Linear Regression

6.1

with Multiple Regressors

hapter 5 ended on a worried note. Although school districts with lower

student-teacher ratios tend to have higher test scores in the California data set,
perhaps students from districts with small classes have other advantages that help
them perform well on standardized tests. Could this have produced a misleading
estimate of the causal effect of class size on test scores, and, if so, what can be done?

Omitted factors, such as student characteristics, can, in fact, make the ordinary
least squares (OLS) estimator of the effect of class size on test scores misleading or,
more precisely, biased. This chapter explains this “omitted variable bias” and intro-
duces multiple regression, a method that can eliminate omitted variable bias. The key
idea of multiple regression is that if we have data on these omitted variables, then we
can include them as additional regressors and thereby estimate the causal effect of
one regressor (the student-teacher ratio) while holding constant the other variables
(such as student characteristics).

Alternatively, if one is interested not in causal inference but in prediction, the
multiple regression model makes it possible to use multiple variables as regressors—that
is, multiple predictors—to improve upon predictions made using a single regressor.

This chapter explains how to estimate the coefficients of the multiple linear
regression model. Many aspects of multiple regression parallel those of regression
with a single regressor, studied in Chapters 4 and 5. The coefficients of the multiple
regression model can be estimated from data using OLS; the OLS estimators in
multiple regression are random variables because they depend on data from a random
sample; and in large samples, the sampling distributions of the OLS estimators are
approximately normal.

Omitted Variable Bias

By focusing only on the student-teacher ratio, the empirical analysis in Chapters 4
and 5 ignored some potentially important determinants of test scores by collecting
their influences in the regression error term. These omitted factors include school
characteristics,such as teacher quality and computer usage, and student characteristics,
such as family background. We begin by considering an omitted student characteris-
tic that is particularly relevant in California because of its large immigrant popula-
tion: the prevalence in the school district of students who are still learning English.
By ignoring the percentage of English learners in the district, the OLS estimator
of the effect on test scores of the student-teacher ratio could be biased; that is, the
mean of the sampling distribution of the OLS estimator might not equal the true causal
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effect on test scores of a unit change in the student—teacher ratio. Here is the reasoning.
Students who are still learning English might perform worse on standardized tests than
native English speakers. If districts with large classes also have many students still
learning English, then the OLS regression of test scores on the student-teacher ratio
could erroneously find a correlation and produce a large estimated coefficient, when
in fact the true causal effect of cutting class sizes on test scores is small, even zero.
Accordingly, based on the analysis of Chapters 4 and 5, the superintendent might hire
enough new teachers to reduce the student-teacher ratio by 2, but her hoped-for
improvement in test scores will fail to materialize if the true coefficient is small or zero.

A look at the California data lends credence to this concern. The correlation
between the student-teacher ratio and the percentage of English learners (students
who are not native English speakers and who have not yet mastered English) in the
district is 0.19. This small but positive correlation suggests that districts with more
English learners tend to have a higher student-teacher ratio (larger classes). If the
student—teacher ratio were unrelated to the percentage of English learners, then it
would be safe to ignore English proficiency in the regression of test scores against
the student—teacher ratio. But because the student—teacher ratio and the percentage
of English learners are correlated, it is possible that the OLS coefficient in the regres-
sion of test scores on the student—teacher ratio reflects that influence.

Definition of Omitted Variable Bias

If the regressor (the student-teacher ratio) is correlated with a variable that has been omit-
ted from the analysis (the percentage of English learners) and that determines, in part, the
dependent variable (test scores), then the OLS estimator will have omitted variable bias.
Omitted variable bias occurs when two conditions are true: (1) the omitted variable
is correlated with the included regressor and (2) the omitted variable is a determinant of
the dependent variable. To illustrate these conditions, consider three examples of vari-
ables that are omitted from the regression of test scores on the student—teacher ratio.

Example 1: Percentage of English learners. Because the percentage of English
learners is correlated with the student-teacher ratio, the first condition for omitted
variable bias holds. It is plausible that students who are still learning English will do
worse on standardized tests than native English speakers, in which case the percent-
age of English learners is a determinant of test scores and the second condition for
omitted variable bias holds. Thus the OLS estimator in the regression of test scores on
the student—teacher ratio could incorrectly reflect the influence of the omitted variable,
the percentage of English learners. That is, omitting the percentage of English learners
may introduce omitted variable bias.

Example 2: Time of day of the test. Another variable omitted from the analysis is
the time of day that the test was administered. For this omitted variable, it is plausible
that the first condition for omitted variable bias does not hold but that the second
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A Formula for Omitted Variable Bias

The discussion of the previous section about omitted variable bias can be summarized
mathematically by a formula for this bias. Let the correlation between X; and u; be
corr(X;, ;) = py,. Suppose that the second and third least squares assumptions
hold, but the first does not because py, is nonzero. Then the OLS estimator has the
limit (derived in Appendix 6.1)

R oy,
Bi—= B + pxi—- (6.1)
Ox

That is, as the sample size increases, Byisclose to B, + p xu (0, /ox) with increasingly
high probability.

The formula in Equation (6.1) summarizes several of the ideas discussed above
about omitted variable bias:

1. Omitted variable bias is a problem whether the sample size is large or small.
Because él does not converge in probability to the true value B, él is biased
and inconsistent; that is, [§1 is not a consistent estimator of 8; when there is
omitted variable bias. The term py, (o, /oy) in Equation (6.1) is the bias in B

that persists even in large samples.

Is Coffee Good for Your Health?

Astudy published in the Annals of Internal
Medicine (Gunter, Murphy, Cross, et al. 2017)
suggested that drinking coffee is linked to a lower
risk of disease or death.! This study was based on
examining 521,330 participants for a mean period of
16 years in 10 European countries. From this sam-
ple group, 41,693 deaths were recorded during this
period. Another recent study published in The Jour-
nal of the American Medical Association (Loftfield,
Cornelis, Caporaso, et al. 2018) investigated the link
between heavy intake of coffee and risk of mortal-
ity. It suggested that drinking six—seven cups of cof-
fee per day was associated with a 16% lower risk of
death.? This study attracted substantial attention in
the U.K. press, with articles bearing headlines such
as “Six coffees a day could save your life” and “Have
another cup of coffee! Six cups a day could decrease
your risk of early death by up to 16 %, National Can-
cer Institute study finds.”>

Are these headlines accurate? Perhaps not. While
they suggest a causal relationship between coffee

and life expectancy, there is the potential for omitted

variable bias to influence the relationship being estab-
lished. Reviews of this study, including those by the
United Kingdom’s National Health Service (NHS)
and the BMJ,* note that some people may opt not to
drink coffee if they know they have an illness already.
Similarly, coffee can be considered as a surrogate
endpoint for factors that affect health—income,
education, or deprivation—that may confound the
observed beneficial associations and introduce errors.

