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Table 11.9. The five largest estimate without each case divided
(absolute-value) DFBETA scores by the standard error of the origi-
for {5 from the model presented nal parameter estimate. Table 11.9
in Table 11.8 displays the five largest absolute val-

County ues of DFBETA for the slope param-
eter (B) from the model presented in

Palm Beach 6.993 | Table 11.8. Not surprisingly, we see

Broward —-2.514 .

Dade - 1972 - that omitting Palm Beach, Broward,

Orange —o0109 | ©r Dade has the largest impact on our

Pinellas . . 0.085 estimate of the slope parameter. By
any measure, these cases exerted con-

siderable influence on our model.

4 Dealing With Influential Cases

Now that we have discussed the identification of particularly influen-
tial/outlier cases on our models, we turn to the subject of what to do once
we have identified such cases. The first thing to do when we identify a case
with substantial influence is to double-check the values of all variables for
such a case. We want to be certain that we have not “created” an influen-
tial case through some error in our data management procedures. Once we
have corrected for any errors of data management and determined that we
still have some particularly influential case(s), it is important that we report
our findings about such cases along with our other findings. There are a va-

riety of strategies for doing so. Table 11.10 shows five different models that -

reflect various approaches to reporting results with highly influential cases.
In Model 1 we have the original results as reported in Table 11.8, In Model
2 we have added a dummy variable that identifies and isolates the effect of
Palm Beach County. This approach is sometimes referred to as dummying
out influential cases. We can see why this is called dummying out from the
results in Model 3, which is the original model with the observation for
Palm Beach County dropped from the analysis. The parameter estimates
and standard errors for the intercept and slope parameters are identical
from Models 2 and 3. The only differences are the model R? statistic, the
number of cases, and the additional parameter estimate reported in Model
2 for the Palm Beach County dummy variable.® In Model 4 and Model 5,

8 This parameter estimate was viewed by some as an estimate of how many votes the ballot
irregularities cost Al Gore in Palm Beach County. But if we look at Model 4, where we
include dummy variables for Broward and Dade Counties, we can see the basis for an
argument that in these two counties there is evidence of bias in the opposite direction.
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Table 11.10. Votes for Gore and Buchanan in Florida counties in the 2000

-U.8. presidential election

Model2  Model3 Model4  Model 5
Gore " .. 0.004"* . 0.003" 0.003*** 0.005** 0.005***
Sl e,,0:(0.0008) - (0.0002) (0.0002)  (0.0003) (0.0003)
PalmBeach = - .  2606.3*" 2095.6%
Sdummy oo 0 (150.4) (110.6)
Broward = ) —-1066.0""
dummy oo : (131.5)
Dade dummy . : ~1025.6*"*
, e : R (120.6)
Intercept . 80.6* 110.8** 110.8***  59.0*** 59.0***
‘o (484) - (19.7) (19.7)  (13.8) (13.8)
n 67 67 - 66 67 64
R? .48 91 .63 .96 .82
Notes: The depehdent variable is the number of votes for Patrick Buchanan.
Standard errors in parentheses.
Two-sided t-tests: ***indicates p < .01; **indicates p < .05; *indicates p < .10.

we see the results from dummying out the three most influential cases and
then from dropping them out of the analysis.

Across all five of the models shown in Table 11.10, the slope parameter
estimate remains positive and statistically significant. In most models, this
would be the quantity in which we are most interested (testing hypotheses
about the relationship U=tween X and Y). Thus the relative robustness of
this parameter across model specifications would be comforting. Regardless
of the effects of highly influential cases, it is important first to know that
they exist and, second, to report accurately what their influence is and what
we have done about them.

