The Theory
of Multiple Regression

his chapter provides an introduction to the theory of multiple regression analysis.

The chapter has four objectives. The first is to present the multiple regression
model in matrix form, which leads to compact formulas for the ordinary least squares
(OLS) estimator and test statistics. The second objective is to characterize the sampling
distribution of the OLS estimator, both in large samples (using asymptotic theory) and
in small samples (if the errors are homoskedastic and normally distributed). The third
objective is to study the theory of efficient estimation of the coefficients of the
multiple regression model and to describe generalized least squares (GLS), a method
for estimating the regression coefficients efficiently when the errors are heteroskedastic
and/or correlated across observations. The fourth objective is to provide a concise
treatment of the asymptotic distribution theory of instrumental variables (IV) regression
in the linear model, including an introduction to generalized method of moments
(GMM) estimation in the linear IV regression model with heteroskedastic errors.

The chapter begins by laying out the multiple regression model and the OLS
estimator in matrix form in Section 19.1. This section also presents the extended least
squares assumptions for the multiple regression model. The first four of these
assumptions are the same as the least squares assumptions of Key Concept 6.4 and
underlie the asymptotic distributions used to justify the procedures described in
Chapters 6 and 7. The remaining two extended least squares assumptions are stronger
and permit us to explore in more detail the theoretical properties of the OLS estimator
in the multiple regression model.

The next three sections examine the sampling distribution of the OLS estimator and
test statistics. Section 19.2 presents the asymptotic distributions of the OLS estimator and
t-statistic under the least squares assumptions of Key Concept 6.4. Section 19.3 unifies
and generalizes the tests of hypotheses involving multiple coefficients presented in
Sections 7.2 and 7.3 and provides the asymptotic distribution of the resulting F-statistic.
In Section 19.4, we examine the exact sampling distributions of the OLS estimator and
test statistics in the special case that the errors are homoskedastic and normally
distributed. Although the assumption of homoskedastic normal errors is implausible
in most econometric applications, the exact sampling distributions are of theoretical
interest, and p-values computed using these distributions often appear in the output
of regression software.

The next two sections turn to the theory of efficient estimation of the coefficients
of the multiple regression model. Section 19.5 generalizes the Gauss-Markov theorem
to multiple regression. Section 19.6 develops the method of generalized least squares
(GLS).
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19.1

The final section takes up IV estimation in the general IV regression model when
the instruments are valid and strong. This section derives the asymptotic distribution
of the two stage least squares (TSLS) estimator when the errors are heteroskedastic
and provides expressions for the standard error of the TSLS estimator. The TSLS
estimator is one of many possible GMM estimators, and this section provides an
introduction to GMM estimation in the linear IV regression model. It is shown that the
TSLS estimator is the efficient GMM estimator if the errors are homoskedastic.

Mathematical prerequisite. The treatment of the linear model in this chapter uses
matrix notation and the basic tools of linear algebra and assumes that the reader has
taken anintroductory course in linear algebra. Appendix 19.1 reviews vectors, matrices,
and the matrix operations used in this chapter. In addition, multivariate calculus is used
in Section 19.1 to derive the OLS estimator.

The Linear Multiple Regression Model
and OLS Estimator in Matrix Form

The linear multiple regression model and the OLS estimator can each be represented
compactly using matrix notation.

The Multiple Regression Model in Matrix Notation
The population multiple regression model (Key Concept 6.2) is
}]l' = BO + BIXU + B2X2i + - +Bkai + u,-,l' = 1, [ ( (191)

To write the multiple regression model in matrix form, define the following vectors
and matrices:

U 1 Xu X Xi Bo
1 X X, X;
U=|"|x= - S = |72 | and g = Bl (92
u, 1 Xln an X;z Bk

soYisn X 1,Xisn X (k+1),Uisn X 1,and Bis (k + 1) X 1. Throughout we

denote matrices and vectors by bold type. In this notation,

e Yisthe n X 1 dimensional vector of n observations on the dependent variable.

e Xisthen X (k + 1) dimensional matrix of n observations on the k + 1 regressors
(including the “constant” regressor for the intercept).

e The (k + 1) X 1 dimensional column vector X; is the i" observation on the k + 1

regressors; that is, X; = (1 Xj;... X};), where X/ denotes the transpose of X;.
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The Extended Least Squares Assumptions
in the Multiple Regression Model 19.1
Yl-=X,-'B+ul-,i=1,...,n., (193)

where B is the vector of causal effects and

S

O -

E(u; | X;) = 0 (u; has conditional mean 0);
(X;, Yy),i=1,...,n,are independently and identically distributed (i.i.d.)
draws from their joint distribution;

X, and u; have nonzero finite fourth moments;
X has full column rank (there is no perfect multicollinearity);
var(u; | X;) = o2 (homoskedasticity); and

The conditional distribution of u; given X; is normal (normal errors).

e Uisthe n X 1 dimensional vector of the n error terms.

e B is the (k + 1) X 1 dimensional vector of the k + 1 unknown regression
coefficients.

The multiple regression model in Equation (19.1) for the i'" observation, written
using the vectors B and Xj, is

Y,=X/B+u,i=1,....n (19.4)

In Equation (19.4), the first regressor is the “constant” regressor that always equals 1,
and its coefficient is the intercept. Thus the intercept does not appear separately in
Equation (19.4); rather, it is the first element of the coefficient vector B.

Stacking all n observations in Equation (19.4) yields the multiple regression
model in matrix form:

Y=XB+U. (19.5)

The Extended Least Squares Assumptions

The extended least squares assumptions for the multiple regression model are the four
least squares assumptions for causal inference in the multiple regression model in Key
Concept 6.4 plus the two additional assumptions of homoskedasticity and normally
distributed errors. The assumption of homoskedasticity is used when we study the effi-
ciency of the OLS estimator, and the assumption of normality is used when we study
the exact sampling distribution of the OLS estimator and test statistics.

The extended least squares assumptions are summarized in Key Concept 19.1.
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Except for notational differences, the first three assumptions in Key Concept 19.1
are identical to the first three assumptions in Key Concept 6.4.

The fourth assumptions in Key Concepts 6.4 and 19.1 might appear different, but,in
fact, they are the same: They are simply different ways of saying that there cannot be
perfect multicollinearity. Recall that perfect multicollinearity arises when one regressor
can be written as a perfect linear combination of the others. In the matrix notation of
Equation (19.2), perfect multicollinearity means that one column of X is a perfect linear
combination of the other columns of X, but if this is true, then X does not have full column
rank. Thus saying that X has rank k + 1—that is, rank equal to the number of columns
of X—is just another way to say that the regressors are not perfectly multicollinear.

