n The Logic of Robustness Testing

The analysis of specification error relates to a rhetorical strategy in which we
suggest a model as the “true” one for the sake of argument, determine how
our working model differs from it and what the consequences of the differ-
ences are, and thereby get some sense of how important the mistakes we will
inevitably make may be. Sometimes it is possible to secure genuine comfort

by this route.
Duncan (1975: 101-102)

XY INTRODUCTION

We are not the first to argue that empirical models are misspecified.
As George Box states, “all models are wrong, but some are useful”
(Box 1976; Box and Draper 1987). Similar claims have been made over
and over again. Martin Feldstein (1982:829), former president of the
National Bureau of Economic Research and former Chairman of the
Council of Economic Advisers, warned that “in practice all econometric
specifications are necessarily false models.” Political scientist Luke Keele
(2008:1) states: “Statistical models are always simplifications, and even the
most complicated model will be a pale imitation of reality.” According to
Peter Kennedy (2008:71), author of one of the best-known introductory
econometrics textbooks, “it is now generally acknowledged that econo-
metric models are false and there is no hope, or pretense, that through
them truth will be found.” These authors do not argue that empirical models
can be misspecified. Instead, they articulate a widespread consensus that all
models are necessarily misspecified; they cannot and do not match the true
data-generating process.

If all models are necessarily misspecified, authors and readers alike
cannot trust any single estimation model to provide a valid estimate of the
effect of a variable x on outcome y. This casts doubt on inferences derived
from the estimate. Nearly all scholars are aware of the limits of model
specification: if they did believe that their model specification was correct
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(and that peers and reviewers shared this belief), they would present the
results of a single estimation model. But usually they don’t.

This chapter discusses the logic of robustness testing. We start
by acknowledging intellectual heritage: Leamer’s sensitivity analyses,
Rosenbaum’s bounds, Manski’s non-parametric bounds, Frank’s robust-
ness limit tests, and others. Yet, despite this heritage rooted in econometric
theory, robustness testing is a grassroots movement with no identifiable
inventor. Consequently, no common standards and practices toward
robustness testing have been developed, which results in deficient current
practices and robustness testing failing to achieve its full potential.
We propose a more systematic approach to robustness testing that pro-
ceeds in four steps: baseline model specification, identification of poten-
tially arbitrary modelling assumptions, robustness test model specification
based on alternative plausible assumptions, and comparison of estimated
effects and the computation of the degree of robustness. We also discuss
the multidimensionality of robustness and argue that robustness is best
explored for each test separately, rather than averaged over all robustness
test models. Lastly, we describe what we regard as the main aims and goals
of robustness testing.

I=¥] ROBUSTNESS TESTING IN THE SOCIAL SCIENCES

Edward Leamer was the first to systematically justify robustness testing as
a means to tackle model uncertainty without the unrealistic aim of eliminating
it. In Leamer (1978: v), he justifies his departure from what was then con-
temporary methodology: “Traditional statistical theory assumes that the
statistical model is given. By definition, nonexperimental inference cannot
make this assumption, and the usefulness of traditional theory is rendered
doubtful.” To deal with uncertainty about model specification, Leamer devel-
oped what he called sensitivity tests. Leamer understood sensitivity testing
broadly: “One thing that is clear is that the dimension of the parameter space
should be very large by traditional standards. Large numbers of variables
should be included, as should different functional forms, different distribu-
tions, different serial correlation assumptions, different measurement error
processes, etcetera, etcetera” (Leamer 1985: 311). Despite his ambitions,
those who have taken their inspiration from Leamer have almost exclusively
focused on analyzing permutations to the set of regressors. "

1 Much of this early literature (Levine and Renelt 1992; Feld and Savioz 1997;
Temple 1998; Sala-i-Martin 1997) was motivated by uncertainty with respect to
the correct set of explanatory variables in economic growth models. Sensitivity
tests soon reached other social sciences, but in political science (Neumayer 2002;
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Some intellectual heritage of robustness testing derives from scholars
like Paul R. Rosenbaum and co-authors (see Rosenbaum 2002, though there
are many earlier contributions with many co-authors), Charles F. Manski
(1990, 1995), Ken Frank and co-authors (Frank 2000; Pan and Frank 2003;
Frank and Min 2007) and others who have developed what in chapter 5 we
will call robustness limit tests, which represent one of five types of robust-
ness tests. These tests explore how much a specific model specification needs
to be changed for a baseline model’s estimate to become non-robust.

Despite its intellectual heritage, contemporary robustness testing has
arisen as an independent grassroots movement. Robustness tests have
always been around. The first publication that presented two regression
estimates with the same dependent variable implicitly conducted
a robustness test of some kind. The oldest robustness test must be to add
an additional regressor to the existing list of explanatory variables. This
constitutes a robustness test even though it took decades until somebody
used the label for such a simple change in model specification.
Unfortunately, we have not been able to identify the first-ever use of the
term “robustness test” with the specific meaning social scientists attach to it
now. Over time, robustness testing became a best practice of empirical
research, with authors integrating robustness tests into their manuscripts
as a strategy to deal with anticipated model specification issues raised by
reviewers.

The number of articles reporting robustness tests increases exponen-
tially in the social sciences, though the growth rate appears to be higher in
some disciplines, most notably in economics and political science, than in
others, e.g., sociology and business studies. Despite this uneven take-up,
robustness tests today form an important element of the scientist’s toolbox.
Between 2008 and 2013 alone, the number of articles indexed in the Social
Sciences Citation Index that explicitly reported robustness tests doubled.”
Today, robustness tests are used across all the social sciences.

While the increase in the number of articles reporting robustness tests
over the last decade is impressive, roughly half of the articles published in
leading political science journals over a ten-year period that we surveyed do
not present the estimation results of the robustness tests in the body of the

Scheve and Slaughter 2004; Gerber and Huber 2010) and sociology (Frank 2000)
the meaning of these tests broadened, varying many aspects of the model
specification to test the robustness of results.

2 Many more articles presumably report robustness tests without being explicit
about it. If we cross-check this trend using Google Scholar, we find that the number

of articles mentioning robustness tests increased from 1,280 in 2008 to 2,600 in
2013.
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article, the appendix, or the online appendix.> Robustness is more often
than not a mere claim, and it hardly ever becomes an explicit part of the
research strategy.

To make matters worse, the vast majority of these articles do not
justify their choice of robustness tests. Authors could, therefore, poten-
tially have reported tests selected not because they really test the robust-
ness of the estimates in the presence of model uncertainty, but simply
because their baseline model proves to be robust to the carefully selected
tests. Unless scholars provide a good justification for their chosen set of
robustness tests or robustness tests are chosen not by the authors but
instead by journal editors or reviewers, the value of robustness tests
remains questionable.

According to our review of political science journals, the most widely
reported robustness tests are the inclusion of additional control variables,
alternative measures of the dependent or central explanatory variables,
changes in the sample, and alternative measurement scales or functional
forms. These tests are conducted in 20-30 percent of articles that report
robustness tests published in leading political science journals we surveyed.
Alternative estimators, alternative functional forms, and alternative
dynamics are used in about 10 percent of those articles. All other robustness
tests are even less frequent. They occur occasionally, but scholars do not use
these tests systematically. Nevertheless, some researchers conduct tests that
account for structural breaks, alternative lag structures, conditionality,
spatial dependence, missing observations, crucial cases (jackknife), or endo-
geneity (instruments). Yet, a glaring gap remains to be bridged between the
number of model uncertainties potentially relevant to a baseline model and
the frequency with which they are explored in robustness tests.

While the arbitrary selection of robustness tests might be the most
evident and important problem in the current practice of robustness testing,
it is not the only one. In addition, few scholars justify the robustness tests
they conduct. Not justifying robustness tests is as bad as not justifying the
baseline model. A lack of robustness between a plausibly specified empirical
model and an implausibly specified model is irrelevant. More importantly,
a robustness test model that only makes a minuscule change to the baseline
model specification or that has been carefully selected because it supports
the baseline model estimate rather than because it represents a real test does
not add much to the validity of inferences, if at all.

3 Weidentified more than 500 articles published in selected political science journals
in which authors reported at least a single robustness test. Overall we found that
explicit robustness tests are employed in approximately one out of four empirical
papers published in these journals.
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Exceptions of good practice exist. Consider Scheve and Slaughter’s
(2004) analysis of the influence of foreign direct investment on what they
call “economic insecurity” defined as volatility in the demand for labor that
causes volatility in wages and employment. They analyze an individual’s
perception of job security. In their baseline model, Scheve and Slaughter
regress this perception of economic volatility on a dummy variable captur-
ing the presence of foreign companies, an individual’s education, age,
income, union membership, manufacturing employment, and sector unem-
ployment rate plus year dummies. Scheve and Slaughter report five well-
justified robustness tests: first, they replace the FDI dummy with “alterna-
tive measures of FDI exposure” (2004: 670), namely FDI total share and
FDI inward share. Second, they admit that their baseline model “does not
allow (.. .) to differentiate between the idea that persistence in observations
of insecurity is accounted for by the influence of past experiences of inse-
curity on present perceptions and the alternative idea that certain indivi-
duals just have unobserved characteristics that lead them to have certain
types of perceptions” (2004: 670). Accordingly, they use Arellano-Bond’s
first-differenced estimator to account for dynamics. As a third robustness
test, Scheve and Slaughter admit that perceptions may influence an indivi-
dual’s choice of industry (which would render their model partly endogen-
ous). They deal with endogeneity by lagging their FDI variable, which does
not, however, solve the endogeneity issue if FDI is announced one year
before it actually occurs or if FDI is serially correlated. In a fourth robust-
ness test, Scheve and Slaughter add six additional covariates to explore the
extent to which estimates depend on the choice of regressors. In their fifth
and final reported test, they repeat their analyses based on a broader sample.
What makes their article a candidate for good practice in robustness testing
is not so much the specific choice of robustness tests, but the discussion they
devote to derive robustness tests from specific dimensions of model
uncertainty.

For a second noteworthy example consider Gerber and Huber (2010),
who study the association between partisanship and economic assessments.
They find that large partisan differences between Republican and
Democratic voters in the United States exist and conclude that the observed
pattern of partisan response suggests partisan differences in perceptions of
the economic competence of the parties. Naturally, the self-description of
voters in a survey can be subject to measurement error. Not only does the
existence of neutrals pose a specification issue, the degree to which a survey
respondent supports Democrats or Republicans also varies largely in a way
not appropriately reflected by the survey. Gerber and Huber’s robustness
tests seek to address these issues. In different model specifications, they
exclude independents, they change the coding scale of party identification
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toward fewer and more categories, they allow for a flexible effect of partisan
affiliation by converting the categorical measure into separate exhaustive
dummy variables, they employ matching to test whether the effect of parti-
sanship is influenced by the linear functional form specification of the
control variables, they control for spatial sorting of individuals by including
a measure of partisanship at the aggregate state level, and they control for
unobserved state heterogeneity by including state fixed effects. They con-
clude from conducting these tests (Gerber and Huber 2010: 167):

[T]hese robustness checks suggest that the pattern of partisan response (...) is not
driven by particular functional form assumptions or the behavior of independents.
Rather, across a variety of measurement and model specifications, Democrats reacted
to the 2006 election by becoming more optimistic in their economic forecasts for the
national economy, while Republicans became more pessimistic.

IE¥E] ROBUSTNESS TESTING IN FOUR SYSTEMATIC STEPS

Since robustness testing developed as a grassroots enterprise, few if any
common standards and practices have been developed. To provide a more
systematic approach, we suggest that analyses of robustness require four
steps:

1. Define a model that is, in the researcher’s subjective expectation, the
optimal specification for the data-generating process at hand, i.e.
the model that optimally balances simplicity against generality,
employing theory, econometric tests, and prior research in finding it.
Call this model the baseline model.

2. Identify assumptions made in the specification of the baseline model
which are potentially arbitrary and that could be replaced with
alternative plausible assumptions.

3. Develop models that change one of the baseline model’s assumptions at
a time. These alternatives are called robustness test models.

4. Compare the estimated effects of each robustness test model to the
baseline model and compute the estimated degree of robustness.*

The first step — the singling out of a model — appears to be the most
controversial decision researchers have to take. Why do we think that the
formulation of a baseline model and the resulting hierarchy between base-
line model and robustness test models are good ideas? Conceptually similar
approaches such as Leamer’s sensitivity analysis and model averaging across

4 The next chapter deals with the fourth step. The entire second part of the book
identifies potentially arbitrary modelling assumptions for different aspects of
model specification and develops robustness tests for tackling them.
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a large number of models refrain from suggesting the choice of a baseline
model with all models in the model space having an ex-ante equal prob-
ability of being the best model.

The formulation of a baseline model and the testing of robustness
against the baseline model require the provision of theoretical or other
justifications for each model specification choice because the specification
of the model has to be plausible. In fact, baseline models should be the
researchers’ best bet for an optimal specification of the data-generating
process balancing simplicity versus generality. In addition, robustness test
models need to represent plausible alternatives to specific baseline model
specification choices.

Known or demonstrable misspecifications disqualify models from ser-
ving as a robustness test model. We distinguish here between three cate-
gories of empirical models. First, models known to be correctly specified —
a category that is empty, at least in the study of observational data. Second,
and on the other end of the spectrum, models that are known or at least
strongly suspected to be misspecified. Structure in the residuals provides
hints for model misspecification, but does not offer final proof. Likewise, if
models are used for testing theories, they have to be consistent with the
theory’s assumptions and test its predictions. Models that do not are known
to be misspecified. Third, models which are not obviously misspecified, but
equally are not known to be correctly specified either. Even if the odds are
diminishingly small, they could in principle or potentially at least be cor-
rectly specified. We call the specification of such models plausible. Both
baseline and robustness test models should fall into this category.

Thus, the difference between Leamer’s approach and robustness testing
is the latter’s focus on plausible model specifications. Leamer’s definition of
model space, by contrast, does not avoid the inclusion of models known to
be misspecified. Rather than estimating and averaging across millions of
models, many of which must be misspecified, robustness testing relies upon
estimating a small number of plausibly specified models or a small number
of sets of plausibly specified models (since randomized permutation tests can
themselves employ hundreds or thousands of models varying one specific
dimension of model specification).