According to a paper published in BMJ (Poole,
Kennedy, Roderick, et al. 2017), randomized con-
trolled trials (RCTs), or randomized controlled experi-
ments, allow for many of these errors to be removed.
In this case, removing the ability of people to select if
they should drink coffee and how much they should
consume would remove any omitted variable bias aris-
ing from differences in income or in expectations about
health among coffee drinkers and non-coffee drinkers.

Sometimes, however, there may be neither a
genuine relationship that an RCT could detect, nor
even an omitted variable responsible for the rela-

tionship. The website “Spurious Correlations™



details many such examples. For instance, the per
capita consumption of mozzarella cheese over time
shows a strong, and coincidental, relationship with
the award of civil engineering doctorates. Be careful

when interpreting the results of regressions!

ISee the studies by Gunter, Murphy, Cross, et al., “Cof-
fee Drinking and Mortality in 10 European Countries: A
Multinational Cohort Study,” Annals of Internal Medicine,
http://annals.org, July 11, 2017.

2Read the paper on “Association of Coffee Drinking With
Mortality by Genetic Variation in Caffeine Metabolism,
Findings From the UK Biobank,” by See Loftfield, Cornelis,
Caporaso, et al., published in JAMA Internal Medicine,
July 2, 2018.

6.1 Omitted Variable Bias

Laura Donnelly, “Six Coffees a Day Could save Your
Life,” The Telegraph, July 2, 2018, https://www.telegraph
.co.uk; and Mary Kekatos, “Have Another Cup of Coffee!
Six Cups a Day Could Decrease Your Risk of Early Death
by up to 16%, National Cancer Institute Study Finds,” The
Daily Mail, July 2, 2018.

“For further reading, see “Another Study Finds Coffee
Might Reduce Risk of Premature Death,” on the NHS
website; and “Coffee Consumption and Health: Umbrella
Review of Meta-analyses of Multiple Health Outcomes,”
by Robin Poole, Oliver J Kennedy, Paul Roderick, Jona-
than A. Fallowfield, Peter C Hayes, and Julie Parkes,
published on the British Medical Journal (BMJ) website,
October 16, 2017, http://dx.doi.org/10.1136/bm;.j5024.

SFor further information, see Spurious Correlations, http:/
www.tylervigen.com/spurious-correlations.
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2. Whether this bias is large or small in practice depends on the correlation
px. between the regressor and the error term. The larger |py,| is, the
larger the bias.

3. The direction of the bias in j3; depends on whether X and u are positively or
negatively correlated. For example, we speculated that the percentage of stu-
dents learning English has a negative effect on district test scores (students still
learning English have lower scores), so that the percentage of English learn-
ers enters the error term with a negative sign. In our data, the fraction of Eng-
lish learners is positively correlated with the student-teacher ratio (districts
with more English learners have larger classes). Thus the student-teacher
ratio (X) would be negatively correlated with the error term (u), so py, < 0
and the coefficient on the student-teacher ratio ﬁl would be biased toward a
negative number. In other words, having a small percentage of English learn-
ers is associated with both high test scores and low student—teacher ratios, so
one reason that the OLS estimator suggests that small classes improve test
scores may be that the districts with small classes have fewer English learners.

Addressing Omitted Variable Bias by Dividing
the Data into Groups

What can you do about omitted variable bias? In the test score example, class size is
correlated with the fraction of English learners. One way to address this problem is
to select a subset of districts that have the same fraction of English learners but have
different class sizes: For that subset of districts, class size cannot be picking up the
English learner effect because the fraction of English learners is held constant. More
generally, this observation suggests estimating the effect of the student—teacher ratio
on test scores, holding constant the percentage of English learners.

Table 6.1 reports evidence on the relationship between class size and test scores within
districts with comparable percentages of English learners. Districts are divided into eight
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test scores. The difference in the average test scores between districts in the lowest and
highest quartiles of the percentage of English learners is large, approximately 30 points.
The districts with few English learners tend to have lower student—teacher ratios: 74%
(76 of 103) of the districts in the first quartile of English learners have small classes
(STR < 20), while only 42% (44 of 105) of the districts in the quartile with the most
English learners have small classes. So the districts with the most English learners have
both lower test scores and higher student—teacher ratios than the other districts.

This analysis reinforces the superintendent’s worry that omitted variable bias is pres-
ent in the regression of test scores against the student—teacher ratio. By looking within
quartiles of the percentage of English learners, the test score differences in the second part
of Table 6.1 improve on the simple difference-of-means analysis in the first line of Table 6.1.
Still, this analysis does not yet provide the superintendent with a useful estimate of the
effect on test scores of changing class size, holding constant the fraction of English learners.
Such an estimate can be provided, however, using the method of multiple regression.

The Multiple Regression Model

The multiple regression model extends the single variable regression model of Chapters 4
and 5 to include additional variables as regressors. When used for causal inference, this
model permits estimating the effect on Y; of changing one variable ( X;;) while holding
the other regressors (X5;, X3;, and so forth) constant. In the class size problem, the mul-
tiple regression model provides a way to isolate the effect on test scores (Y;) of the
student-teacher ratio (X;;) while holding constant the percentage of students in the
district who are English learners ( X>;). When used for prediction, the multiple regression
model can improve predictions by using multiple variables as predictors.

As in Chapter 4, we introduce the terminology and statistics of multiple regres-
sion in the context of prediction. Section 6.5 returns to causal inference and formal-
izes the requirements for multiple regression to eliminate omitted variable bias in the
estimation of a causal effect.

The Population Regression Line

Suppose for the moment that there are only two independent variables, X;; and X5;.
In the linear multiple regression model, the average relationship between these two
independent variables and the dependent variable, Y, is given by the linear function

E(Y|Xy; = x1, X0 = x3) = By + Bix1 + Boxa, (6.2)

where E(Y;|X;; = x1, X5; = x,) is the conditional expectation of Y; given that
X,; = x; and Xy; = x,. That is, if the student—teacher ratio in the i district (X;;)
equals some value x; and the percentage of English learners in the i" district (X5;)
equals x,, then the expected value of Y; given the student—teacher ratio and the
percentage of English learners is given by Equation (6.2).
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Equation (6.2) is the population regression line or population regression function
in the multiple regression model. The coefficient B, is the intercept; the coefficient 3;
is the slope coefficient of X;; or, more simply, the coefficient on Xj;; and the coeffi-
cient 3, is the slope coefficient of X,; or, more simply, the coefficient on X,;.

The interpretation of the coefficient B; in Equation (6.2) is different than it was when
X,; was the only regressor: In Equation (6.2), 3; is the predicted difference in Y between
two observations with a unit difference in X7, holding X, constant or controlling for X,.

This interpretation of B; follows from comparing the predictions (conditional
expectations) for two observations with the same value of X, but with values of X
that differ by AXj, so that the first observation has X values (X}, X) and the second
observation has X values (X; + AXj, X5). For the first observation, the predicted
value of Y is given by Equation (6.2); write this as Y = B, + B,X; + B,X;. For the
second observation, the predicted value of Yis Y + AY, where

An equation for AY in terms of AX] is obtained by subtracting the equation
Y = By + B1X; + B,X; from Equation (6.3),yielding AY = B;AX;. Rearranging this
equation shows that

B = AA)}(Z’ holding X, constant. (6.4)
Thus the coefficient B is the difference in the predicted values of Y (the difference
in the conditional expectations of Y) between two observations with a unit difference
in Xj, holding X fixed. Another term used to describe g, is the partial effect on Y of
X1, holding X; fixed.

The interpretation of the intercept in the multiple regression model, 3, is similar
to the interpretation of the intercept in the single-regressor model: It is the expected
value of Y; when Xj; and Xj; are 0. Simply put, the intercept 3, determines how far up
the Y axis the population regression line starts.

The Population Multiple Regression Model

The population regression line in Equation (6.2) is the relationship between Y and X; and
X; that holds, on average, in the population. Just as in the case of regression with a single
regressor, however, this relationship does not hold exactly because many other factors
influence the dependent variable. In addition to the student-teacher ratio and the fraction
of students still learning English, for example, test scores are influenced by school charac-
teristics, other student characteristics, and luck. Thus the population regression function
in Equation (6.2) needs to be augmented to incorporate these additional factors.

Just as in the case of regression with a single regressor, the factors that determine
Y, in addition to Xj; and X); are incorporated into Equation (6.2) as an “error” term
u;. Accordingly, we have

Y= By + BiXy + BXo tupi=1,...,n, (6.5)
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6.3

The OLS Estimator in Multiple Regression

To be of practical value, we need to estimate the unknown population coefficients
Bos - - -, B using a sample of data. As in regression with a single regressor, these coef-
ficients can be estimated using ordinary least squares.

The OLS Estimator

Section 4.2 shows how to estimate the intercept and slope coefficients in the single-
regressor model by applying OLS to a sample of observations of Y and X.The key idea
is that these coefficients can be estimated by minimizing the sum of squared prediction
mistakes—that is, by choosing the estimators b, and b; so as to minimize
Z:’ (Y, = Dby — biX; )2. The estimators that do so are the OLS estimators, By and B,

The method of OLS also can be used to estimate the coefficients Sy, B, . . ., B
in the multiple regression model. Let b, by, . .., b, be estimates of By, By, - . ., B
The predicted value of Y}, calculated using these estimates, is b, + b1X1, -+
b;Xy;, and the mistake in predicting Y; is Y; — (by + b1 Xy; + -+ + kak,-) =
Y; — by — b1 Xj; — - -+ — by X}, The sum of these squared prediction mistakes over
all n observations is thus

;(x —by— biXy— - — biXi)? (6.8)

The sum of the squared mistakes for the linear regression model in Expression (6.8) is
the extension of the sum of the squared mistakes given in Equation (4.4) for the
linear regression model with a single regressor.

The estimators of the coefficients Sy, B, ..., B; that minimize the sum of
squared mistakes in Expression (6.8) are called the ordinary least squares (OLS)
estimators of S, By, . .., Bi. The OLS estimators are denoted ,80, ,81, R ,Bk.

The terminology of OLS in the linear multiple regression model is the same as
in the linear regression model with a single regressor. The OLS regression line is the
straight line constructed using the OLS estimators: ﬁo + ,éle,- +oe+ ,éka,-. The
predlcted value of Y, glven Xy, - .., Xy, based on the OLS regression line, is
Y Bo + Bth -+ Ble, The OLS residual for the i observation is the differ-
ence between Y; and its OLS predicted value; that is, the OLS residualis &t; = Y, — Y,-.

The OLS estimators could be computed by trial and error, repeatedly trying dif-
ferent values of by, . .., b, until you are satisfied that you have minimized the total
sum of squares in Expression (6.8). It is far easier, however, to use explicit formulas for
the OLS estimators that are derived using calculus. The formulas for the OLS estima-
tors in the multiple regression model are similar to those in Key Concept 4.2 for the
single-regressor model. These formulas are incorporated into modern statistical soft-
ware. In the multiple regression model, the formulas are best expressed and discussed
using matrix notation, so their presentation is deferred to Section 19.1.

The definitions and terminology of OLS in multiple regression are summarized
in Key Concept 6.3.
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The OLS Estimators, Predicted Values, and Residuals
in the Multiple Regression Model 6.3
The OLS estimators ﬁ’o, él, ceey ék are the values of by, by, . . ., b, that minimize
the sum of squared prediction errors X';_, (Y; — by — b1 X;; — -+ - — by Xy,) > The
OLS predicted values IA/, and residuals ; are
2=,L§0+,L§1X1i+"'+ékai,i=l,...,n,and (69)
B, =Y —-Y,i=1,...,n (6.10)
The OLS estimators ﬁo, fﬁ, ce ék and residual #1; are computed from a sample
of n observations of (Xj;, ..., Xy, Y;),i = 1,...,n. These are estimators of the
unknown true population coefficients Sy, B, - . . , B and error term u;.

Application to Test Scores and the Student-Teacher Ratio

In Section 4.2, we used OLS to estimate the intercept and slope coefficient of the
regression relating test scores (TestScore) to the student-teacher ratio (STR), using
our 420 observations for California school districts. The estimated OLS regression
line, reported in Equation (4.9), is

—_—
TestScore = 698.9 — 2.28 X STR. (6.11)

From the perspective of the father looking for a way to predict test scores, this rela-
tion is not very satisfying: its R? is only 0.051; that is, the student—teacher ratio
explains only 5.1% of the variation in test scores. Can this prediction be made more
precise by including additional regressors?

To find out, we estimate a multiple regression with test scores as the dependent
variable (Y;) and with two regressors: the student-teacher ratio (Xj;) and the per-
centage of English learners in the school district (X5;). The OLS regression line,

estimated using our 420 districts (i = 1, ...,420),is
/\
TestScore = 686.0 — 1.10 X STR — 0.65 X PctEL, (6.12)

where PctEL is the percentage of students in the district who are English learners.
The OLS estimate of the intercept ([§0) is 686.0, the OLS estimate of the coefficient
on the student-teacher ratio ( ,él) is —1.10, and the OLS estimate of the coefficient
on the percentage English learners ( éz) is —0.65.

The coefficient on the student—teacher ratio in the multiple regression is approx-
imately half as large as when the student—teacher ratio is the only regressor, —1.10

vs. —2.28. This difference occurs because the coefficient on STR in the multiple
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6.4

regression holds constant (or controls for) PctEL, whereas in the single-regressor
regression, PctEL is not held constant.