The fifth least squares assumption in Key Concept 19.1 is that the error term is
conditionally homoskedastic, and the sixth assumption is that the conditional distribu-
tion of u; given X; is normal. These two assumptions are the same as the final two
assumptions in Key Concept 18.1 except that they are now stated for multiple
regressors.

Implications for the mean vector and covariance matrix of U. The least squares
assumptions in Key Concept 19.1 imply simple expressions for the mean vector and
covariance matrix of the conditional distribution of U given the matrix of regressors
X. (The mean vector and covariance matrix of a vector of random variables are
defined in Appendix 19.2.) Specifically, the first and second assumptions in Key Con-
cept 19.1 imply that E(u;| X) = E(u;|X;) = 0 and that cov(u;, u;| X) = E(uu;| X) =
E(uu;| X;, X)) = E(u;| X;))E(u;] X;) = 0 for i # j (Exercise 18.7). The first, second,
and fifth assumptions imply that E(u?| X) = E(u?|X;) = o2. Combining these results,
we have that

under assumptions 1 and 2, E(U|X) = 0,, and (19.6)
under assumptions 1, 2, and 5, E(UU'| X) = oI, (19.7)

where 0, is the n-dimensional vector of zeros and 1, is the n X n identity matrix.

Similarly, the first, second, fifth, and sixth assumptions in Key Concept 19.1 imply
that the conditional distribution of the n-dimensional random vector U, conditional
on X, is the multivariate normal distribution (defined in Appendix 19.2). That is,

under assumptions 1, 2, 5, and 6, the

conditional distribution of U given X is N(0,,, o2I,). (19.8)

The OLS Estimator

The OLS estimator minimizes the sum of squared prediction mistakes,
Sii(Yi — by — b1 Xy; — -+ - — b Xy,)? [Equation (6.8)]. The formula for the OLS
estimator is obtained by taking the derivative of the sum of squared prediction
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mistakes with respect to each element of the coefficient vector, setting these deriva-
tives to 0, and solving for the estimator 3.
The derivative of the sum of squared prediction mistakes with respect to the ji
regression coefficient, b, is
a n

—— > (Y, = by — biXy; — - — Xy’

ab; =

= _ZEXﬁ(Yi — by = b1 Xy — - = biXy) (19.9)
i=1

forj =0, ..., k, where,for j = 0, X;; = 1 for all i. The derivative on the right-hand
side of Equation (19.9) is the j element of the k + 1 dimensional vector,
—2X'(Y — Xb), where b is the k + 1 dimensional vector consisting of by, . . ., by.
There are k + 1 such derivatives, each corresponding to an element of b. Combined,
these yield the system of & + 1 equations that, when set to 0, constitute the first-order
conditions for the OLS estimator [§.That is, [} solves the system of k + 1 equations:

X'(Y - XB) = 0,4, (19.10)

or, equivalently, X'Y = X 'XB.
Solving the system of equations (19.10) yields the OLS estimator [Af in matrix form:

B=XX"'XxY, (19.11)
where (X'X) ! is the inverse of the matrix X'X.

The role of “no perfect multicollinearity.” The fourth least squares assumption in
Key Concept 19.1 states that X has full column rank. In turn, this implies that the
matrix X'X has full rank —that is, that X' X is nonsingular. Because X'X is nonsingu-
lar, it is invertible. Thus the assumption that there is no perfect multicollinearity
ensures that (X'X) ! exists, so Equation (19.10) has a unique solution and the for-
mula in Equation (19.11) for the OLS estimator can actually be computed. Said dif-
ferently, if X does not have full column rank, there is not a unique solution to
Equation (19.10), and X'X is singular. Therefore, (X’X)™! cannot be computed, and
thus B cannot be computed from Equation (19.11).

Asymptotic Distribution of the OLS
Estimator and t-Statistic

If the sample size is large and the first four assumptions of Key Concept 19.1 are
satisfied, then the OLS estimator has an asymptotic joint normal distribution, the
heteroskedasticity-robust estimator of the covariance matrix is consistent, and the
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19.2

The Multivariate Central Limit Theorem

Suppose that Wy, ..., W, are i.i.d. m-dimensional random variables with mean
vector E(W;) = uw and covariance matrix E[(W; — uw)(W; — uw)' | = 2w,
where 3y is positive definite and finite. Let W = %E?ZIW,». Then
V(W = ) —> N(O,,, S).

heteroskedasticity-robust OLS t-statistic has an asymptotic standard normal distribu-
tion. These results make use of the multivariate normal distribution (Appendix 19.2)
and a multivariate extension of the central limit theorem.

The Multivariate Central Limit Theorem

The central limit theorem of Key Concept 2.7 applies to a one-dimensional random
variable. To derive the joint asymptotic distribution of the elements of B, we need a
multivariate central limit theorem that applies to vector-valued random variables.

The multivariate central limit theorem extends the univariate central limit theorem
to averages of observations on a vector-valued random variable, W, where W is
m-dimensional. The difference between the central limit theorems for a scalar-valued
random variable and that for a vector-valued random variable is the conditions on the
variances. In the scalar case in Key Concept 2.7 the requirement is that the variance is
both nonzero and finite. In the vector case, the requirement is that the covariance
matrix is both positive definite and finite. If the vector-valued random variable W has a
finite positive definite covariance matrix, then 0 < var(c’W) < « for all nonzero
m-dimensional vectors ¢ (Exercise 19.3).

The multivariate central limit theorem that we will use is stated in Key Concept 19.2.

Asymptotic Normality ofé

In large samples, the OLS estimator has the multivariate normal asymptotic
distribution

V(B = B) =5 N(Oci1, Zvis-p), where Zvag_p = Qx'Sv 0y, (19.12)

where Qy is the (k + 1) X (k + 1) dimensional matrix of second moments of the
regressors—that is, @y = E(X;X/)—and Xy is the (k + 1) X (k + 1) dimensional
covariance matrix of V; = Xu,—that is, %y = E(V;V/). Note that the second least
squares assumption in Key Concept 19.1 implies that V;,i = 1, ..., n,are i.i.d.

