n Explanatory and Omitted Variables

EFY INTRODUCTION

No other model misspecification has attracted more attention than the
choice of explanatory variables. Beginning with the first researcher who
added a control variable to her baseline model and reported both models,
scholars have long since argued that the true set of explanatory variables
remains unknown and that it is likely that relevant regressors are omitted.
Failure to include all relevant confounding variables, i.e. variables that have
a causal effect on the dependent variable, results in a biased estimate for the
variable of interest if covariance between the vector of omitted variables and
the dependent variable is correlated with the variable of interest. Contrary
to randomized controlled experiments, which can render the influence of
confounding variables (though not of those that condition the treatment
effect) irrelevant by increasing sample size to infinity, in observational data
with no control over treatment status omitted variable bias does not dis-
appear as sample size grows to infinity.

The potential exclusion of relevant variables has received notably more
attention than the potential inclusion of irrelevant variables. However, the
erroneous inclusion of irrelevant variables threatens the validity of infer-
ences just as does the omission of variables (Clarke 2005). At the very least,
including irrelevant variables will decrease the efficiency of estimations.
Some cling to the belief that inefficiency “only” implies inflated standard
errors and can therefore be neglected unless sample size is small or the data
exhibits little variation. This view ignores the fact that researchers obtain
a single point estimate per model. Erroneously included variables increase
the sampling variance of the estimates, which implies that the expected
deviation of an estimate from the truth increases. In this sense, inefficiency
has the same effect as bias. Reducing efficiency means increasing the influ-
ence of noise on estimation outcomes. Inefficiency —just like bias — increases
the probability of invalid inferences (King, Keohane, and Verba 1994;
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Plimper and Troeger 2007, 2011). Accordingly, researchers should worry
about erroneously included variables.

In reality, including all relevant confounding variables, but excluding
all irrelevant variables, is not merely easier said than done: it is outright
impossible with observational data. With limited information, the optimal
number of variables to include in an estimation model may fall short of the
number of variables contained in the true data-generating process. To make
matters worse, even if we ignored the fact that, given limited information,
models have to trade off simplicity versus generality, the inclusion of addi-
tional variables does not necessarily reduce bias even if the additional
variable is part of the data-generating process. It is not difficult to construct
a simple data-generating process with more than two omitted variables that
results in an increase in bias if we add one omitted variable and a reduction
in bias when both omitted variables are added.

We show how robustness tests help researchers uncertain about the
choice of regressors by exploring the stability of estimated effects toward
plausible changes to the set of explanatory variables. We start by discussing
observed control variables, regarding which researchers are uncertain
whether to include or exclude them. Both the exclusion of potential con-
founders and the inclusion of irrelevant variables threaten the validity of
inferences on the effect of the variable of interest. We argue that estimation
models will never include all the right and exclude all the wrong variables.
We suggest that baseline models should contain only control variables
known or suspected to exert a strong effect on the dependent variable,
accompanied by robustness test models addressing uncertainty about the
set of explanatory variables.

We then move to unknown and unobserved omitted variables poten-
tially confounding the effect of the main variable of interest. We argue
that the standard solution to “unobserved heterogeneity” in the form of
differencing the data or unit fixed effects does not reduce bias if model
misspecifications other than the omission of time-invariant unobservables
represent a more important inferential threat. We suggest a number of tests
that are less costly than differencing or unit fixed effects and at the same time
are more flexible since they can also deal with time-varying unobserved
confounders.