The decline in the magnitude of the coefficient on the student—teacher ratio,
once one controls for PctEL, parallels the findings in Table 6.1. There we saw that,among
schools within the same quartile of percentage of English learners, the difference in test
scores between schools with a high vs. a low student—teacher ratio is less than the differ-
ence if one does not hold constant the percentage of English learners. As in Table 6.1, this
strongly suggests that, from the perspective of causal inference, the original estimate of
the effect of the student-teacher ratio on test scores in Equation (6.11) is subject to
omitted variable bias.

Equation (6.12) provides multiple regression estimates that the father can use
for prediction, now using two predictors; we have not yet, however, answered his
question as to whether the quality of that prediction has been improved. To do so, we
need to extend the measures of fit in the single-regressor model to multiple
regression.

Measures of Fit in Multiple Regression

Three commonly used summary statistics in multiple regression are the standard
error of the regression, the regression R? and the adjusted R? (also known as R?). All
three statistics measure how well the OLS estimate of the multiple regression line
describes, or “fits,” the data.

The Standard Error of the Regression (SER)

The standard error of the regression (SER) estimates the standard deviation of the
error term u;. Thus the SER is a measure of the spread of the distribution of Y around
the regression line. In multiple regression, the SER is

1 . R
SER = Sp = \/ST%, where Sﬁz = m l;ﬁlz = n_SSﬁ (613)

no A2

and where SSR is the sum of squared residuals, SSR = X;_ ;.

The only difference between the definition of the SER in Equation (6.13) and
the definition of the SER in Section 4.3 for the single-regressor model is that here
the divisor is n — k — 1 rather than n — 2. In Section 4.3, the divisor n — 2 (rather
than n) adjusts for the downward bias introduced by estimating two coefficients (the
slope and intercept of the regression line). Here, the divisor n — k — 1 adjusts for
the downward bias introduced by estimating k + 1 coefficients (the k slope coeffi-
cients plus the intercept). As in Section 4.3, using n — k — 1 rather than n is called a
degrees-of-freedom adjustment. If there is a single regressor, then k£ = 1, so the for-
mula in Section 4.3 is the same as that in Equation (6.13). When # is large, the effect
of the degrees-of-freedom adjustment is negligible.
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The R?

The regression R? is the fraction of the sample variance of Y; explained by (or pre-
dicted by) the regressors. Equivalently, the R? is 1 minus the fraction of the variance
of Y; not explained by the regressors.

The mathematical definition of the R? is the same as for regression with a single
regressor:

_ESS _ SSR

2 _ B0 9O
R TSS 7SS’

(6.14)
where the explained sum of squares is ESS = E'Ll(f’,- — Y)? and the total sum of
squaresis 7SS = X';_,(Y; — V)%

In multiple regression, the R? increases whenever a regressor is added unless the
estimated coefficient on the added regressor is exactly 0. To see this, think about
starting with one regressor and then adding a second. When you use OLS to estimate
the model with both regressors, OLS finds the values of the coefficients that minimize
the sum of squared residuals. If OLS happens to choose the coefficient on the new
regressor to be exactly 0, then the SSR will be the same whether or not the second
variable is included in the regression. But if OLS chooses any value other than 0,
then it must be that this value reduced the SSR relative to the regression that
excludes this regressor. In practice, it is extremely unusual for an estimated coef-
ficient to be exactly 0, so in general the SSR will decrease when a new regressor is
added. But this means that the R? generally increases (and never decreases) when
a new regressor is added.

The Adjusted R?

Because the R? increases when a new variable is added, an increase in the R? does
not mean that adding a variable actually improves the fit of the model. In this sense,
the R? gives an inflated estimate of how well the regression fits the data. One way to
correct for this is to deflate or reduce the R? by some factor, and this is what the
adjusted R?, or R?, does.

The adjusted R or R?, is a modified version of the R* that does not necessarily
increase when a new regressor is added. The R? is

2
52_,__n=-1 SSR 5
R*=1— =1 = (6.15)

The difference between this formula and the second definition of the R? in Equation
(6.14) is that the ratio of the sum of squared residuals to the total sum of squares is mul-
tiplied by the factor (n — 1)/(n — k — 1).Asthe second expression in Equation (6.15)
shows, this means that the adjusted R?is 1 minus the ratio of the sample variance of the
OLS residuals [with the degrees-of-freedom correction in Equation (6.13)] to the sample
variance of Y.
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There are three useful things to know about the R 2. First, (n — 1) /(n —k — 1)
is always greater than 1,so R % is always less than R

Second, adding a regressor has two opposite effects on the R?. On the one hand,
the SSR falls, which increases the R>. On the other hand, the factor
(n —1)/(n — k — 1) increases. Whether the R” increases or decreases depends on
which of these two effects is stronger.

Third, the R? can be negative. This happens when the regressors, taken together,
reduce the sum of squared residuals by such a small amount that this reduction fails
to offset the factor (n — 1)/(n — k — 1).

Application to Test Scores

Equation (6.12) reports the estimated regression line for the multiple regression
relating test scores (7TestScore) to the student-teacher ratio (STR) and the
percentage of English learners (PctEL). The R? for this regression line is
R? = 0.426, the adjusted R?is R*> = 0.424,and the standard error of the regression
is SER = 14.5.

Comparing these measures of fit with those for the regression in which PctEL
is excluded [Equation (5.8)] shows that including PctEL in the regression increases
the R? from 0.051 to 0.426. When the only regressor is STR, only a small fraction of
the variation in TestScore is explained; however, when PctEL is added to the regres-
sion, more than two-fifths (42.6%) of the variation in test scores is explained. In
this sense, including the percentage of English learners substantially improves the
fit of the regression. Because # is large and only two regressors appear in Equation
(6.12), the difference between R? and adjusted R? is very small (R*> = 0.426 vs.
R* = 0.424).

The SER for the regression excluding PctEL is 18.6; this value falls to 14.5 when
PctEL is included as a second regressor. The units of the SER are points on the stan-
dardized test. The reduction in the SER tells us that predictions about standardized test
scores are substantially more precise if they are made using the regression with both
STR and PctEL than if they are made using the regression with only STR as a
regressor.

Using the R? and adjusted R’. The R? is useful because it quantifies the extent to
which the regressors account for, or explain, the variation in the dependent variable.
Nevertheless, heavy reliance on the R? (or R?) can be a trap.

In applications in which the goal is to produce reliable out-of-sample predictions,
including many regressors can produce a good in-sample fit but can degrade the out-
of-sample performance. Although the R? improves upon the R? for this purpose,
simply maximizing the R still can produce poor out-of-sample forecasts. We return
to this issue in Chapter 14.

In applications in which the goal is causal inference, the decision about whether
to include a variable in a multiple regression should be based on whether including
that variable allows you better to estimate the causal effect of interest. The least
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squares assumptions for causal inference in multiple regression make precise the
requirements for an included variable to eliminate omitted variable bias, and we now
turn to those assumptions.

The Least Squares Assumptions for Causal
Inference in Multiple Regression

In this section, we make precise the requirements for OLS to provide valid inferences
about causal effects. We consider the case in which we are interested in knowing the
causal effects of all k regressors in the multiple regression model; that is, all the coef-
ficients By, . . . , By are causal effects of interest. Section 6.8 presents the least squares
assumptions that apply when only some of the coefficients are causal effects, while
the rest are coefficients on variables included to control for omitted factors and do
not necessarily have a causal interpretation. Appendix 6.4 provides the least squares
assumptions for prediction with multiple regression.

There are four least squares assumptions for causal inference in the multiple
regression model. The first three are those of Section 4.3 for the single-regressor model
(Key Concept 4.3) extended to allow for multiple regressors, and they are discussed
here only briefly. The fourth assumption is new and is discussed in more detail.

Assumption 1: The Conditional Distribution of u; Given
X1i, X5, - . ., X Has a Mean of O

The first assumption is that the conditional distribution of u; given Xj;, . . ., X, has a
mean of 0. This assumption extends the first least squares assumption with a single
regressor to multiple regressors. This assumption is implied if Xj;, ..., X}; are ran-
domly assigned or are as-if randomly assigned; if so, for any value of the regressors,
the expected value of u; is 0. As is the case for regression with a single regressor, this
is the key assumption that makes the OLS estimators unbiased.

Assumption 2: (X],‘, Xz,', R Xk,‘, yi)r = 1, ..., N Are i.i.d.

The second assumption is that (Xj;, ..., X,Y;),i = 1, ..., n,are independently and
identically distributed (i.i.d.) random variables. This assumption holds automatically if
the data are collected by simple random sampling. The comments on this assumption
appearing in Section 4.3 for a single regressor also apply to multiple regressors.

Assumption 3: Large Outliers Are Unlikely

The third least squares assumption is that large outliers—that is, observations with
values far outside the usual range of the data—are unlikely. This assumption serves
as a reminder that, as in the single-regressor case, the OLS estimator of the coeffi-
cients in the multiple regression model can be sensitive to large outliers.
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The assumption that large outliers are unlikely is made mathematically precise by
assuming that Xj, ..., X, and Y; have nonzero finite fourth moments:
0< E(X}) <=, ...,0<E(X},)<wand0 < E(Y}) < . Another way to state
this assumption is that the dependent variable and regressors have finite kurtosis. This
assumption is used to derive the properties of OLS regression statistics in large samples.

Assumption 4: No Perfect Multicollinearity

The fourth assumption is new to the multiple regression model. It rules out an incon-
venient situation called perfect multicollinearity, in which it is impossible to compute
the OLS estimator. The regressors are said to exhibit perfect multicollinearity (or to
be perfectly multicollinear) if one of the regressors is a perfect linear function of the
other regressors. The fourth least squares assumption is that the regressors are not
perfectly multicollinear.

Why does perfect multicollinearity make it impossible to compute the OLS esti-
mator? Suppose you want to estimate the coefficient on STR in a regression of
TestScore; on STR; and PctEL; but you make a typographical error and accidentally
type in STR; a second time instead of PctELj; that is, you regress TestScore; on STR;
and STR;. This is a case of perfect multicollinearity because one of the regressors (the
first occurrence of STR) is a perfect linear function of another regressor (the second
occurrence of STR). Depending on how your software package handles perfect mul-
ticollinearity, if you try to estimate this regression, the software will do one of two
things: Either it will drop one of the occurrences of STR, or it will refuse to calculate
the OLS estimates and give an error message. The mathematical reason for this fail-
ure is that perfect multicollinearity produces division by 0 in the OLS formulas.

At an intuitive level, perfect multicollinearity is a problem because you are ask-
ing the regression to answer an illogical question. In multiple regression, the coeffi-
cient on one of the regressors is the effect of a change in that regressor, holding the
other regressors constant. In the hypothetical regression of TestScore on STR and
STR, the coefficient on the first occurrence of STR is the effect on test scores of a
change in STR, holding constant STR. This makes no sense, and OLS cannot estimate
this nonsensical partial effect.

The solution to perfect multicollinearity in this hypothetical regression is sim-
ply to correct the typo and to replace one of the occurrences of STR with the vari-
able you originally wanted to include. This example is typical: When perfect
multicollinearity occurs, it often reflects a logical mistake in choosing the regres-
sors or some previously unrecognized feature of the data set. In general, the solu-
tion to perfect multicollinearity is to modify the regressors to eliminate the
problem.

Additional examples of perfect multicollinearity are given in Section 6.7 which
also defines and discusses imperfect multicollinearity.

The least squares assumptions for the multiple regression model are summarized
in Key Concept 6.4.
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The Least Squares Assumptions for Causal Inference
in the Multiple Regression Model 6.4
=Bt BXi + BoXoi + -+ BiXyy T upi =1,....n,
where By, . . ., B, are causal effects and
1. u; has a conditional mean of 0 given Xj;, X;, . . ., Xj; that is,

2. (lei’ X2i9 ..

E(u;| X1 X4 . . ., Xpg) = 0.

X Y:),i =1,...,n, are independently and identically dis-

tributed (i.i.d.) draws from their joint distribution.

3. Large outliers are unlikely: Xj,, ..., X}; and Y; have nonzero finite fourth

moments.

4. There is no perfect multicollinearity.

6.6

The Distribution of the OLS Estimators
in Multiple Regression

Because the data differ from one sample to the next, different samples produce dif-
ferent values of the OLS estimators. This variation across possible samples gives rise
to the uncertainty associated with the OLS estimators of the population regression
coefficients, By, Bi, - - - , Br. Just as in the case of regression with a single regressor, this
variation is summarized in the sampling distribution of the OLS estimators.

Recall from Section 4.4 that, under the least squares assumptions, the OLS esti-
mators (,éo and fﬁ) are unbiased and consistent estimators of the unknown coeffi-
cients (By and B;) in the linear regression model with a single regressor. In addition,
in large samples, the sampling distribution of Bo and By is well approximated by a
bivariate normal distribution.

These results carry over to multiple regression analysis. That is, under the least

squares assumptions of Key Concept 6.4, the OLS estimators Bo, Bi, - - ., Br are unbi-
ased and consistent estimators of S, By, - . ., B¢ in the linear multiple regression
model. In large samples, the joint sampling distribution of ﬁo, ﬁl, e ,ék is well

approximated by a multivariate normal distribution, which is the extension of the
bivariate normal distribution to the general case of two or more jointly normal
random variables (Section 2.4).