=Y THE MULTIDIMENSIONALITY OF ROBUSTNESS

Robustness is a multidimensional concept. The robustness of empirical
estimates to changes in, say, the sample and assumed conditionality struc-
ture differ. Just like steel constructions are subjected to different robustness
tests, so baseline models should be subjected to different robustness tests
addressing different potential sources for potential lack of robustness.
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Hence, the question is not whether the baseline model’s estimates are robust
in general, but whether they are robust to a specified change in a particular
aspect of model specification. In other words: robustness is not an overall or
general property of an estimate, but a property that differs from robustness
test to robustness test.

While it seems possible to distinguish between important and irrelevant
robustness tests, it is not possible to conduct “all relevant robustness tests.”
Every empirical model consists of multiple specification decisions. Scholars
are usually uncertain about numerous aspects. In addition, few specification
decisions are dichotomous, so that in each dimension a large number of
alternatives may appear to be plausible. As a consequence, the possibility
space for plausible model specifications is typically too large to try all
permutations of all plausible assumptions of all aspects of model specifica-
tion. There will always be possible alternative models which remain
unknown or at least unchosen. In other words: the robustness tests that
a researcher conducts are a selected subset of the entire model space of
plausible models.

Given the multidimensionality of robustness, and the diversity of
robustness tests that can be conducted within each dimension, averaging
results over a large number of robustness tests is not useful either. While it is
technically not difficult to average over different point estimates by taking
weighted or unweighted means of point estimates or by adding the sampling
distributions of these estimates, the result will inevitably depend on assump-
tions concerning the plausible model space and the model selection
algorithm.” It would be convenient to compute a single parameter and single
measure of uncertainty for the “overall averaged model” (baseline plus
robustness test models) or for the “average robustness test model.” Yet,
the multidimensionality of model specifications should not beguile research-
ers to summarize over these dimensions in order to identify “the robustness”
of an estimated effect. Strong robustness in one or more dimensions should
not cover up the lack of robustness in other dimensions. At the very least, the
multidimensionality of robustness testing requires that — regardless of the
definition of model space and the averaging algorithm used — a single
measure of overall robustness necessitates dimensionality reduction. This

5 Both Bayesian and frequentist methodologists have developed model averaging
approaches (Hoeting et al. 1999; Claeskens and Hjort 2008). In model averaging,
quantities of interest (point estimates, standard errors) are expressed as a weighted
average of the same quantities from the models to be averaged. The weights used in
these procedures differ. Where measures of model fit are used as weights results
tend to be substantively similar since measures of model fit tend to be highly
correlated.
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will result in a loss of information unless all robustness tests were perfectly
correlated, which they are not.

Knowing that a baseline model’s estimate is robust on average is less
useful than knowing that it is robust in, say, six dimensions of model
specification and lacks robustness in a seventh dimension. Lack of robust-
ness in a particular dimension is important information that gets lost by
computing average robustness. It is therefore best to explore robustness in
multiple dimensions of model specification separately without averaging
across all robustness test models.

=T AIMS AND GOALS OF ROBUSTNESS TESTING

The purpose of robustness testing is 7ot the demonstration that estimates,
results, or findings are robust and all inferences are valid. Though practically
all reported robustness tests conclude with a statement like the above,
robustness tests do not demonstrate, let alone prove, the validity of infer-
ences — especially not when the tests are selected by the authors. Instead, we
suggest three main aims and goals of robustness testing;:

— exploring the robustness of estimates,

— identifying limits of robustness and

— spurring further research via learning from variation in estimates across
model specifications.

Exploring whether estimates are robust to specific plausible changes in
the model specification is the principal aim of robustness testing. It is not the
same as setting out to demonstrate that estimates are robust. The former
task is driven by a sincere and serious attempt at exploring the robustness of
estimates whereas the latter task seems driven by a desire to move the
manuscript past reviewers and editors. Exploring robustness is part of
a well-designed research strategy, whereas setting out to demonstrate
robustness is merely part of a publication strategy.

The second goal of robustness testing is the identification of limits of
robustness. Many of the most misleading inferential errors in the social
sciences result from the concentration on and over-generalization from
average estimated effects. Social scientists tend to infer internal and external
validity from statistically significant point estimates. By doing so, they over-
generalize findings and ignore that inferences tend to be limited in space and
time. Robustness tests may bring the relevance of cases and historic time
back into focus. Robustness tests can explore whether the estimated point
estimate of the baseline model represents the effects in all units of analysis.
Likewise, robustness tests can investigate whether the mean effect represents
the entire period under investigation, or whether effect strengths vary over
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time. Robustness limit tests explicitly ask where the boundaries are. For
example, scholars may ask how large measurement error needs to become to
render the baseline model estimate non-robust. However, even other types
of tests beyond robustness limit tests can nevertheless shed light on the limits
of robustness.

Finally, though robustness tests are not primarily an instrument for
model improvement, they can, by recognizing model specifications that lack
robustness, identify areas where further research seems most promising or
even necessary. In an ideal scientific world researchers abandon their pre-
ference for “robust” findings and employ robustness tests to identify impor-
tant future avenues for research. An identified lack of robustness in
a dimension of model specification poses questions that complementary
research might be able to answer. Consider the simple example that two
or more competing proxies for a latent variable exist, as is the case with
ethnic diversity or democracy. Now assume that replacing one by the other
proxy reveals a lack of robustness. In addition to stating that estimates are
not robust to a change in the operationalization of the explanatory variable,
researchers could thus investigate which cases drive the differences in results
and discuss which operationalization appears to be more appropriate and
how an optimal proxy variable for ethnic diversity or for democracy would
be defined and measured.

Single robustness tests typically do not achieve all of the aims and goals
of robustness testing. For the first and primary goal, the best robustness test
provides the best insight into the dependence of estimated effects on model
specifications. From a learning perspective, the best robustness test poten-
tially offers the deepest insights into the causes for the observed variation in
estimates of effect sizes. While robustness tests are often specialized for
single purposes and only achieve one or perhaps two of these aims and
goals, a shrewd combination of robustness tests can achieve all aims
simultaneously.

=T concLusion

By providing insights into the stability of estimates and into the factors that
may inhibit this stability, by identifying the limits of robustness and by
illuminating relevant areas of further research, robustness tests can contri-
bute to the production of scientific knowledge. If properly undertaken,
robustness tests can dramatically improve the perceived validity of causal
inferences based on regression analysis of observational data.

Yet, despite the success and rise of robustness tests in social science
practice, we argue that we are far away from this ideal and that a change in
the practice of robustness testing is required. In this chapter, we have
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provided the foundation for a systematic approach to robustness testing.
We have argued against general, average or overall robustness. The multiple
dimensions of model uncertainty need to be explored separately and strong
robustness in one dimension cannot compensate for lack of robustness in
other dimensions.

Robustness tests are necessarily selected from a “possibility space.” It is
not possible to conduct all possible or all relevant robustness tests — just as
it is not possible to conduct all permutations of plausible models.
Nevertheless, there can be robustness tests that are so crucial that the base-
line model’s failure to pass them will cast serious doubt on the baseline
model’s estimated effect. While it is not possible to predefine robustness tests
that are crucial for all research projects, it is often possible to predefine (and
possibly even pre-register) crucial robustness tests for specific research
projects.
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Humans desire certainty, and science infrequently provides it. As much as
we might wish it to be otherwise, a single study almost never provides
definitive resolution for or against an effect and its explanation (.. .)
Scientific progress is a cumulative process of uncertainty reduction that can
only succeed if science itself remains the greatest sceptic of its explanatory

claims.
Nosek and 268 co-authors (2015: aac4716)

] INTRODUCTION

Robustness relates to the behavior of an object under stress and strain.
In technical language, robustness refers to the ability to tolerate perturba-
tions that potentially affect the object’s functions. In order to fall in line with
this concept of robustness, we need to answer three questions:

1. What is the object?
2. What is the stress and strain to which we subject the object?
3. How can we compute robustness?

The object of robustness depends on the research question and the
inferences researchers wish to make. In most cases, an analysis aims at
testing the predictions from a theoretical model about the effect of one or
more variables on an outcome. In this case, the object of robustness tests is
the baseline model’s estimated effect of x on y. Note that we write “effect”
here rather than “coefficient” because similar effects are consistent with
dissimilar coefficients in non-linear models, models that allow for non-
linear functional forms, conditionalities, and so on. Conversely, similar
coefficients may also imply very different effects. In a simple linear model
without non-linear or conditional effects the robustness of an estimated
effect is identical to the robustness of its estimated coefficients. In all other
cases, this does not hold and analysts need to compute effects and state at
what values of the explanatory variables they assess robustness or,
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preferably, analyze partial robustness, which we define further below. Yet,
researchers may instead be interested in forecasting, in which case the
predicted effect of the entire model becomes the object of robustness tests.
If, for example, an analysis forecasts population growth, the object of
robustness tests is the forecast that the baseline model makes. In the remain-
der of this book, we will talk about the effect of a variable x on y as the
object of robustness, but readers should keep in mind that the object may be
different.

Researchers impose stress and strain on the above object by changing
the specification of the baseline model in systematic and plausible ways.
It follows that implausible model specifications are not valid robustness
tests. Models known or strongly suspected to be misspecified do not qualify
as robustness test models.

In this chapter, we define robustness and propose as a measure of
robustness the extent to which a robustness test model estimate supports
the baseline model estimate. We suggest that this measure, which varies
from 0 to 1, offers several useful properties, including that it measures
robustness continuously rather than declaring an estimate as robust or non-
robust at an arbitrarily chosen threshold. Our definition of robustness is
independent of the level of statistical significance of either the baseline or
robustness test model and we contend that robustness is most usefully
understood as stability in the estimated effect, which is inconsistent with
a definition that relates to statistical significance, even if this departs from
how many interpret robustness in current practice. We also introduce the
concept of partial robustness, which is relevant in all non-linear models and
even linear models that estimate a non-linear, conditional or heterogeneous
effect. The concept of partial robustness allows the degree of robustness to
differ across observations in all such models.

F] DEFINITIONS AND CONCEPTS OF ROBUSTNESS
IN CURRENT PRACTICE

Robustness tests are common practice. An increasing number of researchers
report the results of robustness tests and an even larger number claims that
their baseline model proved robust to specific changes in the model specifi-
cation without showing the results. However, though robustness tests are
fashionable, neither a common practice of core tests nor a common under-
standing of the meaning of robustness has evolved. Indeed, social scientists
disagree about what they mean by robustness, what ought to be robust, and
where they see the threshold between robust and not robust.

No commonly accepted definition of robustness exists. Researchers
conducting robustness tests rarely ever define robustness when they claim
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their results are robust. Instead, robustness is typically regarded as given by
a situation in which estimates from robustness tests do not “deviate much”
from the estimates of the baseline model. Specifically, scholars see robust-
ness as given when estimates “are quite similar” (Bailey and Maltzman
2008: 379) or “close” (Gehlbach, Sonin, and Zhuravskaya 2010: 732),
“results uphold,” coefficients remain “substantively similar” (Lipsmeyer
and Zhu 2011: 652) or “do not change” (Braumoeller 2008: 86; Hafner-
Burton, Helfer, and Fariss 2011: 701; Mukherjee and Singer 2010: 50) and
thus “remain essentially the same.” Yet, how similar estimates have to be to
qualify as “fairly similar,” “essentially the same,” or “close” is almost never
operationally defined. The vagueness in the conceptual definition implies
that virtually all authors can interpret their results as “robust.” To make
matters worse, social scientists do not agree on what ought to be robust: is it
effects, their level of statistical significance or inferences? In the next section,
we offer an operational definition of robustness.

K] DEFINING ROBUSTNESS

Robustness tests explore the stability of the baseline model’s estimated effect
to systematic alternative plausible model specification changes. We define
robustness as the degree to which the baseline model’s estimated effect of
interest is supported by another robustness test model that makes a plausible
change in model specification. Higher levels of robustness imply a higher
degree of support for the baseline model’s estimated effect, lower levels of
robustness suggest a lower degree of support.

The baseline model provides a point estimate for the effect of interest.
Naturally, sampling variability means that the point estimate is unlikely to
exactly capture the population parameter. If analysts draw another finite
random sample from the population, they will get another point estimate
because the distribution of random errors will be different. The estimated
standard error of the point estimate allows the construction of 90- or, more
typically, 95-percent confidence intervals. A confidence interval provides an
estimate for a plausible range for the estimated parameter, given sampling
variability (Cumming 2012: 79).

As we have argued before, the baseline model, like the robustness test
models, falls into the category of plausible models — that is, models which
are neither known to be misspecified nor known to be correctly specified
either. Hence, researchers cannot claim that the baseline model captures the
“truth” with any level of confidence. Likewise, robustness tests do not seek
and cannot find the truth, but they analyze the extent to which estimates
from different model specifications support the estimate from a baseline
model specification. In this sense, the baseline model marks a researcher’s



The Concept of Robustness

best effort at constructing an estimation model. It is therefore not just any
model, it is the model against which other robustness test models that make
other plausible specification assumptions should be compared to.

Given our above definition of robustness, and taking sampling varia-
bility into account, robustness becomes the extent to which social scientists
can be confident that the plausible range for the estimated effect of the
robustness test model supports the plausible range for the estimated effect
from the baseline model. To be precise, we define robustness as the degree to
which the probability density function of the robustness test model’s esti-
mate falls within the confidence interval of the baseline model.

Assume for simplicity a linear and unconditional model such that
coefficients represent effects. Formally, let

1
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be the probability density function of parameter estimate f},, which is the
point estimate of the effect of variable x and gy, its standard error. This density
function is normally distributed by construction: since econometric theory

f(abaﬁba&b) — e*(ﬂrﬁb)z/%bz (4.1)

assumes that errors are normally distributed, the probability density function
of the parameter estimate is also normally distributed. If methodologists
make alternative assumptions about the error process, a different probability
density function for p or some transformation of the original equation is
required. Fox (1991) argues that the assumption of normally distributed
errors appears arbitrary. We disagree for two reasons. First, the assumption
is not arbitrary but roots in theories of random processes and in experiments
with stochastic processes. And second, the central-limit theorem proves that,
in the limit, the sum of random distributions approaches a normal distribu-
tion. We therefore know no other general assumption about error processes
which is as plausible as the normal one.