Written in terms of [} rather than \/Z([; — B), the normal approximation in
Equation (19.12) is

B.in large samples, is approximately distributed N(B, X 3),

where 23 = 2\ n3-p/n = Ox' 2y 0x'/n. (19.13)
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The covariance matrix 4 in Equation (19.13) is the covariance matrix of the approxi-
mate normal distribution of [AB, whereas X/ - g) in Equation (19.12) is the covariance
matrix of the asymptotic normal distribution of Vn ( ﬁ — pB)-These two covariance matri-
ces differ by a factor of n, depending on whether the OLS estimator is scaled by V.

Derivation of Equation (19.12). To derive Equation (19.12), first use Equations
(19.3) and (19.11) to write B = (X'X)"'X'Y = (X'X)"'X'(XB + U), so that

B=B+XXXU (19.14)

Thus B — B = (X'X)"'X'U,so0

Vo - B) = < )_1(“\’/%]> (19.15)

The derivation of Equation (19.12) involves arguing first that the “denominator”

X'X
n

matrix in Equation (19.15), X' X/n, is consistent for Q y and second that the “numerator”
matrix, X' U/ \/1;, obeys the multivariate central limit theorem in Key Concept 19.2. The
details are given in Appendix 19.3.

Heteroskedasticity-Robust Standard Errors

The heteroskedasticity-robust estimator of X/;3 - ) is obtained by replacing the
population moments in its definition [Equation (19.12)] by sample moments. Accord-
ingly, the heteroskedasticity-robust estimator of the covariance matrix of \/Z( [§ - PB)is

1y \ —1 x\~! 1 z
2 np-p = (an> iv(XnX) , where 3y = 7 sz,xga,?, (19.16)
The estimator y incorporates the same degrees-of-freedom adjustment that is in the
standard error of the regression (SER) for the multiple regression model (Section 6.4) to
adjust for potential downward bias because of estimation of k + 1 regression coefficients.
The proof that i\/ﬁ(ﬁ—ﬁ) £ 2 vu( - p) is conceptually similar to the proof,
presented in Section 18.3, of the consistency of heteroskedasticity-robust standard
errors for the single-regressor model.

Heteroskedasticity-robust standard errors. The heteroskedasticity-robust estimator
of the covariance matrix of 8, % B 18

5= 1S (19.17)

The heteroskedasticity-robust standard error for the j™ regression coefficient is
the square root of the j'" diagonal element of 24. That is, the heteroskedasticity-
robust standard error of the j'" coefficient is

SE(B) = V (2p)i- (19.18)

where (ig)jj is the (j,j) element of iﬁ.
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Other heteroskedasticity-robust variance estimators. The variance estimator in
Equation (19.16) is called the HC1 variance estimator. The HC1 estimator is the
most commonly used in practice, but it is not the only heteroskedasticity-robust
variance estimator. Simulation studies have found that, in small samples, the HC1
estimator can be biased down, yielding standard errors that are too small. Long and
Ervin (2000) provide simulation evidence that in small samples HC1 can be
improved upon by a variant that weights each squared residual by a function of the
X’s. Imbens and Kolesar (2016) point out that, in addition to this bias, in small
samples the sampling variability of the variance estimator makes the normal
approximation a poor one, and they suggest using instead a ¢ approximation to the
t-statistic, along with a different variance estimator than HC1 or that suggested by
Long and Ervin (2000). Angrist and Pischke (2009) suggest, however, that when
the sample size exceeds 50, the HC1 estimator leads to negligible size distortions.
Consistent with modern econometric practice, this text focuses on large samples,
for which the HC1 estimator works well.

Confidence Intervals for Predicted Effects

Section 8.1 describes two methods for computing the standard error of predicted
effects that involve changes in two or more regressors. There are compact matrix
expressions for these standard errors and thus for confidence intervals for predicted
effects.

Consider a change in the value of the regressors for the i observation from
some initial value —say, X;—to some new value—X;, + d—so that the change
in X;is AX; = d, where d is a k + 1 dimensional vector. This change in X can
involve multiple regressors (that is, multiple elements of X;). For example, if two
of the regressors are the value of an independent variable and its square, then d
is the difference between the subsequent and initial values of these two
variables.

The expected effect of this change in X;is d' B, and the estimator of this effect is
d’[}. Because linear combinations of normally distributed random variables
are themselves normally distributed, W(d’ﬁ —-dp) = d’\/l;(ﬁ - B) —4
N(0,d" >3- pyd). Thus the standard error of this predicted effect is (d’ggd)l/z.
A 95% confidence interval for this predicted effect is

d'p +1.96Vd'3d. (19.19)

Asymptotic Distribution of the t-Statistic

The t-statistic testing the null hypothesis that ; = B; , constructed using the hetero-
skedasticity-robust standard error in Equation (19.18), is given in Key Concept 71.
The argument that this #-statistic has an asymptotic standard normal distribution
parallels the argument given in Section 18.3 for the single-regressor model.
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19.3 Tests of Joint Hypotheses

Section 72 considers tests of joint hypotheses that involve multiple restrictions, where
each restriction involves a single coefficient, and Section 73 considers tests of a single
restriction involving two or more coefficients. The matrix setup of Section 19.1 permits
a unified representation of these two types of hypotheses as linear restrictions on the
coefficient vector, where each restriction can involve multiple coefficients. Under the first
four least squares assumptions in Key Concept 19.1, the heteroskedasticity-robust OLS
F-statistic testing these hypotheses has an F, .. asymptotic distribution under the null
hypothesis.

Joint Hypotheses in Matrix Notation

Consider a joint hypothesis that is linear in the coefficients and imposes g restrictions,
where ¢ =< k + 1.Each of these g restrictions can involve one or more of the regression
coefficients. This joint null hypothesis can be written in matrix notation as

RB =r, (19.20)

where Risag X (k + 1) nonrandom matrix with full row rank and ris a nonrandom
q X 1vector.The number of rows of R is ¢, which is the number of restrictions being
imposed under the null hypothesis.

The null hypothesis in Equation (19.20) subsumes all the null hypotheses con-
sidered in Sections 7.2 and 7.3. For example, a joint hypothesis of the type considered
in Section 72 is that By = 0,8, = 0, ..., B,—1 = 0.To write this joint hypothesis in
the form of Equation (19.20),set R = [1,0,x(x+1-4)] and r = 0,.

The formulation in Equation (19.20) also captures the restrictions of Section 73
involving multiple regression coefficients. For example,if k = 2,then the hypothesis that
Bi + B> = 1 can be written in the form of Equation (19.20) by setting R = [011],
r=1,andgq = 1.

Asymptotic Distribution of the F-Statistic
The heteroskedasticity-robust F-statistic testing the joint hypothesis in Equation
(19.20) is

F=(RB—r'[RER](RB - 1n/q. (19.21)

If the first four assumptions in Key Concept 19.1 hold, then under the null
hypothesis

F—F,.. (19.22)

This result follows by combining the asymptotic normality of [Af with the con-
sistency of the heteroskedasticity-robust estimator /3 - g) of the covariance
matrix. Specifically, first note that Equation (19.12) and Equation (19.74) in
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19.4

Appendix 19.2 imply that, under the null hypothesis, \/Z(R[Af -r =
VinR(B - B) N(O,RE\/;(BA_AI;)R’). It follows frorP Equation (19.77) that,
under the null hypothesis (RB — 1)’ [RE‘;R " (RB —r) = [\fR(B B)]
[R3\rg-pR'T ' [VnR (B - B)] —4 x;. However, because E\fu; -B) SN
E\f(ﬁ g it follows from Slutsky s theorem that [VaR(B — ﬂ)]
[RE\f(B pR'T” [\fR B-p] - X;. or, equivalently (because 23—
E\fu; p)/1), that F —4 X3/4q, which is in turn distributed F, ..

Confidence Sets for Multiple Coefficients

As discussed in Section 74, an asymptotically valid confidence set for two or more
elements of B can be constructed as the set of values that, when taken as the null
hypothesis, are not rejected by the F-statistic. In principle, this set could be computed
by repeatedly evaluating the F-statistic for many values of 8, but, as is the case with
a confidence interval for a single coefficient, it is simpler to manipulate the formula
for the test statistic to obtain an explicit formula for the confidence set.

Here is the procedure for constructing a confidence set for two or more of the
elements of B. Let é denote the g-dimensional vector consisting of the coefficients
for which we wish to construct a confidence set. For example, if we are constructing
a confidence set for the regression coefficients 8; and 3,,then g = 2 and 6 = (B, 3,)".
In general, we can write 8 = Rf3, where the matrix R consists of 0’s and 1’s [as dis-
cussed following Equation (19.20)]. The F-statistic testing the hypothesis that 8 = &,
isF=(6— 80)’[R$),§R’]_1(¢§ — &y)/q, where 6 = RPB. A 95% confidence set for &
is the set of values &, that are not rejected by the F-statistic. That is, when 6 = Rf3,
a 95% confidence set for & is

{8:(8 — 8)'[RER'T'(5 — 8)/q = c}, (19.23)

where c is the 95" percentile (the 5% critical value) of the F, - distribution.

The set in Equation (19.23) consists of all the points contained inside the ellipse
determined when the inequality in Equation (19.23) is an equality (this is an ellipsoid
when g > 2). Thus the confidence set for § can be computed by solving Equation
(19.23) for the boundary ellipse.

Distribution of Regression Statistics
with Normal Errors

The distributions presented in Sections 19.2 and 19.3, which were justified by appeal-
ing to the law of large numbers and the central limit theorem, apply when the sample
size is large. If, however, the errors are homoskedastic and normally distributed, con-
ditional on X, then the OLS estimator has a multivariate normal distribution in a
finite sample, conditional on X. In addition, the finite sample distribution of the
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square of the standard error of the regression is proportional to the chi-squared dis-
tribution with n — k — 1 degrees of freedom, the homoskedasticity-only OLS
t-statistic has a Student ¢ distribution with n — k — 1 degrees of freedom, and the
homoskedasticity-only F-statistic has an F, ,,_;— distribution. The arguments in this
section employ some specialized matrix formulas for OLS regression statistics, which
are presented first.

Matrix Representations of OLS Regression Statistics

The OLS predicted values, residuals, and sum of squared residuals have compact matrix
representations. These representations make use of two matrices, Py and My.

The matrices Py and My. The algebra of OLS in the multivariate model relies on the
two symmetric n X n matrices, Py and My:

Py = X(X'X)"'X" and (19.24)
My =1, — Py (19.25)

A matrix C is idempotent if C is square and CC = C (see Appendix 19.1). Because
Py = PyPy and My = MxMy (Exercise 19.5) and because Py and My are symmet-
ric, Py and My are symmetric idempotent matrices.

The matrices Py and My have some additional useful properties (Exercise 19.5),
which follow directly from the definitions in Equations (19.24) and (19.25):

PXX = X and MXX = 0n><(k+1);
rank(Py) = k + landrank(My) = n — k — 1, (19.26)

where rank(Py) is the rank of Py.

The matrices Py and My can be used to decompose an n-dimensional vector Z
into two parts: a part that is spanned by the columns of X and a part that is orthogo-
nal to the columns of X. In other words, PyZ is the projection of Z onto the space
spanned by the columns of X, MyZ is the part of Z orthogonal to the columns of X,
and Z = PyZ + MxZ.

OLS predicted values and residuals. The matrices Py and My provide some simple
expressions for OLS predicted values and residuals. The OLS predicted values, Y = XB,
and the OLS residuals, U = Y — ¥, can be expressed as follows (Exercise 19.5):

Y = PyYand (19.27)
U= MyY = MyU. (19.28)

The expressions in Equations (19.27) and (19.28) provide a simple proof that the
OLS residuals and predicted values are orthogonal —that is, that Equation (4.35) holds:
YU = Y'PyMyY = 0,where the second equality follows from Py My = 0,,,, which
in turn follows from MyX = 0, + 1) in Equation (19.26).
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The standard error of the regression. The SER, defined in Section 4.3, is s;;, where
2 : 1
Sﬁ—n_k_ ; mUU—ﬁUMXU, (1929)

where the final equality follows because Uvu = (MxU)Y(MxU) = UMxMxU =
U'MxU (because My is symmetric and idempotent).