Although the algebra is more complicated when there are multiple regressors,
the central limit theorem applies to the OLS estimators in the multiple regression
model for the same reason that it applies to Y and to the OLS estimators when there
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6.5

6.7

Large-Sample Distribution of LA%O, fﬁ, ce. ,ﬁk

If the least squares assumptlons (Key Concept 6.4) hold, then in large samples
the OLS estimators [30, Bl, .. ,Bk are jointly normally distributed, and each ,8]
is distributed N(;, (rﬁ/_), j= O, .ok

is a single regressor: The OLS estimators éo, [§1, ce ék are averages of the randomly
sampled data, and if the sample size is sufficiently large, the sampling distribution of
those averages becomes normal. Because the multivariate normal distribution is best
handled mathematically using matrix algebra, the expressions for the joint distribu-
tion of the OLS estimators are deferred to Chapter 19.

Key Concept 6.5 summarizes the result that, in large samples, the distribution of
the OLS estimators in multiple regression is approximately jointly normal. In gen-
eral, the OLS estimators are correlated; this correlation arises from the correlation
between the regressors. The joint sampling distribution of the OLS estimators is dis-
cussed in more detail for the case where there are two regressors and homoskedastic
errors in Appendix 6.2, and the general case is discussed in Section 19.2.

Multicollinearity

As discussed in Section 6.5, perfect multicollinearity arises when one of the regressors
is a perfect linear combination of the other regressors. This section provides some
examples of perfect multicollinearity and discusses how perfect multicollinearity can
arise, and can be avoided, in regressions with multiple binary regressors. Imperfect
multicollinearity arises when one of the regressors is very highly correlated—but not
perfectly correlated —with the other regressors. Unlike perfect multicollinearity, imper-
fect multicollinearity does not prevent estimation of the regression, nor does it imply
a logical problem with the choice of regressors. However, it does mean that one or
more regression coefficients could be estimated imprecisely.

Examples of Perfect Multicollinearity

We continue the discussion of perfect multicollinearity from Section 6.5 by examin-
ing three additional hypothetical regressions. In each, a third regressor is added to
the regression of TestScore; on STR; and PctEL;in Equation (6.12).

Example 1: Fraction of English learners. Let FracEL; be the fraction of English
learners in the i'" district, which varies between 0 and 1. If the variable FracEL; were
included as a third regressor in addition to STR; and PctEL;, the regressors would be
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suburban, and urban. Each district falls into one (and only one) category. Let these
binary variables be Rural;, which equals 1 for a rural district and equals 0 otherwise;
Suburban;; and Urban,. If you include all three binary variables in the regression
along with a constant, the regressors will be perfectly multicollinear: Because each
districtbelongstoone and onlyonecategory, Rural; + Suburban; + Urban; = 1 = X,
where Xp; denotes the constant regressor introduced in Equation (6.6). Thus, to esti-
mate the regression, you must exclude one of these four variables, either one of the
binary indicators or the constant term. By convention, the constant term is typically
retained, in which case one of the binary indicators is excluded. For example, if Rural;
were excluded, then the coefficient on Suburban; would be the average difference
between test scores in suburban and rural districts, holding constant the other vari-
ables in the regression.

In general, if there are G binary variables, if each observation falls into one and
only one category, if there is an intercept in the regression, and if all G binary vari-
ables are included as regressors, then the regression will fail because of perfect mul-
ticollinearity. This situation is called the dummy variable trap. The usual way to avoid
the dummy variable trap is to exclude one of the binary variables from the multiple
regression, so only G — 1 of the G binary variables are included as regressors. In this
case, the coefficients on the included binary variables represent the incremental
effect of being in that category, relative to the base case of the omitted category, hold-
ing constant the other regressors. Alternatively, all G binary regressors can be
included if the intercept is omitted from the regression.

Solutions to perfect multicollinearity. Perfect multicollinearity typically arises when
a mistake has been made in specifying the regression. Sometimes the mistake is easy
to spot (as in the first example), but sometimes it is not (as in the second example).
In one way or another, your software will let you know if you make such a mistake
because it cannot compute the OLS estimator if you have.

When your software lets you know that you have perfect multicollinearity, it is
important that you modify your regression to eliminate it. You should understand the
source of the multicollinearity. Some software is unreliable when there is perfect
multicollinearity, and at a minimum, you will be ceding control over your choice of
regressors to your computer if your regressors are perfectly multicollinear.

Imperfect Multicollinearity

Despite its similar name, imperfect multicollinearity is conceptually quite different
from perfect multicollinearity. Imperfect multicollinearity means that two or more
of the regressors are highly correlated in the sense that there is a linear function of
the regressors that is highly correlated with another regressor. Imperfect multicol-
linearity does not pose any problems for the theory of the OLS estimators; on the
contrary, one use of OLS is to sort out the independent influences of the various
regressors when the regressors are correlated.
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If the regressors are imperfectly multicollinear, then the coefficients on at least
one individual regressor will be imprecisely estimated. For example, consider the
regression of TestScore on STR and PctEL. Suppose we were to add a third regressor,
the percentage of the district’s residents who are first-generation immigrants. First-
generation immigrants often speak English as a second language, so the variables
PctEL and percentage immigrants will be highly correlated: Districts with many
recent immigrants will tend to have many students who are still learning English.
Because these two variables are highly correlated, it would be difficult to use these
data to estimate the coefficient on PctEL, holding constant the percentage of immi-
grants. In other words, the data set provides little information about what happens to
test scores when the percentage of English learners is low but the fraction of immi-
grants is high, or vice versa. As a result, the OLS estimator of the coefficient on
PctEL in this regression will have a larger variance than if the regressors PctEL and
percentage immigrants were uncorrelated.

The effect of imperfect multicollinearity on the variance of the OLS estimators
can be seen mathematically by inspecting Equation (6.20) in Appendix 6.2, which is
the variance of B in a multiple regression with two regressors (X; and X,) for the
special case of a homoskedastic error. In this case, the variance of By is inversely
proportional to 1 — pg(b x,» Where py x, is the correlation between X; and X,. The
larger the correlation between the two regressors, the closer this term is to 0, and the
larger is the variance of $,. More generally, when multiple regressors are imperfectly
multicollinear, the coefficients on one or more of these regressors will be imprecisely
estimated; that is, they will have a large sampling variance.

Perfect multicollinearity is a problem that often signals the presence of a logical
error. In contrast, imperfect multicollinearity is not necessarily an error but rather
just a feature of OLS, your data, and the question you are trying to answer. If the
variables in your regression are the ones you meant to include —the ones you chose
to address the potential for omitted variable bias—then imperfect multicollinearity
implies that it will be difficult to estimate precisely one or more of the partial effects
using the data at hand.

Control Variables and Conditional
Mean Independence

In the test score example, we included the percentage of English learners in the
regression to address omitted variable bias in the estimate of the effect of class size.
Specifically, by including percent English learners in the regression, we were able to
estimate the effect of class size, controlling for the percent English learners.