IF] INCLUSION AND EXCLUSION OF CONTROL VARIABLES

Theories are typically focused on identifying a single or at most a few causal
mechanisms and cannot be expected to provide a full account of the data-
generating process. Theories typically aim at simplifying complex relation-
ships instead of seeking to provide a full account of the determinants of
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a certain phenomenon — and if they do so, they fail. In other words, theories
are not intended to guide the selection of explanatory variables.
As a consequence, empirical models continue to be chosen in a haphazard
way. As Leamer (1983: 34) has observed, the “standard set” of control
variables tends to be arbitrary since it is “often based on whatever list the
first researcher happened to select.” Other variable selection algorithms
may even be worse: what gave regression analysis of observational data
a bad name is the possibility of selecting variables based on the desired
result. Researchers typically provide only limited justification of why they
include and why they exclude a variable that other scholars have included.
Many right-hand side variables seem to have been selected based on com-
mon sense, tradition, or — perhaps — desired results. If common sense were
a good scientific adviser, social scientists would be paid considerably less.
Tradition — or path-dependence — seems to be a reasonable strategy, but it
perpetuates model misspecification and severely reduces competition
between models, which likely hampers scientific progress.

The fear of omitted variable bias induces some to include a long list
of potential determinants as control variables — sometimes called the
“kitchen sink” or “garbage can” approach. Some of these variables will
be irrelevant and cause inefficiency. Others capture the same or a very
similar causal factor, which creates bias and reduces the efficiency of the
estimate. For example, political scientists know that the choice of dif-
ferent political institutions is correlated. Therefore, researchers need to
be careful not to include institutional variables that are not independent
of each other. One of the more blatant examples would be including
both the electoral system and the number of parties in government or
political fragmentation in the estimation model. Even if the explanatory
variables are sufficiently independent of each other, they can still be
highly correlated with each other in small to medium-sized samples
containing limited information, which will decrease the efficiency of
estimations and may result in biased estimates.

Political methodologist Christopher Achen’s (in)famous rule of three,
which in a nutshell denounces regression analyses with more than three
regressors as “meaningless” (Achen 2002: 446), at least when no formal
model structures the investigation, stems from these concerns. Achen seems
to argue that researchers should construct empirical models that closely
resemble the theoretical model — and ignore the data-generating process.
However, this in turn downplays the need to control for all potential
confounders in regression analysis of observational studies. Including “too
many” control variables and including “too few” variables can equally
threaten causal inferences (Clarke 2005). Naturally, the same goes for
wrongly included explanatory variables.
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Control variables bridge the gap between the theoretical model and the
true data-generating process. Control variables, in other words, ought to
move empirical models closer to the data-generating process and away
from the stylized causal effects of theories. Models will nevertheless never
match the complexity of the true data-generating process.! With limited
information to analyze, researchers should not try to exactly model the true
data-generating process. Instead, a good empirical model balances omitted
variable bias and inefficiency. If researchers are interested in the effect of one
or a few variables of interest, controls only need to be included if they are
correlated with the variables of interest. The omission of a variable that is
not correlated with the variable of interest does not bias the estimate of the
effect of the variable of interest — regardless of how strongly it influences the
dependent variable. This logic makes clear why two empirical models that
explain the same phenomenon should be specified somewhat differently
when the variable of interest differs. It also clarifies why researchers have
to be reluctant to interpret the effect of control variables: a model that
isolates the variable of interest from the influence of confounders does
not need to isolate controls from the influence of confounders. However,
in non-linear models some bias is inevitable even when omitted determi-
nants of the outcome are uncorrelated with any of the right-hand side
variables (Wooldridge 2010: 584f.).

Rather than trying to build all complications into a single model, we
suggest that researchers conduct robustness tests to check whether estimates
from a relatively simple baseline model are robust to systematically added
complications. Following our suggestion, the baseline model would only
contain those control variables known or suspected to exert the strongest
effect on the dependent variable.

Explanatory variables tests are almost as old as regression analysis:
adding or removing explanatory variables checks whether estimates are
robust toward changing the covariance structure of the model. Adding or
removing variables changes both the efficiency of an estimate and the part of
the variance of an explanatory variable that is not correlated with the
variance of another explanatory variable included in the model.