Distribution of,é with Independent Normal Errors

Because B = B + (X'X)"'X'U [Equation (19.14)] and because the distribution
of U, conditional on X, is, by assumption, N(0,, o2I,,) [Equation (19.8)], the condi-
tional distribution of ﬁ given X is multivariate normal with mean 8. The covari-
ance matrix of B, conditional on X, is Spx = E[(B - BB - B)'|X]=E[((X'X)™!
XUUXX'X)UX] = X'X)'X'(¢2I)X(X'X)™' = 02(X'X)"". Accordingly,
under all six assumptions in Key Concept 19.1, the finite-sample conditional distribu-
tion of [§ given X is

B ~ N(B, 2jyx), where 3px = o2(X'X) L. (19.30)

Distribution of sZ

If all six assumptions in Key Concept 19.1 hold, then s2 has an exact sampling distri-
bution that is proportional to a chi-squared distribution with n — k — 1 degrees of
freedom:
2
R R R (19.31)

The proof of Equation (19.31) starts with Equation (19.29). Because U is normally
distributed, conditional on X, and because My is a symmetric idempotent matrix, the
quadratic form U'MxU/o? has an exact chi-squared distribution with degrees of
freedom equal to the rank of My [Equation (19.78) in Appendix 19.2]. From Equa-
tion (19.26), the rank of My is n — k — 1. Thus U'MxU/o2 has an exact x2_,_;
distribution, from which Equation (19.31) follows.

The degrees-of-freedom adjustment ensures that s is unbiased. The expectation
of a random variable with a y2_,_; distribution is n — k — 1; thus
E(U'MxU) = (n — k — 1)02,50 E(s3) = o2.

Homoskedasticity-Only Standard Errors

The homoskedasticity-only estimator iﬁ of the covariance matrix of [§, conditional
on X, is obtained by substituting the sample variance s3 for the population variance
o2 in the expression for ¥ plx in Equation (19.30). Accordingly,

3 =s3(X'X)"!  (homoskedasticity-only). (19.32)
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The estimator of the variance of the normal conditional distribution of ,é]- given X is
the (J, j) element of iﬁ. Thus the homoskedasticity-only standard error of ,éj is the
square root of the j" diagonal element of iﬁ. That is, the homoskedasticity-only
standard error of ,é]» is

SE?(B}) = \/(ig)ﬁ (homoskedasticity-only). (19.33)

Distribution of the t-Statistic
Let 7 be the t-statistic testing the hypothesis Bj = Bjo, constructed using the homo-

skedasticity-only standard error; that is, let
éj = Bo
T=———= (19.34)
V (2p)
Under all six of the extended least squares assumptions in Key Concept 19.1, the

exact sampling distribution of 7 is the Student ¢ distribution withn — k — 1 degrees
of freedom; that is,

7 ~ tn—k—l' (1935)

The proof of Equation (19.35) is given in Appendix 19.4.

Distribution of the F-Statistic

If all six least squares assumptions in Key Concept 19.1 hold, then the F-statistic testing
the hypothesis in Equation (19.20), constructed using the homoskedasticity-only esti-
mator of the covariance matrix, has an exact Fj ,_;— distribution under the null
hypothesis.

The homoskedasticity-only F-statistic. The homoskedasticity-only F-statistic is simi-
lar to the heteroskedasticity-robust F-statistic in Equation (19.21) except that the
homoskedasticity-only estimator iﬁ is used instead of the heteroskedasticity-robust
estimator iﬁ. Substituting the expression Eﬁ = s2(X'X) ! into the expression for the
F-statistic in Equation (19.21) yields the homoskedasticity-only F-statistic testing the
null hypothesis in Equation (19.20):

(RB - r)[RX'X)'R']"'(RB — n/a

2
St

F = (19.36)

If all six assumptions in Key Concept 19.1 hold, then under the null hypothesis
F~ Fy g1 (19.37)

The proof of Equation (19.37) is given in Appendix 19.4.
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19.5

The F-statistic in Equation (19.36) is called the Wald version of the F-statistic
(named after the statistician Abraham Wald). Although the formula for the
homoskedastic-only F-statistic given in Equation (713) appears quite different from
the formula for the Wald statistic in Equation (19.36), the homoskedastic-only
F-statistic and the Wald F-statistic are two versions of the same statistic. That is, the
two expressions are equivalent, a result shown in Exercise 19.13.

Efficiency of the OLS Estimator
with Homoskedastic Errors

Under the Gauss—Markov conditions for multiple regression, the OLS estimator of
B is efficient among all linear conditionally unbiased estimators; that is, the OLS
estimator is the best linear unbiased estimator (BLUE).

The Gauss-Markov Conditions for Multiple Regression

The Gauss—-Markov conditions for multiple regression are

(i) EUIX) = 0,
(ii) EQUU'| X) = oI, and
(iii) X has full column rank. (19.38)

The Gauss—Markov conditions for multiple regression in turn are implied by the first
five assumptions in Key Concept 19.1 [see Equations (19.6) and (19.7)]. The condi-
tions in Equation (19.38) generalize the Gauss—Markov conditions for a single-
regressor model to multiple regression. [By using matrix notation, the second and
third Gauss—Markov conditions in Equation (5.31) are collected into the single con-
dition (ii) in Equation (19.38).]

Linear Conditionally Unbiased Estimators

We start by describing the class of linear unbiased estimators and by showing that
OLS is in that class.

The class of linear conditionally unbiased estimators. An estimator of B is said to
be linear if it is a linear function of V7, . . ., Y,. Accordingly, the estimator ﬁ is linear
in Y if it can be written in the form

B=AY, (19.39)

where Aisann X (k + 1) dimensional matrix of weights that may depend on X and
on nonrandom constants but not on Y.
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Gauss-Markov Theorem for Multiple Regression KEY CONCEPT

Suppose that the Gauss—Markov conditions for multiple regression in Equation

19.3

(19.38) hold. Then the OLS estimator 8 is BLUE. That is, let B be a linear con-
ditionally unbiased estimator of B, and let ¢ be a nonrandom k + 1 dimensional

vector. Then Var(c’ﬁ]X) = Var(c’ﬁ\X) for every nonzero vector ¢, where the

inequality holds with equality for all ¢ only if B = B.

An estimator is conditionally unbiased if the mean of its conditional sampling
distribution given X is B. That is, B is conditionally unbiased if E(8|X) = B.

The OLS estimator is linear and conditionally unbiased. Comparison of Equations
(19.11) and (19.39) shows that the OLS estimator is linear in ¥;specifically, B = A'Y,
where A = X(X'X)"!. To show that [} is conditionally unbiased, recall from Equa-
tion (19.14) that = B + (X'X)"'X'U.Taking the conditional expectation of both
sides of this expression yields E(8|X) = B + E[(X'X)"'X'U|X] = B + (X'X)™"
X'E(U|X) = B, where the final equality follows because E(U|X) = 0 by the first
Gauss—Markov condition.