As equation 4.2 suggests, we define the degree of robustness p (rho) as
the share or percentage of the probability density function of the robustness
test model that falls within the 95-percent confidence interval of the prob-
ability density function of the baseline model," which is

p(f,)= @b/ dg, (4.2)

1 B,+Cay,
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Again, the probability density function of the robustness test model is
assumed to be normally distributed by econometric convention.

B,—Céy,

1 Note that C decreases from approximately 2.04 to approximately 1.96 as the
sample size grows toward infinity.
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This definition has some useful properties. Assume, for simplicity, that
the coefficients of the baseline and the robustness test models are identical.
Under this assumption, the estimated degree of robustness p depends
entirely on the standard error of the robustness test model compared to
the one from the baseline model. If the standard error were exactly the same
in both models, then p = 0.95. This makes sense: with the robustness test
producing the exact same result as the baseline model we are 95 percent
confident that the robustness test estimate falls within the 95-percent con-
fidence interval of the baseline model. If the standard error of the robustness
test is smaller than the baseline model, p becomes larger than 0.95 and
converges to 1.00 as the robustness test standard error becomes smaller
and smaller. This, again, represents a useful property: the smaller standard
error of the robustness test model suggests researchers can be more con-
fident that the robustness test estimate falls within the 95-percent confidence
interval of the baseline model. Conversely, if the robustness test standard
error is larger than the one from the baseline model, p is necessarily smaller
than 0.95 and declines as the robustness test error becomes larger, if we keep
point estimates constant.” Figure 4.1 illustrates the logic for a baseline
model with a coefficient of 1.0 for the variable of interest and a standard
error of 0.3 and a robustness test model with a coefficient of 1.0 and
a standard error of 0.5 (light grey shading).

The calculated value of p for figure 4.1 equals 0.760. Thus, 76 percent
of the probability density function of the robustness test model falls within
the 95-percent confidence band of the baseline model. The robustness mea-
sure p provides information on the stability of the baseline model’s esti-
mated effect: since the robustness test model has the same coefficient but
a larger standard error, the confidence in the baseline model’s estimate
declines.

We now relax the unrealistic assumption that the point estimates of the
robustness test and the baseline models are identical. In this case, p is
determined by both the difference in point estimates and the standard errors.
Figure 4.2 displays the same baseline model but the robustness test model
has a different point estimate. As a comparison of the two figures shows, p
declines as the difference between the point estimates of the baseline
model and the robustness test model increases. In example 2 (figure 4.2),
with the robustness test model giving a point estimate of 1.5 and standard

2 The 0.95 threshold at which one becomes either more or less certain is precise for
all robustness tests that hold the sample constant. If, however, a robustness test
varies the sample, the sampling variation between the baseline and the robustness
test model will push the value of p downward, all other things equal. In principle,
one would therefore want a lower threshold of p for robustness tests that do not
hold the sample constant.
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Figure 4.2: Example 2 of Degree of Robustness p
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Figure 4.3: Example 3 of Degree of Robustness p

error 0.3, p is 0.615. Our third example (figure 4.3) doubles the standard
error in the robustness test estimate to 1.0. By increasing the standard error,
p declines to 0.397 in this example.

Table 4.1 shows the joint influence of the difference between the point
estimates and the standard error of the robustness test model on p for
a baseline model point estimate of 1 with standard error of 0.3.

Table 4.1 demonstrates several properties of p. First, robustness is
left-right symmetric: identical positive and negative deviations of the
robustness test compared to the baseline model give the same degree of
robustness. It does not matter for p whether the estimate of the robustness
test model is larger or smaller than the one of the baseline model. Only the
difference matters. Second, if the standard error of the robustness test is
smaller than the one from the baseline model, p converges to 1 as long as the
difference in point estimates is small. If the robustness test coefficient is
estimated with high precision, its probability density function can lie almost
entirely within the baseline model’s confidence interval even if the point
estimates differ, as long as they do not differ too much. Third, for any given
standard error of the robustness test, p is always and unambiguously smaller
the larger the difference in point estimates. Not surprisingly, for any given
level of uncertainty around a robustness test estimate, the larger the
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s.e.=0.1 s.e.=0.3 s.e.=0.5 s.e.=0.7 s.e.=1.0 s.e.=2.0

p=-0.50
p=-0.25
$=0.00
$=0.25
$=0.50
$=0.75
$=1.00
p=1.25
$=1.50
B=1.75
$=2.00
p=2.25
$=2.50

0.000 0.001 0.034 0.095 0.162 0.176
0.000 0.014 0.093 0.168 0.221 0.191
0.000 0.085 0.204 0.266 0.284 0.204
0.053 0.295 0.369 0.381 0.345 0.216
0.811 0.615 0.55b5 0.490 0.397 0.224
1.000 0.867 0.704 0.5670 0.431 0.229
1.000 0.950 0.760 0.599 0.443 0.231
1.000 0.867 0.704 0.5670 0.431 0.229
0.811 0.615 0.555 0.490 0.397 0.224
0.053 0.295 0.369 0.381 0.345 0.216
0.000 0.085 0.204 0.266 0.284 0.204
0.000 0.014 0.093 0.168 0.221 0.191
0.000 0.001 0.034 0.095 0.162 0.176

Note: Baseline model f = 1.0; s.e. = 0.3, 95-percent confidence interval

difference in the point estimates the lower the support for the baseline
model’s estimate. Fourth, differences in point estimates have a strong influ-
ence on p if the standard error of the robustness test is small but a small
influence if the standard errors are large. Robustness test models estimated
with large sampling variability remain uninformative — they are not power-
ful enough to increase the certainty of the baseline model estimate but at the
same time not powerful enough for signaling complete lack of robustness.
Perhaps surprising at first sight is the complex influence of the sampling
distribution of the robustness test model estimates on p. The impact of
increasing standard errors on p is ambiguous as it depends on the difference
in point estimates between the robustness test and baseline model relative to
the baseline model’s confidence interval. If the difference in point estimates
is such that the robustness test point estimate lies within the baseline model’s
confidence interval, i.e. if |3, — B,| < Co7, then increasing standard errors of
the robustness test model’s estimate unambiguously decrease p. The highest
probability of the robustness test estimate lies within the baseline model
confidence interval but increasing uncertainty around the robustness test
estimate increases the uncertainty as to whether the robustness test supports
the baseline model estimate. Conversely, if the difference in point estimates
is such that the robustness test point estimate lies outside the baseline
model’s confidence interval, i.e. if |8, — B,| > Co}, increasing standard
errors of the robustness test model first increase p and then decrease it as
the standard error becomes larger and larger. This may seem counter-
intuitive but is easily explained: the highest probability of the robustness
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test estimate lies outside the baseline model’s confidence interval. With small
standard errors researchers can be fairly confident that the robustness test
model does not support the baseline model estimate. In the extreme, almost
the entire probability density function of the robustness test lies outside the
baseline confidence interval and p converges to zero. As the standard error
increases, one of the tails of the robustness test probability density function
moves closer to or, if already inside, moves further into the baseline model’s
confidence interval. Researchers thus become less confident that the robust-
ness test does not support the baseline model. Eventually, with larger and
larger standard errors, the tail of the robustness test probability density
function moves outside the other end of the baseline confidence interval and
reduces the confidence that the robustness test supports the baseline model.
Figure 4.4 displays the joint effect of changes in the difference between point
estimates and changes in the standard errors of the robustness test model on
p (based on the assumption of a baseline model point estimate of 1 with
standard error of 0.3).

Figure 4.5 displays the same information in a different way, namely as
a heat plot. It shows the nonlinear bivariate relation between the difference

e
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Figure 4.4: p as a Function of the Difference in Point Estimates and Standard Errors
Note: Baseline model f=1; s.e.=0.3.
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Figure 4.5: p asa Function of the Difference in Point Estimates and Standard Errors (Heat
Plot)
Note: Baseline model f=1; s.e.=0.3.

in the point estimates of the baseline and the robustness test model and the
standard error of the robustness test model (based on the assumption of
baseline model point estimate of 1 with standard error of 0.3 as before). This
distribution resembles a bivariate Weibull distribution. It asymptotically
goes to 0 in three of the four corners and to 1 in the remaining fourth corner.
Accordingly, if the difference in point estimates goes to infinity, p goes to 0
(top left corner). Similarly, if the standard error of the robustness test goes to
infinity, p goes to 0 (bottom right corner). The same holds if both the
difference in point estimates and the robustness test standard error go to
infinity (top right corner). Conversely, p goes to 1 if either the difference in
point estimates goes to 0 and the robustness test standard error is smaller
than the one from the baseline model or if the robustness test standard error
goes to 0 and the difference in point estimates remains sufficiently small.
Figure 4.5 also displays selected isolines, which represent equal degrees
of robustness. The ones starting just above and just below 0.60 on the
difference in point estimates scale illustrate that if the difference in point
estimates is below the crucial threshold of approximately 1.96 times the
baseline model estimate’s standard error (here around 0.59), p monoto-
nously decreases with larger standard errors of the robustness test model.
If it stays above that threshold, p first increases and then decreases, i.e. it is
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non-monotonous. Asymptotically, both converge to 0 as the robustness test
standard error goes to infinity.

Note that for relatively small differences in point estimates, it takes
large standard errors for p to converge to 0. For example, for a difference of
0.20 or 0.40 and a standard error of 0.90 (i.e. three times the size of the
baseline model standard error), p equals 0.447 and 0.476, respectively. Even
with a standard error as large as 5.00 for the same differences in point
estimates p is 0.094 and 0.093, respectively. It takes a standard error of
around 9.50 for p to drop below 0.05. When the robustness test estimate lies
within the baseline model’s confidence interval, the degree of robustness will
not be low unless the standard error becomes sufficiently large. In other
words, robustness test models with even fairly large uncertainty around
their estimates do not render the baseline model estimate non-robust, unless
the sampling uncertainty becomes extremely large. Conversely, if the differ-
ence in point estimates is relatively large, small standard errors signal lack of
robustness, but even relatively large standard errors do not produce high
degrees of robustness. If the point estimate of the robustness test lies outside
the confidence interval, p can never be higher than 0.50 no matter what the
standard error.

Critics might wonder whether our definition of robustness creates
strategic incentives for authors to specify their baseline model sub-
optimally in order to maximize the chances that their results will appear
robust. After all, all other things equal, a baseline model estimate that has
wider confidence intervals is more likely to be found robust than one with
narrower confidence bands. This is only logical: the larger the uncertainty of
the baseline model, the smaller the extent to which robustness tests can add
further to the uncertainty. But all other things are not equal. If researchers
intentionally specify their baseline model less well than they can, the degree
of robustness of the baseline model’s estimate will likely increase for some
tests but decrease for others. Particularly if the choice of robustness tests is
not left to researchers alone but partly determined by reviewers and editors,
a strategic misuse of robustness may backfire, thus diminishing the
incentive.

T} CONTINUOUS VERSUS DICHOTOMOUS ROBUSTNESS

According to our definition, the degree of robustness p is a continuous
measure, ranging from 0 to 1. We think this has important advantages.
A continuous concept of robustness reflects the fact that robustness comes in
degrees and not as a dichotomy. Higher values of p represent a higher degree
of robustness and lower values represent a lower degree of robustness.
Robustness tests can increase the confidence in the baseline model’s
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estimated effect size if p exceeds 0.95. Yet, the majority of robustness tests
will result in a p smaller than 0.95, which suggests a higher level of uncer-
tainty than the baseline model implies. Robustness tests provide a more
realistic picture of the uncertainty of the baseline model’s point estimate.
The true uncertainty stems not only from sampling variability expressed by
the baseline model estimate’s standard error but also from model uncer-
tainty and its consequences.

Nonetheless, researchers are familiar with critical values of, for exam-
ple, statistical tests and might crave a criterion for when to regard
a robustness test estimate as suggesting non-robustness. Generally speaking,
we do not believe that the arbitrary creation of critical values for robustness
is useful, just as we do not believe that the arbitrary distinction between
statistically significant and statistically insignificant — with its consequence
of arbitrary rejection decisions (of null hypotheses and of manuscripts in the
review process) — has served the social sciences well (Gill 1999). Arbitrary
thresholds provide a major obstacle to the accumulation of scientific knowl-
edge. With this caveat in mind, if scholars wanted to look for a critical value
for p, it is likely to be 0.05 since in this case 95 percent of the probability
density function of the robustness test estimate lies outside the baseline
model’s confidence interval. Accordingly, the robustness test model estimate
does not support the baseline model estimate.

We nevertheless urge scholars to abstain from clinging to arbitrary
bounds for “robust” versus “non-robust.” The important element of
robustness testing is not to define arbitrary thresholds in order to dismiss
certain findings as irrelevant. Both high and low degrees of robustness
provide important information. High degrees of robustness indicate that
model specification does not exert much influence over the estimated effect.
An apparent lack of robustness indicates large uncertainty about the esti-
mated effect. We believe that all non-trivial estimation models will lack
robustness to some degree in some dimension. A lack of robustness signals
an important research question, it does not falsify a theory, a prediction, or
a hypothesis.

T ROBUSTNESS AND STATISTICAL SIGNIFICANCE

Despite all known shortcomings and flaws of Fisher significance (Gill 1999;
Rainey 2014; Gross 2015), social scientists are used to basing their infer-
ences on whether an estimated effect is statistically significant.
The widespread recognition of model uncertainty and the rise of robustness
testing put an end to the idea that a single model, a single parameter estimate
and its sampling error can be used to make valid statistical inferences. It did
not, however, put an end to statistical significance as the predominant
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criterion for making inferences, which maintained its status through the
back door by becoming the dominant way in which robustness is assessed.

Starting from Leamer’s idea of sensitivity testing (Leamer 1978), most
applied scholars even today define robustness through an extreme bounds
analysis: a baseline model estimate is robust to plausible alternative model
specifications if and only if all estimates have the same direction and are all
statistically significant.® Let us call this “Leamer robustness” for short.

In stark contrast, our definition of the concept of robustness, and our
measure of the degree of robustness p based on this concept, are independent
of the level of statistical significance of the effects in either baseline or
robustness test models. All that matters for computing p are the point
estimates and the standard errors of the baseline and the robustness test
model.* We contend that the logic of robustness testing is incompatible with
Leamer robustness and that useful definitions of robustness must refer to
stability in estimated effect sizes or effect strengths as in our definition.’