MULTICOLLINEARITY
w—

When we specify and estimate a multiple OLS model, what is the inter-
pretation of each individual parameter estimate? It is our best guess of
the causal impact of a one-unit increase in the relevant independent vari-
able on the dependent variable, controlling for all of the other variables
in the model. Another way of saying this is that we are looking at the
impact of a one-unit increase in one independent variable on the dependent
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Y variable when we “hold all other variables

constant.” We know from Chapter 10 that

a minimal mathematical property for esti-
mating a multiple OLS model is that there
is no perfect multicollinearity. Perfect mul-
ticollinearity, you will recall, occurs when
one independent variable is an exact linear
function of one or more other independent
variables in a model.

In practice, perfect multicollinearity is
Figure 11.7. Venn diagram with  usually the result of a small number of cases
multicollinearity. relative to the number of parameters we

are estimating, limited independent variable
values, or model misspecification. As we have noted, if there exists per-
fect multicollinearity, OLS parameters cannot be estimated. A much more
common and vexing issue is less-than-perfect multicollinearity. As a result,
when people refer to multicollinearity, they almost always mean “less-
than-perfect multicollinearity.” From here on, when we refer to “multi-
collinearity,” we will mean “high, but less-than-perfect, multicollinearity.”
This means that two or more of the independent variables in the model are
extremely highly correlated with one another.

T

How Does Multicollinearity Happen?

Multicollinearity is induced by a small number of degrees of freedom and/or
high correlation between independent variables. Figure 11.7 provides a
Venn diagram illustration that is useful for thinking about the effects of
multicollinearity in the context of an OLS regression model. As you can see
from this figure, X and Z are fairly highly correlated. Our regression model
is

Y=o+ B Xi+ B2z +u.

Looking at the figure, we can see that the R? from our regression model will
be fairly high (R? = ;—5*%’% ). But we can see from this figure that the areas
for the estimation of our two slope parameters — area f for B, and area b
for B, — are pretty small. Because of this, our standard errors for our slope
parameters will tend to be fairly large, which makes discovering statistically
significant relationships more difficult, and we will have difficulty making
precise inferences about the impacts of both X and Z on Y. It is possible
that because of this problem we would conclude neither X nor Z has much
of an impact on Y. But clearly this is not the case. As we can see from the
diagram, both X and Z are related to Y. The problem is that much of the

227

11.6 Multicollinearity

covariation between X and Y and X and Z is also covariation between X

' and Z. In other words, it is the size of area d that is causing us problems.

We have precious little area in which to examine the effect of X on Y while
holding Z constant, and likewise, there is little leverage to understand the
effect of Z on Y while controlling for X.

It is worth emphasizing at this point that multicollinearity is not a sta-
tistical problem (examples of statistical problems include autocorrelation,
bias, and heteroscedasticity). Rather, multicollinearity is a data problem.
It is possible to have multicollinearity even when all of the assumptions of
OLS from Chapter 9 are valid and all of the the minimal mathematical re-
quirements for OLS from Chapters 9 and 10 have been met. So, you might
ask, what’s the big deal about multicollinearity? To underscore the no-
tion of multicollinearity as a data problem instead of a statistical problem,
Christopher Achen (1982) has suggested that the word “multicollinearity”
should be used interchangeably with “micronumerosity.” Imagine what
would happen if we could double or triple the size of the diagram in Fig-
ure 11.7 without changing the relative sizes of any of the areas. As we
expanded all of the areas, areas f and b would eventually become large
enough for us to estimate accurate standard errors.

! Detecting Multicollinearity

It is very important to know when you have multicollinearity. In particular,
it is important to distinguish situations in which estimates are statistically
insignificant because .Y relationships just aren’t there from situations in

~which estimates are statistically insignificant because of multicollinearity.

The diagram in Figure 11.7 shows us one way in which we might be able
to detect multicollinearity: If we have a high R? statistic, but none (or
very few) of our parameter estimates is statistically significant, we should
be suspicious of multicollinerity. We should also be suspicious of multi-
collinearity if we see that, when we add and remove independent variables
from our model, the parameter estimates for other independent variables
(and especially their standard errors) change substantially. If we estimated
the model represented in Figure 11.7 with just one of the two independent
variables, we would get a statistically significant relationship. But, as we
know from the discussions in Chapter 10, this would be problematic. Pre-
sumably we have a theory about the relationship between each of these
independent variables (X and Z) and our dependent variable (Y). So, al-
though the estimates from a model with just X or just Z as the independent
variable would help us to detect multicollinearity, they would suffer from
bias. And, as we argued in Chapter 10, omitted-variables bias is a severe
problem.