In this section, we make explicit the distinction between a regressor for which we
wish to estimate a causal effect —that is, a variable of interest—and control variables.
A control variable is not the object of interest in the study; rather, it is a regressor
included to hold constant factors that, if neglected, could lead the estimated causal
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effect of interest to suffer from omitted variable bias. This distinction leads to a modi-
fication of the first least squares assumption in Key Concept 6.4, in which some of
the variables are control variables. If this alternative assumption holds, the OLS esti-
mator of the effect of interest is unbiased, but the OLS coefficients on control vari-
ables are, in general, biased and do not have a causal interpretation.

For example, consider the potential omitted variable bias arising from omitting
outside learning opportunities from a test score regression. Although “outside learn-
ing opportunities” is a broad concept that is difficult to measure, those opportunities
are correlated with the students’ economic background, which can be measured. Thus
a measure of economic background can be included in a test score regression to
control for omitted income-related determinants of test scores, like outside learning
opportunities. To this end, we augment the regression of test scores on STR and
PctEL with the percentage of students receiving a free or subsidized school lunch
(LchPct). Students are eligible for this program if their family income is less than a certain
threshold (approximately 150% of the poverty line), so LchPct measures the fraction of
economically disadvantaged children in the district. The estimated regression is

/\
TestScore = 700.2 — 1.00 X STR — 0.122 X PctEL — 0.547 X LchPct. (6.16)

In this regression, the coefficient on the student-teacher ratio is the effect of the
student-teacher ratio on test scores, controlling for the percentage of English learn-
ers and the percentage eligible for a reduced-price lunch. Including the control
variable LchPct does not substantially change any conclusions about the class size
effect: The coefficient on STR changes only slightly from its value of —1.10 in Equa-
tion (6.12) to —1.00 in Equation (6.16).

What does one make of the coefficient on LchPctin Equation (6.16)? That coef-
ficient is very large: The difference in test scores between a district with LchPct = 0%
and one with LchPct = 50% is estimated to be 274 points [= 0.547 X (50 — 0)],
approximately the difference between the 75th and 25th percentiles of test scores in
Table 4.1. Does this coefficient have a causal interpretation? Suppose that upon see-
ing Equation (6.16) the superintendent proposed eliminating the reduced-price
lunch program so that, for her district, LchPct would immediately drop to 0. Would
eliminating the lunch program boost her district’s test scores? Common sense sug-
gests that the answer is no; in fact, by leaving some students hungry, eliminating the
reduced-price lunch program might well have the opposite effect. But does it make
sense to treat as causal the coefficient on the variable of interest STR but not the
coefficient on the control variable LchPct?

Control Variables and Conditional Mean
Independence

To distinguish between variables of interest and control variables, we modify the
notation of the linear regression model to include k variables of interest, denoted by
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6.9

interpretation is laid out in Appendix 6.5, where it is shown that if conditional mean
independence holds, then the OLS estimators of the coefficients on the X’s are unbi-
ased estimators of the causal effects of the X’s, but the OLS estimators of the coef-
ficients on the W’s are in general biased. This bias does not pose a problem because
we are interested in the coefficients on the X’s, not on the W’s.

In the class size example, LchPct can be correlated with factors, such as learn-
ing opportunities outside school, that enter the error term; indeed, it is because of
this correlation that LchPct is a useful control variable. This correlation between
LchPct and the error term means that the estimated coefficient on LchPct does
not have a causal interpretation. What the conditional mean independence
assumption requires is that, given the control variables in the regression (PctEL
and LchPct), the mean of the error term does not depend on the student-teacher
ratio. Said differently, conditional mean independence says that among schools
with the same values of PctEL and LchPct, class size is “as-if” randomly assigned:
Including PctEL and LchPct in the regression controls for omitted factors so that
STR is uncorrelated with the error term. If so, the coefficient on the student-
teacher ratio has a causal interpretation even though the coefficient on LchPct
does not.

The first least squares assumption for multiple regression with control variables
makes precise the requirement needed to eliminate the omitted variable bias with which
this chapter began: Given, or holding constant, the values of the control variables, the
variable of interest is as-if randomly assigned in the sense that the mean of the error
term no longer depends on X given the control variables. This requirement serves as a
useful guide for choosing of control variables and for judging their adequacy.

Conclusion

Regression with a single regressor is vulnerable to omitted variable bias: If an omitted
variable is a determinant of the dependent variable and is correlated with the regres-
sor, then the OLS estimator of the causal effect will be biased and will reflect both
the effect of the regressor and the effect of the omitted variable. Multiple regression
makes it possible to mitigate or eliminate omitted variable bias by including the omit-
ted variable in the regression. The coefficient on a regressor, Xj, in multiple regres-
sion is the partial effect of a change in Xj, holding constant the other included
regressors. In the test score example, including the percentage of English learners as
a regressor made it possible to estimate the effect on test scores of a change in
the student—teacher ratio, holding constant the percentage of English learners. Doing
so reduced by half the estimated effect on test scores of a change in the student—
teacher ratio.

The statistical theory of multiple regression builds on the statistical theory of
regression with a single regressor. The least squares assumptions for multiple regres-
sion are extensions of the three least squares assumptions for regression with a single
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i. Why is Triprel excluded from the regression? What would happen if
you included it in the regression?

ii. The estimated coefficient on 7ripre0 is large and negative. What does
this coefficient measure? Interpret its value.

iii. Interpret the value of the estimated coefficients on Tripre2 and Tripre3.

iv. Does the regression in (d) explain a larger fraction of the variance in
birth weight than the regression in (b)?

E6.2 Using the data set Growth described in Empirical Exercise E4.1, but exclud-
ing the data for Malta, carry out the following exercises.

a.

Construct a table that shows the sample mean, standard deviation,

and minimum and maximum values for the series Growth, TradeShare,
YearsSchool, Oil, Rev_Coups, Assassinations, and RGD P60. Include the
appropriate units for all entries.

Run a regression of Growth on TradeShare, YearsSchool, Rev_Coups,
Assassinations, and RGDP60. What is the value of the coefficient on
Rev_Coups? Interpret the value of this coefficient. Is it large or small in
a real-world sense?

Use the regression to predict the average annual growth rate for a
country that has average values for all regressors.

Repeat (c), but now assume that the country’s value for TradeShare is
one standard deviation above the mean.

Why is Oil omitted from the regression? What would happen if it were
included?

Derivation of Equation (6.1)

This appendix presents a derivation of the formula for omitted variable bias in Equation (6.1).

Equation (4.28) in Appendix 4.3 states

. ;[; (}(t - X)uz
B =P+ T (6.19)
;;(Xi -X)?

Under the last two assumptions in Key Concept 4.3, (1/n) 3" (X; — X)> > 0% and

(1/n)X7_

(X — X)u; =25 cov(u;, X;) = pyu0o,0y. Substitution of these limits into

Equation (6.19) yields Equation (6.1).
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Distribution of the OLS Estimators
When There Are Two Regressors
and Homoskedastic Errors

Although the general formula for the variance of the OLS estimators in multiple regression is
complicated, if there are two regressors (kK = 2) and the errors are homoskedastic, then the
formula simplifies enough to provide some insights into the distribution of the OLS
estimators.

Because the errors are homoskedastic, the conditional variance of u; can be written as
var(u;| Xy, Xop) = o2. When there are two regressors, X;; and X,;, and the error term is homo-
skedastic, in large samples the sampling distribution of ,él is N(By, aél ), where the variance of

this distribution, a'él, is

2
ol = %(71 ) Tu (6.20)

2 2
1- PX.x,/ Ox,

where py, x,1s the population correlation between the two regressors X; and X, and ag(l is the
population variance of Xj.

The variance 012% of the sampling distribution of ,él depends on the squared correlation
between the regressors. If X; and X, are highly correlated, either positively or negatively, then
P%(I,X2 is close to 1, so the term 1 — P%(I,X2 in the denominator of Equation (6.20) is small and
the variance of ,él is larger than it would be if Px;, x, were close to 0.

Another feature of the joint normal large-sample distribution of the OLS estimators is that
ﬁl and ,éz are,in general, correlated. When the errors are homoskedastic, the correlation between
the OLS estimators /§1 and ,éz is the negative of the correlation between the two regressors (see
Exercise 19.18):

corr(Br. Br) = —px, x» (6:21)

The Frisch-Waugh Theorem

The OLS estimator in multiple regression can be computed by a sequence of shorter
regressions. Consider the multiple regression model in Equation (6.7). The OLS estimator of
B can be computed in three steps:

1. Regress Xjon X5, X3, ..., X}, and let )N(l denote the residuals from this regression;

2. Regress Yon X5, X5, ..., X;,and let Y denote the residuals from this regression; and

3. Regress Y on )~(1,
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where the regressions include a constant term (intercept). The Frisch—-Waugh theorem states
that the OLS coefficient in step 3 equals the OLS coefficient on X, in the multiple regression
model [Equation (6.7)].

This result provides a mathematical statement of how the multiple regression coefficient
,él estimates the effect on Y of X, controlling for the other X’s: Because the first two regres-
sions (steps 1 and 2) remove from Y and X their variation associated with the other X’s, the
third regression estimates the effect on Y of Xj using what is left over after removing (control-
ling for) the effect of the other X’s. The Frisch—-Waugh theorem is proven in Exercise 19.17

This theorem suggests how Equation (6.20) can be derived from Equation (5.27). Because
/§1 is the OLS regression coefficient from the regression of Y onto )?1, Equation (5.27) suggests

2 i

that the homoskedasticity-only variance of ﬁl is o b= where a-)% is the variance of )N(l
nhog;
X,

Because X; is the residual from the regression of X; onto X, (recall that Equation (6.20) per-

tains to the model with & = 2 regressors), Equation (6.15) implies that s)% = (1 = R%, x,)5%,»

where R}h X, 1s the adjusted R? from the regression of X; onto X. Equation (6.20) follows from

2 P 2 32 P, 2 2 P, o
sy, — > 0x. Ry x, = px xpand sy, — og,.

The Least Squares Assumptions for
Prediction with Multiple Regressors

This appendix extends the least squares assumptions for prediction with a single regressor in
Appendix 4.4 to multiple regressors. It then discusses the unbiasedness of the OLS estimator
of the population regression line and the unbiasedness of the forecasts.

Adopt the notation of the least square assumptions for prediction with a single regressor
in Appendix 4.4, so that the out-of-sample (“00s”) observation is (X9, ..., X7%,Y°?).The
aim is to predict Y% given X{*°,..., X{®. Let (Xy;, ..., X4,Y:),i = 1,...,n, be the data
used to estimate the regression coefficients. The least squares assumptions for prediction with

multiple regressors are
E(Y|X,....,X) =B+ BXi + -+ BXeandu = Y- E(Y|X,, ..., X,), where
1 (X9, ..., X3, Y°") are randomly drawn from the same population distribution as
(Xtijs.- -, X Yi),i=1,...,n.
2. (X, X3, i), i = 1, ..., n,are i.i.d. draws from their joint distribution.
3. Large outliers are unlikely: X3;, . . ., X}; and Y¥; have nonzero finite fourth moments.
4. There is no perfect multicollinearity.

As in the case of a single X in Appendix 4.4, for prediction the B’s are defined to be the
coefficients of the population conditional expectation. These 8’s may or may not have a causal
interpretation. Assumption 1 ensures that this conditional expectation, estimated using the
in-sample data, is the same as the conditional expectation that applies to the out-of-sample
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prediction observation. The remaining assumptions are technical assumptions that play the
same role as they do for causal inference.

Under the definition that the 8’s are the coefficients of the linear conditional expectation,
the error u necessarily has a conditional mean of 0, so that £ (u;| Xj;, . . ., Xi;) = 0.Thus the
calculations in Chapter 19 show that the OLS estimators ,éo, ,731, ey ,ék are unbiased for the
respective population slope coefficients. Under the additional technical conditions of assump-
tions 2—4, the OLS estimators are consistent for these conditional expectation slope coeffi-
cients and are normally distributed in large samples.

The unbiasedness of the out-of-sample forecast follows from the unbiasedness of the OLS
estimators and the first prediction assumption, which ensures that the out-of-sample observa-
tion and in-sample observations are independently drawn from the same distribution.

Specifically,
E(YO%| X% = x§%, ..., X7 = x{%)
= E(By + BXT™ + oo+ BXPZ|XE = 29 X = 1)
= E(B| X9 = x, ... XP = ) + E(BX{”| X9 = x{”, ..., X0 = x{)
+ o+ E(BXTCIXTS = X9, X0 = )
= By + B + oo+ B
= E(Y°"| X7 = x{%, ..., X0 = x™), (6.22)

where the third equality follows from the independence of the out-of-sample and in-sample
observations and from the unbiasedness of the OLS estimators for the population slope coef-
ficients of the in-sample conditional expectation, and where the final equality follows from the

in- and out-of-sample observations being drawn from the same distribution.

Distribution of OLS Estimators in Multiple
Regression with Control Variables

This appendix shows that under least squares assumption 1 for multiple regression with con-
trol variables [Equation (6.18)], the OLS coefficient estimator is unbiased for the causal effect
of the variables of interest. Moreover, with the addition of technical assumptions 2—4 in Key
Concept 6.6, the OLS estimator is a consistent estimator of the causal effect and has a normal
distribution in large samples. The OLS estimator of the coefficients on the control variables
estimates the slope coefficient in a conditional expectation and is normally distributed in large
samples around that slope coefficient; however, that slope coefficient does not, in general, have
a causal interpretation.

As we have throughout, assume that conditional expectations are linear, so that the con-
ditional mean independence assumption is

E(ui| Xips -, XeisWaiy oo W) = E(ui| W ... W) = y0 + viWa; + -+ + Wi (6.23)