On a fundamental level, Leamer robustness ignores that the difference
between a statistically significant baseline model result and an insignificant
robustness test result need not be statistically significant. For the same
reason a statistically insignificant result in a replication exercise does not
necessarily demonstrate that a statistically significant prior result has proven
non-replicable (Goodman 1992). Gelman and Stern (2006: 329) correctly
point out that if one were to make statistical significance the criterion for
inference from multiple estimations, then “one should look at the statistical

3 For example, in robustness tests for their analysis of the presence of multiple veto
players on the credibility of monetary commitments, Keefer and Stasavage (2002:
772) find that the “test statistics are significant in most cases at the one percent
level and in all but one case at the ten percent level of confidence.” In a paper
analyzing how the stock values of seven European defense companies respond to
EU summit decisions on defense policy, Bechtel and Schneider (2010: 219)
conclude their robustness test as follows: “The coefficient of the summit outcome
variable (.. .) remains positive and statistically significant”. Nordas and Davenport
(2013: 934f.) find that “the results for youth bulges remain highly significant (at
the 1% level)” in robustness tests for their analysis of the effect of large youth
cohorts on state repression. We could cite many more examples, including from
our own publications.

4 Thus, with a baseline model that has a point estimate of 1.0 with standard error of
0.3, p is 0.72 regardless of whether the robustness test point estimate is 0.5 with
standard error 0.4 or is 1.5 with standard error 0.4: the difference in point
estimates between the baseline and the two robustness test models, the standard
errors of the robustness test models, and the 95-percent confidence interval of the
baseline model are all identical.

5 We acknowledge that ours is only one way of defining robustness in terms of effect
stability.
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significance of the difference” in two results “rather than the difference
between their significance levels.”

Leamer robustness is at odds with an understanding of robustness as the
extent to which the robustness test estimate is compatible with and supports
the baseline model’s estimate. This cannot be assessed without direct refer-
ence to the baseline model’s estimated effect size and confidence interval.
The robustness of the baseline model estimate is not tested by merely checking
whether the robustness point estimate has the same sign and remains statis-
tically significant when the actual point estimate and its associated confidence
interval can be very different from the baseline model estimate. Would social
scientists really call a baseline model estimate of 10 with small standard errors
robust to a robustness test estimate of 2 with sufficiently small standard errors
below 1 so that it too is statistically significant?

Equally importantly, due to the fact that multiple models can never all be
assumed to represent the optimal trade-off between generality and simplicity,
employing Leamer robustness to reject null hypotheses is based on a flawed
inferential logic. At best, Leamer robustness provides a one-sided test: if all
estimates have the same sign and remain significant, analysts can reject the
null hypothesis with greater confidence. However, the opposite inference that
the null hypothesis is correct — usually that there is no effect — cannot be
derived from the fact that not all models generate estimates with the same sign
and the minimum level of statistical significance since one of the models could
be severely misspecified or inefficiently estimated. In other words, Leamer
robustness has an extremely low probability for making false positives errors
but an unreliably high probability for committing false negatives errors
(Plimper and Traunmuller 2016). Rejecting hypotheses based on a lack of
Leamer robustness, thus, potentially allows the worst specified model or the
model estimated with lowest efficiency to determine the overall inference.
Since both errors are equally problematic and can lead to costly faulty policy
recommendations (Lemons et al. 1997), there is no “conservative research
design strategy” excuse for adopting Leamer robustness.

This problem of one-sidedness is exacerbated by the fact that in
a number of robustness test models standard errors increase by design.
The estimated effect may well become statistically insignificant, but this
does not necessarily cast doubt on the robustness of the baseline model
estimate. For example, many authors employ robustness tests in which they
restrict the sample in some way and thus discard some observations.
Naturally, the reduced sample size lowers the efficiency of the estimates
and renders finding a statistically non-significant estimate more likely.® This

6 In the study by Bechtel and Schneider (2010), for example, one robustness test
restricts the sample to estimating immediate effects (abnormal returns on the day
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similarly applies to other robustness tests that discard information — for
example, unit fixed-effects robustness test models that drop all the between-
variation in the data.

In contrast, in our definition of robustness, estimation models with
large power exert a potentially large influence, namely when the estimated
effects differ. In our definition of robustness, the consequences of efficiency
for the degree of robustness depend on the location of the robustness test
model’s point estimate. If it is far from the baseline model’s point estimate,
small standard errors of the robustness test signal non-robustness, not
robustness. Larger standard errors signal greater robustness but never
high degrees of robustness. If the robustness test point estimate is close to
the baseline model’s point estimate, robustness test models that lack effi-
ciency (that come with fairly large standard errors) are not informative:
these estimates do not signal non-robustness unless the size of standard
errors substantially exceeds the size of the baseline model estimate’s stan-
dard error.

Finally, the hunt for statistical significance has always incentivized the
selection of model specifications according to p-values. Adopting Leamer
robustness as the inferential criterion with a small number of highly selected
robustness tests — most social scientists report only few robustness tests —
will fuel the undesirable tendency to find everything significant and hence
robust in empirical analyses. Ever since Fisher’s (1925) original proposal of
null hypothesis significance testing, social scientists have learned how to
“tweak” significance and to conceal the lack thereof. Coupled with the fact
that “undisclosed flexibility in data collection and analysis allows present-
ing anything as significant” (Simmons et al. 2011: 1359), published empiri-
cal social science research seems to be robust to an astonishing degree.”

In sum, the logic of robustness testing conflicts with defining robustness
as effects remaining statistically significant with the same sign. Defining
robustness instead as stability in effect size embraces the logic of robustness
testing. It perfectly fits with the call by a growing number of authors for

after the summit). The estimated effect becomes statistically insignificant at the
5-percent level. The increase in standard errors is obviously triggered by the sharp
decline in the number of observations (from 1,554 to 222). Why would a result
become not robust only because researchers artificially reduce the available
information used to estimate the effects?

7 Negative findings are important and in need of robustness testing as well.
We wholeheartedly agree with the editors of eight health economics journals who
issued an editorial statement on negative findings that clearly states that results
from well-designed studies “have potential scientific and publication merit
regardless of whether such studies’ empirical findings do or do not reject null
hypotheses that may be specified” (Editors 2015: 505).
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social scientists to focus on the substantive importance of their estimated
effects (Ziliak and McCloskey 2008; Esarey and Danneman 2015). As Gill
(1999: 6571f.) has put it: “Finding population-effect sizes is actually the
central purpose of political science research since any difference can be
found to be statistically significant given enough data.”

T PARTIAL ROBUSTNESS IN NON-LINEAR AND LINEAR
MODELS

Up to this point, we have defined robustness as stability of the estimated
effect of a variable, implicitly assuming a single estimated effect. In all non-
linear estimation models, however, coefficients do not represent effects and
estimated effects are a function of the values of all explanatory variables in
the model. Non-linear models, thus, do not have a single effect of variable
x on outcome y. In practice, authors often report the marginal effect at mean
values or at median values or at other specified variable values that for some
reason are of particular interest, or at variable values as observed in the
sample and averaged across all observations (called the average marginal
effect).

Hanmer and Kalkan (2013) make the case for basing inferences to the
population on the average marginal effect. Cameron and Trivedi (2010:
340) suggest that for policy analysis one might want to look at either the
average marginal effect or at targeted specified values. We agree with the
latter suggestion: if researchers know to what part of the population they
intend to generalize findings, they should compute the effects for cases that
are similar to the part of population to which they wish to generalize.
In most cases, problems occur if no case represents the entire population
and if researchers do not intend to make targeted generalizations. This is
a problematic practice if effect strengths vary with covariates: in non-linear
models or in linear models with non-linear effects, conditional effects, or
causal or temporal heterogeneity. In all of these cases, predicted effects
which are representative for the entire sample do not exist.

Whenever effect strengths differ across cases, the degree of robustness
differs too. It may well be that robustness is high for some parts of the
sample and low for other parts of the sample. For these situations, we have
developed the concept of partial robustness that applies our definition of
robustness to the predicted effect and its standard error for each observa-
tion. The predicted effect varies across observations in non-linear models
and in all linear models that allow for non-linearity, conditionality or causal
or temporal heterogeneity. Partial robustness means that the baseline mod-
el’s estimated effect can be robust or more robust for some observations but
non-robust or less robust for other observations.
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V4

Figure 4.6: An Example of Partial Robustness
Note: Grey-shaded area represents confidence interval of baseline model.

To illustrate, assume a linear baseline and robustness test model that
both estimate effects of x on y that are conditioned by z. The two models are
specified differently; as a result, the estimated conditionality of x in the
baseline model is weaker than in the robustness test model. Figure 4.6
shows point estimates with associated confidence intervals for the effect of
x as a function of varying values of z for the baseline and robustness test
model.

For values of z smaller than 1.6, the estimated degrees of robustness are
below 0.05. At z=1.6, the degree of robustness is 0.05 and continues to
increase to 0.98 as z increases to 4.9, the point where the point predictions
are identical. Figure 4.6 thus demonstrates partial robustness: 0 or low
degrees of robustness at low levels of z and high degrees of robustness at
high values of z.

¥] coNCLUSION

This chapter filled the concept of robustness with meaning. While the object
of robustness depends on the research question and the intended inferences,
the baseline model’s estimate should be subjected to robustness testing in the
form of systematic plausible changes to model specification. Robustness
comes in degrees, we have argued, rather than as robust versus non-robust.
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We have defined the estimated degree of robustness p as the degree to which
the probability density function of the robustness test model’s estimate falls
within the 95-percent confidence interval of the baseline model. Put simply, p
measures the extent to which the robustness test model supports the baseline
model’s estimated effect. Like all definitions, ours is neither right nor wrong.
But it is useful, we have argued, since it has desirable properties. It both pays
heed to how close the point estimates are and considers the sampling varia-
bility of both estimates.

There is another sense in which robustness comes in degrees. Whenever
the estimation model is non-linear, the estimated degree of robustness will
differ across observations, unless analysts restrict their analysis to effect
sizes at specified variable values such as mean, median or targeted values or
to the average of marginal effects across observations. Whenever they
estimate non-linear, conditional or heterogeneous effects, the estimated
degree of robustness will inevitably differ across observations even in
a linear estimation model. We call this concept partial robustness: the effect
can be more robust for some observations and non-robust or at least less
robust for other observations.

Our definition of robustness conflicts with the implicit or explicit ad
hoc definition of many who seem to equate robustness with an effect con-
tinuing to be statistically significant with the same sign in the robustness test
model. According to our definition, an effect can be robust to a high degree
or can be non-robust (be robust to a low degree) independently of whether
the baseline or robustness test model’s estimates are statistically significant.
Robustness differs conceptually from statistical significance.



E A Typology of Robustness Tests

We may at once admit that any inference from the particular to the general
must be attended with some degree of uncertainty, but this is not the same as

to admit that such inference cannot be absolutely rigorous.
Ronald Fisher (1966)

1 INTRODUCTION

The number and variety of possible robustness tests is large and, if tiny
details and small differences matter, potentially infinite. The research pro-
ject and its design as well as the degree of uncertainty about specific model-
ling assumptions determine the choice of robustness tests. Not every
possible robustness test is relevant for each research project. To the con-
trary: each project requires a distinct set of tests, as the relevance of each test
depends on the specificities of model uncertainty, the intended inferences,
and the data structure.

The great variety and large number of tests appears bewildering. To cut
through this diversity, we suggest in this chapter a typology of robustness
tests. Specifically, we distinguish between five types: model variation tests,
randomized permutation tests, structured permutation tests, robustness
limit tests, and placebo tests. Model variation tests vary one specific aspect
of model specification in a discrete way. Randomized permutation tests
randomly select robustness test models from a large space of plausible
alternative models. Structured permutation tests exhaustively select all
plausible alternative models from a small space or select a few models in
a structured way with the aim of representing the entire distribution of
models in the larger space of plausible alternative models. Robustness
limit tests ask which model specification, which could represent a model
misspecification, renders the baseline model estimate non-robust. Placebo
tests either replace the dependent variable with a placebo variable to test
that the variable of interest has no effect under conditions in which no effect
is to be expected, or replace the treatment variable with a placebo variable to
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test that this placebo variable has no effect. Alternatively, researchers assume
that the baseline model is correctly specified in a certain dimension and
placebo tests intentionally introduce a model misspecification given this
assumption to test whether the baseline model estimate of the variable of
interest remains robust despite the introduction of a model misspecification.
Placebo tests of this kind represent the exception to the general rule that
robustness test models should not be implausibly specified.

IF] MODEL VARIATION TESTS

Model variation tests are as old as regression analysis. In model variation
tests, researchers change their baseline model in discrete ways. The first
scholar who added a control variable to his or her baseline model was
probably the first person ever to conduct a robustness test.

Most researchers conduct this type of robustness test — usually without
referring to it as robustness test at all. Yet, model variation tests go well
beyond the addition or removal of control variables. They are flexible and
can be applied to all dimensions of model uncertainty. In addition to adding
and removing explanatory variables, it is possible to change the operatio-
nalization of the variable of interest and the controls, the sample, the
functional form, to add or remove conditionalities, to change the specifica-
tion of structural change, dynamics, spatial dependence, and so on.

Model variation robustness tests can be specified so that the baseline is
nested in the robustness test model, so that the robustness test model is
nested in the baseline model or so that the two models are non-nested.
Nestedness requires that the baseline (robustness) test model is a special or
constrained case of the robustness (baseline) model. For example, the base-
line model might opt for greater simplicity by estimating a linear effect of
variable x, whereas a robustness test model might add the square of the
variable to allow for a non-linear (quadratic) effect and greater complexity.
In this case, the baseline model is nested in the robustness test model, which
contains the baseline model as a special case. Conversely, the baseline model
might opt for greater complexity by estimating a conditional effect of
variable x, whereas a robustness test model might estimate an unconditional
effect, thus exploring the robustness of baseline model estimate to a simpler
robustness test model that is nested within the baseline model. Lastly, the
two models are non-nested if neither represents a special or constrained case
of the other. For example, scholars might operationalize democracy in the
baseline model with one measure and explore the robustness of the estimate
with another measure of democracy in a robustness test model.

Examples of model variation tests in the literature abound. For exam-
ple, in one of the most extensive early robustness tests, Tucker, Pacek, and
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Berinsky (2002) use alternative survey questions, re-code the answer cate-
gories, and estimate models that exclude “don’t know” answers to analyze
attitudes towards EU membership in transition countries. Carey and Hix
(2011: 389) are concerned about their arbitrary decision of a functional
form: “We do not know whether some other functional form might describe
the shape of the diminishing returns even better.” They therefore replace
their baseline specification by robustness test models adding first the
squared, then the squared and cubic terms. Gibler and Tir (2010: 959)
replace their baseline model autocracy—democracy threshold by both higher
and lower thresholds.