8,
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A more formal way to diagnose multicollinearity is to calculate the
variance inflation factor (VIF) for each of our independent variables. This
calculation is based on an auxiliary regression model in which one inde-
pendent variable, which we will call X, is the dependent variable and all of
the other independent variables are independent variables.” The R? statistic
from this auxiliary model, R%, is then used to calculate the VIF for variable
j as follows:

1
IF; = ——-.
i=amm

Many statistical programs report the VIF and its inverse (vg) by default.
The inverse of the VIF is sometimes referred to as the tolerance index mea-
sure. The higher the VIF; value, or the lower the tolerance index, the higher
will be the estimated variance of X; in our theoretically specified model. An-
other useful statistic to examine is the square root of the VIF. Why? Because
the VIF is measured in terms of variance, but most of our hypothesis-testing
inferences are made with standard errors. Thus the square root of the VIF
provides a useful indicator of the impact the multicollinearity is going to
have on hypothesis-testing inferences.

Multicollinearity: A Simulated Example

Thus far we have made a few scattered references to simulation. In this sub-
section we make use of simulatign to better understand multicollinearity.
Almost every statistical computer program has a set of tools for simulat-
ing data. When we use these tools, we have an advantage that we do not
ever have with real-world data: We can know the underlying “popula-
tion” characteristics (because we create them). When we know the pop-
ulation parameters for a regression model and draw sample data from
this population, we gain insights into the ways in which statistical models
work.

? Students facing OLS diagnostic procedures are often surpriscd that the first thing that we
do after we estimate our theoretically specified model of interest is to estimate a large
set of atheoretical auxitiary models to test the properties of our main model. We will
see that, although these auxiliary models lead to the same types of output that we get
from our main model, we are often interested in only one particular part of the results
from the auxiliary model. With our “main” model of interest, we have learned that we
should include every variable that our theories tell us should be included and exclude alt
other variables. In auxiliary models, we do not follow this rule. Instead, we are running
these models to test whether certain properties have or have not been met in our original
model.
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So, to simulate multicollinearity, we are going to create a population
with the following characteristics:

1. Two variables Xj; and X3; such that the correlation ry,, x,, = 0.9.

2. A variable #; randomly drawn from a normal distribution, centered
around 0 with variance equal to 1 [»; ~ N(0, 1)].

3. Avariable Y; such that Y; = 0.5 4+ 1Xy; + 1X5; + u;.

We can see from the description of our simulated population that we
have met all of the OLS assumptions, but that we have a high correlation
between our two independent variables. Now we will conduct a series of
random draws (samples) from this population and look at the results from
the following regression models:

Model 1: Y; = o + By X1i + B2 Xai + u;,
Model 2: Y; = ax + B X1 + 4,
Model 3: Y; = a + B, X2: + ;.

In each of these random draws, we increase the size of our sample start-
ing with 5, then 10, and finally 25 cases. Results from models estimated
with each sample o data are displayed in Table 11.11. In the first column
of results (# = 5), we can see that both slope parameters are positive, as
would be expected, but that the parameter estimate for X is statistically
insignificant and the parameter estimate for X; is on the bordetline of sta-
tistical significance. The VIF statistics for both variables are equal to 5.26,
indicating that the variance for each parameter estimate is substantially in-
flated by multicollinearity. The model’s intercept is statistically significant
and positive, but pretty far from what we know to be the true population
value for this parameter. In Models 2 and 3 we get statistically significant
positive parameter estimates for each variable, but both of these estimated
slopes are almost twice as high as what we know to be the true popula-
tion parameters. The 95% confidence interval for B, does not include the
true population parameter. This is a clear case of omitted-variables bias.
When we draw a sample of 10 cases, we get closer to the true population
parameters with f; and & in Model 1. The VIF statistics remain the same
because we have not changed the underlying relationship between X; and
X;. This increase in sample size does not help us with the omitted-variables
bias in Models 2 and 3. In fact, we can now reject the true population
slope parameter for both models with substantial confidence. In our third
sample with a sample of 25 cases, Model 1 is now very close to our true
population model, in the sense of both the parameter values and that all of
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'fl'vl‘a;ble 11.11. Random draws of increasing size froma