The Gauss-Markov Theorem for Multiple Regression

The Gauss—-Markov theorem for multiple regression provides conditions under
which the OLS estimator is efficient among the class of linear conditionally unbiased
estimators. A subtle point arises, however, because [} is a vector and its “variance” is
a covariance matrix. When the variance of an estimator is a matrix, just what does it
mean to say that one estimator has a smaller variance than another?

The Gauss—Markov theorem handles this problem by comparing the variance of a
candidate estimator of a linear combination of the elements of 8 to the variance of the
corresponding linear combination of [Af Specifically, let ¢ be a k + 1 dimensional vector,
and consider the problem of estimating the linear combination ¢’ using the candidate
estimator ¢’ B (where f8 is a linear conditionally unbiased estimator) on the one hand and
c’ ﬁ on the other hand. Because ¢’ ﬁ and ¢’ ﬁ are both scalars and are both linear condi-
tionally unbiased estimators of ¢’ ,it now makes sense to compare their variances.

The Gauss—Markov theorem for multiple regression says that the OLS estimator
of ¢’ B is efficient; that is, the OLS estimator ¢’ ﬁ has the smallest conditional variance
of all linear conditionally unbiased estimators. Remarkably, this is true no matter
what the linear combination is. It is in this sense that the OLS estimator is BLUE in
multiple regression.

The Gauss—Markov theorem is stated in Key Concept 19.3 and proven in
Appendix 19.5.
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19.6

Generalized Least Squares'

The assumption of i.i.d. sampling fits many applications. For example, suppose that
Y, and X; correspond to information about individuals, such as their earnings, educa-
tion, and personal characteristics, where the individuals are selected from a popula-
tion by simple random sampling. In this case, because of the simple random sampling
scheme, (X, Y;) are necessarily i.i.d. Because (X;, Y;) and (X], Y;) are independently
distributed for i # j, u; and u; are independently distributed for i # j. This in turn
implies that u; and u; are uncorrelated for i # j. In the context of the Gauss-Markov
assumptions, the assumption that E(UU' | X) is diagonal therefore is appropriate if the
data are collected in a way that makes the observations independently distributed.

Some sampling schemes encountered in econometrics do not, however, result in
independent observations and instead can lead to error terms u; that are correlated
from one observation to the next. The leading example is when the data are sampled
over time for the same entity—that is, when the data are time series data. As dis-
cussed in Section 16.3, in regressions involving time series data, many omitted fac-
tors are correlated from one period to the next, and this can result in regression
error terms (which represent those omitted factors) that are correlated from one
period of observation to the next. In other words, the error term in one period will
not, in general, be distributed independently of the error term in the next period.
Instead, the error term in one period could be correlated with the error term in the
next period.

The presence of correlated error terms creates two problems for inference based
on OLS. First, neither the heteroskedasticity-robust nor the homoskedasticity-only
standard errors produced by OLS provide a valid basis for inference. The solution to
this problem is to use standard errors that are robust to both heteroskedasticity and
correlation of the error terms across observations. This topic—heteroskedasticity-
and autocorrelation-consistent (HAC) covariance matrix estimation —is the subject
of Section 16.4 and we do not pursue it further here.

Second, if the error term is correlated across observations, then E(UU’ | X) is not
diagonal, the second Gauss—Markov condition in Equation (19.38) does not hold,
and OLS is not BLUE. In this section, we study an estimator, generalized least
squares (GLS), that is BLUE (at least asymptotically) when the conditional covari-
ance matrix of the errors is no longer proportional to the identity matrix. A special
case of GLS is weighted least squares, discussed in Section 18.5, in which the condi-
tional covariance matrix is diagonal and the /" diagonal element is a function of X;.
Like WLS, GLS transforms the regression model so that the errors of the trans-
formed model satisfy the Gauss—Markov conditions. The GLS estimator is the OLS
estimator of the coefficients in the transformed model.

The GLS estimator was introduced in Section 16.5 in the context of distributed lag time series regression.
The presentation here is a self-contained mathematical treatment of GLS that can be read independently
of Section 16.5, but reading that section first will help to make these ideas more concrete.
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The GLS Assumptions

19.4

In the linear regression model Y = X3 + U, the GLS assumptions are
L E(U|X) = 0,;

2. E(UU'|X) = Q(X),where Q(X)isann X n positive definite matrix that can
depend on X;

3. X; and u; satisfy suitable moment conditions; and

4. X has full column rank (there is no perfect multicollinearity).

The GLS Assumptions

There are four assumptions under which GLS is valid. The first GLS assumption is
that u; has a mean of 0, conditional on X1, . . ., X,; that is,

E(U|X) =0, (19.40)

This assumption is implied by the first two least squares assumptions in Key Concept
19.1; that is, if E(u;|X;) = 0O and (X;,Y;),i = 1,...,n, areii.d., then E(U|X) = 0,.In
GLS, however, we will not want to maintain the i.i.d. assumption; after all, one pur-
pose of GLS is to handle errors that are correlated across observations. We discuss
the significance of the assumption in Equation (19.40) after introducing the GLS
estimator.

The second GLS assumption is that the conditional covariance matrix of U given
X is some function of X:

E(UU'|X) = Q(X), (19.41)

where (X)) is ann X n positive definite matrix-valued function of X.

There are two main applications of GLS that are covered by this assumption. The
first is independent sampling with heteroskedastic errors, in which case (X) is a
diagonal matrix with diagonal element A4 (X;), where A is a constant and 4 is a func-
tion. In this case, discussed in Section 18.5, GLS is WLS.

The second application is to homoskedastic errors that are serially correlated. In
practice, in this case a model is developed for the serial correlation. For example, one
model is that the error term is correlated with only its neighbor, so
corr(uz u;—1) = p # 0butcorr (u; u)) = 0if |i — j| = 2.1n this case, Q(X) has o7,
as its diagonal element, po? in the first off-diagonal, and zeros elsewhere. Thus Q(X)
does not depend on X, Q; = oy, Q; = poy, for |i — j| =1, and Q; = 0 for
|i = j| > 1.Other models for serial correlation, including the first-order autoregres-
sive model, are discussed further in the context of GLS in Section 16.5 (also see
Exercise 19.8).
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One assumption that has appeared on all previous lists of least squares assump-
tions for cross-sectional data is that X; and u; have nonzero finite fourth moments. In
the case of GLS, the specific moment assumptions needed to prove asymptotic results
depend on the nature of the function (X)), whether (X) is known or estimated,
and the statistic under consideration (the GLS estimator, ¢-statistic, etc.). Because the
assumptions are case- and model-specific, we do not present specific moment
assumptions here, and the discussion of the large-sample properties of GLS assumes
that such moment conditions apply for the relevant case at hand. For completeness,
as the third GLS assumption, X; and u; are simply assumed to satisfy suitable moment
conditions.