A popular model variation robustness test seems to be to split the
sample at a defined line. Muckherjee and Singer (2010) use this test in
their analysis of the influence of the IMF on capital account liberalization.
Likewise, Nielsen et al. (2011) split their sample into small and large con-
flicts. In an interesting study, Boix (2011: 819) analyzes the influence of
democracy on per capita income using a structural equation model with
instruments. As a robustness test, he varies the instruments, ranging from
trade share to initial income ratio times the time trend. Though instrumental
variables models estimate local effects and cannot be expected to give
identical results, Boix’s estimates at least all point in the same direction.

As these examples demonstrate, model variation tests are best suited
for model uncertainty with a small set of discrete plausible alternatives. If,
for example, a variable can be plausibly operationalized in two ways, the
design of the model variation robustness test is fairly straightforward: use
both operationalizations. In practice, these situations occur, but they are
rare. For the majority of specification choices, a larger number of plausible
alternatives exist and sometimes this number is very large or even infinite, in
which case other types of robustness tests become attractive. Still, even
in this case it is possible to test the robustness of the baseline model in
comparison with the most common, the most plausible or the most drastic
of alternative specifications. The argument for the most plausible test is
simple, albeit a bit tautological: different potential robustness test model
specifications differ in their degree of plausibility, and researchers should
opt for the test that appears to be the most plausible. An alternative strategy
employs the most common alternative specification. The advantage here is
that the majority of peers will find the robustness test relevant. The most
drastic specification is one that, in expectation, puts most strain on the
baseline model, i.e. the test that offers the highest ex-ante likelihood to
result in non-robust findings. Care must be taken not to choose a model
that is not plausible since models known to be misspecified are not valid
robustness tests. Despite these options for employing model variation tests
even in situations where the number of plausible specifications in the
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uncertain dimension is large, other robustness test types become more
attractive. The next three types can all deal with a large number of
alternatives.

] RANDOMIZED PERMUTATION TESTS

Model uncertainties for which a large number of alternatives exist can be
dealt with by either randomized or structured permutation tests. We refer to
the former as randomized permutation tests because the uncertainty of
a model specification is dealt with by randomly selecting a limited number
of specifications from a larger set of potential specifications (the relevant
model space) for the same specific dimension of model uncertainty.
The number of random draws and of model iterations must be large enough
to represent the relevant model space.

The challenge for randomized permutation tests lies in the definition of
relevant model space. Care must be taken that only plausibly specified
models are included by ex ante restricting the space to an exclusive model
space or by minimizing the impact of implausibly specified models on the
robustness analysis via ex-post evaluation of model specification (see
Plimper and Traunmiiller 2016). If the model space cannot easily be
restricted either ex ante or ex post, the results from randomized permutation
robustness tests become difficult to interpret. Findings that cast doubt on
the robustness of estimates may be due to lack of robustness or due to
the inclusion of implausibly specified models into the model space.
The definition of the model space forms the Achilles heel of randomized
permutation tests.

The problem of defining the model space becomes apparent in the best
known randomized permutation test: Leamer’s (1978) sensitivity analysis.
Practically all of Leamer’s followers have applied sensitivity analysis to the
choice of explanatory variables, in which regressors are selected from a large
set of possible variables via randomized permutation, though some vari-
ables are always included in order to limit the overall model space.
In Leamer’s original formulation, robustness requires that all estimates
have the same sign and all estimates are statistically significantly different
from zero. Since early sensitivity tests of economic growth theories (Levine
and Renelt 1992) demonstrated that few variables pass this extreme bounds
test, Xavier Sala-i-Martin (1997: 179) argues that extreme bounds analysis
“is too strong for any variable to pass it: if the distribution of the estimators
of Sz has some positive and some negative support, then one is bound to find
one regression for which the estimated coefficient changes sign if enough
regressions are run. Thus, giving the label of non-robust to all variables is all
but guaranteed.” Instead, he suggests measuring robustness by the density
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function of the weighted model averaged estimates. If 95 percent of this
density function lies to either side of zero, the effect of a variable can be
considered robust.' He suggests two variants of model weighting depending
on whether the distribution of estimates is assumed to be normal or not
normal, both based on the integrated likelihood of estimated models.?
As Sala-i-Martin (1997: 180) himself admits, such goodness-of-fit weights
need not be a good measure of the quality of model specification. In fact,
clearly misspecified models can exhibit high goodness-of-fit, for example
due to variables being endogenous. Consequently, we regard this kind of
sensitivity analysis as failing the requirements for a valid robustness test.

Randomized permutation tests are not limited to sensitivity testing of
the set of explanatory variables. For example, researchers may explore the
robustness of a baseline model in the presence of measurement uncertainty.
Researchers can randomize the extent of artificial measurement error
injected into variable values across the plausible potential range of error.
Instead of eliminating measurement error from the data, this test explores
whether measurement error of a defined maximum magnitude affects the
robustness of estimates and potentially invalidates inferences based upon
them. The bounds of artificial measurement error should not be larger than
the largest measurement error that likely occurs in reality. While this may
sound cryptic, social scientists usually have information that allows them to
justify the bounds of measurement error. For example, the January 2010
Haiti earthquake placed a plausible limit on measurement uncertainty in
respect of mortality from large quakes in locations where reliable measure-
ment appears difficult.

The split sample test provides another example of a randomized per-
mutation test. The test aims at exploring the internal validity of causal
homogeneity typically assumed in baseline models. The sample is randomly
split in two halves and each observation in each half-sample is duplicated.
If causal homogeneity holds, the baseline model estimate based on the causal
homogeneity assumption will be robust to the estimates from these two split
samples. While a single split sample estimate does not mean much, 1,000
split sample estimates can cover the relevant model space. This raises the
question of how to assess robustness across the 1,000 estimates. Contrary to
Leamer’s sensitivity test, none of the models randomly selected by the split
sample and the artificial measurement error tests is implausibly specified.

1 In a re-analysis of Levine and Renelt (1992), Sala-i-Martin (1997) found only one
variable robustly related to growth based on extreme bounds. Using a model
averaging approach, he identified 22 of the 59 tested variables as robust.

2 In Sala-i-Martin, Doppelhofer, and Miller (2004), the authors move to what they
call a Bayesian averaging of classical estimates approach for model weighting.
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We therefore suggest averaging the unweighted estimates of the permuta-
tions to assess robustness.

] STRUCTURED PERMUTATION TESTS

In contrast to randomized permutation tests, structured permutation tests
deal with uncertainty of a specific dimension of model specification by
selecting either all alternative specifications or a limited number of specifica-
tions from a larger set of potential specifications according to some guiding
principle. In other words, structured permutation tests are non-randomized
and cover the model space either exhaustively or selectively but in
a structured fashion.

The requirements for structured permutation tests are similar to the
requirements of their randomized cousins: the model space and the robust-
ness criterion have to be defined, but a rule to select models replaces the
randomization algorithm. The same challenge to appropriately restrict the
model space applies. In terms of assessing robustness, since with structured
permutation tests the number of test models will typically be small to
moderate, p can be computed and reported for each one.

Exploring the entire relevant model space in a systematic fashion can be
done in either one of two ways. If the number of plausible alternative models
is small, all models of the model space should be selected. For example,
avariable x can be conditioned by more than one potential factor or analysts
can relax the functional form assumption by estimating polynomial models
of increasingly higher order up to a certain degree. If the model space
becomes large because minuscule variations are possible, researchers have
to make a discrete choice of plausible models — a choice that represents the
entire distribution of plausible models or, put differently, the relevant model
space.

With a large model space, the question becomes whether the space can
really be represented by structured selection. If this is questionable, randomized
permutation might be preferable. Covering the entire model space can quickly
become computationally infeasible. Consider the example of an exhaustive
structured variant of Leamer’s sensitivity analysis. Rather than randomizing
models, one would either estimate all possible combinations of explanatory
variables (inclusive model space) or estimate all combinations which are not
considered to be misspecified (exclusive model space). The number of possible
permutations equals 2%~1, where k is the number of considered explanatory
variables. Thus, if 20 variables are known to potentially influence an outcome,
the number of possible models reaches a shade above 1 million. If the number
of potential explanatory factors doubles to 40, the number of possible models
increases to 1,099,511,627,775. Assuming that a single estimate takes
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0.1 second on average, the sensitivity test would need almost 3,500 years to
finish on a single computer and still 3.5 years on 1,000 efficiently clustered
computers. While randomized permutation tests have their advantages when
the model space becomes very large, structured permutation tests have their
strengths with relatively small model spaces or if the selected structured
permutations represent the entire distribution of models.

A frequently used structured permutation robustness test is based on
the jackknife method, which drops one unit or one group of units of analysis
at a time, thereby exploring the extent to which estimates depend on the
inclusion of single units or groups. They thus indicate a lack of internal
validity or — potentially — causal heterogeneity. Jackknife tests are popular.
Egorov, Guriev, and Sonin (2009), Lipsmeyer and Zhu (2011: 654) and
Martin and Swank (2004, 2008) exclude one country at a time in their
analyses. As another example of a structured permutation robustness test, in
an excellent robustness test section Scheve and Slaughter (2004: 672) gra-
dually expand the sample size and move away from what they consider to be
the sample “for which the theoretical framework most directly applies.”

A common structured permutation test relates to the aggregation of
a continuous or categorical variable into two or more sub-categories.
In these cases, the “true” cut-off points are unknown. Accordingly, robust-
ness tests can vary the chosen cut-off point to explore whether results are
independent of the threshold. Take the polity2 measure of democracy as an
example. Besley and Reynal-Querol (2011) use a dichotomous distinction
between autocracies and democracies setting the cut-off point at 0, i.e.
democracies are defined as scoring 1 or higher on the scale that runs from
-10 to 10. Cut-off points are arbitrary and thus controversial, and this
example is no exception. Other authors prefer a higher threshold. Fearon
and Laitin (2003), for example, use a cut-off point of 5, others use the even
higher score of 6 (Bigsten 2013: 31) as threshold. A structured permutation
test uses all plausible cut-off points.

As a final example of structured permutation tests, Michael Bailey
(2005) employs a simple but appealing “varying control group approach”
to analyze the migration response of poor single mothers who receive the
treatment of a specific welfare benefit. Recognizing that his research design
“requires that I include in the sample a ‘control group’ that is not eligible for
welfare but otherwise resembles the ‘treatment group’ of poor single
mothers” (Bailey 2005: 127), he follows two previous studies in using
three different control groups of people who were not eligible for the
particular welfare benefit. In his baseline model he uses poor women, but
changes the control group to, separately, poor men without children and to
married women with children. He chooses these groups to explore the
robustness of findings (Bailey 2005: 127): “No group perfectly matches
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the welfare population, but all match in some way the skill profiles and
economic circumstances of poor single mothers. Using multiple specifica-
tions should increase confidence in the robustness of the results.”

IF] ROBUSTNESS LIMIT TESTS

The vast majority of robustness tests ask whether the baseline model
estimates remain robust to plausible changes in model specification.
However, not all robustness tests seek to check the degree of robustness
given plausible alternative specifications. Robustness limit tests, which
are inspired by “Rosenbaum bounds” (Rosenbaum 2002), though others
like Frank (2000), Pan and Frank (2003), and Frank and Min (2007)
have independently developed similar ideas, instead ask by how much
the specification of a model needs to change to render the baseline model
estimate non-robust.

Consider, as an example, the choice of functional form. Rather than
analyzing whether the estimated effect is robust to a change in functional
form of the variable of interest, researchers can ask to what degree the
functional form needs to change to render the baseline model estimate not
robust. Robustness limit tests work particularly well with model specifica-
tions that can be altered in a continuous fashion. For example, a set of
estimates can explore what the correlation between a random placebo
variable and the variable of interest needs to be to render the estimated
effect non-robust.

Rosenbaum (1991, 2002) develops his idea of the bounds of hidden
bias based on the example of the effect of smoking on lung cancer. His
analysis draws on two previous works: Cornfield, Haenszel, Hammond,
Lilienfeld, Shimkin, and Wynder (1959) were the first to use the logic of
a bounds test. In an argument worth citing despite its convoluted English,
they claim (p. 194):

If an agent, A, with no causal effect upon the risk of a disease, nevertheless, because of
a positive correlation with some other causal agent, B, shows an apparent risk, r, for
those exposed to A, relative to those not so exposed, the prevalence of B, among those
exposed to A, relative to the prevalence among those not so exposed, must be greater
than r. Thus, if cigarette smokers have 9 times the risk of nonsmokers for developing
lung cancer, but this is not because cigarette smoke is a causal agent, but only because
cigarette smokers produce hormone X, then the proportion of hormone X-producers
among cigarette smokers must be at least 9 times greater than that of nonsmokers.
If the relative prevalence of hormone X-producers is considerably less than ninefold,
the hormone X cannot account for the magnitude of the apparent effect.

Based on this logic, the authors came to conclude that the evidence for
smoking causing cancer is “beyond reasonable doubt,” just as a Study
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Group appointed by the National Cancer Institute, the National Heart
Institute, the American Cancer Society, and the American Heart
Association had proclaimed two years prior.>

The second study on which Rosenbaum relies is an analysis of matched
pairs (Hammond 1964). This analysis identified 36,975 heavy smokers and
nonsmokers who were (almost) identical in respect of age, race, time of
birth, residence, occupational exposure to dust and fumes, religion, educa-
tion, marital status, alcohol consumption, sleep duration, exercise, nervous
tension, use of tranquilizers, current health, history of cancer and heart
disease, stroke, and high blood pressure. Of these pairs 12 nonsmokers
and 110 heavy smokers died of lung cancer. The lung cancer mortality
rate among heavy smokers was thus below 0.3 percent (p=0.002975), but
still more than 9 times higher than the lung cancer mortality among non-
smokers, which stood at 0.000325. The probability that the gap is random if
we had a perfect random draw from a population was 0.0001.