‘population with substantial multicollinearity

Sample: -
Estimate n=5" p=10 T
Model 1: . oo PE
8, : 0.546 0882 . . 1012%
' (0.375) (0.557) . - (0.394)
8, Lo 14220 1.450** 1324
- i (0.375) ~ (0.857) .3
& L1480 0 0.912% 0.579"
. (0148) - (0.230) Y i(0.168)
“R? ST R < £ T 8
VIF; 5.26 526 526 .
VIF, 5.26 5.26 5.26
Model 2: o
B, 1.827* 2.187" . 2.208
(0.382) ~ (0.319) (0.207))
& 1.160* 0.912* 0.579""*
- (0.342) (0.302)° (0.202)
R? .88 .85 .83
Model 3:
R 1.914*** 2.244* 2.235*"
(0.192) (0.264) (0.192)
& 1.160* 0.912** - 0.579*
{0.171) (0.251) {0.188)
R? 97 .90 86 -
Notes: The dependent variable is Y; = .5+ 1Xy + 1 X2 + Ui
Standard errors in parentheses. Two-sided t-tests:
*s*indicates p < .01; **indicates p < .05; *indicates p < .10.

these parameter estimates are statistically significant. In Models 2 and 3,
the omitted-variables bias is even more pronounced.

The findings in this simulation exercise mirror more general findings
in the theoretical literature on OLS models. Adding more data will allevi-
ate multicollinearity, but not omitted-variables bias. We now turn to an

example of multicollinearity with real-world data.

1164: Multicollinearity: A Real-World Example

In this subsection, we estimate a model of the thermometer scores
for U.S. voters for George W. Bush in 2004. Our model specification
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Table 11.12. Pairwise correlations between independent variables

Notes: Cell entries are correlation coefficients. Two-sidei

L ries fe tone - COe ests: **indicates p < .01;
‘f;gfiicateqp<(.05:'indicatesp‘<’.10,j"i--,. TR SR P

is the following:
Bush Thermometer; = o + B1Income; + B,ldeology; + B3;Education;
+ ‘34Party ID, + u,‘.

Although we have distinct theories about the causal impact of each in-
dependent variable on peoples’ feelings toward Bush, Table 11.12 indicates
that some of these independent variables are substantially correlated with
each other.

In Table 11.13, we present estimates of our model using three different
samples from the NES 2004 data. In Model 1, estimated with data from
20 ‘randomly chosen respondents, we see that none of our independent
variables are statistically significant despite the rather high R? statistic.
Tl'me VIF statistics for Ideology and Party ID indicate that multicollinearity
might be a problem. In Model 2, estimated with data from 74 randomly
Cl‘IOSCl.'l respondents, Party ID is highly significant in the expected (positive)
direction whereas Ideology is near the threshold of statistical significance.
None of the VIF statistics for this model are stunningly high, though they
are greater than 1.5 for Ideology, Education, and Party ID.!? Finally, in
Mo.del 3, estimated with all 820 respondents for whom data on all of the
variables were available, we see that Ideology, Party ID, and Education
are e}ll significant predictors of peoples’ feelings toward Bush. The sample
size is more than sufficient to overcome the VIF statistics for Party ID and
Fde_ology. Of our independent variables, only Income remains statistically
insignificant. Is this due to multicollinearity? After all, when we look at
T?ble 11.12, we see that income has a highly significant positive correlation
with Bush Thermometer scores. For the answer to this question, we need
to go back to the lessons that we learned in Chapter 10: Once v;e control

10
When we work with real-world d
ata, there tend to be many more chan,
from sample to sample. ' ’ Anges as we move
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Table 11.13. Model results from random draws of increasing

size from the 2004 NES

Indepen.dé‘n"t‘variabléx’ S

Income S e : ’ _ _0;‘117"
? : {0.90) - (0.15) -
{1.63} 1.24}

Ideology. 702

©4.26%
(5.53) .(0.67)
{3.50} - {158}
Education - C —629 o2 o —1sst
o (3.32) - (183 . (0.55)
{142} - {123} . {122}
Party ID : 6.83 . 8.44™ . 10.00"*
: (3.98) . (1.68) . . (0.46)
(308} . {170} . {1.66}
Intercept 2192 . 1203 1373
(23.45) .- (13.03) (3.56)
n 20 74 821
R 71 .66 .67

Notes: The dependent variable is the the respondent’s thermometer
score for George W. Bush. Standard enoré in parentheses; :

VIF statistics in braces.

Two-sided t-tests: *** indicates p < .01; ** indicates p < .05;

* indicates p < .10.

for the effects of Ideology, Party ID, and Education, the effect of income
on peoples’ feelings toward George W. Bush goes away.

5 | Multicollinearity: What Should I Do?

In the introduction to this section on multicollinearity, we described it as a
“common and vexing issue.” The reason why multicollinearity is “vexing”
is that there is no magical statistical cure for it. What is the best thing to do
when you have multicollinearity? Easy (in theory): Collect more data. But
data are expensive to collect. If we had more data, we would use them and
we wouldn’t have hit this problem in the first place. So, if you do not have
an easy way increase your sample size, then multicollinearity ends up being
something that you just have to live with. It is important to know that you
have multicollinearity and to present your multicollinearity by reporting
the results of VIF statistics or what happens to your model when you add
and drop the “guilty” variables.
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BEING CAREFUL WITH TIME SERIES

In recent years there has been a massive proliferation of valuable time-
series data in political science. Although this growth has led to exciting
new research opportunities, it has also been the source of a fair amount
of controversy. Switling at the center of this controversy is the danger of
spurious regressions that are due to trends in time-series data. As we will
see, a failure to recognize this problem can lead to mistakes about inferring
causality. In the remainder of this section we first introduce time-series
notation, discuss the problems of spurious regressions, and then discuss
the trade-offs involved with two possible solutions: the lagged dependent
variable and the differenced dependent variable.

Time-Series Notation

In Chapter 4 we introduced the concept of a time-series observational study.
Although we have seen some time-series data (such as the Ray Fair data set
used in Chapters 8-10), we have not been using the mathematical notation
specific to time- series data. Instead, we have been using a generic notation in
which the subscript 7 represents an individual case. In time-series notation,
individual cases are represented with the subscript ¢, and the numeric valuc
of ¢ represents the temporal order in which the cases occurred, and this
ordering is very likely to matter.!! Consider the following OLS population
model written in the notation that we have worked with thus far:

Y=o+ Py Xii + B2 X +u;.
If the data of interest were time-series data, we would rewrite this model as
Y=o+ By Xie + B2 Xo: + 1.

In most political science applications, time-series data occur at regular
intervals. Common intervals for political science data are weeks, months,
quarters, and years. In fact, these time intervals are important enough
that they are usually front-and-center in the description of a data set. For
instance, the data presented in Figure 2.1 would be described as a “monthly
time series of presidential popularity.”

Using this notation, we talk about the observations in the order in
which they came. As such, it is often useful to talk about values of variables
relative to their lagged values or lead values. Both lagged and lead values
are expressions of values relative to a current time, which we call time 2. A

1111 cross-sectional data sets, it is almost always the case that the ordering of the cases is
irrelevant to the analyses being conducted.