The fourth GLS assumption is that X has full column rank; that is, the regressors
are not perfectly multicollinear.

The GLS assumptions are summarized in Key Concept 19.4.

We consider GLS estimation in two cases. In the first case, (X) is known. In
the second case, the functional form of (X)) is known up to some parameters that
can be estimated. To simplify notation, we refer to the function € (X) as the matrix
Q, so the dependence of £ on X is implicit.

GLS When Q Is Known

When € is known, the GLS estimator uses {2 to transform the regression model to
one with errors that satisfy the Gauss—Markov conditions. Specifically, let F be a
matrix square root of Q7% that is, let F be a matrix that satisfies F'/F = Q7! (see
Appendix 19.1). A property of F is that FQF' = I,. Now premultiply both sides of
Equation (19.3) by F to obtain

Y=XB+U, (19.42)

where Y = FY, X = FX, and U = FU.

The key insight of GLS is that, under the four GLS assumptions, the Gauss-Markov
assumptions hold for the transformed regression in Equation (19.42). That is, by
transforming all the variables by the matrix square root of the inverse of , the
regression errors in the transformed regression have a conditional mean of 0
and a covariance matrix that equals the identity matrix. To show this mathemat-
ically, first note that E(U|X) = E(FU|FX) = FE(U|FX) = 0, by the first GLS
assumption [Equation (19.40)]. In addition, E(UU’|X) = E[(FU)(FU)'|FX] =
FE(UU'|FX)F' = FQF' = I,, where the second equality follows because
(FU)' = U'F' and the final equality follows from the definition of F. It follows that
the transformed regression model in Equation (19.42) satisfies the Gauss—Markov
conditions in Key Concept 19.3.

The GLS estimator, %, is the OLS estimator of B in Equation (19.42); that is,
BCLS = (X'X)"(X'Y). Because the transformed regression model satisfies the
Gauss—Markov conditions, the GLS estimator is the best conditionally unbiased
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estimator that is linear in ¥. But because Y = FY and F is (here) assumed to be
known and because F is invertible (because £ is positive definite), the class of esti-
mators that are linear in Y is the same as the class of estimators that are linear in Y.
Thus the OLS estimator of 8 in Equation (19.42) is also the best conditionally unbi-
ased estimator among estimators that are linear in Y. In other words, under the GLS
assumptions, the GLS estimator is BLUE.

The GLS estimator can be expressed directly in terms of €, so in principle there
is no need to compute the square root matrix F. Because X = FX and
Y = FY, B = (X'F'FX)"(X'F'FY).But FF = Q7' s0

B = (x’ Q7 'xy (X' Q7y). (19.43)

In practice,  is typically unknown, so the GLS estimator in Equation (19.43) typi-
cally cannot be computed and thus is sometimes called the infeasible GLS estimator.
If, however, © has a known functional form but the parameters of that function are
unknown, then € can be estimated, and a feasible version of the GLS estimator can
be computed.

GLS When Q Contains Unknown Parameters

If Q is a known function of some parameters that in turn can be estimated, then
these estimated parameters can be used to calculate an estimator of the covariance
matrix 2. For example, consider the time series application discussed following
Equation (19.41), in which (X) does not depend on X, Q; = o2, Q; = pa? for
|i —j| = 1,and Q; = Ofor |i — j| > 1.Then € has two unknown parameters, o5
and p. These parameters can be estimated using the residuals from a preliminary
OLS regression; specifically, o2 can be estimated by sé, and p can be estimated by the
sample correlation between all neighboring pairs of OLS residuals. These estimated
parameters can in turn be used to compute an estimator of €, Q.

In general, suppose that you have an estimator Q of Q. Then the GLS estimator
based on € is

B = (X’ QX Y'(Xx' Q7). (19.44)

The GLS estimator in Equation (19.44) is sometimes called the feasible GLS estima-
tor because it can be computed if the covariance matrix contains some unknown
parameters that can be estimated.

The Conditional Mean Zero Assumption and GLS

For the OLS estimator to be consistent, the first least squares assumption must hold;
that is, E(u;|X;) must be 0. In contrast, the first GLS assumption is that
E(u;| Xy, . .., X,) = 0. In other words, the first OLS assumption is that the error for
the /M observation has a conditional mean of 0 given the values of the regressors for
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that observation, whereas the first GLS assumption is that «; has a conditional mean
of 0 given the values of the regressors for all observations.

As discussed in Section 19.1, the assumptions that E(u;|X;) = 0 and that sam-
pling is i.i.d. together imply that E(u;| Xy, . . ., X,,) = 0.Thus, when sampling is i.i.d.,
so that GLS is WLS, the first GLS assumption is implied by the first least squares
assumption in Key Concept 19.1.

When sampling is not i.i.d., however, the first GLS assumption is not implied by
the assumption that E(u;| X;) = 0; that is, the first GLS assumption is stronger.
Although the distinction between these two conditions might seem slight, it can be
very important in applications to time series data. This distinction is discussed in
Section 16.5 in the context of whether the regressor is “past and present” exogenous
or “strictly” exogenous; the assumption that E(u;|X), . .., X,) = 0 corresponds to
strict exogeneity. Here, we discuss this distinction at a more general level using matrix
notation. To do so, we focus on the case that U is homoskedastic, £ is known, and
has nonzero off-diagonal elements.

The role of the first GLS assumption. To see the source of the difference between
these assumptions, it is useful to contrast the consistency arguments for GLS and OLS.

We first sketch the argument for the consistency of the GLS estimator in Equa-
tion (19.43). Substituting Equation (19.3) into Equation (19.43), we have B°L5 =
B + (X'Q7'X/n) (X' Q'U/n). Under the first GLS assumption, E(X'Q7'U) =
E[X'Q'E(U|X)] = 0,. If in addition the variance of X'Q™'U/n tends to 0
and X' Q7'X/n —> 0, where Q is some invertible matrix, then g5 £ B.
Critically, when € has off-diagonal elements, the term X'Q7'U =
Sy E,'-LlX,-(Q_l),-juj involves products of X; and u; for different i, j pairs, where
(Q_l),»j denotes the (i, /) element of Q~!. Thus, for X' Q™'U to have a mean of 0, it is
not enough that E(u;|X;) = 0; rather, E(u;|X;) must equal 0 for all i, j pairs corre-
sponding to nonzero values of (Q'l),-,-. Depending on the covariance structure of the
errors, only some of or all the elements of (Q_l),»j might be nonzero. For example,
if u; follows a first-order autoregression (as discussed in Section 16.5), the only non-
zero elements (Q_l),-j are those for which |i — j| = 1.In general, however, all the
elements of Q7! can be nonzero, so, in general, for X' Q™ 'U/n L 0+ 1)x1 (and
thus for B9S to be consistent), we need that E(U|X) = 0,; that is, the first GLS
assumption must hold.