As always, any model known to be misspecified cannot function
as a robustness test. A consequence of this rule is that researchers must
take care not to additionally include variables through which other

1 As Hsiao (2003: 8) explains: “In explaining individual behavior, one may extend
the list of factors ad infinitum. It is neither feasible nor desirable to include all
factors affecting the outcome of all individuals in a model specification, since the
purpose of modelling is not to mimic the reality but to capture the essential forces
affecting the outcome. It is typical to leave out those factors that are believed to
have insignificant impacts or are peculiar to certain individuals.”
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explanatory variables exert their impact on the dependent variable (King,
Keohane, and Verba 1994: 173). This is not a straightforward rule given
thatin the social sciences many phenomena co-determine each other or —to
exaggerate — everything has an impact on everything else. For example,
the level of economic development will partly determine the political
regime type, and vice versa, but both economic development and political
regime type can be valid determinants of famine mortality (Plumper and
Neumayer 2009).

Testing robustness toward dropping some of the regressors contained
in the baseline model can provide another robustness test but requires even
more thought than adding further control variables. Given that in the social
sciences many variables are not entirely independent of each other, the effect
of one variable has to be interpreted as conditional on the set of other right-
hand side variables included in the model. For example, a civil war increases
mortality rates directly and indirectly through increasing food scarcity.
Dropping a variable measuring food scarcity from the baseline model can
be justified as a robustness test, but researchers must keep in mind that the
effect of civil war tested in the baseline and robustness test model differs
across the two models. In one model the effect is conditional on food scarcity,
in the other model any direct effect of food scarcity is assumed to be absent.
This raises the question whether food scarcity should ever have been included
in the baseline model if researchers are interested in the total (direct and
indirect) effect of civil war on mortality since the estimation will fail to
account for civil war partly determining food scarcity, thereby partly affecting
mortality through its effect on food scarcity. There is no easy answer to this
type of question since social scientists are necessarily uncertain about the
correct set of regressors to be included in an estimation model.

IE] UNKNOWN AND UNOBSERVED OMITTED VARIABLES

The standard econometric argument for the existence of “unobserved
heterogeneity” is that some factors influencing the outcome cannot be
observed. Unobserved heterogeneity, by definition, is unobserved and can-
not be directly captured by control variables. Known unobserved factors
can be indirectly and approximately captured by proxy variables. Yet, if
a factor cannot be observed, the quality of a proxy cannot be known. Even
more challengingly, omitted variables need not be “known unobservables”
but can be “unknown observables” and “unknown unobservables.” These
variables are omitted because scholars do not even know that they are part
of the data-generating process.

Econometric theory has developed a simple “solution” to the problem
of omitted variables in panel or cross-sectional time-series data: assume that
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all omitted variables are time-invariant and employ unit fixed-effects or
first-differences estimation, which throw away the between-variation of all
included variables to isolate their parameter estimate from the bias resulting
from omitted time-invariant variables. This provides no alternative to
robustness testing. The solution only works if all omitted unobserved
variables are indeed time-invariant and not just assumed to be time-
invariant. In other words: the apparent solution determines the description
of the problem, rather than the problem determining the solution. An
undesirable side-effect has been the relative neglect of omitted unobserved
time-varying variables.

Proponents of fixed-effects or first-differences estimation could argue
that the between-variation of omitted unobserved variables tends to be
larger than the omitted over-time variation within units. Even if this were
true, differencing or unit fixed effects would reduce overall bias only if the
existence of omitted time-invariant variables dominated all other model
misspecifications. The two techniques are likely to perform worse than
a model that ignores the bias from omitted time-invariant variables if
other model misspecifications dominate (Plumper and Troeger 2016),
most importantly dynamic misspecification. This is not ignorable since
dynamic model misspecifications are common (De Boef and Keele 2008).
For example, consider a trended dependent variable, trended independent
variables, and an omitted trended variable. Differencing and unit fixed-
effects estimates will be spurious, because the within-variation of interest
is trended and will be correlated with the omitted trended variable.
As another example, measurement error may become exacerbated if the
between-variation is dropped under the plausible assumption that the true
values are highly correlated over time but measurement error is randomly
distributed over time in each unit. If so, moving from “levels” to “changes in
levels” intensifies measurement error by lowering the signal-to-noise ratio
(Bound et al. 2001: 3714).