Rosenbaum uses this information for what he calls a sensitivity test. He
asks by how much an unobserved lung cancer propensity factor of heavy
smokers has to exceed that of non-smoking individuals to render the causal
effect of smoking statistically insignificant. Rosenbaum (2002: 114) con-
cludes: “To attribute the higher rate of death from lung cancer to an
unobserved covariate u rather than to an effect of smoking, that unobserved
covariate would need to produce a sixfold increase in the odds of smoking,
and it would need to be a near perfect predictor of lung cancer.”

As Rosenbaum demonstrates, robustness bounds can be computed analy-
tically. However, it is possible and in many cases easier to conduct robustness
limit tests. These tests gradually increase the degree of “pressure” on the base-
line model. It works best where researchers have a clear idea about a potential
model misspecification that is difficult or impossible to correct, for example
because of potential confounders that are unobservable or unobserved due to
measurement problems. To stay in the example of the effect of smoking on lung
cancer, the correlated artificial variable test proposed in chapter 9 on the choice
of explanatory variables plays with two “moving elements” of an artificial
variable that “by design” leads to cancer: the probability that a latent variable
causes cancer and the correlation between this variable and smoking. As both

3 This logic depends on numerous untested assumptions. Most importantly, the
authors assume that treatments are either present or absent and if absent either
equally strong or, if strength matters, the strength is irrelevant for the causal effect.
For example, the true causal effect may well be that smoking is correlated to an
intensified production of hormone X, which has to exceed a certain threshold to
stimulate the occurrence of lung cancer. Hence, it may well be that smokers only
have 30 percent higher production of hormone X, but they may be nine times as
likely to pass the threshold required for cancer.



A Typology of Robustness Tests

factors go up, the predicted effect of smoking declines (while the uncertainty of
an effect of smoking increases). In addition to the robustness limit scholars
might be interested in the uncertainty of the estimate.

Robustness limit tests have drawbacks. Most importantly, the inter-
pretation of results is not straightforward. Interpretation is easy if and only
if researchers have sufficient information to conclude that the model that
reaches the robustness limit is misspecified. Rosenbaum argues exactly this:
the effect of a lung cancer phenotype correlated with smoking necessary to
overturn the effect of smoking would have to be too large to plausibly exist.
In other cases, it remains contested what to make of the robustness limit test:
does the test suggest that the baseline model estimate fails the robustness test
or does it instead suggest that the baseline model estimate is robust because
the model that reaches the robustness limit is misspecified?

As a corollary, if the limit is known beyond which a model becomes
clearly misspecified, analysts have two options: firstly, they can use a rando-
mized or structured permutation test and assess the robustness of the baseline
model estimate within the boundary. Alternatively, they can go beyond this
boundary to study where the robustness limit lies, knowing that models
which reach the robustness limit are misspecified. Take the example of
measurement uncertainty. If the bounds of plausible measurement error can
be established, a randomized or structured permutation test can explore
robustness within the boundary. Alternatively, a robustness limit test can
find the extent of measurement error that needs to be injected to render the
estimate non-robust and can then assess whether this extent of measurement
error falls within the boundary of plausible measurement error.

Robustness limit tests are rare in the social sciences. Imai, Keele,
Tingley, and Yamamoto (2011) propose such tests as part of their metho-
dological contribution on how to learn about causal mechanisms in obser-
vational and experimental studies:

Given that the identification of causal mechanisms relies upon an untestable assump-
tion, it is important to evaluate the robustness of results to potential violation of this
assumption. Sensitivity analysis provides one way to do this. The goal of a sensitivity
analysis is to quantify the exact degree to which the key identification assumption
must be violated for a researcher’s original conclusion to be reversed.

(Imai et al. 2011: 774)

We agree with the authors that robustness limit tests always explore
robustness in one specific dimension of model misspecification, not in other
or all dimensions. Imai et al. (2011: 774) correctly warn readers about the
limitations of their robustness limit test:

Although sensitivity analysis can shed light on whether the estimates obtained under
sequential ignorability are robust to possible hidden pretreatment confounders, it is
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important to note the limitations of the proposed sensitivity analysis. First, the
proposed method is designed to probe for sensitivity to the presence of an unobserved
pretreatment confounder. In particular, it does not address the possible existence of
confounders that are affected by the treatment and then confound the relationship
between the mediator and the outcome.

Robustness limit tests are powerful in directing future research.
Assume a researcher wishes to explore whether controlling for time-
invariant “unobserved heterogeneity” renders the baseline model estimate
non-robust. One option is a model variation test that includes unit fixed
effects. As chapter 9 shows, this strategy may have severe drawbacks,
including testing a hypothesis that differs from the theoretically derived
hypothesis as well as potentially inappropriately throwing away variation
that belongs to the estimated effect — thereby throwing out the baby with the
bath water. As an alternative, we propose a between-variation test that can
find the percentage of between-variation that needs to be dropped to render
the baseline model estimate non-robust.*

W] PLACEBO TESTS

Up to this point, we have argued that, other than for robustness limit tests,
models used in robustness tests must be plausibly specified. Placebo tests are
different. To understand why, we first make a detour into medical trials.

Placebo analyses are most commonly used in experimental research
with human participants. Placebo-controlled studies are a way of testing
a medical therapy in which, in addition to a group of subjects that receives
the treatment to be evaluated, a control group receives a placebo treatment
specifically designed to have no real effect. Placebos have to be employed in
blinded trials where subjects do not know whether they are receiving real or
placebo treatment. Often, the experiment includes a third group that does
not receive any treatment at all.

The placebo treatment aims at accounting for the placebo effect. This
effect is caused by the treatment act — the psychological effect of receiving
attention from health care professionals — rather than by the proper treat-
ment, that is, a substance or procedure that supposedly has an effect.
Typically, social scientists define the treatment effect as the net effect of
the observed change in the treated group minus the observed change in the
placebo group. If it were ethically possible and if an appropriate placebo

4 Additional research can analyze which factors usually assumed to be time-
invariant such as history, institutions, culture, and geography can account for this
between-variation and whether the estimated effect is robust with these additional
time-invariant control variables included.
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existed, researchers could study the effect of smoking on lung cancer by
giving the treatment group cigarettes and the control group placebos which
are identical to cigarettes in all dimensions except one: they do not contain
carcinogenic substances.

Placebo robustness tests in regression analysis of observational data are
similar, but not identical to placebo analysis in experiments. They come in
two variants. In the first variant, researchers intentionally “misspecify” the
model by either switching the dependent variable to one for which the
variable of interest is expected to not have an effect (i.e., becomes
a placebo variable) or by keeping the same dependent variable but switching
the treatment variable to a placebo variable which is expected to not have an
effect on the original dependent variable. Instead of testing the robustness of
the baseline model’s estimate, a placebo test asks whether the placebo
variable that replaces the treatment variable does or does not have an effect
on the original dependent variable or whether the variable of interest loses
its explanatory power if we replace the original dependent variable with
a placebo variable.

In the second variant of placebo robustness tests, researchers make
a specification change that, under the assumption that the baseline model is
correctly specified in a certain dimension, represents a misspecification. For
example, scholars can add a placebo variable to the estimation model that in
expectation does not affect the robustness of the baseline model estimate for
the variable of interest. In this variant, analysts continue to estimate the degree
of robustness similar to other types of robustness tests. Placebo robustness tests
of the second variant have to be permutation tests. For example, it does not
make sense to add a single randomly distributed placebo variable to the model
since by pure chance it could affect robustness. Rather, a large number of
permutations are needed — we recommend at least 1,000 permutations if
computationally feasible — to render such chance impact unlikely.

For placebo tests of the first variant a single model run will not be
conclusive either since pure chance can suggest relevant effects where none
exist and suggest no effects where they do exist. However, it may not be
feasible to undertake permutations since there may exist only one alterna-
tive dependent variable for which the treatment variable should have no
effect or only one option to switch the treatment variable into a placebo
variable. For the same reason, placebo robustness tests of this variant are
somewhat limited since they require either the existence of an alternative
dependent variable which is independent of the variable of interest or the
possibility to transform the variable of interest, the treatment variable, into
a placebo variable.

Folke, Hirano, and Snyder (2011) provide a clever example of the first
variant of a placebo robustness test. While the baseline model demonstrates
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that parties in power were able to use patronage to improve their chances of
winning at later elections, their placebo test demonstrates that no such
relation exists for prior elections. Similarly, Gerber and Huber (2009:
415) show that partisanship has no placebo effect “under conditions
where our model predicts partisanship and consumption should be
unrelated.”

Occasionally, placebo tests can be a part of a structured permutation
test in which a treatment variable becomes more and more a placebo vari-
able. Consider the effect of democracy on an outcome where analysts use
a dichotomous cut-off point to distinguish autocracies from democracies,
which raises the question where to set the cut-off point. Of course, no “true”
cut-off point exists. Democracy is a latent variable, proxy variables will be
measured with error, and no consensus exists on where the true cut-off point
is, not least because even in theory regime type falls along a spectrum instead
of into a clean dichotomy. At the same time, certain cut-off points are not
plausible and can thus function as placebo tests. For the example of the
polity2 measure of democracy which runs from -10 to 10, reducing the cut-
off point to lower values represents a structured permutation test. At some
point, further decreasing the cut-off point should result in the test finding the
baseline model estimate to be less and less robust, just as it is designed to be.

A prime example of a placebo test of the second variant adds a random
variable. It is of no interest whether the estimate for the placebo variable
turns out to be statistically significant or not. By construction, random
variables become statistically significant at the 95-percent level in roughly
5 percent of cases because the placebo variable is correlated to the random
deviation of the errors from the assumed normal distribution of residuals.
If the random placebo variable turns out to be significant in a substantially
higher share of cases, the placebo variable is likely to be correlated to
systematic structure in the residuals. This finding suggests some form of
model misspecification though identifying the type of misspecification based
solely on the structure in the residuals is not normally possible.

Placebo robustness tests become more informative when researchers do
not add a purely random variable, but give the placebo variable a certain
structural property to account for a potential specification error that is non-
existent in the baseline model. Assume that researchers believe that they
have specified their baseline model correctly in a certain dimension. For
example, they believe that they have included relevant control variables that
sufficiently account for time-invariant unobserved heterogeneity or that
they have adequately modelled dynamics and temporal heterogeneity.
Introducing time-invariant placebo variables or strongly trended placebo
variables should not affect the stability of the baseline model’s estimate for
the variable of interest. However, in cases like these, placebo variables may
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become statistically significant in more than the expected 5 percent of
permutations. In both cases, the impact of the inclusion of the placebo
variable on the effect of the variable of interest matters.

In chapter 14 on spatial correlation and dependence we propose
a structured spatial placebo test. Assume that the baseline model tests
a theory of spatial dependence. As we have argued elsewhere (Neumayer
and Plumper 2016a), the weighting matrix models the causal mechanism of
a theoretical argument for spatial dependence. The connectivity variable
employed in the weighting matrix and its specification must capture this
mechanism. The placebo robustness test replaces the theoretically informed
connectivity variable in the weighting matrix by a random variable. Since
the weighting matrix is multiplied with the spatially lagged dependent
variable, the spatial lag becomes statistically significant in more than 5 per-
cent of permutations — not least because it will be correlated with the spatial-
lag variable that employs the theoretically informed connectivity variable.
Nevertheless, if the baseline model is not obviously misspecified, the effect of
the spatial-lag variable based on the theoretically informed connectivity
variable will remain robust to adding this spatial placebo variable.

) concLuSION

The degree to which robustness tests contribute to the validity of inferences
derived from regression analysis of observational data depends on the extent
of uncertainty about model misspecification, on the theoretical justification
and design of robustness tests as well as on the type of robustness tests
chosen for dealing with this uncertainty. The vast majority of social scien-
tists rely on simple model variation tests, which seem to have the advantage
to scholars that they can be done easily and carefully selected to not render
the baseline model estimates non-robust. These tests merely aim at provid-
ing additional arguments for journal editors and reviewers to accept
a manuscript.

This standard practice stands in remarkable contrast to the best work
in empirical social science. Indeed, an increasing number of authors conduct
intelligently designed, increasingly complex robustness tests of multiple
types, going well beyond simple model variation tests. To us, robustness
tests are an essential element of causal inference based on regression analysis
of observational data, where researchers cannot guarantee the correct spe-
cification of the baseline model. Yes, replacing one variable operationaliza-
tion by another constitutes a robustness test as do other model variation
tests, but randomized permutation tests, structured permutation tests,
robustness limit tests, and placebo tests, if well specified, offer deeper
insights into the validity of causal inferences. If used optimally, robustness
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tests allow scholars to improve the validity of causal inferences and to
identify their limits, for example, the limits of generalizability. However,
to seize this great opportunity, social scientists need to take robustness
testing seriously and stop misusing them as a means to increase their
publication chances. In best practice, robustness tests are no longer part
of a publication strategy, they become an essential part of the research
strategy.



E Alternatives to Robustness Testing?

No amount of experimentation can ever prove me right.
Attributed to Albert Einstein

1 INTRODUCTION

Robustness tests provide social scientists with the means to improve the
validity of statistical inferences based on the analysis of observational data.
Regressions analyses of observational data will remain at the heart of the
methodological toolkit for quantitative social science research though they
are fraught with model uncertainty.

Robustness tests are not the only methodological option on offer for
solving the problem of model uncertainty. Methodologists have developed
alternative methods for analyzing observational data. They have also sug-
gested that specific research designs strongly improve the probability of
valid inferences from observational data. In addition, there are many
who believe that the analysis of observational data cannot be free from
ambiguities and that social scientists should simply follow the experimental
turn in the sciences.

In this chapter we argue that these alternative methodologies offer no
alternative to robustness testing. In short, an alternative methodology that
allows researchers to formulate inferences that are valid with certainty does
not exist — at least not if researchers intend to go beyond mere description.
This provides the most fundamental reason why all methodologies require
robustness testing: if no single research design, estimation procedure or
analytical technique allows the derivation of perfectly valid inferences
then every design, procedure or technique warrants subjecting its results
to plausible alternative specifications to explore whether these generate
sufficiently similar (robust) estimates.

Our argument may surprise those who have fallen under the spell of
identification techniques and, particularly, social science experiments, erro-
neously believing that these alternative designs are not only unambiguously
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superior to regression analyses of observational data but also identify the
true causal effect of a factor with certainty and therefore obliterate the need
for robustness testing.

We concentrate here on what we regard as the most important alter-
natives to regression analyses. For each alternative methodology that we
discuss, we identify the — in our view at least — most important specification
uncertainties it suffers from. We make no pretense of being comprehensive
in the choice of specification uncertainties we identify. Our objective is
merely to persuade those readers who remain skeptical that indeed no
methodology is free of specification uncertainty and consequently requires
robustness testing for improving the validity of inferences based on these
methodologies.

We start by staying within the realm of regression analyses and discuss
why comprehensive model specification tests or model selection algorithms
cannot result in identifying or at least sufficiently approximating the one
“true” model. Acknowledging that it is not possible to find this model and
that estimates based on any model are sensitive, some seek solace in aver-
aging across a very large number of models. We then move to more recent
methodological advances in the form of research designs based on the
selection of cases (regression discontinuity, matching, and synthetic con-
trol), effect isolation via instrumental variable estimation and social science
experiments.

¥] MODEL SPECIFICATION TESTS

Econometricians have long since developed econometric tests aimed at
detecting model misspecification. The hope is that a battery of tests will
allow researchers to find the true model, or at least get sufficiently close to it.
Econometric tests fall into three categories:

First, relative tests which say nothing about the absolute quality of
a model, but compare two or more models. Yet, the best-fitting mis-
specified model remains misspecified. Often, as in the Hausman test,
a comparison draws on whether the estimates from an estimator
assumed to be consistent and an estimator assumed to be inconsistent
are significantly different. Implicitly, these tests depend on the absence
of other model misspecifications that render the “consistent” estimator
inconsistent, e.g. time-varying omitted variables or misspecified
dynamics in the classical Hausman test that compares a fixed-effects
to a random-effects specification.

Second, model fit tests that assess the overall quality of a model with
adjusted R-squared statistics, F-tests, and chi-squared tests as well
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as more complex “goodness-of-fit” measures. Often, the indicators
become inflated by econometric patches which do not belong into
the true model but are included in the hope that they account for
omitted variables the researcher cannot or does not want to control
for, e.g. unit fixed effects. This invalidates the goodness-of-fit test.
Moreover, strong and implausible assumptions are required for
making the claim that better-fitting models are better specified.
For example, proponents of this claim would have to argue that
over-fitting is impossible and to claim that better-fitting models are
always better specified. Unfortunately, goodness-of-fit can be
improved much more easily than model specification.

Third, model fit tests that analyze the residuals for structure. From our
perspective, these tests are better suited than other tests to evaluate the
quality of a model specification. We advocate the careful use of such
tests for finding a baseline model. However, these tests will not find the
“true” model and whether they always improve a model specification is

debatable.

The main problem with econometric tests, even those that analyze the
residuals for structure, is that they may signal the existence of a problem, but
they fail to identify the problem’s cause. For example, Ramsey’s specifica-
tion test is usually employed for detecting functional form misspecification,
but a rejection of the null hypothesis can indicate a large number of other
specification errors. A correlation between the regressors and the residuals
can be caused by too many regressors, too few regressors, wrong regressors,
wrong functional form, wrong interaction effect, and wrong functional
form of interaction effect. The same holds for other specification tests
(McAleer 1994: 330f.).

But what about a test contest of plausible models? Researchers could
develop a set of plausible model specifications and then subject each of these
model specifications to those tests that appear to have sufficient power to
identify misspecified models. In principle, there is nothing wrong with this
idea. However, the problem is that econometric tests remain inconclusive:
whatever the specification test, more than one model will pass the test. Even
if we could interpret a set of tests as a single model specification test that
empirical models need to pass, there would still be more than one model
specification that passes all econometric tests simultaneously. As Peach and
Webb (1983: 697) already demonstrated in the 1980s, “econometric testing
as sole criteria for discriminating among competing (...) models is
inconclusive.”

Accordingly, we currently see no possibility of conclusively discrimi-
nating between plausible models, that is, models that are not obviously
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misspecified. As a consequence, in order to improve the validity of their
inferences researchers have to use robustness tests to analyze whether
the estimated effects of these plausibly specified models are sufficiently
similar.

%] MODEL SELECTION ALGORITHMS

The idea that model specification tests can find the “true” specification and
that the process of finding “the truth” can be handed over to a computer
program has been championed by David Hendry and his disciples. His
“testing-down approach” (Krolzig and Hendry 2001; Hendry and Krolzig
2005) starts with a general statistical model that is “congruent” with the
dataset: It “matches the data evidence on all the measured attributes”
(Campos, Ericsson, and Hendry 2005: 7). The objective is to reduce the
complexity of this model as much as possible by eliminating statistically
insignificant variables. Here, “as much as possible” means that the more
specific model must pass specification tests and must be congruent with the
dataset. Specification tests are, in other words, used to establish the con-
gruence of the general model and are repeatedly used to discard invalid
reductions of the general model.

The general-to-specific approach has been criticized, because it “would
require an enormously complex exercise, with a complete model of the joint
distribution of all variables, allowing for non-linearities, heteroscedasticity,
coefficient drift and non-Gaussian errors” (Hansen 1996: 1411). Magnus
(1999: 61-62) similarly argues that the testing-down approach “does not
work. If you try to estimate such a large model, which has everything in it
that you can think of, you get nonsensical results.”

Hendry and his followers are aware of this critique (Campos, Ericsson,
and Hendry 2005: 6), but believe their approach can recover the so-called
local data-generating process (Hendry 2002: 599). Yet, it remains unclear
whether a “local data-generating process” exists at all and, if it does,
whether the convenient error structure that researchers assume to exist is
exactly matched in the real data-generating process.

In the specification search from the general to the specific model two
principal errors can and indeed are likely to occur: variables are eliminated
that should be retained in the model, while other variables are retained even
though they should be eliminated. Its supporters contend that their highly
sophisticated multiple-path search and testing algorithms minimize the risk of
both errors and provide Monte Carlo evidence to this effect (Hoover and
Perez 1999, 2004). Yet, there is no guarantee that relevant variables are
retained and irrelevant ones eliminated, particularly not if variables are
correlated with each other as they typically are and if models are misspecified.
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In consequence, the results of testing-down approaches depend crucially
on arbitrary decisions about model misspecification. For example, it is not
possible to simultaneously include all possible functional forms, conditional-
ities, and dynamic specifications into the “general” model. Likewise, it is not
possible to simultaneously include different samples into a testing-down
experiment so that more than one plausible model and more than one effect
estimate emerge as a result. In fact, testing-down approaches are hardly suited
to deal with more than the selection of right-hand-side variables and perhaps
functional form assumptions. In conclusion, model selection algorithms can-
not address all dimensions of model uncertainty and cannot solve those
dimensions they do address.

7] MODEL AVERAGING

Leamer (1978) pioneered the idea of basing inferences not on the results
from a single model but on a potentially very large number of models.
Methodologies which draw conclusions from multiple estimates require
an aggregation rule. In Leamer’s original analysis a single model exercised
a veto right over inferences, as a particular result had to pass the test — of
statistical significance in Leamer’s definition of robustness — in every single
model.

Followers of Leamer have adopted statistical significance as the criter-
ion of robustness, which runs counter to our definition of robustness as
stability in effect strength. More importantly, however, for the purpose of
this chapter is that Leamer’s disciples moved away from granting a single
model veto right and instead adopted what is known as model averaging.
Model averaging serves as a label for very different techniques; it can be
combined with numerous inferential rules and with virtually infinite defini-
tions of the model space included across which results are averaged. For
example, our randomized and structured permutation tests also employ
model averaging techniques within robustness testing. In this sense already,
model averaging is an integral part of robustness testing and not an alter-
native. Many proponents of model averaging agree, including Bayesians.
Montgomery and Nyhan (2010: 266), for example, suggest that Bayesian
Model Averaging “is best used as a subsequent robustness check to show
that our inferences are not overly sensitive to plausible variations in model
specification.”

This does not mean that model averaging is not regarded by some as an
alternative technique to robustness testing as proposed in this book. Model
averaging techniques require the following specification decisions: "

1 This discussion follows Plimper and Traunmiller (2016).
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—

. A definition of the parameter of interest and its computation;

A definition of the model space: the set of all models potentially
included;

A selection rule that draws models from the model space;

A stop function that determines the number of estimated models;

An aggregation and weighting rule;

An inferential rule, which decides how to interpret the weighted mean
of parameter estimates.

N

AR

Consider model averaging for estimating the effect of educational
attainment on economic growth as the parameter of interest. Even if
researchers exclusively focus on one aspect of model uncertainty, namely
the set of explanatory variables, the model space can become extremely
large. The model space is usually constructed from the set of all combina-
tions of explanatory variables that in the past have been used in growth
regression studies, giving us at least 50 different variables. Including 50
variables into the set of explanatory variables from which to generate all
potential permutations results in a model space of more than 1,000 trillion
models. Yet, researchers who employ model averaging usually estimate only
a few million models, that is, a very small fraction out of every possible
model variant. A popular model selection rule has been suggested by Levine
and Renelt (1992), who limit the model space by the 1+3+3 rule; the first
variable is the variable of interest, then three variables are specified which
are always included, and the final three variables are a random draw from
the remaining 46 variables — thereby shrinking the model space to a little
more than 15,000 models. Researchers have also used different weights,
ranging from unweighted to the Bayesian or Akaike information criterion.
Since model fit parameters tend to be correlated, the choice of a weight
exerts considerably less influence than the decision to use weights rather
than an unweighted mean of all estimates. Finally, at least in principle,
scholars could use numerous different inferential rules. In practice, how-
ever, most researchers have followed Leamer and adopted statistical signifi-
cance by looking at the share of the distribution around the (weighted) mean
of all point estimates that crosses the threshold, usually of zero.

Model averaging lacks a clear intuitively plausible foundation.
A model space of thousands, millions, let alone billions of models will
include many utterly implausibly specified models. More importantly for
our argumentation here, model averaging techniques rely on numerous
model specification assumptions for which plausible alternatives exist —
for example, on the functional form of an effect, the conditionality between
variables, the definition of the population from which a sample is drawn, the
definition of the model space, model selection rules, and the choice of
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weights. As a consequence, model averaging techniques require subjecting
their results to robustness tests for improving the validity of inferences based
on this technique.

] CASE SELECTION RESEARCH DESIGNS

The recent rise of identification approaches in the social sciences brought
case selection techniques back into the social scientists’ toolbox. When done
well, a careful selection of cases has two consequences: on the one hand, the
selection of cases increases the homogeneity of cases analyzed. The more
homogeneous the cases, the fewer confounding factors need to be controlled
for to make valid inferences. Ideally, cases become not just more homoge-
neous but identical in all but the relevant dimension (the treatment), in
which case it becomes possible to directly compute the causal effect, dis-
torted only by the difference in the average random errors between treat-
ment and control group. On the other hand, however, selection reduces the
number of cases and the types of cases included in the sample. Since real
world cases are likely to be characterized by causal heterogeneity and
context conditionality, as selection gets stricter and stricter the sample
properties become increasingly different from the population properties.
Research designs that employ selection rules aimed at improving the
internal validity of estimates include regression discontinuity, matching,
and synthetic control. Regression discontinuity designs exclusively compare
cases that only just met the criteria to receive treatment in the treatment
group with cases that only just failed to receive treatment in the control
group — by assumption both sets of cases ought to be very similar to each
other provided subjects did not exercise control over whether they received
treatment or not. Matching selects cases from a larger sample, matching
treated cases to similar, and ideally otherwise identical, untreated cases on
the values of observable variables, with all other unmatched cases being
discarded. Synthetic control designs employ some weighting rule to artifi-
cially create a control case (or a set of control cases) that closely resembles
a treated case (or a set of treated cases). Thus, rather than finding an
identical or sufficiently close twin of a specific case, researchers synthetically
produce an almost identical twin by taking shares of other cases.
Selection-based research designs can deal fairly well with two specifica-
tion problems: observable confounders and their functional form. Yet, all
other model uncertainties remain. For example, since it is not possible to
match or create a synthetic case control based on unobserved confounders,
these techniques provide no solution to unknown confounding factors, but
only against potential misspecification of the functional form of known
confounders (Sekhon 2007, 2009). Specifically, matching gives unbiased
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results if and only if cases are matched based on the true model. If the
matching algorithm excludes one or more variables which are included in
the true model, matching estimates are biased.

Research designs that are based on case selection can only be general-
ized to a population that has properties identical to the selected sample.
Unless the population of cases is characterized by strict causal homogeneity,
the selected cases do not represent a random sample of the true population
and the population to which results can be inductively generalized from the
selected cases is therefore not the true population for which researchers seek
to make causal inferences. Matching almost inevitably produces deviations
of the sample from the population particularly in those parts of the popula-
tion where the number of observations remains small so that perfect
“matches” become unlikely. As a consequence, the matched samples will
no longer represent the population. While it may be possible to “match”
a sample in which, in principle, all permutations of treatments and condi-
tionalities are represented, we are not aware of any attempt to produce such
a matched sample in any study. Similarly, in regression discontinuity
designs, the deviation of cases at the discontinuity threshold from other
treated and untreated cases is likely to be non-negligible. The return on
investment in higher education for somebody who almost failed to be
accepted by a university ought to be smaller than the returns to the average
student or the superstar among students.

It is questionable, in our view, whether it pays to trade off a potential
increase in internal validity against a certain loss in external validity. In any
case, robustness tests with different selected cases, possibly with entirely
different analyses, are required to establish the extent to which the estimated
effect can be generalized.

Beyond uncertainty about causal heterogeneity, selection-based
research designs are also subject to other model uncertainties regarding
the population, concept validity and measurement, dynamics, and spatial
dependence. Consider spatial dependence: to analyze learning effects and
externalities, a full sample is required. Missings and selection usually bias
the results from spatial analyses. Accordingly, spatial dependence and selec-
tion-based research designs do not go well together. Selection-based
research designs have to match cases based on their spatial dependence,
regression discontinuities have to demonstrate that networks are identical
on both sides of the discontinuity, and the synthetic case has to have
identical ties and links to real cases. We are not arguing here that it is not
possible to achieve this, but there must be a reason that no selection-based
research design we have seen incorporates spatial dependence into the
selection. In sum then, selection does not comprehensively solve the problem
of model uncertainty. Selection-based designs quite successfully solve some
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dimensions of model uncertainty but maintain and even exacerbate others.
As a consequence, selection-based research designs warrant robustness tests
as much as regression analyses.