In contrast, recall the argument that the OLS estimator is consistent. Rewrite
Equation (19.14) as B = B + (X'X/n) "' :3, X,u;. If E(u;|X;) = 0, then the term
%E?: 1X;u; has mean 0, and if this term has a variance that tends to 0, it converges in
probability to 0. If in addition X' X/n —£5 Qy, then ﬁ —- B.

Is the first GLS assumption restrictive? The first GLS assumption requires that the
errors for the i observation be uncorrelated with the regressors for all other obser-
vations. This assumption is dubious in some time series applications. This issue is
discussed in Section 16.6 in the context of an empirical example, the relationship



19.7

19.7 Instrumental Variables and Generalized Method of Moments Estimation 733

between the change in the price of a contract for future delivery of frozen orange
concentrate and the weather in Florida. As explained there, the error term in the
regression of price changes on the weather is plausibly uncorrelated with current and
past values of the weather, so the first OLS assumption holds. However, this error
term is plausibly correlated with future values of the weather, so the first GLS
assumption does not hold.

This example illustrates a general phenomenon in economic time series data that
arises when the value of a variable today is set in part based on expectations of the future:
Those future expectations typically imply that the error term today depends on a forecast
of the regressor tomorrow, which in turn is correlated with the actual value of the regres-
sor tomorrow. For this reason, the first GLS assumption is, in fact, much stronger than the
first OLS assumption. Accordingly, in some applications with economic time series data,
the GLS estimator is not consistent even though the OLS estimator is.

Instrumental Variables and Generalized
Method of Moments Estimation

This section provides an introduction to the theory of instrumental variables (IV)
estimation and the asymptotic distribution of I'V estimators. It is assumed throughout
that the IV regression assumptions in Key Concepts 12.3 and 12.4 hold and, more-
over, that the instruments are strong. These assumptions apply to cross-sectional data
with 1.i.d. observations. Under certain conditions, the results derived in this section
are applicable to time series data as well, and the extension to time series data is
briefly discussed at the end of this section. All asymptotic results in this section are
developed under the assumption of strong instruments.

This section begins by presenting the IV regression model and the two stage least
squares (TSLS) estimator and its asymptotic distribution in the general case of het-
eroskedasticity, all in matrix form. It is next shown that, in the special case of homo-
skedasticity, the TSLS estimator is asymptotically efficient among the class of IV
estimators in which the instruments are linear combinations of the exogenous vari-
ables. Moreover, the J-statistic has an asymptotic chi-squared distribution in which
the degrees of freedom equals the number of overidentifying restrictions. This sec-
tion concludes with a discussion of efficient IV estimation and the test of overiden-
tifying restrictions when the errors are heteroskedastic—a situation in which the
efficient IV estimator is known as the efficient generalized method of moments
(GMM) estimator [Hansen (1983)].

The IV Estimator in Matrix Form

In this section, we let X denote the n X (k + r + 1) matrix of the regressors in the
equation of interest, so X contains the included endogenous regressors (the X’s in Key
Concept 12.1) and the included exogenous regressors (the W’s in Key Concept 12.1).
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That is, in the notation of Key Concept 12.1, the i row of Xis X! = (1 X}, Xy
X Wy Wy ... W,).Also,let Zdenotethe n X (m + r + 1) matrix of all the
exogenous regressors, both those included in the equation of interest (the W’s) and
those excluded from the equation of interest (the instruments). That is, in the nota-
tion of Key Concept 12.1, the i" row of Z is Z! = 1 Zy Zy ... Z,;
Wy Wy ..o W)

With this notation, the IV regression model of Key Concept 12.1, written in
matrix form, is

Y=XB+U, (19.45)

where U'is the n X 1 vector of errors in the equation of interest, with i element u;.
The matrix Z consists of all the exogenous regressors, so under the IV regression
assumptions in Key Concept 12.4,

E(Zu;) = 0 (instrument exogeneity). (19.406)

Because there are k included endogenous regressors, the first stage regression con-
sists of k equations.

The TSLS estimator. The TSLS estimator is the instrumental variables estimator in
which the instruments are the predicted values of X based on OLS estimation of the
first-stage regression. Let X denote this matrix of predicted values, so that the i row
of Xis ()Z'h- Xz;‘ e X'k,» Wi Wy ... W,),where X’liis the predicted value from
the regression of Xy; on Z and so forth. Because the W’s are contained in Z, the pre-
dicted value from a regression of Wy; on Z is just Wy; and so forth, so X = PzX,where
P, = Z(Z' Z)"'Z' [see Equation (19.27)]. Accordingly, the TSLS estimator is

B = (X' X)X Y. (19.47)

Because X = P,X,X'X = X'P;X,and X' Y = X'P,Y, the TSLS estimator can be
rewritten as

BTSLS = (X' P,X)"'X' P,Y. (19.48)

Asymptotic Distribution of the TSLS Estimator

Substituting Equation (19.45) into Equation (19.48), rearranging, and multiplying by
Vn yields the expression for the centered and scaled TSLS estimator:

A X'P,X\' X'P,U
V(BT — B) = ( . ) £
" Vi
B {X’Z{Z’Z)‘l Z’X}‘I[X’Z/Z’Z)‘l zZ'u
n \ n n n \ n \/Z
where the second equality uses the definition of P,. Under the I'V regression assump-

tions, X'Z/n —£> Qxz and Z'Z/n > Q,,, where Qy; = E(X,Z!) and
077 = E(Z;Z)). In addition, under the IV regression assumptions, Zu; is i.i.d. with

}, (19.49)
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mean 0 [Equation (19.46)] and a positive definite covariance matrix, so its sum,
divided by \/1;, satisfies the conditions of the multivariate central limit theorem
(Key Concept 19.2) and

Z'U/Nn —% