microseconds.

Getting	the	Library
To get started, download the TimerOne library, either from the Exploring Arduino
web page for this chapter or directly from https://code.google.com/p/arduino-
timerone/downloads. Unzip it (but keep it within a folder called TimerOne), and
copy it to your Arduino libraries folder. The default location of the folder will
differ based on your operating system:

■■ Windows: Documents/Arduino/libraries

■■ Mac: Documents/Arduino/libraries

■■ Linux: /home/YOUR_USER_NAME/sketchbook/libraries

 Chapter 12 ■ Hardware and Timer Interrupts 271

If the Arduino integrated development environment (IDE) was open when
you copied the TimerOne folder, make sure you restart it so that the library is
loaded. You are now ready to take control of Timer1 with your Arduino.

Executing	Two	Tasks	Simultaneously(ish)
It’s important to keep in mind that there is no such thing as “true” simultaneous
execution on an Arduino. Interrupts merely make it seem like multiple things
are happening at the same time, by allowing you to switch between multiple
tasks extremely quickly. Using the TimerOne library you just installed, you
make an LED blink using the timer while you execute other functions within
loop(). At the end of the chapter, you will execute serial print statements in
the main loop with delays, while using timer interrupts to control lights and
sounds simultaneously. To confirm that the library is installed properly, you can
load the program shown in Listing 12-2 on to an Arduino Uno (with no other
components connected). It should blink the onboard LED connected to pin 13.
This LED will blink on and off every second and is controlled by the timer.
If you put any other code in loop(), it will appear to execute simultaneously.

Listing 12-2: Simple Timer Interrupt Blink Test—timer1.ino

//Using Timer Interrupts with the Arduino

#include <TimerOne.h>

const int LED=13;

void setup()

{

 pinMode(LED, OUTPUT);

 Timer1.initialize(1000000); //Set a timer of length 1000000

 //microseconds (1 second)

 Timer1.attachInterrupt(blinky); //Runs "blinky" on each

 //timmer interrupt

}

void loop()

{

 //Put any other code here.

}

//Timer interrupt function

void blinky()

{

 digitalWrite(LED, !digitalRead(LED)); //Toggle LED State

}

272 Part IV ■ Advanced Topics and Projects

When you call Timer1.initialize, you are setting the period of the timer in
microseconds. In this case, it has been set to trigger every 1 second. (There are a
million microseconds in 1 second.) When you run Timer1.attachInterrupt(),
you can choose a function that will be executed every time the specified period
elapses. Obviously, the function you call should take less time to execute than
the time between executions.

Now that you can implement both timer and hardware interrupts, you can
develop hardware that takes advantage of both of them. You will do this in the
next section.

Building	an	Interrupt-Driven	Sound	Machine

To finalize and confirm your understanding of hardware and timer interrupts,
you build a “sound machine” that enables you to step through and listen to
multiple octaves of each note on a musical major scale. The system uses a hard-
ware-debounced pushbutton interrupt to select the note played (C, A, B, and so
forth). A timer interrupt steps through all the octaves of the note in order until
the next note is selected with the push button. In loop(), you can run a simple
serial debugging interface that prints the current key and pitch to the screen
of your computer. The notes start at octave 2 (it doesn’t sound very good below
that) and go up toward octave 6.

Computing the frequency of each octave is easy once you know the initial
frequency. Consider C, for example. C2, where we will be starting, has a fre-
quency of about 65Hz. To get to C3 (130Hz), multiply the frequency of C2 by
2. To get C4, multiply by 2 again, for 260Hz. The frequency of each step can be
computed as a power of 2 related to the initial frequency. Knowing this, you can
construct a timer interrupt that increases by the power of 2 with each time step.

You can switch between notes in the same way you switched between LED
colors in the earlier example with the pushbutton. Assign base frequencies to
each note, and switch which base frequency is used for tone() every time the
button is pressed.

Sound	Machine	Hardware
The hardware setup here is very simple. Keep the debounced button wired as
you had it in the RGB LED example, and add a speaker to pin 12 through a 150Ω
resistor. I used a piezo speaker, but you can use a larger speaker as well. The
circuit should look the one shown in Figure 12-9.

 Chapter 12 ■ Hardware and Timer Interrupts 273

Figure 12-9: Sound machine wiring diagram

Sound	Machine	Software
The software for the sound machine utilizes software and hardware interrupts
in addition to serial communication and tone() to control a speaker. Load the
code from Listing 12-3 on to your Arduino and press the button on the bread-
board to cycle through base frequencies. You can open the serial monitor to see
the frequency currently playing.

Listing 12-3: Sound Machine Code—fun_with_sound.ino

//Use Hardware and Timer Interrupts for Fun with Sound

//Include the TimerOne library

#include <TimerOne.h>

//Button pins

const int BUTTON_INT =0; //Interrupt 0 (pin 2 on the Uno)

const int SPEAKER =12; //Speaker on pin 12

//Music keys

#define NOTE_C 65

#define NOTE_D 73

#define NOTE_E 82

#define NOTE_F 87

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

274 Part IV ■ Advanced Topics and Projects

#define NOTE_G 98

#define NOTE_A 110

#define NOTE_B 123

//Volatile variables can change inside interrupts

volatile int key = NOTE_C;

volatile int octave_multiplier = 1;

void setup()

{

 //Set up serial

 Serial.begin(9600);

 pinMode (SPEAKER, OUTPUT);

 //The pin is inverted, so we want to look at the rising edge

 attachInterrupt(BUTTON_INT, changeKey, RISING);

 //Set up timer interrupt

 Timer1.initialize(500000); // (.5 seconds)

 Timer1.attachInterrupt(changePitch); //Runs "changePitch" on each

 //timer interupt

}

void changeKey()

{

 octave_multiplier = 1;

 if (key == NOTE_C)

 key = NOTE_D;

 else if (key == NOTE_D)

 key = NOTE_E;

 else if (key == NOTE_E)

 key = NOTE_F;

 else if (key == NOTE_F)

 key = NOTE_G;

 else if (key == NOTE_G)

 key = NOTE_A;

 else if (key == NOTE_A)

 key = NOTE_B;

 else if (key == NOTE_B)

 key = NOTE_C;

}

//Timer interrupt function

void changePitch()

{

 octave_multiplier = octave_multiplier * 2;

 if (octave_multiplier > 16) octave_multiplier = 1;

 tone(SPEAKER,key*octave_multiplier);

}

void loop()

 Chapter 12 ■ Hardware and Timer Interrupts 275

{

 Serial.print("Key: ");

 Serial.print(key);

 Serial.print(" Multiplier: ");

 Serial.print(octave_multiplier);

 Serial.print(" Frequency: ");

 Serial.println(key*octave_multiplier);

 delay(100);

}

You can easily find the music keys defined at the beginning with a search on
the Internet. They are the frequencies of the second octave of those notes. Note
that the key and octave_multiplier must be declared as volatile integers because
they are going to be changed within interrupt routines. changeKey() is called
every time the button interrupt is triggered. It changes the octave’s base value
by moving from key to key. changePitch() calls tone() to set the frequency for
the speaker. It is triggered every .5 seconds by the timer interrupt. Each time
it is triggered, it doubles the frequency of the original note until it reaches 16
times its original frequency. It then loops back around and starts again at the
base frequency for the current note. Within loop(), the current key, multiplier,
and frequency are printed to the serial monitor every .1 seconds.

NOTE To	watch	a	demo	video	of	the	sound	machine,	check	out		
www.exploringarduino.com/content/ch12.	You	can	also	find	this		
video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Summary

In this chapter you learned about the following:

■■ There are tradeoffs between polling inputs and using interrupts.

■■ Different Arduinos have different interrupt capabilities. The Due can
interrupt on any I/O pin, but other Arduinos have particular interrupt-
enabled pins.

■■ Buttons can be debounced in hardware using an RC circuit and a Schmitt
trigger.

■■ The Arduino can be made to respond to inputs asynchronously by attach-
ing interrupt functions.

■■ You can install a third-party timer library to adder timer interrupt func-
tionality to the Arduino.

■■ You can combine timer interrupts, hardware interrupts, and polling into
one program to enable pseudo-simultaneous code execution.

 277

Parts You’ll Need for This Chapter

Arduino (Uno recommended)

USB cable

Arduino power supply (DC, USB, or battery pack)

IR distance sensor

Real-time clock breakout (or self-assembled RTC circuit)

SD card shield

SD card

Jumper wires

Breadboard

Computer with SD card reader

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found
at www.exploringarduino.com/content/ch13.

In addition, all code can be found at www.wiley.com/go/exploringarduino on
the Download Code tab. The code is in the chapter 13 download and individually
named according to the names throughout the chapter.

C h a P t e r

13

Data Logging with SD Cards

278 Part IV ■ Advanced Topics and Projects

There are countless examples of Arduinos being used to log weather conditions,
atmospheric conditions from weather balloons, building entry data, electrical
loads in buildings, and much more. Given their small size, minimal power
consumption, and ease of interfacing with a vast array of sensors, Arduinos are
an obvious choice for building data loggers, which are devices that record and
store information over a period of time. Data loggers are often deployed into
all kinds of environments to collect environmental or user data and to store it
into some kind of nonvolatile memory, such as an SD card. In this chapter, you
learn everything you could want to know about interfacing with an SD card
from an Arduino. You learn how to both write data to a file and how to read
existing information off an SD card. You use a real-time clock to add accurate
timestamps to your data. You also learn briefly about how to display the data
on your computer after you have retrieved it.

NOTE To	follow	a	video	tutorial	about	data	logging,	check	out	www.jeremyblum
.com/2011/04/05/tutorial-11-for-arduino-sd-cards-and-datalogging/.	
You	can	also	find	this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

NOTE To	follow	a	more	advanced	tutorial	about	logging	location	from	a	GPS	
receiver,	check	out	www.jeremyblum.com/2012/07/16/tutorial-15-for-
arduino-gps-tracking/.	You	can	also	find	this	video	on	the	Wiley	website	
shown	at	the	beginning	of	this	chapter.

Getting	Ready	for	Data	Logging

Data logging systems are very simple. They generally consist of some kind of acqui-
sition system, such as analog sensors, to obtain data. They also contain some kind
of memory for storing sizeable quantities of that data over a long period of time.

This chapter highlights a few common ways that you can use an SD card
with your Arduino to record useful data. However, there are many uses for data
logging. Here is a brief list of projects in which you could use it:

■■ A weather station for tracking light, temperature, and humidity over time

■■ A GPS tracker and logger that keeps a record of where you’ve been over
the course of a day

■■ A temperature monitor for your desktop computer to report data about
what components are getting the hottest

■■ A light logger that keeps track of when, and for how long, the lights are
left on in your home or office

Later in this chapter, you create a data logging system that uses an infrared
(IR) distance sensor to create a log of when people enter and exit a room.

 Chapter 13 ■ Data Logging with SD Cards 279

Formatting	Data	with	CSV	Files
CSV, or comma-separated value, files will be the format of choice for storing
data with your SD card. CSV files are easy to implement with a microcontroller
platform and can easily be read and parsed by a wide range of desktop appli-
cations, making them well suited for this kind of task. A standard CSV file
generally looks something like this:

Date,Time,Value1,Value2

2013-05-15,12:00,125,255

2013-05-15,12:30,100,200

2013-05-15,13:00,110,215

Rows are delimited by new lines, and columns are delimited by commas.
Because commas are used to distinguish columns of data, the main require-
ment is that your data cannot have commas within it. Furthermore, each row
should generally always have the same number of entries. When opened with
a spreadsheet program on your computer, the preceding CSV file would look
something like this.

Table 13-1: An Imported CSV File

DATE TIME VALUE1 VALUE2

2013-05-15 12:00 125 255

2013-05-15 12:30 100 200

2013-05-15 13:00 110 215

Because CSV files are just plain text, your Arduino can easily write to them
using familiar print() and println()-style commands. Conversely, Arduinos
can also parse CSV files with relative ease by looking for newline and com-
mand delimiters to find the right information.

Preparing	an	SD	Card	for	Data	Logging
Before you start logging data with your Arduino, prepare the SD card you plan
to use. Which kind of SD card you use will depend on the kind of shield you are
using. Some will use full-size SD cards, others will use micro SD cards. Most
micro SD cards ship with an adapter that lets you plug them into standard-sized
SD card readers. To complete the exercises in this chapter, you need an SD card
reader for your computer (either built in or external).

280 Part IV ■ Advanced Topics and Projects

Most new SD cards will already be properly formatted and ready to use with
an Arduino. If your card is not new, or already has things on it, first format
the card in either FAT16 (sometimes just called FAT) or FAT32 format. Cards
less than or equal 2GB should be formatted as FAT16, and larger cards should
be formatted as FAT32. In this chapter, the examples use a 2GB micro SD card
formatted as FAT16. Note that formatting the card removes everything on it,
but doing so ensures that it is ready for use with your Arduino. If your SD card
is new, you can skip these steps and come back to complete them only if you
have issues accessing the card from the Arduino when you run the sketch later
in this chapter.

Formatting your SD card from Windows is easy:

 1. Insert the SD card into your card reader; it should then appear in My
Computer (see Figure 13-1).

Figure 13-1: SD card shown in My Computer

 2. Right-click the card (it will probably have a different name), and select
the Format option (see Figure 13-2). A window will appear with options
for formatting the card.

 Chapter 13 ■ Data Logging with SD Cards 281

Figure 13-2: Format option selected

 3. Choose the file system type (FAT for cards 2GB and under, FAT32 for
larger cards), use the default allocation size, and choose a volume label.
(I chose LOG, but you can choose whatever you want.) Figure 13-3 shows
the configuration for a 2GB card.

Figure 13-3: Format option window

282 Part IV ■ Advanced Topics and Projects

 4. Click the Start button to format the SD card.

On a Mac, the process is similarly straightforward:

 1. Use the Finder to locate and open the Disk Utility application.

 2. Click on the SD card in the left panel, and click on the Erase tab. Choose
MS-DOS(FAT) for the format.

 3. Click Erase. This will format the card as FAT16 regardless of its capacity.
(Macs cannot natively format cards as FAT32.)

On Linux, you can format the card from the terminal. Most Linux distros
will mount the card automatically when you insert it:

 1. Insert the card, and a window should pop up showing the card.

 2. Open a terminal, and type in df to get a list of the mounted media. The
result should look like Figure 13-4.

The last entry should be your SD card. On my system, it was mounted as
/dev/mmcblk0p1, but on yours might differ.

Figure 13-4: Linux df command

 3. Unmount the card before you format it by using the umount command.
The argument will be the name of your SD card (see Figure 13-5).

 Chapter 13 ■ Data Logging with SD Cards 283

Figure 13-5: Unmounting the SD card in Linux

 4. Format the card using the mkdosfs command. You may need to run the
command as a super user (using the sudo command). You will pass the
-F flag, specifying to use a FAT file system. You can include either 16 or
32 as the flag argument to choose FAT16 or FAT32. To format a card that
was mounted as /dev/mmcblk0p1, you use the command sudo mkdosfs
-F 16 /dev/mmcblk0p1 (see Figure 13-6).

Figure 13-6: Formatting the SD card in Linux

284 Part IV ■ Advanced Topics and Projects

Your SD card should now be formatted and ready to go! You’re now ready to
start interfacing with the SD card via an SD card shield.

Interfacing	the	Arduino	with	an	SD	Card

SD cards, like the XBee radios that you used in Chapter 11, “Wireless Communication
with XBee Radios,” are 3.3V devices. Therefore, it’s important to connect to SD
cards through a shield that properly handles the logic level shifting and voltage
supply to your SD card. Furthermore, SD communication can be accomplished
using the serial peripheral interface (SPI) bus, something that you should already
be familiar with after having read Chapter 9, “The SPI Bus.” The Arduino language
comes with a handy library (the SD library) that abstracts away the lower-level
SPI communication and allows you to easily read and write files stored on your
SD card. You use this library throughout the chapter.

SD	Card	Shields
You have a tremendous number of options for adding data logging capabilities
to your Arduino. It is impossible to provide documentation for every shield
available, so this discussion keeps the examples general enough to apply to
most shields with SD card connection capabilities. This section identifies some
of the more popular shields and the pros and cons of using each one.

All shields have the following things in common:

■■ They connect to SPI pins via either the 6-pin programming header or via
multiplexed digital pins. These are pins 11, 12, and 13 on the Uno, and
pins 50, 51, and 52 on Mega boards. The Leonardo’s SPI pins are located
on the in-circuit serial programming (ICSP) header only.

■■ They designate a chip select (CS) pin, which may or may not be the default
CS pin (10 on non-Mega boards, 53 on Mega boards).

■■ They supply 3.3V to the SD card and will level-shift the logic levels.

Here’s a list of the most common shields:

■■ Cooking Hacks Micro SD shield (www.exploringarduino.com/parts/
cooking-hacks-SD-shield) : This shield is used to illustrate the examples
in this chapter. This is the smallest shield of those listed here (not a full-
sized shield), and it can be connected to either a row of header pins (8–13
on the Uno), or to your Arduino’s ICSP 6-pin header. When connected
to pins 8–13, the default pin 10 is connected to CS. When connected to
the ISP header, the CS pin can be connected to any pin you want. This is
useful if you are utilizing another shield that requires the use of pin 10.
This board ships with a 2GB SD card (see Figure 13-7).