W] EFFECT ISOLATION VIA INSTRUMENTAL VARIABLE
ESTIMATION

According to econometric wisdom, instruments can be used to isolate the
causal effect of a variable from the effect of unobserved confounders.
As Morgan and Winship (2015: 291) claim:

If a perfect stratification of the data cannot be enacted with the available data, and
thus neither matching nor regression nor any other type of basic conditioning
technique can be used to effectively estimate a causal effect of D on Y, one solution
is to find an exogenous source of variation that affects Y only by way of the causal
variable D. The causal effect is then estimated by measuring how Y varies with the
portion of the total variation in D that is attributable to the exogenous variation.

Instrumental variable (IV) estimation gives an unbiased estimate of the
effect of D on Y if

1. the instrument is perfectly correlated with the exogenous part of the
covariation of D and Y,

2. the instrument is perfectly orthogonal to the endogenous part of D,

3. the instrument is perfectly orthogonal to any other model
misspecification.

If these conditions are not satisfied, then the estimated instrumented
effect of D on Y is biased: it differs from the true effect of D on Y.

Since conditions 2 and 3 need to be assumed and cannot be tested for or
taken for granted, IV estimation does not solve uncertainty about model
specification. Robustness tests are required to establish the stability of IV
estimates for different plausible model specifications. For example, IV esti-
mation does not help against dynamic or spatial misspecification: the instru-
ment may suffer from measurement error which can be correlated to the
endogenous part of the covariation between D and Y or with other mis-
specifications, such as those resulting from population uncertainty or sam-
pling uncertainty. If an endogenous variable is conditioned by other factors,
there will be great uncertainty whether an instrument for the endogenous
variable closely mirrors the conditionality structure. All of these uncertain-
ties warrant robustness tests.

Condition 1 is never fulfilled. Instrumental variable designs therefore
do not “identify” the average population treatment effect, but only the
treatment effect for those cases which have experienced variation in
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treatment as a result of variation in the instrument. Since different valid
instruments are correlated with a different part of the exogenous variance,
different but equally valid instruments often produce significantly different
point estimates, sometimes even in different directions. This would not be
possible if IV estimation identified the true average population treatment
effect; it therefore gives researchers the possibility of fine-tuning the desired
result. As a consequence, IV estimates are not conclusive but require robust-
ness testing. This seems to be perfectly clear to Angrist (2004: C80), who
admits that “the external validity of IV estimates is ultimately established
(...) by replication in new data sets and, of course, by new instruments,” in
other words: by robustness tests.

] SOCIAL SCIENCE EXPERIMENTS

The most severe problems in empirical social science result from the analysis
of observational data. Observational data are messy and their data-
generating process unknown. Researchers have no control over who
receives treatment and cannot eliminate the influence of potential confoun-
ders. It therefore seems only logical to replace the analysis of observational
data with the analysis of experimentally generated data.” At the very least,
this research strategy has the advantage of bringing the social sciences closer
to what is regarded by many as the gold standard for causal inference in the
sciences (Banerjee 2007; Rubin 2008; Falk and Heckman 2009; Angrist and
Pischke 2009; Imbens 2010).

Social science experiments come in three variants: lab experiments
usually observe responses of selected participating individuals to experi-
mentally provided and randomized stimuli (treatments) in an artificial
(laboratory) setting. Field experiments randomize a real treatment in the
real world. Participants usually have to consent to participating due to
ethical concerns about experimenting with humans without their consent.
Natural and quasi-experiments are real-world situations in which
a treatment appears to be randomized by some naturally-occurring phe-
nomenon or some policy intervention.

2 However, experiments cannot answer the vast majority of relevant research
questions in the social sciences because experiments are simply not feasible, are too
costly or would be unethical since experiments must not cause substantial harm to
participants. As Winship and Morgan (1999: 659f.) correctly point out ... in
most social science research done outside of psychology, experimental designs are
infeasible. (...) For these reasons, sociologists, economists, and political scientists
must rely on what is now known as observational data — data that have been
generated by something other than a randomized experiment — typically surveys,
censuses, or administrative records.”
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The case for experiments is simple: observational data does not allow
eliminating the effect of confounders, which therefore have to be controlled
for; experiments however can eliminate the effect of confounders by con-
trolling the environment in which treatment is given, by blocking on all
known confounders and by randomizing treatment status across a very large
number of cases. As the number of participants approaches infinity, any
differences between the treatment and control group vanish, leaving only
random correlation between the confounders and the randomized treat-
ment. If the experiment manages to hold all confounders constant, the
causal effect of the treatment can be inferred from experiments simply by
the difference in outcomes in the treated compared to the control group.

Real-world experiments are typically undertaken with small sample
sizes, for which it becomes questionable whether uncertainty about poten-
tially confounding variables has been solved. Whether the properties of
confounding variables in the treatment and control group become suffi-
ciently similar depends on how rare relevant properties are. The rarer
these properties, the larger the number of participants has to become for
any given level of bias. Robustness tests which either use different samples
or which condition on potential confounders can answer these
uncertainties.

Experiments therefore require robustness tests even for the dimension
of model uncertainty for which they are most powerful. Other uncertainties
also remain as does therefore the need to employ robustness tests. Critics
often doubt the concept validity of treatments given in lab experiments,
pointing to a potential gap between real-world treatment and experimental
treatment. Knowledge about participating in an experiment can result in
behavioral adjustment of participants to the experimental situation
(Hawthorne bias).?

3 Experimenters might interact more with the treatment group than with the control
group and participants might learn to “play” experimental situations (Bracht and
Glass 1968). Natural and quasi-experiments are the only form of experiment in
which the participants do not know that they are exposed to an experimental
design. They are also the only “experiments” based on observational rather than
generated data. They do not rely on a randomization of treatment, but on the
assignment of treatment by a rule, which happens to be more or less orthogonal to
structure in the covariates of behavior and in outcomes (e.g., assignment by
alphabetical order or by lottery number). The hope is that the treatment
assignment is haphazard and as if randomly distributed across cases. Natural and
quasi-experiments are both rare and contested. Keane (2010: 12) and Shadish,
Cook, and Campbell (2002) warn that many of the actual allegedly natural or
quasi-experiments found in the social science literature are of low quality as often
it remains questionable whether treatment was quasi-randomly assigned across
groups and whether the two groups were sufficiently similar.
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The conductors of lab experiments cannot necessarily know what real-
world behavior their experimental findings represent, since the experimen-
tal treatment and setting differ from the real-world treatment and setting
(Cobb-Clark and Crossley 2003), again casting uncertainty on the concept
validity of the treatment. For example, many social science experiments
transfer real-world stimuli and incentives into monetary lab incentives.
The concept validity of the experimental treatment needs to be checked
against other values of the monetary incentives and against other incentives.

In principle, field experiments perform better with regards to uncer-
tainty about concept validity. However, even in field experiments partici-
pants typically know that they participate in a randomized experiment for
a certain period of time and may adjust their behavior accordingly, whereas
in the ideal experiment no participant knows in which group she is, nor do
those handing out treatment know whether they are administering a genuine
treatment or a placebo (Cartwright 2010: 63). Robustness tests therefore
need to explore the impact of uncertainty about concept validity on esti-
mated effects even in field experiments.

Other specification uncertainties also require more attention than they
typically receive. Uncertainty about the functional form of treatment
requires tests that go beyond dichotomized treatment status or simple,
often linear, functional form assumptions. Uncertainty about dynamics
requires tests that overcome the typical comparison of only two points in
time: before the experiment and after the experiment. Uncertainty about
spatial dependence is essentially assumed away in field experiments by
ignoring spill-over and general equilibrium effects (Ravallion 2012: 105).
In reality, however, many treatment effects depend on the degree of social
interaction. Lab experiments may mirror this setting by placing participants
in a situation of competitiveness or co-operation among participants. Yet,
the choice of strategies played by real actors varies with the level of competi-
tiveness or co-operation, and so robustness tests that vary these factors are
required.

The largest uncertainty that experiments face is with regards to causal
heterogeneity and context conditionality, however. Real-world lab experi-
ments often draw participants from pre-selected convenience samples of, for
example, students. Yet, randomizing treatment within a pre-selected group
will not solve pre-selection bias, not even asymptotically, and will not
produce an unbiased effect of the average population treatment effect if
there is causal heterogeneity (Ho et al. 2007: 205; Heckman et al. 1997).
Analyses of randomized treatments in convenience samples trade internal
validity for external validity and any increase in the former often comes at
the expense of a sharp decline in the latter. The limited external validity
could in principle be overcome if researchers managed to randomize
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treatment in a sample that is randomly drawn from the deductively derived
population (Shadish, Cook, and Campbell 2002: 91f.). More realistically,
robustness tests are needed to tackle uncertainty about causal heterogeneity
in lab experiments based on convenience samples. The external validity
needs to be checked by conducting experiments with participants drawn
from alternative social groups and strata. Without such tests, the only
inference from lab experiments based on convenience samples one can
draw is that the treatment can make a difference in some samples.

Field experiments also take place in particular settings and conditions
(Shadish, Cook, and Campbell 2002: 18; Cartwright 2010; Cartwright and
Hardie 2012). It cannot be guaranteed that an estimate derived from
a randomized controlled experiment among individuals from a certain vil-
lage in a certain region in north India in 2010 can be generalized to different
settings and to the population of interest. Uncertainty about causal hetero-
geneity and context conditionality implies that, in the absence of robustness
tests, the experimental result cannot be known to be valid beyond the
specific setting or beyond the values of the conditioning factors as found
in the experiment. The results should not be transferred and generalized to
alternative settings or alternative values of the conditioning factors without
robustness tests demonstrating the stability of the estimated effect.

In sum, then, for every experimental design there exist numerous
plausible alternative experimental designs. Rather than being assumption-
free, experimental design requires making a very large number of modelling
assumptions, just as regression analysis of observational data does.
The experimenter cannot simply assume that results are robust to plausible
alternative specification assumptions of her experiment. Accordingly, social
science experiments represent no alternative to robustness tests but instead
themselves require robustness tests.

] concLusion

The methodological toolbox available to researchers has never been better
equipped. Recent advances enable social scientists to study the phenomenon
of interest with a plethora of methodologies. As this chapter has made clear,
no research design, estimation procedure or analytical technique solves the
problem of specification uncertainty. They all depend on specific modelling
choices taken for which plausible alternatives exist. Therefore, no research
design, estimation procedure or analytical technique represents an alterna-
tive to robustness tests as such. At best, they can provide a partial substitute
for some robustness tests. For example, moving to experimental design can
reduce the necessity to conduct robustness tests dealing with omitted expla-
natory variables. However, at the same time it makes robustness tests
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analyzing the impact of alternative concept definitions and operationaliza-
tions as well as uncertainty about causal heterogeneity and context condi-
tionality much more important. Every tool in the methodological toolbox of
social scientists requires robustness tests to improve the validity of infer-
ences based upon it.

Modern experimental designs and identification techniques have their
role to play in the development of the social sciences. However, we wish their
proponents would develop a more realistic assessment of the strengths and
weaknesses of these techniques and the validity of results generated. Social
scientists should not equate identification with valid inference and the “meth-
odological triumphalism” (Barrett and Carter 2010: 516) of experimentalists
and proponents of identification techniques is an unjustified self-marketing
exercise. Imai, King, and Stuart (2008: 493) similarly caution against any
presumed inferential superiority of any technique: “Experimentalists may
envy the large, randomly selected samples in observational studies, and
observationalists may envy the ability of experimentalists to assign treatments
randomly, but the good of each approach comes also with a different set of
constraints that cause other difficulties.”

Social scientists will learn with time that the findings from experiments,
quasi-experiments, and identification techniques need to be subjected to
robustness tests just like any other analytical technique. Robustness testing
should play an important part in the social sciences regardless of the
research design and recognition of this fact is starting to spread. To give
a laudable example: Lassen and Serritzlew (2011), in their quasi-
experimental analysis from a large-scale municipal reform in Denmark of
the effect of jurisdiction size on political efficacy, have a “preferred specifi-
cation” (we call it baseline model) but they undertake a large number of
different estimates (we call them robustness test models) to explore the
robustness of their results. They find that

the result that population size has a causal, significant effect on IPE [internal political
efficacy] is robust across samples and estimators, and we demonstrate that local
variations in the amalgamation process, as well as changes in local public finances
and municipal political control following reform, do not affect this relationship.
(Lassen and Serritzlew 2011: 239)

When in one robustness test they employ matching additionally to their
baseline differences-in-differences specification and find significantly stron-
ger effects, they explore reasons for these differences. The differences could
stem from the sample changing because matching drops observations or
from the fact that matching makes no functional form assumption. To find
the true reason, the authors re-estimate the baseline (parametric) model
based on the sample of their matching (non-parametric) model and “observe
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results essentially similar to those identified by the matching analysis”
(p. 252). Accordingly, the observed difference is caused by the change in
sample, which suggests the existence of causal heterogeneity or unobserved
conditionality. What is remarkable about Lassen and Serritzlew’s analysis is
that firstly they judge the lack of the robustness of their findings based on the
estimated effect size and not merely on the direction of the effect. This
finding motivates them to dig deeper into the nature of administrative
reform and municipality size. And second, the robustness analysis, while
based on research design and empirical model specification, also has impor-
tant theoretical implications, which open the avenue for additional research.

Like modern techniques, old-fashioned regression analyses continue to
be a valuable tool for social scientists. Regression analysis retains an unri-
valled strength: its modelling flexibility and its almost unlimited versatility.
Social science is full of questions, which cannot be answered with
randomized experiments (Ravallion 2012), and it worries even its most
fervent proponents that the emphasis on this inferential technique “may
lead researchers to avoid questions where randomization is difficult, or even
conceptually impossible, and natural experiments are not available”
(Imbens 2010: 401).

Regression analysis does not require a random treatment; it can be used
with all sorts of observational data. Real-world causal complexity in the
form of conditionalities, temporal dynamics, spatial dependence, and so on
can in principle be modelled and their effects interpreted. More often than
with alternatives, it is possible to draw a random sample from the popula-
tion. As Deaton (2010: 445) argues: “... a biased nonexperimental analysis
might do better than a randomized controlled trial if enrolment into the trial
is nonrepresentative.” But, without doubt, regression analyses of observa-
tional data are fraught with model uncertainty, and the remainder of this
book suggests tests for exploring the robustness of results for important
dimensions of model uncertainty.