Given that these techniques mitigate one potential model misspecifica-
tion at the expense of exacerbating the impact of other potential model
misspecifications, the widespread use of fixed-effects models appears pro-
blematic and unwarranted. Between-variation is information. Differencing
and fixed-effects estimation eliminate valuable information. In fact, both
techniques eliminate more information — all the between-variation — than
they would do in an optimal world, in which they would merely eliminate
the variance of the regressors correlated with the omitted time-invariant
variables. This leads to a loss of efficiency, which can be substantial if the
within-variation is low and the between-variation high. In addition, both
techniques implicitly change the hypotheses tested in subtle ways. For
example, the hypothesis that individuals with higher income have a higher
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propensity to buy certain goods differs from the hypothesis that an increase
in income results in a higher propensity to buy certain goods. A theory that
makes predictions about the effect of x on the between-variation in y cannot
be tested.

Let us not be misunderstood: we are not arguing that differencing or
unit fixed effects should be avoided under all circumstances. There will be
conditions where they are warranted to make meaningful inferences about
short-term adjustments to changes, and we have used them in our own
research. For example, Plimper and Neumayer (2013) — aided by substan-
tial within-variation in all variables — take out all level effects to identify the
effect of co-payment schemes on changes in mortality rates. Likewise,
Gibbons, Neumayer, and Perkins (2015) include year fixed effects and
fixed effects for all combinations of subjects, universities, and entry tariffs,
without which it would be impossible to identify an effect of student
satisfaction on subject-specific student applications to universities. Rather
than condemning these techniques per se, we are criticizing the “fixed effects
by default” attitude that persists in many research areas of the social
sciences — in some more so than in others.

1 ROBUSTNESS TESTS FOR POTENTIALLY OMITTED
VARIABLES

Depending on the specification of the baseline model, robustness tests for
unobserved variables assess whether the baseline model estimates are robust
toward either eliminating a part of the variation that might be correlated
with the unobserved variables or toward accounting for unobserved
variables in a plausible alternative way. We start our discussion with two
robustness tests that remain squarely within traditional thinking and that
assume, entirely unrealistically, that unobserved variables are strictly time-
invariant.

The first test is of the robustness limit type: the between-variation test
increases the between-variation that is dropped from all variables (including
the dependent variable). Researchers start with a pooled-ordinary least
squares (OLS) model (or its equivalent), and then eliminate the between-
variation in 10-percent steps, where the transformation of a variable x is
xit —/4sX; (and similar for all other variables including the dependent
variable), where A, (0.0 <+/4;<1.0) denotes the degree to which between-
variation is eliminated. Thus, in order to eliminate the between-variation in
10-percent steps, we need to successively increase A, from 0 to 1, which
means increasing v/, from 0 to 0.316, 0.447, 0.548, 0.632, 0.707, 0.755,
0.837,0.894, 0.949 and, finally, 1, at which point we have reached the unit
fixed-effects specification.
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Degree of de-

meaning (1/4;) Coefficient (s.e.) p short term p long term

0.0 (0.000) 0.00960%** baseline baseline
(0.00219)

0.1 (0.316) 0.0108*** 0.89 0.87
(0.00242)

0.2 (0.447) 0.0112*** 0.84 0.80
(0.00259)

0.3 (0.548) 0.0113*** 0.81 0.76
(0.00275)

0.4 (0.632) 0.0110*** 0.81 0.74
(0.00293)

0.5 (0.707) 0.0103*** 0.82 0.74
(0.00313)

0.6 (0.775) 0.00904** 0.79 0.74
(0.00339)

0.7 (0.837) 0.00694* 0.64 0.68
(0.00372)

0.8 (0.894) 0.00406 0.37 0.48
(0.00406)

0.9 (0.949) 0.00115 0.17 0.26
(0.00438)

1.0 (1.000) —-0.000138 0.11 0.19
(0.00455)

Note: Coefficients show the effect of pre-tax income inequality on the Gini
coefficient in longevity. All other independent variables of baseline model
included but effects not reported.

