Questionário - Experimento II

Membros do Grupo:		

Carga do Capacitor

Questões teóricas

- 1) Do circuito constante do roteiro experimental (Circuito I), desconsidere o voltímetro, e utilizando a lei das malhas $V_{AA} = 0$, escreva a equação que envolva a força eletromotriz das baterias (Vo); a resistência do resistor (R), a corrente elétrica no circuito (i), a carga no capacitor (q) e a sua capacitância (C). Considerando que a corrente elétrica no circuito pode ser escrita como $i = \frac{dq}{dt}$, encontre a equação diferencial de primeira ordem, veja item 1, que descreva a carga no capacitor em função do tempo. Resolva a equação diferencial e encontre a função q(t) que satisfaça a condição inicial de capacitor descarregado, q(0) = 0. A partir desta função, encontre V(t) no capacitor, sabendo que $V = \frac{q}{C}$.
- 2) Partindo da função V(t) obtida no item anterior, defina y $\equiv ln\left(1-\frac{V(t)}{V_o}\right)$ e x \equiv t; e encontre a função y(x). Que função y(x) é esta? (Exponencial, logarítmica, quadrática, hipérbole, etc.)
- 3) Procure saber como se defini a constante de tempo de um circuito RC. Quais valores de C e R você poderia utilizar para um circuito RC em série com constante de tempo de 1s?

Experimento

- 4) Com os dados obtidos no experimento, faça uma tabela com uma coluna $ln\left(1-\frac{V(t)}{V_o}\right)$ e outra com o tempo t (s), onde V_o é a força eletromotriz das baterias, medida no experimento; V(t) é a voltagem no capacitor no instante t e t é o tempo.
- 5) Faça um gráfico de $ln\left(1-\frac{V(t)}{V_0}\right)$ em função do tempo. Qual a forma do gráfico?
- 6) A partir da inclinação da reta do gráfico obtido no item anterior obtenha o valor do produto R·C (constate de tempo τ_c). Sendo o valor nominal de C igual a 15000 μ F, qual o valor da resistência do resistor utilizado?

Descarga do Capacitor

Questões teóricas

7) Do circuito constante do roteiro experimental (Circuito II), desconsidere o voltímetro, e utilizando a lei das malhas $V_{AA} = 0$, escreva a equação que envolva a resistência do resistor (R), a corrente elétrica no circuito (i), a carga no capacitor (q) e a sua capacitância (C). Considerando que a corrente elétrica no circuito pode ser escrita como $i = -\frac{dq}{dt}$, neste caso negativa pois a corrente e gera a partir da diminuição de carga no capacitor, encontre a equação diferencial de primeira ordem, veja item 9, que

descreva a carga no capacitor em função do tempo. Resolva a equação diferencial e encontre a função q(t) que satisfaça condição inicial de capacitor carregado, q(0) = q_o . A partir desta função, encontre V(t) no capacitor, sabendo que V = $\frac{q}{C}$ e que $V_{inicial} = \frac{q_o}{C}$

8) Partindo da função V(t) obtida no item anterior, defina y $\equiv ln\left(\frac{V(t)}{V_{inicial}}\right)$ e x \equiv t; encontre a função y(x). Que função y(x) é esta? (Exponencial, logarítmica, quadrática, hipérbole, etc.)

Experimento

- 9) Com os dados obtidos no experimento, faça uma tabela com uma coluna $ln\left(\frac{V(t)}{V_o}\right)$ e outra com o tempo t (s), onde $V_{inicial}$ é a diferença de potencial no capacitor no início da descarga; V(t) é a voltagem no capacitor no instante t e t é o tempo.
- 10) Faça um gráfico de $ln\left(\frac{V(t)}{V_0}\right)$ em função do tempo. Qual a forma do gráfico?
- 11) A partir da inclinação da reta do gráfico do item anterior obtenha o valor do produto R·C (constate de tempo τ_c). Sendo o valor nominal de C igual a 15000 μ F, qual o valor da resistência do resistor utilizado? Compare com o obtido no item 8.