 Chapter 13 ■ Data Logging with SD Cards 285

Figure 13-7: Cooking Hacks MicroSD shield

■■ Official Arduino Wireless SD shield (www.exploringarduino.com/parts/
arduino-wireless-shield) : This is the first of several “official” Arduino
shields with SD card support. This shield includes circuitry for adding
both an XBee radio and an SD card to your Arduino, making it easy to
combine lessons from this chapter with lessons from Chapter 11. On this
shield, the SD card CS pin is connected to pin 4 of the Arduino. You must
keep pin 10 as an output, and also specify that pin 4 is your CS when run-
ning your sketch with this shield (see Figure 13-8).

Figure 13-8: Arduino Wireless SD shield

C
re

di
t:

 C
oo

ki
ng

 H
ac

ks
, w
w
w
.
c
o
o
k
i
n
g
-
h
a
c
k
s
.
c
o
m

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

286 Part IV ■ Advanced Topics and Projects

■■ Official Arduino Ethernet SD shield (www.exploringarduino.com/parts/
arduino-ethernet-shield) : The Arduino Ethernet shield allows your
Arduino to connect to a wired network. It implements an SD card interface,
as well, although its primary purpose is to allow for the storage of files
to be accessed over the network. Both the Ethernet controller and the SD
card are SPI devices on this shield; the Ethernet controller CS is connected
to pin 10, and the SD card CS is connected to pin 4 (see Figure 13-9).

Figure 13-9: Arduino Ethernet SD shield

■■ Official Arduino Wi-Fi SD shield (www.exploringarduino.com/parts/
arduino-wifi-shield) : This shield also implements network connectivity,
but it takes advantage of a Wi-Fi radio to do so. For the same reasons as
the Ethernet shield, it also houses an SD card reader/writer. As with the
Ethernet shield, the Wi-Fi controller CS is pin 10, and the SD card CS is
pin 4. You must take care to not attempt to simultaneously enable both
devices; only one CS line can be active at a time (low logic level), as with
all SPI configurations (see Figure 13-10).

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

 Chapter 13 ■ Data Logging with SD Cards 287

Figure 13-10: Arduino Wi-Fi SD shield

■■ adafruit data logging shield (www.exploringarduino.com/parts/
adafruit-data-logging-shield): This shield is particularly well suited
to the experiments that you will be doing later in this chapter because it
includes both a real-time clock (RTC) chip and an SD card interface. This
shield connects the SD card to the default pin CS and connects a real-time
clock chip to the I2C bus (see Figure 13-11).

Figure 13-11: adafruit data logging shield

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

C
re

di
t:

 a
da

fr
ui

t I
nd

us
tr

ie
s,

 w
w
w
.
a
d
a
f
r
u
i
t
.
c
o
m

288 Part IV ■ Advanced Topics and Projects

■■ SparkFun MicroSD shield (www.exploringarduino.com/parts/spark-
fun-microSD-shield): This shield is, like the Cooking Hacks shield, is a
minimalist shield that only has an SD card slot. However, it also has a
prototyping area to allow you to solder on additional components. It con-
nects the SD card’s CS pin to pin 8 on the Arduino, so you must specify
this when using the SD card library with this shield (see Figure 13-12).

Figure 13-12: SparkFun MicroSD shield

SD	Card	SPI	Interface
As mentioned earlier, your Arduino communicates with the SD card over an
SPI interface. This necessitates the use of a MOSI (master output, slave input),
MISO (master input, slave output), SCLK (serial clock), and CS (chip select) pin.
You use the SD card Arduino library to complete the following examples. It
assumes that you are using the hardware SPI pins on your Arduino and either
a default or custom CS pin. The SD card library must have the default CS pin
set as an output to function correctly, even if you are using a different CS pin.
In the case of the Uno, this is pin 10; in the case of the Mega, this is pin 53. The
following examples use the Uno with the default CS pin 10.

C
re

di
t:

 S
pa

rk
Fu

n
[P

ho
to

gr
ap

he
r

Ju
an

 P
eñ

a]
, w
w
w
.
s
p
a
r
k
f
u
n
.
c
o
m

 Chapter 13 ■ Data Logging with SD Cards 289

Writing	to	an	SD	Card
First, you use the SD card library to write some sample data to your SD card.
Later in the chapter, you capture some sensor data and write that directly to the
SD card. The data is stored in a file called log.csv that you can later open up on
your computer. Importantly, if you formatted your card FAT16, the filenames
you use must be in 8.3 format. This means that the extension must be three
characters, and the filename must be eight characters or fewer.

Ensure that your SD shield is mounted correctly to your Arduino and that
you have an SD card inserted. When mounted, the Cooking Hacks SD shield
looks like Figure 13-13. (The pins are inserted into pins 8–13, and the jumper is
on the right side when viewed from this angle.)

Figure 13-13: Mounted SD card shield

For the sake of debugging, you will take advantage of the reporting functional-
ity of many of the SD card functions. For example, to initialize communication
with an SD card, you call the following function in your setup:

if (!SD.begin(CS_pin))

{

 Serial.println("Card Failure");

290 Part IV ■ Advanced Topics and Projects

 return;

}

Serial.println("Card Ready");

Note that instead of just calling SD.begin(CS_pin), it is executed within an
if statement. This tries to initialize the SD card and it returns a status. If it
returns true, the program moves on, and a success message is printed to the
serial terminal. If it returns false, a failure message is reported, and the return
command halts further execution of the program.

You use a similar approach when you are ready to write a new line of data to
a log file. If you want to write “hello” to a new line in the file, the code would
look like this:

File dataFile = SD.open("log.csv", FILE_WRITE);

if (dataFile)

{

 dataFile.println("hello");

 dataFile.close(); //Data isn't written until we close the connection!

}

else

{

 Serial.println("Couldn't open log file");

}

This first line creates a new file (or opens the file if it exists) called log.csv
on the SD card. If the file is opened/created successfully, the dataFile variable
will be true, and the write process will be initiated. If it is false, an error is
reported to the serial monitor. Writing new lines to a file is easy: Just execute
dataFile.println() and pass what you want to write to a new line. You can
also use print() to prevent appending a newline character to the end. This is
sent to a buffer, and only actually added to the file once the close command is
called on the same File.

Now, you can bring all this knowledge together into a simple program that will
create a log.csv file on your SD card and write a comma-separated timestamp
and phrase every 5 seconds. On each line of the CSV file, you record the current
time from millis() and a simple phrase. This might not seem very useful, but
it is an important step to test before you start adding actual measurements in
the coming examples. The code should look something like Listing 13-1.

Listing 13-1: SD Card Write Test—write_to_sd.ino

//Write to SD card

#include <SD.h>

 Chapter 13 ■ Data Logging with SD Cards 291

//Set by default for the SD card library

//MOSI = pin 11

//MISO = pin 12

//SCLK = pin 13

//We always need to set the CS Pin

const int CS_PIN = 10;

//We set this high to provide power

const int POW_PIN =8;

void setup()

{

 Serial.begin(9600);

 Serial.println("Initializing Card");

 //CS pin is an output

 pinMode(CS_PIN, OUTPUT);

 //Card will draw power from pin 8, so set it high

 pinMode(POW_PIN, OUTPUT);

 digitalWrite(POW_PIN, HIGH);

 if (!SD.begin(CS_PIN))

 {

 Serial.println("Card Failure");

 return;

 }

 Serial.println("Card Ready");

}

void loop()

{

 long timeStamp = millis();

 String dataString = "Hello There!";

 //Open a file and write to it.

 File dataFile = SD.open("log.csv", FILE_WRITE);

 if (dataFile)

 {

 dataFile.print(timeStamp);

 dataFile.print(",");

 dataFile.println(dataString);

 dataFile.close(); //Data isn't actually written until we

 //close the connection!

 //Print same thing to the screen for debugging

 Serial.print(timeStamp);

 Serial.print(",");

 Serial.println(dataString);

 }

 else

292 Part IV ■ Advanced Topics and Projects

 {

 Serial.println("Couldn't open log file");

 }

 delay(5000);

}

You want to note a few important things here, especially if you are not using
the same Cooking Hacks MicroSD card shield:

■■ CS_PIN should be set to whatever pin you have your SD card CS hooked
up to. If it is not 10, you must also add pinMode(10, OUTPUT) within
setup(); otherwise, the SD library will not work.

■■ This particular shield draws power from pin 8 (as opposed to being con-
nected directly to a 5V supply). Therefore, POW_PIN must be set as an
output and set HIGH in the setup function to power up the SD card shield.

■■ Each time through the loop, the timestamp variable is updated with the
current time elapsed in milliseconds. It must be of type long because it
will generate a number larger than 16 bits (the standard size of an Arduino
integer type).

As you saw earlier, the filename is opened for writing and data is appended
in a comma-separated format. The same data is also printed out to the serial
terminal for debugging purposes. This is not explicitly necessary, and you will
not use it once you have the logger “in the field” taking data. However, it is use-
ful for confirming that everything is working. If you open the serial terminal,
you should see something like Figure 13-14.

Figure 13-14: SD Card debugging output

 Chapter 13 ■ Data Logging with SD Cards 293

If you receive errors, make sure that your shield is plugged in, that the SD
card is inserted fully, and that the card has been properly formatted. You can
confirm that the data is being written correctly by removing the SD card, insert-
ing it into your computer, and opening it up with a spreadsheet program (see
Figure 13-15). Note how the comma-separated data is automatically placed into
rows and columns based on the location of the delimiting commas and newlines.

Figure 13-15: Logged data in a spreadsheet

Reading	from	an	SD	Card
Now it’s time to learn about reading from SD cards. This is not used quite as
commonly for data logging, but it can prove useful for setting program param-
eters. For instance, you could specify how frequently you want data to be logged.
That’s what you do next.

294 Part IV ■ Advanced Topics and Projects

Insert the SD card into your computer and create a new TXT file called speed
.txt on the SD card. In this file, simply enter the refresh time in milliseconds that
you want to use. In Figure 13-16, you can see that I set it to 1000ms, or 1 second.

Figure 13-16: Creating the speed command file

After choosing a desired refresh speed, save the file on the SD card and put
it back in your Arduino shield. You now modify your program to read this file,
extract the desired field, and use it to set the refresh speed for data logging.

To open a file for reading, you use the same SD.open command that you used
earlier, but you do not have to specify the FILE_WRITE parameter. Because the
File class that you are using inherits from the stream class (just like the Serial
class), you can use many of the same useful commands, such as parseInt(),
that you’ve used in previous chapters. To open and read the update speed from
the file, all you have to do is this:

File commandFile = SD.open("speed.txt");

if (commandFile)

{

 Serial.println("Reading Command File");

 Chapter 13 ■ Data Logging with SD Cards 295

 while(commandFile.available())

 {

 refresh_rate = commandFile.parseInt();

 }

 Serial.print("Refresh Rate = ");

 Serial.print(refresh_rate);

 Serial.println("ms");

}

else

{

 Serial.println("Could not read command file.");

 return;

}

This opens the file for reading and parses out any integers read. Because
you defined only one variable, it grabs that one and saves it to the refresh rate
variable, which would need to be defined earlier in the program. You can have
only one file open at a time, and it’s good practice to close a file when you’re
finished reading from, or writing to a card.

You can now integrate this into your writing program from earlier to adjust
the recording speed based on your speed.txt file, as shown in Listing 13-2.

Listing 13-2: SD Reading and Writing—sd_read_write.ino

//SD read and write

#include <SD.h>

//Set by default for the SD card library

//MOSI = pin 11

//MISO = pin 12

//SCLK = pin 13

//We always need to set the CS pin

const int CS_PIN =10;

const int POW_PIN =8;

//Default rate of 5 seconds

int refresh_rate = 5000;

void setup()

{

 Serial.begin(9600);

 Serial.println("Initializing Card");

 //CS pin is an output

 pinMode(CS_PIN, OUTPUT);

 //Card will draw power from pin 8, so set it high

 pinMode(POW_PIN, OUTPUT);

296 Part IV ■ Advanced Topics and Projects

 digitalWrite(POW_PIN, HIGH);

 if (!SD.begin(CS_PIN))

 {

 Serial.println("Card Failure");

 return;

 }

 Serial.println("Card Ready");

 //Read the configuration information (speed.txt)

 File commandFile = SD.open("speed.txt");

 if (commandFile)

 {

 Serial.println("Reading Command File");

 while(commandFile.available())

 {

 refresh_rate = commandFile.parseInt();

 }

 Serial.print("Refresh Rate = ");

 Serial.print(refresh_rate);

 Serial.println("ms");

 commandFile.close(); //Close the file when finished

 }

 else

 {

 Serial.println("Could not read command file.");

 return;

 }

}

void loop()

{

 long timeStamp = millis();

 String dataString = "Hello There!";

 //Open a file and write to it.

 File dataFile = SD.open("log.csv", FILE_WRITE);

 if (dataFile)

 {

 dataFile.print(timeStamp);

 dataFile.print(",");

 dataFile.println(dataString);

 dataFile.close(); //Data isn't actually written until we

 //close the connection!

 //Print same thing to the screen for debugging

 Serial.print(timeStamp);

 Serial.print(",");

 Serial.println(dataString);

 Chapter 13 ■ Data Logging with SD Cards 297

 }

 else

 {

 Serial.println("Couldn't open log file");

 }

 delay(refresh_rate);

}

When you now run this program, data should be written at the rate you
specify. Looking at the serial terminal confirms this (see Figure 13-17).

Figure 13-17: Data logging at rate specified by the command file

Using	a	Real-Time	Clock

Nearly every data logging application will benefit from the use of a real-time
clock. Using a real-time clock within your system allows you to timestamp
measurements so that you can more easily keep track of when certain events
occurred. In the previous section, you simply used the millis() function to
keep track of the time elapsed since the Arduino turned on. In this section, you
use a dedicated real-time clock integrated circuit to keep accurate time so that
when you save data to the SD card it corresponds to the time the data was taken.

298 Part IV ■ Advanced Topics and Projects

Understanding	Real-Time	Clocks
Real-time clocks do exactly what their name implies. You set the time once, and
they keep very accurate time, even accounting for leap years and things of that
nature. This example uses the popular DS1307 real-time clock integrated circuit.

Using the DS1307 Real-Time Clock

The real-time clock communicates with your Arduino over an I2C connection
and connects to a coin cell battery that will allow it to keep time for several
years. A crystal oscillator connected to the real-time clock enables precision
timekeeping. To make things easier, I suggest using the adafruit DS1307 break-
out board (www.exploringarduino.com/parts/adafruit-DS1307-breakout); it
combines the IC, the oscillator, a coin cell battery, a decoupling capacitor, and
the I2C pull-up resistors into a nice package that can easily be mounted on your
Arduino (see Figure 13-18).

Figure 13-18: Real-time clock breakout mounted on an Arduino

The rest of these instructions assume that you are using this breakout board.
However, you can just as easily assemble these components on a breadboard
and wire them directly to your Arduino. The crystal is a 32.768kHz unit, and
the I2C pull-up resistors are 2.2kilohms. The battery is a standard 3.0V coin cell.
If you choose to assemble it yourself, you can buy all these components and put
them on a breadboard as shown in Figure 13-19.

 Chapter 13 ■ Data Logging with SD Cards 299

Figure 13-19: Real-time clock circuit assembled on breadboard

Using the RTC Arduino Third-Party Library

As in the preceding chapter, you again use a third-party library to extend the
Arduino’s capabilities. In this case, it’s to facilitate easy communication with the
real-time clock (RTC) chip. Unsurprisingly, the library is called RTClib. The library
was originally developed by JeeLabs, and was updated by adafruit Industries.
A link to download the library can be found on the web page for this chapter:
www.exploringarduino.com/content/ch13. Download the library and add it to
your Arduino user library folder, just as you did in the preceding chapter. Make
sure that the folder name has no dashes in it; underscores are okay.

The library is easy to use. The first time you run the example code, you use
the RTC.adjust function to automatically grab the current date/time from your
computer at the time of compilation and use that to set up the clock. From this
point on, the RTC runs autonomously, and you can obtain the current time/
date from it by executing the RTC.now() command. In the next section, you use
this functionality to enable real-time logging.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

300 Part IV ■ Advanced Topics and Projects

Using	the	Real-Time	Clock
Now it is time to combine the SD card and real-time clock, along with the
RTC library that you just downloaded, to enable logging using actual time-
stamps. You update your sketch once again to use the RTC values rather than the
millis values.

Installing the RTC and SD Card Modules

First, ensure that both your SD card shield and RTC are connected to your
Arduino. If you are using the Cooking Hacks SD shield and the adafruit RTC
shield, it should look something like Figure 13-20.

Figure 13-20: Arduino with mounted SD card and RTC breakout boards

 Chapter 13 ■ Data Logging with SD Cards 301

Note that the last pin on the RTC is hanging off the Arduino; it is a square
wave generated by the RTC that you will not be using. In code, you need to
pull A2 to ground and A3 to 5V to ensure that the RTC breakout is powered.
If you assembled your own RTC circuit on a breadboard, your setup will look
a bit different.

Updating the Software

Now, you add the RTC functionality into the software. You need to add a few
things to your previous program to get the RTC integrated:

■■ Include the RTC libraries

■■ Power the RTC module

■■ Initialize the RTC object

■■ Set the RTC time using the computer time if it is unset

■■ Write the actual timestamps to the log file

Furthermore, in this code revision, I added a column header that is printed
every time the code starts. This way, even if you are appending to an existing
CSV file, you an easily find each time that the log was restarted.

WARNING If,	when	you	run	your	program,	you	notice	that	it	simply	stops	after	a	
short	while,	you	may	be	running	out	of	RAM.	In	most	cases,	this	can	be	attributed	
to	strings	that	take	up	a	large	amount	of	RAM,	especially	within	your	Serial
.print	and	Serial.println	statements.	You	can	resolve	this	problem	by	
removing	serial	printing	statements,	or	by	telling	the	Arduino	to	store	these	strings	
in	flash	memory	instead	of	in	RAM.	You	can	store	strings	in	flash	memory	by	wrap-
ping	the	serial	print	string	in	F(),	like	this:	Serial.println(F("Hello"));.
This	method	was	used	Listing	13-3.

The updated program is shown in Listing 13-3, using the RTC as a clock for
datalogging. It moves the majority of the strings into flash memory to save RAM
using the technique explained in the previous warning section.

Listing 13-3: SD Reading and Writing with an RTC— sd_read_write_rtc.ino

//SD read and write with RTC

#include <SD.h> //For talking to SD Card

#include <Wire.h> //For RTC

#include "RTClib.h" //For RTC

//Define pins

302 Part IV ■ Advanced Topics and Projects

//SD card is on standard SPI pins

//RTC is on Standard I2C Pins

const int CS_PIN =10;

const int SD_POW_PIN =8;

const int RTC_POW_PIN =A3;

const int RTC_GND_PIN =A2;

//Default rate of 5 seconds

int refresh_rate = 5000;

//Define an RTC object

RTC_DS1307 RTC;

//Initialize strings

String year, month, day, hour, minute, second, time, date;

void setup()

{

 Serial.begin(9600);

 Serial.println(F("Initializing Card"));

 //CS pin and pwr/gnd pins are outputs

 pinMode(CS_PIN, OUTPUT);

 pinMode(SD_POW_PIN, OUTPUT);

 pinMode(RTC_POW_PIN, OUTPUT);

 pinMode(RTC_GND_PIN, OUTPUT);

 //Setup power and ground pins for both modules

 digitalWrite(SD_POW_PIN, HIGH);

 digitalWrite(RTC_POW_PIN, HIGH);

 digitalWrite(RTC_GND_PIN, LOW);

 //Initiate the I2C bus and the RTC library

 Wire.begin();

 RTC.begin();

 //If RTC is not running, set it to the computer's compile time

 if (! RTC.isrunning())

 {

 Serial.println(F("RTC is NOT running!"));

 RTC.adjust(DateTime(__DATE__, __TIME__));

 }

 //Initialize SD card

 if (!SD.begin(CS_PIN))

 {

 Serial.println(F("Card Failure"));

 return;

 }

 Serial.println(F("Card Ready"));

 Chapter 13 ■ Data Logging with SD Cards 303

 //Read the configuration information (speed.txt)

 File commandFile = SD.open("speed.txt");

 if (commandFile)

 {

 Serial.println(F("Reading Command File"));

 while(commandFile.available())

 {

 refresh_rate = commandFile.parseInt();

 }

 Serial.print(F("Refresh Rate = "));

 Serial.print(refresh_rate);

 Serial.println(F("ms"));

 commandFile.close();

 }

 else

 {

 Serial.println(F("Could not read command file."));

 return;

 }

 //Write column headers

 File dataFile = SD.open("log.csv", FILE_WRITE);

 if (dataFile)

 {

 dataFile.println(F("\nNew Log Started!"));

 dataFile.println(F("Date,Time,Phrase"));

 dataFile.close(); //Data isn't actually written until we

 //close the connection!

 //Print same thing to the screen for debugging

 Serial.println(F("\nNew Log Started!"));

 Serial.println(F("Date,Time,Phrase"));

 }

 else

 {

 Serial.println(F("Couldn't open log file"));

 }

}

void loop()

{

 //Get the current date and time info and store in strings

 DateTime datetime = RTC.now();

 year = String(datetime.year(), DEC);

 month = String(datetime.month(), DEC);

 day = String(datetime.day(), DEC);

 hour = String(datetime.hour(), DEC);

 minute = String(datetime.minute(), DEC);

304 Part IV ■ Advanced Topics and Projects

 second = String(datetime.second(), DEC);

 //Concatenate the strings into date and time

 date = year + "/" + month + "/" + day;

 time = hour + ":" + minute + ":" + second;

 String dataString = "Hello There!";

 //Open a file and write to it.

 File dataFile = SD.open("log.csv", FILE_WRITE);

 if (dataFile)

 {

 dataFile.print(date);

 dataFile.print(F(","));

 dataFile.print(time);

 dataFile.print(F(","));

 dataFile.println(dataString);

 dataFile.close(); //Data isn't actually written until we

 //close the connection!

 //Print same thing to the screen for debugging

 Serial.print(date);

 Serial.print(F(","));

 Serial.print(time);

 Serial.print(F(","));

 Serial.println(dataString);

 }

 else

 {

 Serial.println(F("Couldn't open log file"));

 }

 delay(refresh_rate);

}

The RTC library is imported by the sketch via #include "RTClib.h" and an
RTC object is created with RTC_DS1307 RTC;. The RTC is an I2C device, and relies
on the Wire library, so that needs to be included, too. This is the same library
you used in Chapter 8, “The I2C Bus.” In setup(), RTC.isrunning() checks to
see if the RTC is not already running. If it isn’t, the date and time are set based
on the compile time, determined by your computer’s clock. Once this is set, the
time will not be reset as long as the battery stays connected to the RTC. Also
in setup(), a column header is inserted into the log file, adding a note that the
logging has been restarted. This is useful for appending to the log file each time
you restart the system.

During each pass through the loop, the datetime object is set to the current
date and time. You can then extract the year, month, hour, and so on from this
object and convert them to strings that you can concatenate into the date and

 Chapter 13 ■ Data Logging with SD Cards 305

time variables. These variables are printed to the serial console and to the SD
card log file.

After running this sketch on your Arduino for a little while, use your computer
to read the SD card and to open the log file; it should be populated with the date
and time and look something like Figure 13-21. Your spreadsheet software may
automatically change the dates into your local formatting.

Figure 13-21: Spreadsheet output from RTC SD card test

Building	an	Entrance	Logger

Now that you have all the basic skills down, you can put them to use to build an
entrance logger for your room. You use the distance sensor from some of your
previous projects to create a basic motion sensor that can keep track of when
people enter or exit through a doorway. The logger will keep track of the times
of these events on the SD card for you to review later.

306 Part IV ■ Advanced Topics and Projects

Logger	Hardware
All you need to do is to add an analog distance sensor to your existing setup.
If you’re using the same setup as me, you do not even need a breadboard; just
connect the proper wires to power, ground, and A0 (for the analog signal output
from the sensor). With everything attached, it should look like Figure 13-22.

Figure 13-22: Entrance logger hardware

For this to actually work well, you want to mount the IR distance sensor and
Arduino on a wall so that the IR beam cuts horizontally across the door. This
way, anybody walking through the door must pass in front of the IR distance
sensor. Don’t affix anything to your wall until you’ve written the software in
the next step and uploaded it. I suggest using easily removable painters tape to
hold it to your wall so that you don’t damage anything. Once set up, the system
should look something like Figure 13-23.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 13 ■ Data Logging with SD Cards 307

Figure 13-23: Entrance logger trained on a door

Logger	Software
For the entrance logger, reading configuration variables from the SD card is
not particularly useful, so you can remove those parts of the code. You want to
add some code to check the state of the distance and to see whether its readings
have changed drastically between pollings. If they have, you can assume that
something moved in front of the distance sensor and that somebody must have
entered or exited the room.

You also need to choose a “change threshold.” For my setup, I found that an
analog reading change of more than 75 between pollings was a good indication
of movement. (Your setup will probably be different. It’s a good idea to check
the values of your system once you have the physical setup fixed.) You want
to make sure you’re checking the distance sensor frequently enough that you
capture movement every time. However, it doesn’t make sense to run it so often
that you end up with millions of readings for a day’s worth of logging.

I recommend that you write to the SD card every time movement is detected,
but that you only periodically write to the SD card when there is no movement.
This methodology strikes a good balance between storage space required and
accuracy. Because you care the most about having accurate timing for when
somebody passes the sensor, that detection is recorded with a higher temporal
resolution than when nothing is happening in front of the sensor. This technique

308 Part IV ■ Advanced Topics and Projects

is implemented in Listing 13-4. The Arduino polls the distance sensor every
50ms (and writes a 1 to the “active” column every time movement is detected).
If movement is not being detected, it only writes a 0 to the “active” column once
every second (as opposed to every 50ms).

Listing 13-4 shows the completed software for the entrance logger, given the
improvements just described.

Listing 13-4: Entrance Logger Software—entrance_logger.ino

//Logs Room Entrance Activity

#include <SD.h> //For talking to SD Card

#include <Wire.h> //For RTC

#include "RTClib.h" //For RTC

//Define pins

//SD Card is on Standard SPI Pins

//RTC is on Standard I2C Pins

const int CS_PIN =10; //SS for SD Shield

const int SD_POW_PIN =8; //Power for SD Shield

const int RTC_POW_PIN =A3; //Used as digital output

const int RTC_GND_PIN =A2; //Used as digital output

const int IR_PIN =0; //Analog input 0

//Define an RTC object

RTC_DS1307 RTC;

//Initialize strings

String year, month, day, hour, minute, second, time, date;

//Initialize distance variables

int raw = 0;

int raw_prev = 0;

boolean active = false;

int update_time = 0;

void setup()

{

 Serial.begin(9600);

 Serial.println(F("Initializing Card"));

 //CS pin, and pwr/gnd pins are outputs

 pinMode(CS_PIN, OUTPUT);

 pinMode(SD_POW_PIN, OUTPUT);

 pinMode(RTC_POW_PIN, OUTPUT);

 pinMode(RTC_GND_PIN, OUTPUT);

 //Setup power and ground pins for both modules

 digitalWrite(SD_POW_PIN, HIGH);

 Chapter 13 ■ Data Logging with SD Cards 309

 digitalWrite(RTC_POW_PIN, HIGH);

 digitalWrite(RTC_GND_PIN, LOW);

 //Initiate the I2C bus and the RTC library

 Wire.begin();

 RTC.begin();

 //If RTC is not running, set it to the computer's compile time

 if (! RTC.isrunning())

 {

 Serial.println(F("RTC is NOT running!"));

 RTC.adjust(DateTime(__DATE__, __TIME__));

 }

 //Initialize SD card

 if (!SD.begin(CS_PIN))

 {

 Serial.println(F("Card Failure"));

 return;

 }

 Serial.println(F("Card Ready"));

 //Write column headers

 File dataFile = SD.open("log.csv", FILE_WRITE);

 if (dataFile)

 {

 dataFile.println(F("\nNew Log Started!"));

 dataFile.println(F("Date,Time,Raw,Active"));

 dataFile.close(); //Data isn't actually written until we

 //close the connection!

 //Print same thing to the screen for debugging

 Serial.println(F("\nNew Log Started!"));

 Serial.println(F("Date,Time,Raw,Active"));

 }

 else

 {

 Serial.println(F("Couldn't open log file"));

 }

}

void loop()

{

 //Get the current date and time info and store in strings

 DateTime datetime = RTC.now();

 year = String(datetime.year(), DEC);

 month = String(datetime.month(), DEC);

 day = String(datetime.day(), DEC);

 hour = String(datetime.hour(), DEC);

310 Part IV ■ Advanced Topics and Projects

 minute = String(datetime.minute(), DEC);

 second = String(datetime.second(), DEC);

 //Concatenate the strings into date and time

 date = year + "/" + month + "/" + day;

 time = hour + ":" + minute + ":" + second;

 //Gather motion data

 raw = analogRead(IR_PIN);

 //If the value changes by more than 75 between readings,

 //indicate movement.

 if (abs(raw-raw_prev) > 75)

 active = true;

 else

 active = false;

 raw_prev = raw;

 //Open a file and write to it.

 if (active || update_time == 20)

 {

 File dataFile = SD.open("log.csv", FILE_WRITE);

 if (dataFile)

 {

 dataFile.print(date);

 dataFile.print(F(","));

 dataFile.print(time);

 dataFile.print(F(","));

 dataFile.print(raw);

 dataFile.print(F(","));

 dataFile.println(active);

 dataFile.close(); //Data isn't actually written until we

 //close the connection!

 //Print same thing to the screen for debugging

 Serial.print(date);

 Serial.print(F(","));

 Serial.print(time);

 Serial.print(F(","));

 Serial.print(raw);

 Serial.print(F(","));

 Serial.println(active);

 }

 else

 {

 Serial.println(F("Couldn't open log file"));

 }

 update_time = 0;

 }

 delay(50);

 update_time++;

}

 Chapter 13 ■ Data Logging with SD Cards 311

Data	Analysis
After loading this code on to your Arduino, set it up at your door and let it run
for a while. When satisfied with the amount of data you have collected, put the
SD card in your computer and load the CSV file with your favorite spreadsheet
program. Assuming that you only logged over the course of one day, you can
now plot the time column against the activity column. Whenever there is no
activity, the activity line graph remains at zero. Whenever somebody enters or
exits the room, it jumps up to one, and you can see exactly when it happened.

The procedure for creating a plot will vary with different graphing applica-
tions. To make it easy for you, I’ve created a preformatted online spreadsheet
that will do the plotting for you. You must have a Google account to use it.
Visit the web page for this chapter (www.exploringarduino.com/content/ch13)
and follow the link to the graph-generation spreadsheet. It will prompt you to
create a new spreadsheet in your Google Drive account. Once this completes,
just copy your data in place of where the template data is, and the graph will
update for you automatically. Figure 13-24 shows what a graph of data over a
few minutes might look like.

Figure 13-24: Entrance logger data graphed over several minutes

312 Part IV ■ Advanced Topics and Projects

Summary

In this chapter you learned about the following:

■■ CSV files use newlines and commas as delimiters to easily store data in
a plain text format.

■■ You can format an SD card in Windows, Mac, or Linux.

■■ There are a plethora of available SD card shields, each with unique features.

■■ You can use the SD Library to write to and read from a file on an SD card.

■■ You can build an RTC and write software that utilizes it to insert timestamps.

■■ You can overcome RAM limitations by storing strings in flash memory.

■■ You can detect movement by looking for changing analog values produced
by a distance sensor.

■■ You can graph data from a data logger using a spreadsheet on your
computer.

 313

Parts You’ll Need for This Chapter

Arduino (Uno recommended)

USB cable

Arduino Ethernet shield

Photoresistor

10kΩ resistor

TMP36 temperature sensor

RGB LED

220Ω resistors (n3)

150Ω resistor

Speaker or buzzer

Ethernet cable

Access to a wired router

Jumper wires

Breadboard

C h a P t e r

14
Connecting Your Arduino

to the Internet

314 Part III ■ Communication Interfaces

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found at www
.exploringarduino.com/content/ch14.

In addition, all code can be found at www.wiley.com/go/exploringarduino on
the Download Code tab. The code is in the chapter 14 download and individually
named according to the names throughout the chapter.

This is it, the final frontier (and chapter). Short of launching your Arduino
into space, connecting it to the Internet is probably the closest that you will get
to making the whole world your playground. Internet connectivity, in general,
is an extremely complex topic; you could easily write entire volumes of books
about the best way to interface the Arduino with the “Internet of things,” as it is
now often called. Because it is infeasible to cover the multitude of ways you can
interface your Arduino with the web, this chapter focuses on imparting some
knowledge with regard to how network connectivity works with your Arduino
and how you can use the Arduino Ethernet shield to both serve up web pages
and to broadcast data to the web. Specifically, you learn about traversing your
network topology, how a web page is served, and how to use a third-party data
logging service to connect your Arduino to the “Internet of things.”

The	Web,	the	Arduino,	and	You

Explaining all the workings of the web is a bit ambitious for one chapter in a
book, so for this chapter, you can essentially think of your Arduino’s relation
to the Internet using the diagram shown in Figure 14-1.

First, you work only in the realm of your local network. When working within
your local network, you can talk to your Arduino via a web browser only if they
are both on the same local network. Then, you will explore ways in which you
can traverse your router to access functionality from your Arduino anywhere
in the world (or at least anywhere you can get an Internet connection).

Networking	Lingo
Before you get your feet wet with networking your Arduino, let’s get some
lingo straight. The following are words, concepts, and abbreviations that you
will need to understand as you work through this chapter.

IP Address

An Internet Protocol (IP) address is a unique address that identifies each device
that connects to the Internet. In the case of your home network, there are actu-
ally two kinds of IP addresses you need to worry about: the local IP address
and the global IP address. If your home or office has a router (like the one in

 Chapter 14 ■ Connecting Your Arduino to the Internet 315

Figure 14-1), everything within your local network has a local IP address that is
visible only to other devices within your network. Your router/modem has one
public-facing global IP addresses that is visible to the rest of the Internet. If you
want to get data between somewhere else on the Internet and a device behind
a router, you need to use Network Address Translation (NAT).

Figure 14-1: A simplified view of the web and your local network

Network Address Translation

There are not enough IP addresses to have one for every device in the world.
Furthermore, users often do not want their computers and other networked
devices visible to the rest of the world. For this reason, routers are used to create
isolated networks of computers with local IP addresses. However, when you do
want one of these machines to be accessible from the rest of the Internet, you need
to use NAT through the router. This allows a remote device to send a request to
your router asking to talk to a device in your local network. When you connect
your Arduino to the larger web later in this chapter, you use a form of NAT.

316 Part III ■ Communication Interfaces

MAC Address

MAC addresses, unlike IP addresses, are globally unique. (Well, they are sup-
posed to be, but in practice they often are not.) MAC addresses are assigned to
every physical network interface and do not change. For instance, when you
buy a computer, the Wi-Fi module inside has a unique MAC address, and the
Ethernet adapter has a unique MAC address. This makes MAC addresses useful
for identifying physical systems on a network.

HTML

HTML, or Hypertext Markup Language, is the language of the web. To display
a web page from your Arduino, you will write some simple HTML that creates
buttons and sliders for sending data.

HTTP

HTTP, or Hypertext Transfer Protocol, defines the protocol for communicating
across the World Wide Web, and is most commonly used in browsers. HTTP
defines a set of header information that must be sent as part of a message across
the web. This header defines how a web page will display in addition to whether
the request was successfully received and acknowledged.

GET/POST

GET and POST define two ways for transferring information to a remote web
server. If you’ve ever seen a URL that looks like www.jeremyblum.com/?s=arduino,
you’ve seen a GET request. GET defines a series of variables following a ques-
tion mark in the URL. In this case, the variable s is being set to Arduino. When
the page receives this URL, it identifies this variable, performs the search, and
returns the results page.

A POST is very similar, but the information is not transmitted in a visible
medium through the URL. Instead, the same variables are transmitted transpar-
ently in the background. This is generally used to hide sensitive information
or to ensure that a page cannot be linked to if it contains unique information.

DHCP

DHCP, or Dynamic Host Configuration Protocol, makes connecting devices to
your local network a breeze. Odds are that whenever you’ve connected to a Wi-Fi
(or wired) network you haven’t had to manually set an IP address at which the
router can connect to you. So, how does the router know to route packets to you?

 Chapter 14 ■ Connecting Your Arduino to the Internet 317

When you connect to the network, a DHCP request is initiated with the router
that allows the router to dynamically assign you an available IP address. This
makes network setup much easier because you don’t have to know about your
network configuration to connect to it. However, it can make talking to your
Arduino a bit tougher because you need to find out what IP it was assigned.

DNS

DNS stands for Domain Name System. Every website that you access on the
Internet has a unique IP address that is the location of the server on the web.
When you type in www.google.com, a DNS server looks at a table that informs
it of the IP address associated with that “friendly” URL. It then reports that IP
back to your computer’s browser, which can, in turn, talk to Google’s server. DNS
allows you to type in friendly names instead of remembering the IP addresses
of all your favorite websites. DNS is to websites as your phone’s contact list is
to phone numbers.

Clients	and	Servers
In this chapter, you learn about how to use the Ethernet shield to make the
Arduino act as either a client or a server. All devices connected to the Internet
are either clients or servers, though some actually fill both roles. A server does
as the name implies: When information is requested from it, it serves it up to
the requesting computer over the network. This information can come in many
forms; it could be a web page, database information, email, or a plethora of other
things. A client is the device that requests data, and obtains a response. When
you browse the Internet from your computer, your computer’s web browser is
acting as a client.

Networking	Your	Arduino
For all the examples in this chapter, you use your Arduino paired with the
official Arduino Ethernet shield. There are multiple revisions of this shield, but
these examples are tested to work on the most recent version of the shield with
the WIZnet Ethernet controller chip. Significantly older versions of the shield
used a different chip, and are not guaranteed to work with these examples. You
may also use the Arduino Ethernet, a single-board Arduino that combines the
Ethernet connectivity on to the Arduino board.

TIP I	have	found	that	the	Ethernet	shield	works	more	reliably	than	the	Arduino	
Ethernet.

318 Part III ■ Communication Interfaces

Attach the Ethernet shield to your Arduino, and connect the shield’s Ethernet
port to an available Ethernet port on your home router using an Ethernet cable.
This should be an ordinary Ethernet crossover cable (nearly all cables will be
labeled as “crossover” on the sheathing). Connect the USB cable to your com-
puter and Arduino for programming. If your router is not near the computer
that you want to use for programming, program it first, and then connect it to
the router. However, some of the examples depend on debugging information
shown via the serial monitor. If you want your system to operate without a
serial connection, you might want to connect it to an LCD for displaying the IP
address, which you will otherwise be displaying via the serial terminal later
in the chapter. You can use your knowledge from Chapter 10, “Liquid Crystal
Displays,” to print information to the LCD instead of the serial terminal if you
want; that is not covered in this chapter.

Controlling	Your	Arduino	from	the	Web

First, you configure your Arduino to act as a web server. Using some HTML
forms, and the integrated Ethernet libraries, you have your Arduino automati-
cally connect to the network and serve a web page that you can access to control
some of its I/O pins. You expose buttons to the web interface for toggling the
colors in an RGB LED and controlling a speaker’s frequency. The program that
you write for this purpose is extensible, allowing you to add control of additional
devices as you become more comfortable working with the Arduino.

Setting	Up	the	I/O	Control	Hardware
First, set up some test hardware connected to your Arduino server so that you
can control it from the web. For this example, you connect an RGB LED and a
piezo or ordinary speaker. Wire it up as shown in Figure 14-2. Recall that Pins
4, 10, 11, 12, and 13 are used for communication with the Ethernet chip and SD
card, so you cannot use those pins for general I/O. You connect your RGB LED
to pins 5, 6, and 7. The speaker connects to pin 3.

Designing	a	Simple	Web	Page
It’s useful to design a simple web page separately from the Arduino before try-
ing to get the Arduino to serve it up so that you can ensure that it looks the way
you want. Your web page will have simple buttons for toggling each LED, and
will have a slider for adjusting the frequency at which a speaker is playing. It
will use HTML form elements to render these components, and it will use the
HTTP GET protocol to send commands from the browser to the server. As you
design the website, it won’t actually be hooked up to a server, so interacting
with it will not elicit any action from the Arduino, or anything else.

 Chapter 14 ■ Connecting Your Arduino to the Internet 319

Figure 14-2: Arduino server wired to RGB LED and speaker

Open up your favorite text editor (I recommend Notepad++ for Windows
because it highlights and color codes your HTML when you save as an HTML
file) and create a new file with a .html extension. It doesn’t matter what you
name the file; test.html will work fine. This will be a very bare-bones website,
so do not worry about making this a fully “compliant” HTML website; it will
be missing some tags that are normally used, such as <body> and <head>. These
missing tags will not affect how the page is rendered in the browser. In your
new HTML file, enter the markup from Listing 14-1.

Listing 14-1: HTML Form Page—server_form.html

<form action='' method='get'>

 <input type='hidden' name='L' value='7' />

 <input type='submit' value='Toggle Red' />

</form>

<form action='' method='get'>

 <input type='hidden' name='L' value='6' />

 <input type='submit' value='Toggle Green' />

</form>

<form action='' method='get'>

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

320 Part III ■ Communication Interfaces

 <input type='hidden' name='L' value='5' />

 <input type='submit' value='Toggle Blue' />

</form>

<form action='' method='get'>

 <input type='range' name='S' min='0' max='1000' step='100' value='0'/>

 <input type='submit' value='Set Frequency' />

</form>

This HTML page includes four form elements. <form> specifies the
beginning of a form, and </form> specifies the end. Within each form are
<input /> tags that specify what data will be passed to the server when the
form is submitted. In the case of the LED toggle buttons, a variable called L will
be passed to the server via a GET method with a value equivalent to the I/O pin
number that you will be toggling. The empty action element in the form tag
indicates that the same page should be reloaded when the variable is passed to
the server. The hidden input specifies that value will just be passed when the
Submit button is pressed. For the frequency slider, we are using a new HTML5
input element called range. This will make a range slider. You can move the
slider (in increments of 100) to select a frequency that will be transmitted as
the value of a variable called S. In older browsers, this slider might render as
an input box rather than a slider, if they don’t yet support the range element.
To see what the page will look like, open it up with your favorite browser (I
recommend Google Chrome). In Chrome, you need to press Ctrl+O (Windows)
or Cmd+O (OSX) to get an Open dialog box. Open the HTML file you just made
in your browser (see Figure 14-3).

Figure 14-3: Web page content test in Chrome.

If you press any of the buttons, you should see a variable GET statement
appended to the address in your browser’s URL bar.

Writing	an	Arduino	Server	Sketch
Now, you need to take the HTML you’ve developed, and integrate it into a larger
Server sketch that will handle connecting to the network, responding to client
requests with the page you designed, and responding to GET statements from
the page forms.

 Chapter 14 ■ Connecting Your Arduino to the Internet 321

Connecting to the Network and Retrieving an IP via DHCP

Thanks to the wonders of DHCP, connecting to the network with the Arduino
Ethernet shield is a snap. Before showing you the code, let’s look at what is
going to happen. At the top of your program, you should include the serial
peripheral interface (SPI) and Ethernet libraries, define the MAC address of your
Ethernet shield (it will be on a sticker on the shield), and create an instance of
EthernetServer. Within the setup(), you begin an Ethernet session with the
MAC address you’ve defined and start the web server. You can optionally sup-
ply a static IP address when initiating the Ethernet session, but by leaving that
argument out, the Arduino will connect via DCHP and return the assigned IP
address via the serial terminal. You can then use that IP address to connect to
Arduino and view the web page it will be hosting.

Replying to a Client Response

The main loop is responsible for a number of actions. To handle moving through
all these various action states, a number of “state variables” are used throughout
the loop to keep track of what actions have been performed and what still needs
to happen for successful communication with the client to take place.

The Arduino will always be checking for client connections (from your laptop,
for example) to the server. When a client connects, the Arduino replies with two
things: the HTTP response header and the HTML-formatted web page that was
requested. The response header tells your browser what kind of information is
about to be sent. When you have tried to visit a nonexistent web page, you’ve
probably gotten the dreaded “404 Response.” The 404 header indicates to the
browser that the server could not find the requested page. A “200 Response,”
in contrast, indicates that the request has been received and that the HTML
will be transmitted to the browser. So, on the Arduino, you want to send a “200
Response” to the browser and follow that up with a definition of the Content-
Type (HTML, in this case). This complete header looks like this:

HTTP/1.1 200 OK

Content-Type: text/html

This header must be followed by a blank line, then the content of your HTML
page that you wrote earlier. This same program is also used to reply to GET
requests. To identify GET requests, you need to look for the question mark char-
acter in the URL that specifies what parameters have been selected and sent. If
the ? is found, the program waits until it receives a variable name. In the case
of the HTML you wrote earlier, the command for LED control is an L, and the
command for the speaker frequency adjustment is an S. Depending on which
of these is in the URL, the program parses integers out of the URL and controls

322 Part III ■ Communication Interfaces

the peripheral accordingly. After this has happened, a break command is used
to exit the code from the connected client loop, and it starts listening for a new
client connection to do the whole process over again.

Putting It Together: Web Server Sketch

Given all the requirements listed in the previous sections, you can now construct
a server program for the Arduino. These programs tend to be fairly nontrivial
because they require the use of several state variables that track the interac-
tion between the client and server. The sketch in Listing 14-2 works great for
accomplishing the tasks of controlling an RGB LED and speaker. If you want
to add additional functionality with more GET variables, it should be fairly
straightforward to do so. The areas where you can insert this extra functional-
ity are called out in the code comments.

Listing 14-2: Web Server Code—control_led_speaker.ino

//Arduino Web Server

//Some code adapted under MIT License from

//http://bildr.org/2011/06/arduino-ethernet-pin-control/

#include <Ethernet.h>

#include <SPI.h>

const int BLUE =5;

const int GREEN =6;

const int RED =7;

const int SPEAKER =3;

//For controlling LEDS and the speaker

//If you want to control additional things, add variables to

//control them here.

int freq = 0;

int pin;

//Set to your MAC address!

//It should be on your sticker. If you can't find it,

//make one up, or use this one.

byte mac[] = { 0x90, 0xA2, 0xDA, 0x00, 0x4A, 0xE0 };

//Start the server on port 80

EthernetServer server = EthernetServer(80); //port 80

boolean receiving = false; //To keep track of whether we are

 //getting data.

void setup()

{

 Serial.begin(9600);

 Chapter 14 ■ Connecting Your Arduino to the Internet 323

 pinMode(RED, OUTPUT);

 pinMode(GREEN, OUTPUT);

 pinMode(BLUE, OUTPUT);

 //Connect with DHCP

 if (!Ethernet.begin(mac))

 {

 Serial.println("Could not Configure Ethernet with DHCP.");

 return;

 }

 else

 {

 Serial.println("Ethernet Configured!");

 }

 //Start the server

 server.begin();

 Serial.print("Server Started.\nLocal IP: ");

 Serial.println(Ethernet.localIP());

}

void loop()

{

 EthernetClient client = server.available();

 if (client)

 {

 //An HTTP request ends with a blank line

 boolean currentLineIsBlank = true;

 boolean sentHeader = false;

 while (client.connected())

 {

 if (client.available())

 {

 char c = client.read(); //Read from the incoming buffer

 if(receiving && c == ' ') receiving = false; //Done receiving

 if(c == '?') receiving = true; //Found arguments

 //This looks at the GET requests

 if(receiving)

 {

 //An LED command is specified with an L

 if (c == 'L')

 {

 Serial.print("Toggling Pin ");

 pin = client.parseInt();

 Serial.println(pin);

324 Part III ■ Communication Interfaces

 digitalWrite(pin, !digitalRead(pin));

 break;

 }

 //A speaker command is specified with an S

 else if (c == 'S')

 {

 Serial.print("Setting Frequency to ");

 freq = client.parseInt();

 Serial.println(freq);

 if (freq == 0)

 noTone(SPEAKER);

 else

 tone(SPEAKER, freq);

 break;

 }

 //Add similarly formatted else if statements here

 //TO CONTROL ADDITIONAL THINGS

 }

 //Print out the response header and the HTML page

 if(!sentHeader)

 {

 //Send a standard HTTP response header

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html\n");

 //Red toggle button

 client.println("<form action='' method='get'>");

 client.println("<input type='hidden' name='L' value='7' />");

 client.println("<input type='submit' value='Toggle Red' />");

 client.println("</form>");

 //Green toggle button

 client.println("<form action='' method='get'>");

 client.println("<input type='hidden' name='L' value='6' />");

 client.println("<input type='submit' value='Toggle Green' />");

 client.println("</form>");

 //Blue toggle button

 client.println("<form action='' method='get'>");

 client.println("<input type='hidden' name='L' value='5' />");

 client.println("<input type='submit' value='Toggle Blue' />");

 client.println("</form>");

 //Speaker frequency slider

 client.println("<form action='' method='get'>");

 client.print("<input type='range' name='S' min='0' max='1000'

 step='100' value='0'/>");

 client.println("<input type='submit' value='Set Frequency' />");

 client.println("</form>");

 Chapter 14 ■ Connecting Your Arduino to the Internet 325

 //Add additional forms forms for controlling more things here.

 sentHeader = true;

 }

 if (c == '\n' && currentLineIsBlank) break;

 if (c == '\n')

 {

 currentLineIsBlank = true;

 }

 else if (c != '\r')

 {

 currentLineIsBlank = false;

 }

 }

 }

 delay(5); //Give the web browser time to receive the data

 client.stop(); //Close the connection:

 }

}

This code executes all the functionality that was described in the previous
sections. Be sure to change the MAC address listed in this code to the MAC
address printed on the sticker on your Arduino shield. If you cannot locate that
address, it may still work with the wrong address; you can use the one that is
already listed in the code. Load it on to your Arduino and launch the serial
monitor. Ensure that your Arduino is plugged into your network and that your
router has DHCP enabled (most do). After a few seconds, the DHCP connection
should succeed, and you will see a message that informs you of the IP address
that it has been assigned (see Figure 14-4).

Figure 14-4: DHCP IP acquisition confirmation via serial

326 Part III ■ Communication Interfaces

In the case shown in Figure 14-4, the Arduino was assigned local IP address
192.168.0.9. This number will almost certainly differ on your network, so be sure
to check what it is! Note this IP address; you will now need to use it to access
the web interface that you have just launched.

Controlling	Your	Arduino	via	the	Network
Now that the server code is running, and your Arduino is connected to the net-
work with a valid IP, you can access it with a browser and control it. First, you
do so over your local network, and then you learn how you can take advantage
of port forwarding in your router to access it from outside of your local network.

Controlling Your Arduino over the Local Network

To confirm that the web interface is working properly, ensure that your computer
is attached to the same network as your Arduino (via Wi-Fi or Ethernet). Open
your favorite browser, and enter the IP address from the previous section into
the URL bar. This should open an interface that looks just like the HTML page
you created earlier. Try pressing the buttons to toggle the various LED colors
on and off. Move the slider and hit the frequency adjustment button to set the
frequency of the speaker. You should see and hear the Arduino responding. If
you’ve left the serial monitor open, you’ll also see it displaying debug info as it
receives commands. Notice the GET commands being passed to the Arduino
server through the browser’s URL bar (see Figure 14-5).

Figure 14-5: Arduino control web page and serial debugging

 Chapter 14 ■ Connecting Your Arduino to the Internet 327

After you’re satisfied with controlling the lights and sounds over the local
network, you can follow the steps in the next section to enable control from
anywhere in the world.

NOTE To	watch	a	demo	video	of	the	Arduino	being	controlled	over	a	local	net-
work,	check	out	www.exploringarduino.com/content/ch14.	You	can	also	find	
this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Using Port Forwarding to Control your Arduino from Anywhere

The steps in the previous section enable you to control your Arduino from
anywhere within your local network. This is because the IP address that you
are connecting to is a local address that sits behind your router. If you want to
control your Arduino from computers outside of your local network, you need
to take advantage of advanced technologies that will allow you to tunnel to
your device through your router from the outside world. To do this, you need
to implement three steps:

 1. Reserve the local DHCP address used by your Arduino.

 2. Forward an external port on your router to an internal port pointing at
your Arduino.

 3. Connect your router to a dynamic DNS updating service.

WARNING The	steps	in	this	section	are	advanced	and	will	differ	(maybe	dras-
tically)	depending	on	what	kind	of	router	you	have.	I	will	generalize,	but	I	also	
assume	some	existing	knowledge	of	router	administration.	I	recommend	search-
ing	the	web	for	instructions	specific	to	your	router	for	each	of	the	steps	listed.	If	
this	is	your	first	time	logging	in	to	your	router’s	administration	panel,	I	don’t	sug-
gest	doing	these	steps;	you	could	potentially	mess	up	your	network	setup.	Some	
routers	may	not	even	support	all	the	functions	required	to	enable	port	forwarding	
and	dynamic	DNS	updating.	If	you	are	not	familiar	at	all	with	network	administra-
tion,	stick	to	local	web	access	for	now.

Logging In to Your Router

First, log in to your router’s administration panel. The admin panel URL is the
gateway IP address for your network. In almost all home network configura-
tions, this is the first three decimal-separated values of your Arduino’s local IP,
followed by a 1. If, for example, your Arduino’s IP was 192.168.0.9, your gateway
address is probably (but not necessarily) 192.168.0.1. Try typing that address
into your browser to see whether you get a login screen. Enter the login creden-
tials for your router admin page; these are not the same as your wireless login

328 Part III ■ Communication Interfaces

credentials. (If you never changed them from the default values, you might be
able to find them in your router’s setup manual.)

If that IP address does not work, you need to determine it manually. On
Windows, you can open a command prompt and type ipconfig. You want to
use the Default Gateway address for your active network connection. If you
are on a Mac, access System Preferences, go to Network, click the Advanced
button, go to the TCP/IP tab, and use the Router Address. If you are in Linux,
open a terminal, type route -n, and use the last Gateway Address listing that
is nonzero.

Reserving Your Arduino’s DHCP Address

Once in your router’s admin console, look for an option to reserve DHCP addresses.
By reserving a DHCP address, you are ensuring that every time a device with
a particular MAC address connects to the router it will be assigned the same
local IP. Reserved IP addresses are never given to clients with a MAC address
other than the specified address, even if that reserved client is not presently
connected to the router. By reserving your Arduino’s DHCP IP address, you
ensure that you’ll always be able to forward web traffic to it in the next step.

Once you find the option, reserve whatever IP address your Arduino is cur-
rently using by assigning it to the MAC address that you set in the sketch earlier.
Be sure to apply the setting, which may require restarting your router. You can
confirm that this works by restarting your router and the Arduino and seeing
if your Arduino gets the same IP when it reconnects.

You can also accomplish the same effect by giving your Arduino a static IP
(not using DHCP) in the sketch. The Arduino website describes how to do this:
http://arduino.cc/en/Reference/EthernetIPAddress.

Forwarding Port 80 to Your Arduino

Now that you have an unchanging local IP address for your Arduino, you need
to pipe incoming web traffic to that internal IP address. Port forwarding is the
act of listening for traffic on a certain port of router and always forwarding
that traffic to a specific internal IP address. Port 80 is the default port for HTTP
communication, so that is what you will use. Locate the right option in your
router administration panel and forward external port 80 to internal port 80
on the IP that you just assigned to your Arduino. If the router specifies a range
for the ports, just make the range 80-80. Now, all traffic to your router on port
80 will go to your Arduino.

Using a Dynamic DNS Updating Service

The last step is to figure out how to access your router from elsewhere in the
world. If you are working on a commercial network (or you pay a lot for your
home’s Internet connection), you might have a static global IP address. This

 Chapter 14 ■ Connecting Your Arduino to the Internet 329

is rare for residential Internet connections, but still possible; check with your
Internet service provider (ISP). If that is the case, just type what is my ip into
Google, and it will tell you what your global IP is. If you know you have a static
IP, you can access that IP from anywhere in the world and traffic on it should
forward to your Arduino. If you want, you can even buy a domain name and
set up your domain name’s DNS servers to point to that IP address.

However, the odds are good that you have a dynamic global IP address. Your
ISP probably changes your IP once every few days or weeks. So, even if you
figure out what your global IP is today, and access your Arduino via this IP, it
might stop working tomorrow. There is a clever way around this, which is to
use dynamic IP services. These services run a small program on your router
that periodically checks your global IP address and reports it back to a remote
web server. This remote web server then updates a subdomain that you own
(such as myarduino.dyndns.org) to always point to your global IP, even when it
changes. DynDNS is a service that has software built in to most modern routers.
Search your router administration page to see which dynamic DNS services it
supports. Some are free; some charge a nominal yearly fee. You can follow the
setup instructions in your router’s admin panel to create an account with one of
these services and to connect it to your router. After doing this, you can access
your Arduino remotely, even with a dynamically changing global IP address.
In case your router does not support any dynamic DNS services, remember that
some also offer clients that will run on computers within your network rather
than on the router directly.

Once you have determined your public IP address (or obtained a dynamically
updating URL), you can enter that into your browser, and you should connect
to your Arduino. Give the address to a friend so they can test remotely!

Sending	Live	Data	to	a	Graphing	Service

In the preceding section, you learned how to turn your Arduino into a web
server that exposed a web interface for controlling its I/O pins over the local
network or the Internet. However, an equally common reason for connecting
your Arduino to the Internet is to make networked sensor nodes. Sensor nodes
generally only transmit information, instead of listening for commands. Because,
in this scenario, the Arduino will be initializing a request out to a known entity
on the web (in this case you will use an online graphing service), you do not
have to fuss at all with forwarding IP addresses, memorizing the IP address,
and so forth.

This section uses an online graphing interface called Xively (previously called
Cosm) to facilitate the creation of live graphs with your Arduino.

330 Part III ■ Communication Interfaces

Building	a	Live	Data	Feed	on	Xively
For this example, you use the Xively web service to facilitate graphing of some
sensors hooked up to your Internet-enabled Arduino. By connecting to the
Xively site, you eliminate much of the hard work that you would ordinarily
need to do to display your data on the web.

Creating a Xively Account

To start, visit www.xively.com and sign up for a free account. Follow the link in
the confirmation email you receive and log in to the website.

Creating a Data Feed

Once your account is set up, click the Develop button at the top of the page to
create a feed. Press the “+ Add Device” button. A screen like the one shown in
Figure 14-6 will prompt you to name your feed and add a description. You can
also choose to make your feed public or private.

Figure 14-6: Xively feed addition

Enter the requested details and then click Add Device. A new page will appear
with relevant connection information for your new feed. Leave this page open,

 Chapter 14 ■ Connecting Your Arduino to the Internet 331

because you will need the information from this page when you configure your
Arduino sketch later in this section.

Installing the Xively and HttpClient Libraries

Xively provides a convenient Arduino library that makes it easier to get your
Arduino talking to the web through their service. The Xively library depends
on the HttpClient library, so you will need to download that as well. Both librar-
ies are available on GitHub, a popular code hosting website. Visit the following
two links and click the ZIP download button to download the code repositories:
https://github.com/xively/xively-arduino and https://github.com/amcewen/
HttpClient. (These download links can also be found on the web page for this
chapter: www.exploringarduino.com/content/ch14.) For now, save these ZIP
files on your desktop. Then complete the following steps:

 1. Unzip the files and rename the library folders so that they do not contain
dashes (GitHub adds dashes to the folder names automatically). I recom-
mend renaming the “HttpClient-master” folder to “HttpClient” and the
“Xively-Arduino-master” folder to “xively.”

 2. Move these folders to your Arduino libraries directory, as you did in
the “Getting the Library” section of Chapter 12, “Hardware and Timer
Interrupts.”

 3. Open the Arduino integrated development environment (IDE) (you’ll need
to restart it if it was open when you copied the libraries) and navigate to
File > Examples. Confirm that you see “HttpClient” and “xively” in the
Examples list. This confirms that the libraries were installed successfully.

For your first experiment with Xively, you’ll use their handy example sketch,
which broadcasts the state of one analog sensor to web. In the example menu
of your Arduino IDE, open the DatastreamUpload example under the “xively”
heading. This should open a new sketch. (This sketch is also included in the
code download package for this chapter.) Because you’ll be modifying the
example sketch, use the File > Save As option to save this sketch to your own
directory before continuing. A quick glance at the example file reveals that it
will be transmitting the analog value that is read by analog input pin 2:

// Analog pin which we're monitoring (0 and 1 are used by the
// Ethernet shield)
int sensorPin = 2;

Knowing this, you’ll wire up your Arduino accordingly in the next section,
with the Ethernet shield equipped. You’ll come back to this sketch once you’ve
wired your Arduino.

332 Part III ■ Communication Interfaces

Wiring Up Your Arduino

Next, wire an analog sensor to analog pin 2 of your Arduino. The example sketch
that you just downloaded is configured to read an analog input on analog pin 2
and broadcast it up to your Xively account. To keep things simple, grab a pho-
toresistor and 10k resistor and wire them to analog input 2 as a voltage divider,
just as you did in Chapter 3, “Reading Analog Sensors” (see Figure 14-7). Once
it’s wired up, plug your Arduino into the computer and your network.

Figure 14-7: Arduino with Ethernet shield wired to photoresistor

Configuring the Xively Sketch and Running the Code

You’ve already installed the appropriate libraries and opened the example
sketch. You now need to configure, compile, and run the code on your Arduino.
First, you will configure the sketch to talk to the feed on your Xively account.

You need to change only three values in the sketch to get it to work with your
Arduino and your Xively feed: the MAC address of your Arduino Ethernet Shield,
your Xively API key, and your Feed ID. The MAC address will be the same MAC
address that you used for previous examples. (As before, if you cannot find your

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 14 ■ Connecting Your Arduino to the Internet 333

MAC address, just use the default one that comes in the example sketch.) Your
API key and Feed ID can be found on the Xively web page that you kept open
from before. Find the “API Keys” section (see Figure 14-8).

Figure 14-8: Xively Feed and API Info

This section provides the Feed ID (the first number) and the API key (the second
number) to insert into your sketch. The following code snippets show the lines
of code that you will need to update with the appropriate values. Listing 14-3
shows an example of the complete sketch with all the values inserted (your
values will be different than the ones shown in the listing).

Replace the MAC Address with your own:

// MAC address for your Ethernet shield

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

Replace the Xively API key with your own:

// Your Xively key to let you upload data

char xivelyKey[] = "YOUR_XIVELY_API_KEY";

Replace the Feed ID (15552 in the example) with your own (yours may have
a different number of digits):

// Finally, wrap the datastreams into a feed

XivelyFeed feed(15552, datastreams, 1 /* number of datastreams */);

Listing 14-3 shows the completed program.

334 Part III ■ Communication Interfaces

Listing 14-3: Xively Datastream Upload—xively.ino

#include <SPI.h>

#include <Ethernet.h>

#include <HttpClient.h>

#include <Xively.h>

// MAC address for your Ethernet shield

byte mac[] = { 0x90, 0xA2, 0xDA, 0x00, 0x4A, 0xE0 };

// Your Xively key to let you upload data

char xivelyKey[] = "qkjXS1oUKqbCG-hqh3fw4WIsdvOSAKx4ZXZYSWhGUWdxcz0g";

// Analog pin which we're monitoring (0 and 1 are used by the

// Ethernet shield)

int sensorPin = 2;

// Define the strings for our datastream IDs

char sensorId[] = "sensor_reading";

XivelyDatastream datastreams[] = {

 XivelyDatastream(sensorId, strlen(sensorId), DATASTREAM_FLOAT),

};

// Finally, wrap the datastreams into a feed

XivelyFeed feed(1242622121, datastreams, 1 /* number of datastreams */);

EthernetClient client;

XivelyClient xivelyclient(client);

void setup() {

 // Put your setup code here, to run once:

 Serial.begin(9600);

 Serial.println("Starting single datastream upload to Xively...");

 Serial.println();

 while (Ethernet.begin(mac) != 1)

 {

 Serial.println("Error getting IP address via DHCP, trying again...");

 delay(15000);

 }

}

void loop() {

 int sensorValue = analogRead(sensorPin);

 datastreams[0].setFloat(sensorValue);

 Serial.print("Read sensor value ");

 Serial.println(datastreams[0].getFloat());

 Serial.println("Uploading it to Xively");

 int ret = xivelyclient.put(feed, xivelyKey);

 Chapter 14 ■ Connecting Your Arduino to the Internet 335

 Serial.print("xivelyclient.put returned ");

 Serial.println(ret);

 Serial.println();

 delay(15000);

}

Upload the code to your Arduino, and you’ll be ready to transmit. When your
Arduino connects for the first time, the Xively server automatically adds the
feed to the web page you had open earlier.

In the code, you’re creating an object that contains all the information of your
feed. This appears as an array, named datastreams[]. This contains the sensor
name and type (in this case, a float). The feed gets wrapped into a XivelyFeed
object, which has the feed ID, the datastream information, and the number of
datastreams that are in the array.

Displaying Data on the Web

Once you start running the sketch on the Arduino, data will be transmitted
immediately. Open the serial monitor to observe the status of your transmissions.
If you do not see a return status of “200” in the serial monitor, you probably
copied the wrong API key or Feed ID. Check those values and try again. Once
you know that data is being properly transmitted, return to the Xively website;
the sensor_reading data stream should now be automatically updating every
15 seconds. Click on the sensor_reading link to see a live graph of the data
coming from your photoresistor. After the graph has been running for a while,
it may look something like Figure 14-9. (The serial monitor is also shown so you
can see how they match up.) That’s all there is to it. Your Arduino will continue
to communicate with and update your feed on the Xively server.

Figure 14-9: Light data being displayed on Xively

336 Part III ■ Communication Interfaces

Adding	Feed	Components
Having one sensor feed to Xively is great, but what if you want to add more
sensors? Thankfully, adding additional data is quite easy! You add an analog
temperature sensor to your Arduino to complement the readings from your
light sensor. You could also add any other kind of sensor—even digital I2C
and SPI sensors.

Adding an Analog Temperature Sensor

Using the TMP36 temperature sensor that you used in Chapter 3, add a simple
analog temperature sensor to the circuit, as in Figure 14-10. This sensor will be
read by analog input 3.

Figure 14-10: Adding a TMP36 temperature sensor

Adding Additional Sensor Readings to the Datastream

You now need to insert the data from this sensor into the stream of data that is sent
to the Xively server. Essentially, you just need to add an additional datastream to

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 14 ■ Connecting Your Arduino to the Internet 337

the code everywhere you see the first datastream. You may also choose to rename
to the datastream IDs to something more understandable, like light_reading
and temp_reading. The code in Listing 14-4 should resemble the code you used
before, but is now writing two datastreams. Note that you still need to enter
in your API key, Feed ID, and MAC address from your previous program into
this code; otherwise, it will not work.

Listing 14-4: Xively Datastream Upload Code Updated to Read Multiple Sensors—
xively2.ino

#include <SPI.h>

#include <Ethernet.h>

#include <HttpClient.h>

#include <Xively.h>

// MAC address for your Ethernet shield

byte mac[] = { 0x90, 0xA2, 0xDA, 0x00, 0x4A, 0xE0 };

// Your Xively key to let you upload data

char xivelyKey[] = "qkjXS1oUKqbCG-hqh3fw4WIsdvOSAKx4ZXZYSWhGUWdxcz0g";

// Analog pin which we're monitoring (0 and 1 are used by the

// Ethernet shield)

int lightPin = 2; //Temperature sensor

int tempPin = 3; //Light sensor

// Define the strings for our datastream IDs

char lightId[] = "light_reading";

char tempId[] = "temp_reading";

XivelyDatastream datastreams[] = {

 XivelyDatastream(lightId, strlen(lightId), DATASTREAM_FLOAT),

 XivelyDatastream(tempId, strlen(tempId), DATASTREAM_FLOAT),

};

// Finally, wrap the datastreams into a feed

XivelyFeed feed(1242622121, datastreams, 2 /* number of datastreams */);

EthernetClient client;

XivelyClient xivelyclient(client);

void setup() {

 // Put your setup code here, to run once:

 Serial.begin(9600);

 Serial.println("Starting double datastream upload to Xively...");

 Serial.println();

 while (Ethernet.begin(mac) != 1)

338 Part III ■ Communication Interfaces

 {

 Serial.println("Error getting IP address via DHCP, trying again...");

 delay(15000);

 }

}

void loop() {

 int lightValue = analogRead(lightPin);

 datastreams[0].setFloat(lightValue);

 Serial.print("Read light value ");

 Serial.println(datastreams[0].getFloat());

 int tempValue = analogRead(tempPin);

 datastreams[1].setFloat(tempValue);

 Serial.print("Read temp value ");

 Serial.println(datastreams[1].getFloat());

 Serial.println("Uploading it to Xively");

 int ret = xivelyclient.put(feed, xivelyKey);

 Serial.print("xivelyclient.put returned ");

 Serial.println(ret);

 Serial.println();

 delay(15000);

First, note that all previous references to sensor have been updated to light.
Now that you are transmitting information from two sensors, it is good coding
practice to differentiate between them properly. A tempId[] data stream was
added and inserted into the datastreams[] object. The XivelyFeed object defi-
nition was updated to indicate that there are now two datastreams instead of
one. Within the loop(), the lines that were previously printing sensor informa-
tion about the light sensor have been duplicated to print the same information
about the temperature sensor. Note that the light information is listed first in
the datastreams object, so it is referenced as datastreams[0]. The temperature
information is listed second in the datastreams object, so it is referenced as
datastreams[1].

When you run this code on your Arduino, the web interface automatically
updates itself to reflect your new datastreams. You might want to delete your
old sensor_reading datastream, as light_reading is now being updated
instead. After several minutes of updates, your graphs should look something
like Figure 14-11.

 Chapter 14 ■ Connecting Your Arduino to the Internet 339

Figure 14-11: Xively graphs for multiple sensors

You have now successfully used your Arduino as both a webserver and a
client to a remote web service. Try adding digital sensors, visual feedback, and
more to make your system truly interactive.

Summary

In this chapter you learned about the following:

■■ The Internet has a lot of acronyms. You learned the meanings of IP, DHCP,
DNS, MAC, and more.

■■ You learned the differences between clients and servers.

■■ You learned enough basic HTML to write a form for controlling your
Arduino over the web.

■■ You ran a web server from your Arduino.

■■ You can control I/O pins on your Arduino over the Internet.

■■ You learned how to connect your Arduino to the Xively graphing server.

■■ You learned how to display data from multiple sensors online.

 341

a P P e n d i x

Deciphering the ATMega
Datasheet and Arduino

Schematics

At the heart of all Arduinos is an Atmel microcontroller. This appendix does
not summarize the features of all the microcontrollers in all the Arduinos, but
it is a useful exercise to investigate an ATMega datasheet to get a better idea
about how it works. Further, taking a look at the open source schematics for the
Arduino Uno will make it easier to understand how an Arduino actually works.

Reading	Datasheets

One of the most important skills that you can develop as an engineer is the
ability to read datasheets. Just about any electronic component that you can buy
has an associated datasheet that contains info about the technical limits of the
part, instructions on how to use its capabilities, and so forth.

Breaking	Down	a	Datasheet
Consider the datasheet for the Atmel ATMega 328p, for instance. Recall that
the ATMega 328p is the microcontroller unit (MCU) used in the Arduino Uno
and many Arduino clones. Finding a datasheet can often be the trickiest part.
I recommend just doing a Google search for “ATMega 328p datasheet” and
looking for the first PDF link from Atmel. The datasheets for the MCUs used
in the Arduinos can also be found on the hardware page for each board on the

342 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics

www.Arduino.cc website. When you have the datasheet in hand, start by review-
ing the first page (see Figure A-1). In most cases, the first page tells you all you
need to know about the features of that MCU.

Figure A-1: The first page of the ATMega 328p datasheet

C
re

di
t:

 ©
 2

01
3

A
tm

el
 C

or
po

ra
tio

n.
 A

ll
ri

gh
ts

 r
es

er
ve

d.

 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics 343

From a quick glance at the datasheet, you can learn a considerable amount
about the microcontroller. You can ascertain that it has 32KB of programmable
flash memory, that it can be reprogrammed about 10,000 times, and that it can
operate from 1.8V to 5.5V (5V in the case of the Arduino). You can also learn
how many inputs/outputs (I/Os) it has, what special functions it has built in
(like hardware serial peripheral interface [SPI] and I2C interfaces), and what
resolution its analog-to-digital converter (ADC) is.

NOTE This	datasheet	is	actually	hundreds	of	pages,	and	there	could	probably	
be	an	entire	book	dedicated	just	to	interpreting	it,	so	I	won’t	go	much	further	here.	
However,	throughout	the	remainder	of	this	appendix,	I	do	point	out	several	more	
important	topics	to	look	out	for.

Datasheets as long as this one generally have PDF bookmarks built in that
make it easier to find what you’re looking for. Of particular interest for your
Arduino adventures may be information about I/O ports, the timers, and the
various hardware serial interfaces. As one more example, consider Figure 13-1
from the datasheet’s I/O section in the PDF, which is shown here as Figure A-2
for your convenience.

Cpin

Pxn

Rpu

Logic

See Figure
“General Digital I/O” for

Details

Figure A-2: I/O pins diagram

Diagrams like this one can be found throughout the datasheet, and can give
you a deeper insight into how your Arduino is actually working. In this example,
you can see that the I/O pins all have protection diodes to protect them from
excessively high or negative voltages. It’s also important to observe that there
is a known pin capacitance, which could have significant implications when
trying to determine the rise and fall times when switching the value of a pin.

C
re

di
t:

 ©
 2

01
3

A
tm

el
 C

or
po

ra
tio

n.

A
ll

ri
gh

ts
 r

es
er

ve
d.

344 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics

Understanding	Component	Pin-outs
All datasheets will include the pin-out for the device in question, which clearly
illustrates the functions of each pin. Particularly for microcontrollers, pins may
have multiple functions, so understanding the pin-out can be critical for grasp-
ing what each pin can and cannot do. Consider the pin-out of the ATMega 328p
(see Figure A-3). Understanding the pin-out of the microcontroller at its heart
will make it easier to understand the Arduino Uno schematic, which you’ll look
at in the next section.

Figure A-3: ATMega 328p DIP pin-out

Note that the pin-out indicates how you can find the pin number on the actual
chip. The half circle at the top of the pin-out corresponds to a similar half circle
on the actual integrated circuit. Look at the chip in your Arduino and you’ll
see this half circle; now you know that the pin immediately to its left is pin 1.

You’ll also probably notice some abbreviations that you may not be familiar
with. They are defined here:

■■ VCC refers to voltage supply to the chip. In the case of the Arduino, VCC
is 5V.

■■ AVCC is a separate supply voltage for the ADC. For the Arduino, it is
also 5V.

■■ AREF is broken out to a pin. So, you can choose an arbitrary voltage below
5V to act as the reference for the ADC if you desire.

■■ GND is, of course, the ground connection.

C
re

di
t:

 ©
 2

01
3

A
tm

el
 C

or
po

ra
tio

n.
 A

ll
ri

gh
ts

 r
es

er
ve

d.

 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics 345

The rest of the pins are all general-purpose I/O. Each is mapped to a unique
pin number in the Arduino software so that you don’t have to worry about the
port letter and number.

The labels in parentheses represent alternative functions for each pin. For
example, pins PD0 and PD1 are also the Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) Receive (RX) and Transmit (TX) pins, respec-
tively. Pins PB6 and PB7 are the crystal connection pins (XTAL). In the case of
the Arduino Uno, an external 16 MHz ceramic resonator is connected to these
pins, so you cannot use these for general-purpose I/O. If you have trouble
deciphering the pin labels, you can usually learn more about what they mean
by searching the rest of the datasheet for those terms. The Arduino website
has a diagram illustrating how the ATMega pins are connected to numbered
pins on the Arduino board. You can find it at http://arduino.cc/en/Hacking/
PinMapping168, and it is shown in Figure A-4.

Figure A-4: Arduino ATMega Pin Mapping

Understanding	the	Arduino	Schematic

Perhaps one of the best ways to learn about electrical design is to analyze the
schematics of existing products, such as the Arduino. Figure A-4 shows the
schematic for the Arduino Uno.

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

346 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics

G
N

D

3X
2

M

IC
SP

1
1 3 5

M
IS

O
2

SC
K

2
R

ES
ET

2

R
ES

ET
2

U
SB

VC
C

22
R

 R
N

2A

22
R

 R
N

3A

CG0603MLC–05E

CG0603MLC–05E
Z2

Z1 L1

BLM21

UGND

P$1
P$2

P$1USB
P$2

U
SH

IE
LD

R
D

–

R
D

+

10
0n C

7

G
N

D
G

N
D

G
R

O
U

N
D

2
1

C
8 1u

D
–

XU
SB

1
X2

U
SB

–B
_T

H 2 3 4
D

+

8
1

5
4

F1 M
F–

M
SM

F0
50

–2
 5

00
m

A

2 4 6

G
N

D

G
N

D

G
N

D

RESET

R
ES

ET

CD1206–S01575
TS42031–160R–TR–7260

IC
SP

3X
2

M

ZU
4

G
N

D

G
N

D

G
N

D

G
N

D

C
ST

C
E1

6M
0V

53
–R

0
16

 M
H

Z
A

R
EF

C5

100n

1
R

ES
ET

–E
N

XT
A

L2

XT
A

L1

R
2

1M

+5
V

USB boot En
1K RN2D
54

+5
V

C
6

10
0n

+5
V

1K
 R

N
2C

TX YE
LL

O
W

R
X

YE
LL

O
W

1K6
3

R
N

2B
7

2

2

45

4
3

5
2
1

RN1D 10K
D2

GND

G
N

D

10 9 8 12345

2
7

R
N

3B
22

R

67
7 0123456

1 8765432

1 53
2 64

3
6

R
N

3B
22

R

G
N

D

G
N

D
G

N
D

A
rd

ui
no

(T
M

) U
N

O
 R

ev
3

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

+
7

13

1K

RN2A L
YELLOW

8 1

11

2

1

2

3
3

P
W

R
IN

D
1

M
7

P
C

1
47

u
+

+

VI
N

3

U
1

N
C

P
11

17
ST

50
T3

G

X1 P
W

ER
SU

P
P

LY
_D

C
21

M
M

X

P
C

2C
2

47
u1

00
n

+5
V +5

V

+5
V

+5
V

C
4

10
0n

10
X1

F–
H

8.
5

IO
H

6X
1F

–H
8.

5

A
D

8X
1F

–H
8.

5

IO
L

13 12 11 6 5 4 3 2

IO
7

IO
6

IO
5

IO
4

IO
3

IO
2

IO
1

IO
0

28 27 26 25 24 23

A
D

5/
SC

L
A

D
4/

SD
A

A
D

3
A

D
2

A
D

1
A

D
0

A
D

5/
SC

L
A

D
4/

SD
A

A
R

EF
G

N
D

SC
K

M
IS

O
M

O
SI SS

19 18 17 16 15 14

(A
IN

1)
P

D
7

(A
IN

1)
P

D
7

(T
1)

P
D

5
(T

0)
P

D
4

(IN
T1

)P
D

3
(IN

T0
)P

D
2

(T
XD

)P
D

1
(R

XD
)P

D
0

(A
D

C
5)

P
C

5
(A

D
C

4)
P

C
4

(A
D

C
3)

P
C

3
(A

D
C

2)
P

C
2

(A
D

C
1)

P
C

1
(A

D
C

0)
P

C
0

(S
C

K
)P

B
5

(M
IS

O
)P

B
4

(M
O

SI
)P

B
3

(S
S)

P
B

2
(O

C
1)

P
B

1
(IC

P
)P

B
04

5 13 12 11 10 9 8

TX
LE

D
R

XL
ED

M
8R

XD
M

8T
XD

7 614 22 23 25 2621 20 19 18 17 16 15

P
B

7
P

B
6

P
B

5
P

B
4

M
IS

O
2

M
O

SI
2

SC
K

2

(A
IN

2/
P

C
IN

T1
1)

P
C

2

(C
TS

/H
W

B
/A

IN
6/

TO
/I

N
T7

)P
D

7
(R

TS
/A

IN
5/

IN
T6

)P
D

6
(X

C
K

/A
IN

4/
P

C
IN

T1
2)

P
D

5
(IN

T5
/A

IN
3)

P
D

4
(T

XD
1/

IN
T3

)P
D

3
(R

XD
1/

A
IN

1/
IN

T2
)P

D
2

(A
IN

0/
IN

T1
)P

D
1

(O
C

0B
/I

N
T0

)P
D

0

(S
S/

P
C

IN
T0

)P
B

0
(S

C
LK

/P
C

IN
T1

)P
B

1

(IN
T4

/I
C

P
1/

C
LK

0)
P

C
7

(O
C

1A
/P

C
IN

T8
)P

C
6

(P
C

IN
T9

/O
C

1B
)P

C
5

(P
C

IN
T1

0)
P

C
4

(P
C

IN
T7

/O
C

0A
/O

C
1C

)P
B

7

U
3

(P
C

IN
T6

)P
B

6
(P

C
IN

T5
)P

B
5

(T
1/

P
C

IN
T4

)P
B

4
(P

D
0/

M
IS

O
/P

C
IN

T3
)P

B
3

(P
D

I/
M

O
SI

/P
C

IN
T2

)P
B

2

G
N

D

U
C

A
P

U
VC

C
D

–
D

+
U

G
N

D

PA
D

AT
M

EG
A

16
U

2–
M

U
(R

)

XT
A

L1

AV
C

C

VC
C

R
ES

ET
(P

C
1/

D
W

)

XT
A

L2
(P

C
0)

3 27 31 30 29 28

TP
_V

U
C

A
P

U
SB

VC
C

R
D

–
R

D
+

U
G

N
D

331 XT
1

+5
V

+5
V M

O
SI

2

CD1206–S01575

10K RN1C
63

32 424 2
R

1
1M

XT
1XT

2

GND

Y1

D3

C9
22P

C11

22p

16MHz2
1 2

A
R

EF
AV

C
C

A
G

N
D

VC
C

G
N

D

AT
M

EG
A

32
8P

–P
U

M
8R

XD
1K

 R
N

4B
7

2
1K

 R
N

4A
8

1
M

8T
XDR
ES

ET

XT
A

L2

XT
A

L1

21 20 22 7 81 10 9

SS IO
9

IO
8

SC
L

SD
A

4
5

3R
N

4D
 1

K

R
N

4C
 1

K6

G
R

EE
N

O
N

4 2
U

5B

+5
V

+5
V

U
SB

VC
C

T1
FDN340P

SC
K

5 6
–

G
N

D

+
1

3
C

M
P

+5
V

C
1

10
0n

VI
N

RN1A 10K
8 1

8 4

10K RN1B
2 7

GATE_CMD

+3
V3

2

U
5A

LM
V3

58
ID

G
K

R

LM
V3

58
ID

G
K

R

U
2 IN

O
U

T

IN
O

U
T

G
N

D
N

C
/F

B

O
N

/O
FF

1 3 2

LP
29

85
–3

3D
B

VR

2X2 M – NM

JP2

34
12

45
+

3V
3

C
3

+5
V

R
ES

ET

P
O

W
ER

8
x

1F
–H

8.
5

+3
V3 VI

N

1u

–

123456

8910111213

78 6 12345

Fi
gu

re
 A

-5
: A

rd
ui

no
 U

no
 R

ev
 3

 s
ch

em
at

ic
C

re
di

t:
 A

rd
ui

no
, w
w
w
.
a
r
d
u
i
n
o
.
c
c

 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics 347

Can you match all the parts to the parts that you can see on your Arduino
Uno? Start with the main MCU (Part ZU4 in the schematic), the ATMega328p,
and all the breakout pins. Here, you can easily identify which ATMega ports/
pins map to the pins that are available to you in the integrated development
environment (IDE). Earlier in this appendix, you observed that PD0 and PD1
were connected to the USART TX and RX pins. In the Arduino schematic, you
can indeed confirm that these pins connect to the corresponding pins on the
16U2 (8U2 on revisions 1 and 2) USB-to-Serial converter chip. You also know that
there is an LED connected (through a resistor) to pin 13 of the Arduino. In the
schematic, you can see that pin 13 is connected to pin PB5 on the ATMega. But
where is the LED? By using net names, you can indicate an electrical connec-
tion between two points on a schematic without actually drawing all the lines.
Having every wire shown in a schematic might get confusing very quickly. In
the case of PB5, you can see that the wire coming out of the MCU is labeled SCK,
and that there is a similarly labeled wire at the top of the schematic feeding
through a buffer into a resistor and the familiar debug LED.

Most schematics that you’ll find are done in a style similar to this one, with
lots of labeled nets that connect without direct wires. Continue to analyze the
Arduino schematic until you understand where all the signals are going. See
how many components you can match to the actual board.

 349

= (assignment) operator, 34
== (comparison) operator, 32
&& (logical) operator, 35
3-bit analog quantization, 44–45
3.3V power, 7
5V power, 7, 82–84
74HC595 shift register, 148–151

A
accelerometers, triple axis, 51
actuators, servo motors, 80–86
AD714 / AD715 I2C chips, 166–167
Adafruit 32U4 breakout board, 12
adafruit data logging shield, 287
ADCs (analog-to-digital converters), 7,

43–45
accuracy of, 44
Arduino Due, 10
Arduino Uno, 5
Mega 2560, 10
resolution, 44–45

alternate.ino file, 152–153
analog inputs, controlling analog outputs,

56–59
analog outputs

controlling with analog inputs, 56–59
creating (See PWM (pulse-width

modulation))
analog sensors

creating, 54–59
distance sensors, 50
dual axis gyroscopes, 51

magnetometers, 50
potentiometers, reading, 45–49
temperature sensors, 50–54
triple axis accelerometers, 51

analog signals, 42
converting to digital, 43–45
vs. digital signals, 43

analog-to-digital converters. See ADCs
analogRead() function, 45–48, 53–54
analogWrite() function, 27–29, 39–41,

56–58
animated progress bars, creating, 206–209
anodes, 22
API mode, XBee radios, 223
Arduino boards. See also specific boards

Arduino-compatible devices, 12
components, 4–8
controlling from the web, 318–329

designing a simple web page, 318–320
setting up I/O control hardware, 318
via the network, 326–329
writing a server sketch, 320–326

overview of official boards, 8–12
serial communication capabilities,

108–115
third-party, 12
wireless communication, 236–246

Arduino-compatible devices, 12
Arduino Due

components, 10
hardware interrupts, 261–262
microcontroller, 6

Index

350 Index ■ A–C

Arduino ecosystem, 4
Arduino Ethernet SD shield, 286
Arduino Ethernet shield, 317–318, 321, 332.

See also Internet connectivity
Arduino IDE

downloading, 13
LiquidCrystal library, 203–209
serial monitor, 119–127
servos, controlling, 85–86
“upload” command, 8

Arduino Leonardo
hardware interrupts, 261
keyboards, emulating, 135–140
microcontroller, 6, 9
mouse, emulating, 140–144

Arduino Nano, 11
Arduino Uno

ADC resolution, 44–45
hardware interrupts, 261
image of, 5
microcontroller, 6
as programmer for XBee radio, 229
schematic, 347–349
secondary microcontroller, 6

Arduino Wi-Fi SD shield, 286–287
Arduino Wireless SD shield, 285
ArduPilot, 12
arguments, 17
assignment (=) operator, 34
associate LED, 226
ATMega microcontroller, 5, 6, 8

datasheet, 343–347
programming interface, 6

Atmel microcontroller unit (MCU), 6.
See also specific microcontrollers

attachInterrupt() function, 261–262
audio/visual display, creating with SPI

DigiPots, 193–197

B
B (base) pin, NPN BJT, 67
backward state (H-bridge), 73
bar graphs, LED

monitoring temperatures, 173–179
responding to inputs, 157–160

bargraph.ino file, 159
base (B) pin, NPN BJT, 67
baud rate, 48, 49
binary data type, 119
binary format, converting to decimal, 154
bipolar-junction transistor (BJT), 66–68

BJT (bipolar-junction transistor), 66–68
Blink program

components, 16–18
loading, 15–16

blink.ino file, 26
blocking functions, 250
Boolean variables, 34–35
bootloader, 6, 8
bouncy buttons, 32–35
braking state (H-bridge), 73
breadboards, 21

wiring
DC motors, 68–69
LCDs, 200–203

brushed DC (direct current) motors
controlling motor direction, 72–79
controlling motor speed, 70–72
high-current inductive loads, 65–70
overview, 65
schematic, 66

brushless DC (direct current) motors, 65

C
C (collector) pin, NPN BJT, 67
capacitors, decoupling, 83
cathodes, 22, 36
chars, 121–122
clients, 317, 321–322
clock line

I2C bus, 165, 169
SPI bus, 182, 183, 184–185

clock phase, 182–183
clock polarity, 182–183
collector (C) pin, NPN BJT, 67
comma-separated value files. See CSV

(comma-separated value) files
comments, 16
communication protocols

I2C
communicating with temperature

sensor, 167–173
controlling I2C devices, 167–168
hardware design, 164–167
hardware requirements, 167
history of, 164
ID numbers, 165–167
monitoring temperatures, 173–179
vs. SPI, 185

SPI
adjusting speaker volume, 193–197
communication scheme, 183, 184

 Index ■ C–D 351

controlling LED brightness, 185–193
controlling SPI devices, 185
hardware configuration, 183–184
vs. I2C, 185
overview, 182–183

comparison (==) operator, 32
connecting to the Internet. See Internet

connectivity
const operator, 25
constrain() function, 56, 58–59
constraining analog readings, 58–59
continuous rotation servos, 80
control pins, servos, 81
control_led_speaker.ino file, 322–325
Cooking Hacks MicroSD shield, 284–285,

289–292, 300
cosine waves, 43
Cosm. See Xively
CSV (comma-separated value) files

formatting data with, 279
log.csv file, 289–291

csv_logger.ino file, 137–138
current-limiting resistors, 36
custom characters, adding to LCDs, 206–209

D
daisy chaining shift registers, 153
data line, I2C, 165, 169
data logging

CSV (comma-separated value) files, 279
entrance logger example, 305–311
real-time clock example, 297–305
SD cards

formatting, 279–284
reading from, 293–297
shields, 284–288
SPI interface, 288
writing to, 289–293

uses, 278
data type options, 119
datasheets

MCP4221 Digital Potentiometer, 186–189
TC74 temperature sensor, 166–167,

169–171
reading, 343–347

DC (direct current) motors, 65, 80–86
controlling motor direction, 72–79
controlling motor speed, 70–72
high-current inductive loads, 65–70
as inductors, issues caused by, 67
schematic, 66
wiring, 69

debounce() function, 213–214
debounce.ino file, 33–34
debouncing

digital switches, 35–38
hardware-debounced button interrupt

circuits, 262–269
multiple buttons, 213–214

debug LED, 5, 6
decimal data type, 119
decoupling capacitors, 83
definition files, 95–96
delay() function, 18, 214–215
DHCP (Dynamic Host Configuration

Protocol), 316–317
reserving DHCP addresses, 328
retrieving IP addresses, 321

DigiPots, communicating with SPI bus,
185–193

digital inputs, reading, 29–35
digital outputs

breadboards, 20–21, 23
programming, 24–25
wiring LEDs, 22

digital signals
vs. analog signals, 43
converting analog signals to, 43–45

digitalRead() command, 31–32
digitalWrite() command, 25, 33
diodes, protection diodes, 67
direct current motors. See DC motors
display_temp.pde file, 178
distance sensors, 50

entrance logger example, 305–311
sweeping sensors, building, 86–89

DNS (Domain Name System), 317
dynamic updating services, 328–329

doorbell/receiving_arduino,
251–252

doorbell/transmitting_arduino,
249–250

drivers, installing, 14–15
driving motors

direct current motors, 65–79
servo motors, 80–86

DS1307 real-time clock integrated circuit,
298–305

dual axis gyroscopes, 51
duty cycle, 28–29
dynamic DNS updating services, 328–329
Dynamic Host Configuration Protocol. See

DHCP
DynDNS, 329

352 Index ■ E–I

E
E (emitter) pin, NPN BJT, 67
echo.ino file, 121
echoing incoming data, 120–121
emitter (E) pin, NPN BJT, 67
entrance logger example, 305–311
entrance_logger.ino file, 308–310

F
fade.ino file, 27–28
firmware setup, 8
flash memory, and RAM limitations, 301
fonts, loading into Processing sketch,

177–179
for loops, 25–27
forward state (H-bridge), 73
frequencies, mapping to note names,

95–96
friendly URLs, 317
FTDI chip, 110–112
fun_with_sound.ino file, 273–275
functions, 17, 33. See also specific functions

G
general-purpose I/O pins. See pins
GET requests, 316
global IP (Internet Protocol) addresses,

314–315, 328–329
global variables, 38
graphs

LED bar graphs
monitoring temperatures, 173–179
responding to inputs, 157–160

live graphs, 329
adding feed components, 336–339
building data feeds, 330–335

gyroscopes, dual axis, 51

H
H-bridges, 72–79
hardware interrupts, 258–259

Arduino capabilities, 261–262
building hardware-debounced button

interrupt circuit, 262–269
interrupt-driven sound machine,

building, 272–275
tradeoffs with polling, 259–261

hbridge.ino file, 78–79
headers, LCDs, 200–201
hexadecimal data type, 119
hsv.jpg file, 132, 133

HTML (Hypertext Markup Language),
316, 318–320

HttpClient libraries, installing, 331
hw_multitask.ino file, 268–269
Hypertext Markup Language (HTML) ,

316, 318–320
hysteresis, 265

I
I/O pins. See pins
I2C bus

combinining with shift registers, 173–179
communicating with temperature

sensor, 167–173
communication scheme, 165–167
controlling I2C devices, 167–168
hardware design, 164–167
hardware requirements, 167
history of, 164
ID numbers, 165–167
monitoring temperatures, 173–179
vs. SPI bus, 185
Wire library, 169, 171

ICSP (in-circuit serial programmer)
connectors, 5, 6, 8

inductors, DC motors as, 67
Industrial, Scientific, and Medical (ISM)

band, 222
infrared distance sensors, 50

entrance logger, 305–311
sweeping sensors, 86–89

initializing LCDs (liquid crystal
displays), 204

Internet connectivity
controlling the Arduino from the web,

318–329
accessing via the network, 326–329
designing a simple web page, 318–320
setting up I/O control hardware, 318
writing a server sketch, 320–326

live graphs, creating, 329
adding feed components, 336–339
building data feeds, 330–335

overview, 314–318
Internet of things, 314. See also Internet

connectivity
interrupts

hardware interrupts, 258–259
Arduino capabilities, 261–262
hardware-debounced button interrupt

circuits, 262–269
tradeoffs with polling, 259–261

 Index ■ I–M 353

interrupt-driven sound machine, 272–275
timer interrupts, 270–272

simultaneous task execution, 271–272
TimerOne library, downloading,

270–271
ints, 121–122
IP (Internet Protocol) addresses, 314–315

determining manually, 328
global, 314–315, 328–329
reserved, 328
retrieving via DHCP, 321
static, 328–329

ipconfig command, 328
ISM (Industrial, Scientific, and Medical)

band, 222

k
keyboards, emulating, 135–140

L
LCD_progress_bar.ino file, 207–209
LCD_text.ino file, 205
LCD_thermostat.ino file, 215–219
LCDs (liquid crystal displays)

cursor, moving, 204–206
custom characters, adding, 206–209
initializing, 204
personal thermostat, creating, 209–219

audible warning, adding, 214–215
complete program, 215–219
displaying data, 211–213
expanding, 219
fan, controlling, 214–215
hardware setup, 210
set point, adjusting, 213–214

setting up, 200–203
text, adding, 204–206

led.ino file, 25
led_button.ino file, 31
LED_speaker.ino file, 195–196
LEDs

associate, 226
bar graphs

monitoring temperatures, 173–179
reponding to inputs, 157–160

controlling
brightness, 185–193
with lists of values, 125–127
with single characters, 122–124

hardware-debounced button interrupt
circuits, 262–269

pulse-width modulation, 27–29
RGB LED nightlight example, 35–39
RSSI, 226
sweeping distance sensor example,

86–89
wiring, 22

libraries
HttpClient, 331
LiquidCrystal, 203–209
RTClib, 299–305
SD, 284
TimerOne, 270–272
Wire, 169, 171
Xively, 331

light animations, controlling with shift
registers, 154–160

lightrider.ino file, 156
LilyPad Arduino, 11–12
linear regulators

5V supply, generating from 9V battery,
82–84

Arduino power supply limits, 84
Linux, formatting SD cards, 282–283
liquid crystal displays. See LCDs
LiquidCrystal library, 203–209

adding custom characters to LCDs,
206–209

adding text to LCDs, 204–206
list_control.ino file, 126–127
live graphs, creating, 329

adding feed components, 336–339
building data feeds, 330–335

local networks, accessing Arduino over,
326–327

local variables, 38
lock_computer.ino file, 140
log.csv file, 289–291
logging data. See data logging
logical (&&) operator, 35
loop() function, 24, 37
LUFA firmware stack, 113
luminous flux per unit area, 43
lux, 43

M
MAC addresses, 316, 321, 325, 328, 332–333
Mac computers, formatting SD card,

280–282
magnetometers, 50
map() function, 56–59

354 Index ■ M–P

mapping
analog readings, 56–59
frequencies to note names, 95–96

master devices
I2C bus, 164–166, 167–168
SPI bus, 183, 184–185

MCP4231 Digital Potentiometer, 185–193
datasheet, 186–189
setting up hardware, 189–190
writing software, 190–193

MCUs (microcontroller units)
Atmel, 6
secondary USB-capable, 112–114
single USB-capable, 114

Mega 2560 board, 6, 10, 14, 261
Mega ADK board, 11
micro piano, building, 102–105
microcontroller units. See MCUs
microcontroller datasheets, 343–347
motion sensors, 305–311
motor.ino file, 70
motor_pot.ino file, 71–72
mouse, emulating, 140–144
mouse.ino file, 142
multiline comments, 16
multiplexed pins, 109
multitasking, interrupts and, 260
music.ino file, 101

N
NAT (Network Address Translation), 315
newline character, 117–118
nightlight.ino file, 58
nonblocking code, 250
noTone() function, 95, 104, 214–215
NPN bipolar-junction transistors, 66–68

O
octal data type, 119
Ohm’s Law, 23–24, 31
open state (H-bridge), 73

P
parallel LCDs (liquid crystal displays)

cursor, moving, 204–206
custom characters, adding, 206–209
initializing, 204
personal thermostat, creating, 209–219
setting up, 200–203
text, adding, 204–206

pentatonic micro piano, 102–105

personal thermostat, creating, 209–219
audible warning, adding, 214–215
complete program, 215–219
displaying data, 211–213
fan, controlling, 214–215
functionality, expanding, 219
hardware setup, 210
set point, adjusting, 213–214

photoresistors, 54–59
piano.ino file, 104
pinMode() command, 25
pinMode() function, 17
pins, 7

ADC, 7
BJTs, 67
H-bridges, 74–75
as interrupts, 261–262
LCDs, 200–203
MCP4231 Digital Potentiometer, 186–189
multiplexed, 109
SD card shields, 284
servos, 80–84
shift registers. See shift registers
sweeping distance sensor, 87–88

point-to-multipoint communication,
222–223

point-to-point communication,
222–223, 230

polling inputs, vs. hardware interrupts,
259–261

port forwarding, 327–329
POST requests, 316
pot.ino file, 47, 117
pot_tabular.ino file, 118
pot_to_processing/arduino_read_pot,

240
pot_to_processing/processing_

display_color, 130, 242–243
potentiometers

DC motors, adjusting speed, 70–72, 76–79
reading, 45–49
serial printing, 116–118
servo controls, 85–86
SPI DigiPots

communicating with, 185–193
creating audio/visual display, 193–197

power equation, 23–24, 31
power supplies, 7

limits of, 84
precision actuators, 80–86
pressure waves, 92–93

 Index ■ P–S 355

print() function, 115, 117, 119, 121,
138, 279

printing to serial terminal, 115–119
println() function, 279, 290
Processing sketch

installing, 128
serial communication, 127–134
temperature monitoring system, 173–179

processing_control_RGB/list_control,
243–244

processing_control_RGB/processing_

control_RGB, 133, 244–245
programming

digital outputs, 27–29
interfaces, 6–7

progress bars, animated, 206–209
protection diodes, 67
proximity sensors, Sharp, 50
pulldown resistors, 32–35
pull-up resistors, 30, 31, 165, 167
PWM (pulse-width modulation)

with analogWrite(), 27–29
DC motor speed, controlling, 70–72

q
quantization, 44

R
RAM limitations, overcoming, 301
RC circuits, debouncing buttons, 263–265
read_temp.ino file, 171–172, 171–182
readButton() function, 143
reading

digital inputs, 29–35
potentiometers, 45–49
from SD cards, 293–297

readJoystick() function, 143
real-time clock example, 297–305
reference voltage, 44–45
register clock pin, 149
reserved IP (Internet Protocol) addresses,

328
reset button, 5, 6
resistance, 23–24
resistive voltage dividers, 55–56
resistors

current-limiting, 36
pulldown, 32–35
pull-up, 30, 31, 165, 167

resolution, ADCs, 44–45

RGB LED nightlight
adding light sensors, 56–59
building, 38–42

rgb_nightlight.ino file, 37–39
routers, logging into, 327–328
RSSI LED, 226
RTC (real-time clock) chip, 299–305
RTC.adjust function, 299
RTC.isrunning() function, 304
RTC.now() command, 299
RTClib library, 299–305

S
Schmitt triggers, 265–266
SCL line, I2C, 165, 169
SD cards. See also data logging

formatting, 279–284
reading from, 293–297
shields, 284–288
SPI interface, 288
writing to, 289–293

SD library, 284
sd_read_write.ino file, 295–297
sd_read_write_rtc.ino file, 301–304
SDA line, I2C, 165, 169
secondary

integrated circuits, 110, 112–114
microcontrollers, 6, 112–114
power sources, DC motors, 68

sensors
distance sensors, 50

entrance logger, 305–311
sweeping, building, 86–89

dual axis gyroscopes, 51
temperature, 50–54, 167–173
triple axis accelerometers, 51

serial communication. See also USB
communication

Arduino boards, 108–115
Arduino IDE serial monitor, 119–127
data type options, 119
printing to terminal, 115–119
Processing sketch, 127–134
vs. USB communication, 109–110

serial in, parallel out (SIPO) shift registers.
See serial-to-parallel shift registers

serial monitor, 119–127
displaying data, 46–49

serial pass-through mode, XBee radios,
223

356 Index ■ S–T

Serial Peripheral Interface bus. See SPI bus
serial terminal

printing to, 115–119
XBee radios, configuring, 235–236

serial-to-parallel shift registers, 147–148
74HC595 register, 148–151
converting between binary and decimal

formats, 154
pin functions, 148–149
shifting serial data, 151–153
workings of, 149–151

server_form.html file, 319–320
servers, 317

server sketch, 320–326
servo.ino file, 85–86
servos (servo motors), 80–86

controlling with Arduino IDE, 85–86
timing diagram, 82
wiring, 80–84

setCursor() function, 204–206
setup() function, 16, 24
Sharp infrared distance sensor, 50
shields

Arduino Ethernet shield, 317–318, 321,
332

SD card shields, 284–288
XBee radio shields, 224–228

shift registers, 146–147
74HC595 register, 148–151
combining with I2C communication,

173–179
converting between binary and decimal

formats, 154
daisy chaining, 153
light animations, controlling, 154–160
pin functions, 148–149
serial-to-parallel, 147–148
shifting serial data, 151–153
workings of, 149–151

shiftOut() function, 151–154
short circuits, with H-bridges, 73
single-line comments, 16
single_char_control.ino file, 124
SIPO (serial in, parallel out) shift registers.

See serial-to-parallel shift registers
slave devices, 182

I2C bus, 164–166, 167–168, 172
SPI bus, 182, 183, 184–185

sounds
creating, 95–102

audio/visual display, 193–197
including definition files, 95–96
playing back songs, 99–102
wiring speakers, 96–99

interrupt-driven sound machine, 272–275
pentatonic micro piano, 102–105
production process, 94
properties, 92–94

SparkFun MicroSD shield, 288
SparkFun Pro Mini Arduino board, 12
SparkFun XBee USB Explorer, 228–230
speakers

sound properties, 92–94
sound-production process, 94
wiring, 96–99

special characters
adding to LCDs, 206–209
printing to terminal, 117–118

SPI bus
communicating with DigiPot

adjusting speaker volume, 193–197
controlling LED brightness, 185–193

communication scheme, 183, 184
hardware configuration, 183–184
vs. I2C bus, 185
overview, 182–183
SD card SPI interface, 288

SPI_led.ino file, 192–193
square waves, 43
standard servos, 80
static IP (Internet Protocol) addresses,

328–329
strong pulldowns, 30
SudoGlove, 103, 132
sweep.ino file, 88–89
sweeping distance sensor, 86–89
switches

bouncing, 32
transistors as, 66–67

T
tab character, 117–118
TC74 temperature sensor, 166, 169–171, 174
temp_unit.ino file, 175–176
tempalert.ino file, 53–54
temperature monitoring system, 173–179

building hardware, 173–174
modifying embedded program, 174–176
writing Processing sketch, 177–179

temperature sensors, 50–54, 167–173

 Index ■ T–Z 357

terminal
printing to, 115–119
XBee radios, configuring, 235–236

text, adding to LCDs, 204–206
thermostat, creating, 209–219

audible warning, adding, 214–215
complete program, 215–219
displaying data, 211–213
fan, controlling, 214–215
functionality, expanding, 219
hardware setup, 210
set point, adjusting, 213–214

third-party boards, 12
timer interrupts, 270

downloading TimerOne library, 270–271
executing tasks simultaneously, 271–272
interrupt-driven sound machine,

building, 272–275
timer1.ino file, 271
TimerOne Library, 270–272
TMP36 temperature sensor, 50–51, 52–54
tone() function, 95–102, 214–215, 273–275
transistors

NPN bipolar-junction transistors, 66–68
as switches, 66–67

triple axis accelerometers, 51
two-wire protocol, 164. See also I2C bus

U
USB adapters, configuring XBee radios,

228–230
USB communication. See also serial

communication
Arduino boards, 108–115
ATMega MCU converters, 112–114
FTDI converters, 110–112
vs. serial communication, 109–110
single USB-capable MCUs, 112–114
USB-host capabilities, 114–115

V
variable voltage resistors

photoresistors, 54–59
potentiometers, 45–50

volatile variables, 268
voltage

dividers
potentiometers, reading, 45–50
resistive, 55–56

reference voltage, 44–45
regulators, 7

W
weak pulldowns, 30, 32
web pages, designing, 318–320
Wire library, 169, 171
Wire.available() command, 172
Wire.beginTransmission() command, 172
Wire.endTransmission() command, 172
Wire.read() command, 172
Wire.requestFrom() command, 172
Wire.write() command, 172
wireless communication. See XBee radios
wireless doorbell, 246–252

receiver hardware, 248–249
receiver software, 250–252
system design, 246–247
transmitter hardware, 247–248
transmitter software, 249–250

wiring
DC motors, 68–69
LCDs, 200–203
LEDs, 22
speakers, 96–99

write_to_sd.ino file, 290–292
writing to SD cards, 289–293

X
X-CTU, configuring XBee radios, 231–235
XBee radios

configuring, 228–236
settings, 230–231
via shields, 228–230
with a serial terminal, 235–236
via USB adapters, 228–230
with X-CTU, 231–235

overview, 222–224
Pro vs. non-Pro versions, 224
remote Arduinos, 236–246

controlling processing, 239–243
controlling RGB LEDs, 243–246
powering, 236–239

shields, 224–228
wireless doorbell, building, 246–252

Xively, sending data to, 329
adding feed components, 336–339
building data feeds, 330–335

xively.ino file, 334–335
xively2.ino file, 337–338

Z
ZigBee standard, 223

	Contents
	Introduction
	Who This Book Is For
	What You’ll Learn in This Book
	Features Used in This Book
	Getting the Parts
	What You’ll Need
	Source Code and Digital Content
	Errata
	Supplementary Material and Support
	What Is an Arduino?
	An Open Source Platform
	Beyond This Book

	Part I: Arduino Engineering Basics
	Chapter 1: Getting Up and Blinking
	Exploring the Arduino Ecosystem
	Arduino Functionality
	Atmel Microcontroller
	Programming Interfaces
	General I/O and ADCs
	Power Supplies

	Arduino Boards

	Creating Your First Program
	Downloading and Installing the Arduino IDE
	Running the IDE and Connecting to the Arduino
	Breaking Down Your First Program

	Summary

	Chapter 2: Digital Inputs, Outputs, and Pulse-Width Modulation
	Digital Outputs
	Wiring Up an LED and Using Breadboards
	Working with Breadboards
	Wiring LEDs

	Programming Digital Outputs
	Using For Loops

	Pulse-Width Modulation with analogWrite()
	Reading Digital Inputs
	Reading Digital Inputs with Pulldown Resistors
	Working with “Bouncy” Buttons

	Building a Controllable RGB LED Nightlight
	Summary

	Chapter 3: Reading Analog Sensors
	Understanding Analog and Digital Signals
	Comparing Analog and Digital Signals
	Converting an Analog Signal to a Digital One

	Reading Analog Sensors with the Arduino: analogRead()
	Reading a Potentiometer
	Using Analog Sensors
	Working with Analog Sensors to Sense Temperature

	Using Variable Resistors to Make Your Own Analog Sensors
	Using Resistive Voltage Dividers
	Using Analog Inputs to Control Analog Outputs

	Summary

	Part II: Controlling Your Environment
	Chapter 4: Using Transistors and
	Driving DC Motors
	Handling High-Current Inductive Loads
	Using Transistors as Switches
	Using Protection Diodes
	Using a Secondary Power Source
	Wiring the Motor

	Controlling Motor Speed with PWM
	Using an H-Bridge to Control DC Motor Direction
	Building an H-bridge Circuit
	Operating an H-bridge Circuit

	Driving Servo Motors
	Understanding the Difference Between Continuous Rotation and Standard Servos
	Understanding Servo Control
	Controlling a Servo

	Building a Sweeping Distance Sensor
	Summary

	Chapter 5: Making Sounds
	Understanding How Speakers Work
	The Properties of Sound
	How a Speaker Produces Sound

	Using tone() to Make Sounds
	Including a Definition File
	Wiring the Speaker
	Making Sound Sequences
	Using Arrays
	Making Note and Duration Arrays
	Completing the Program

	Understanding the Limitations of the tone() Function

	Building a Micro Piano
	Summary

	Chapter 6: USB and Serial Communication
	Understanding the Arduino’s Serial Communication Capabilities
	Arduino Boards with an Internal or External FTDI USB-to-Serial Converter
	Arduino Boards with a Secondary USB-Capable ATMega MCU Emulating a Serial Converter
	Arduino Boards with a Single USB-Capable MCU
	Arduino Boards with USB-Host Capabilities

	Listening to the Arduino
	Using print Statements
	Using Special Characters
	Changing Data Type Representations

	Talking to the Arduino
	Reading Information from a Computer or Other Serial Device
	Telling the Arduino to Echo Incoming Data
	Understanding the Differences Between Chars and Ints
	Sending Single Characters to Control an LED
	Sending Lists of Values to Control an RGB LED

	Talking to a Desktop App
	Talking to Processing
	Installing Processing
	Controlling a Processing Sketch from Your Arduino
	Sending Data from Processing to Your Arduino

	Learning Special Tricks with the Arduino Leonardo (and Other 32U4-Based Arduinos)
	Emulating a Keyboard
	Typing Data into the Computer
	Commanding Your Computer to Do Your Bidding

	Emulating a Mouse

	Summary

	Chapter 7: Shift Registers
	Understanding Shift Registers
	Sending Parallel and Serial Data
	Working with the 74HC595 Shift Register
	Understanding the Shift Register Pin Functions
	Understanding How the Shift Register Works

	Shifting Serial Data from the Arduino
	Converting Between Binary and Decimal Formats

	Controlling Light Animations with a Shift Register
	Building a “Light Rider”
	Responding to Inputs with an LED Bar Graph

	Summary

	Part III: Communication Interfaces
	Chapter 8: The I2C Bus
	History of the I2C Bus
	I2C Hardware Design
	Communication Scheme and ID Numbers
	Hardware Requirements and Pull-Up Resistors

	Communicating with an I2C Temperature Probe
	Setting Up the Hardware
	Referencing the Datasheet
	Writing the Software

	Combining Shift Registers, Serial Communication, and I2C Communications
	Building the Hardware for a Temperature Monitoring System
	Modifying the Embedded Program
	Writing the Processing Sketch

	Summary

	Chapter 9: The SPI Bus
	Overview of the SPI Bus
	SPI Hardware and Communication Design
	Hardware Configuration
	Communication Scheme

	Comparing SPI to I2C
	Communicating with an SPI Digital Potentiometer
	Gathering Information from the Datasheet
	Setting Up the Hardware
	Writing the Software

	Creating an Audiovisual Display Using SPI Digital Potentiometers
	Setting Up the Hardware
	Modifying the Software

	Summary

	Chapter 10: Interfacing with
	Setting Up the LCD
	Using the LiquidCrystal Library to Write to the LCD
	Adding Text to the Display
	Creating Special Characters and Animations

	Building a Personal Thermostat
	Setting Up the Hardware
	Displaying Data on the LCD
	Adjusting the Set Point with a Button
	Adding an Audible Warning and a Fan
	Bringing It All Together: The Complete Program
	Taking This Project to the Next Level

	Summary

	Chapter 11: Wireless Communication with XBee Radios
	Understanding XBee Wireless Communication
	XBee Radios
	The XBee Radio Shield and Serial Connections
	3.3V Regulator
	Logic Level Shifting
	Associate LED and RSSI LED
	UART Selection Jumper or Switch
	Hardware vs. Software Serial UART Connection Option

	Configuring Your XBees
	Configuring via a Shield or a USB Adapter
	Programming Option 1: Using the Uno as a Programmer
(Not Recommended)
	Programming Option 2: Using the SparkFun USB Explorer (Recommended)

	Choosing Your XBee Settings and Connecting Your XBee to Your Host Computer
	Configuring Your XBee with X-CTU
	Configuring Your XBee with a Serial Terminal

	Talking with Your Computer Wirelessly
	Powering Your Remote Arduino
	USB with a Computer or a 5V Wall Adapter
	Batteries
	Wall Power Adapters

	Revisiting the Serial Examples: Controlling Processing with a Potentiometer
	Revisiting the Serial Examples: Controlling an RGB LED

	Talking with Another Arduino: Building a Wireless Doorbell
	System Design
	Transmitter Hardware
	Receiver Hardware
	Transmitter Software
	Receiver Software

	Summary

	Part IV: Advanced Topics and Projects
	Chapter 12: Hardware and Timer Interrupts
	Using Hardware Interrupts
	Knowing the Tradeoffs Between Polling and Interrupting
	Ease of Implementation (Software)
	Ease of Implementation (Hardware)
	Multitasking
	Acquisition Accuracy

	Understanding the Arduino’s Hardware Interrupt Capabilities
	Building and Testing a Hardware-Debounced Button Interrupt Circuit
	Creating a Hardware-Debouncing Circuit
	Assembling the Complete Test Circuit
	Writing the Software

	Using Timer Interrupts
	Understanding Timer Interrupts
	Getting the Library
	Executing Two Tasks Simultaneously(ish)

	Building an Interrupt-Driven Sound Machine
	Sound Machine Hardware
	Sound Machine Software

	Summary

	Chapter 13: Data Logging with SD Cards
	Getting Ready for Data Logging
	Formatting Data with CSV Files
	Preparing an SD Card for Data Logging

	Interfacing the Arduino with an SD Card
	SD Card Shields
	SD Card SPI Interface
	Writing to an SD Card
	Reading from an SD Card

	Using a Real-Time Clock
	Understanding Real-Time Clocks
	Using the DS1307 Real-Time Clock
	Using the RTC Arduino Third-Party Library

	Using the Real-Time Clock
	Installing the RTC and SD Card Modules
	Updating the Software

	Building an Entrance Logger
	Logger Hardware
	Logger Software
	Data Analysis

	Summary

	Chapter 14: Connecting Your Arduino
	The Web, the Arduino, and You
	Networking Lingo
	IP Address
	Network Address Translation
	MAC Address
	HTML
	HTTP
	GET/POST
	DHCP
	DNS

	Clients and Servers
	Networking Your Arduino

	Controlling Your Arduino from the Web
	Setting Up the I/O Control Hardware
	Designing a Simple Web Page
	Writing an Arduino Server Sketch
	Connecting to the Network and Retrieving an IP via DHCP
	Replying to a Client Response
	Putting It Together: Web Server Sketch

	Controlling Your Arduino via the Network
	Controlling Your Arduino over the Local Network
	Using Port Forwarding to Control your Arduino from Anywhere

	Sending Live Data to a Graphing Service
	Building a Live Data Feed on Xively
	Creating a Xively Account
	Creating a Data Feed
	Installing the Xively and HttpClient Libraries
	Wiring Up Your Arduino
	Configuring the Xively Sketch and Running the Code
	Displaying Data on the Web

	Adding Feed Components
	Adding an Analog Temperature Sensor
	Adding Additional Sensor Readings to the Datastream

	Summary

	Appendix: Deciphering the ATMega Datasheet and Arduino Schematics
	Reading Datasheets
	Breaking Down a Datasheet
	Understanding Component Pin-outs

	Understanding the Arduino Schematic

	Index