Statistically significant at *0.1, ** at 0.05, *** at 0.01 level.

In Neumayer and Plimper (2016b) we analyze the effect of pre-tax
income inequality as well as income redistribution (the absolute difference
between pre-tax and post-tax income inequality) on inequality in longevity,
that is, the inequality in the number of years individuals in a country live.
We analyze a pooled cross-sectional time-series sample of up to 28 countries
over the period 1974 to 2011. The OLS baseline model does not include
unit fixed effects. We have two main variables of interest, but, for the
purpose of illustrating this robustness test, let us focus on pre-tax income
inequality, for which table 9.1 shows estimated coefficients (the robustness
analysis is almost identical for the other variable of main interest). Since the
baseline model includes the lagged dependent variable, we analyze the
degrees of robustness p for both short-term and long-term effects.
The top of the table starts with the pooled-OLS baseline model (zero degree
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Figure 9.1: Visualization of the Between-variation Test

of de-meaning), increasingly eliminating the between-variation in the data
by successively de-meaning all variables in 10-percent steps, arriving even-
tually at the unit fixed-effects model as variables are completely de-meaned.
The estimated effect remains stable until at least 70 percent of between-
variation is dropped. Beyond this point, the estimated effect declines and
even switches signs with full de-meaning in the unit fixed-effects model.
The degrees of robustness decline to 0.11 in the short term and 0.19 in the
long term in this model.

In figure 9.1, we display the same information as in table 9.1 to
demonstrate the stability of the estimated coefficients. It demonstrates
with greater clarity that the estimates remain very stable unless we remove
at least two-thirds of the between-variation.

A second test does not drop the between-variation from the estimation,
but includes group fixed effects based on a grouping of units. This group-
wise fixed-effects test eliminates the between-group variation but leaves the
between-variation within groups intact. Ideally, the grouping of units is
theoretically informed.> Where this is not possible, group membership can
be simply based on locational or relational information. In comparative
cross-country research, for example, a simple proxy for group heterogeneity

2 See for example Cederman, Buhaug, and Red (2009: 519).
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m2: group
m1l: baseline fixed effects P
Longevity inequality (t—1) 0.867*** 0.853*** 0.872
(0.0305) (0.0367)
Life expectancy —0.000306* * * —0.000358** 0.765
(0.000103) (0.000162)
GDP per capita (In) 0.000234 —0.000253 0.790
(0.000392) (0.000349)
Health expenditure 0.00124** 0.000548 0.673
relative to GDP (In) (0.000468) (0.000503)
Alcohol consumption per 6.64e-05 0.000113 0.859
capita (In) (0.000120) (0.000153)
Lung cancer mortality rate 0.000916 0.000983 0.895
(0.000664) (0.000802)
External cause mortality 0.00273* ** 0.00282.* ** 0.923
rate (0.000556) (0.000611)
Pre-tax income inequality 0.00960* ** 0.00603* ** 0.637
(0.00219) (0.00207)
Income redistribution —-0.00940*** —0.00645** 0.782
(0.00249) (0.00248)
Observations 476 476
Number of countries 28 28

Note: Dependent variable is the Gini coefficient of longevity. OLS
estimation. Year-specific fixed effects included. Standard errors adjusted
for clustering on countries in parentheses.

Statistically significant at * 0.1, ** at 0.05, *** at 0.01 level.

can be based on the World Bank’s definition of macro-regions or on
Huntington’s (1996) definition of civilizations.

For our illustrative example, we rely on Bohm et al.’s (2013)
classification, which groups countries into types of healthcare systems
according to the private, societal or state organization of the regula-
tion, financing, and provision of health care, giving us seven group
dummies in total. Model m1 in table 9.2 presents results for the base-
line model and the robustness test model m2 with these group fixed
effects included. We only show estimated degrees of robustness for
short-term effects. The estimated coefficients of our two main explana-
tory variables decrease by about 30 percent in size when the group
fixed effects are included. Nevertheless, the estimated degrees of robust-
ness are high.
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As an alternative, a robustness limit variant of this test stepwise
increases the number of exclusive groups and thus the number of group
fixed effects. The more exclusive groups are formed, the more the model
resembles the unit fixed-effects model, with the latter being reached as the
number of exclusive groups reaches N-1. If, as will often be the case, the
categorization of units into groups is uncertain, researchers can base group
membership on a cluster analysis of the between-variation in the substantive
regressors, thereby ensuring that all units exclusively cluster in one group.
Researchers can either vary the specification of the number of groups into
which units are clustered or they can vary the specification of the similarity
value used in the cluster analysis.

In our illustrative example, we employ a Ward’s linkage cluster analy-
sis (1963) to sort countries into increasingly larger number of groups.
We decrease the dissimilarity measure starting from 51 in steps of 2 until
we reach the unit fixed-effects model at dissimilarity measure 1. Table 9.3
shows results whenever an increase in the number of groups is the conse-
quence of the decrease in dissimilarity measure applied to the cluster analy-
sis. Results are very robust up to and including a dissimilarity value of 3,
which sorts the 28 countries into 21 groups. Lower dissimilarity values and
consequently more groups result in low degrees of robustness.

As we have argued above, the assumption that all omitted variables are
time-invariant is usually not supported in real data. Researchers should
therefore explore the robustness of their baseline model to changing
assumptions about omitted unobserved variables that can vary over time.
We suggest a robustness limit type test which investigates to what extent the
omitted variable needs to be correlated with the variable of interest and the
dependent variable to render the estimated effect for the variable of interest
non-robust. A similar robustness test has been proposed by Frank (2000),
who suggests generating a random placeholder for an omitted confounder
and stepwise increasing the correlation between the placeholder and the
dependent variable.

With panel data, the correlated artificial variable test can be specified in
three ways. The first variant just uses the time-invariant components of
x and y and creates a placebo variable z which has a specified covariance
structure with the between-variation of x and vy, X; and ¥,. The second
variant uses only the overall correlation with the within-variation of x and
y, xir — x; and y;; — ¥, (this is a test about omitted common trends), and the
third variant uses the correlation with both observed variables x and y.
Of course, in cross-sectional data only the first variant and in time-series
data only the second variant is possible.

A further robustness test that works for both time-invariant and time-
varying unobserved variables can be based on what is known as a spatial-
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Maximum degree of p short p long
dissimilarity (no. of groups) Coefficient (s.e.) term term
51 (4) 0.00960* * * 0.96 0.96
(0.00219)
41 (5) 0.00914*** 0.94 0.95
(0.00220)
39 (6) 0.00920* ** 0.95 0.95
(0.00216)
35(7) 0.00916*** 0.95 0.95
(0.00216)
25 (8) 0.00812*** 0.92 0.94
(0.00196)
21 (11) 0.00870* ** 0.93 0.94
(0.00221)
15 (13) 0.0103*** 0.80 0.83
(0.00326)
13 (15) 0.00998* * * 0.77 0.81
(0.00352)
9(18) 0.0105** 0.67 0.70
(0.00428)
7 (19) 0.00776* 0.68 0.70
(0.00386)
5(21) 0.00709* 0.62 0.66
(0.00411)
3(24) 0.00216 0.19 0.29
(0.00363)
1(28) —0.000138 0.11 0.19
(0.00470)

Note: Coefficients show the effect of pre-tax income inequality on the
Gini coefficient in longevity. All other independent variables of baseline
model included but effects not reported.

Statistically significant at * 0.1, ** at 0.05, *** at 0.01 level.

error model. The spatial-error test exploits (and depends on) the fact that in
many research designs omitted variables will be spatially correlated.
To estimate a spatial-error model, analysts first predict the residuals by
estimating the baseline model without spatial-error component. They can
then create a spatial-error component by weighting the residuals of other
units with a measure of “closeness” between the unit under observation and
these other units as weights (see chapter 14 for more details). This could be
a measure of geographical contiguity or inverse distance, but it could also be
some other measure of connectivity or relatedness. If the assumption that
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m3: spatial-

error variable
m1: baseline included p
Longevity inequality (t—1) 0.867*** 0.869*** 0.946
(0.0305) (0.0310)
Life expectancy —0.000306* ** —0.000296* ** 0.947
(0.000103) (0.000104)
GDP per capita (In) 0.000234 0.000201 0.949
(0.000392) (0.000392)
Health expenditure 0.00124** 0.00125** 0.952
relative to GDP (In) (0.000468) (0.000464)
Alcohol consumption per 6.64e-05 6.53e—-05 0.952
capita (In) (0.000120) (0.000119)
Lung cancer mortality rate 0.000916 0.000922 0.953
(0.000664) (0.000657)
External cause mortality 0.00273*** 0.00270*** 0.947
rate (0.000556) (0.000562)
Pre-tax income inequality 0.00960* ** 0.00956* * * 0.955
(0.00219) (0.00214)
Income redistribution —0.00940* ** —0.00920*** 0.950
(0.00249) (0.00248)
Spatial-error variable 0.214**
(0.104)
Observations 476 476
Number of countries 28 28

Note: Dependent variable is the Gini coefficient of longevity. OLS
estimation. Year-specific fixed effects included. Standard errors adjusted for
clustering on countries in parentheses.

Statistically significant at * 0.1, ** at 0.05, *** at 0.01 level.

omitted variables spatially correlate holds, the spatial-error control variable
included in the robustness test model reduces the influence of omitted
variables.

Model m3 includes a spatial-error variable based on geographical
contiguity as the connectivity variable for the spatial-weights matrix (see
table 9.4). The coefficient of the spatial-error variable is positive, as one
would expect if residuals are spatially clustered among contiguous coun-
tries. The other estimates are very robust, which suggests that the omission
of a spatial-error variable, in this case at least, is essentially inconsequential.
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In other research projects, the test could affect the estimated degrees of
robustness more strongly.

] concLusion

The continuing development of apparent econometric solutions to the pro-
blem of variable choice demonstrates that a silver bullet method for selecting
all the right and none of the wrong explanatory variables does not exist.
Empirical research will therefore continue to omit the right and include the
wrong variables. Like any other method, robustness tests will not lead to the
correct set of regressors. But that is neither their purpose nor our intention.
The main idea of robustness tests is to analyze whether unknown and
known but unobservable factors exist which could render estimates non-
robust and potentially invalidate inferences.

Due to their strong emphasis on unknown potential confounders,
structured permutation and robustness limit type tests are best suited for
analyzing the effects of uncertainty about the set of explanatory variables.
In other words, many of the robustness tests discussed here stand in the
tradition of Leamer’s sensitivity testing and Rosenbaum’s bounds test. Yet,
researchers need to avoid drawing inferences from models which are known
to be misspecified. This not only requires care in the selection of substantive
variables; it also means that techniques that eliminate a specific kind of
variation from the data, like the unit fixed-effects model, should not be
employed as the default option. Such models can make sense either as
baseline or robustness test models in some limited number of research
projects but represent models known to be misspecified in many others.



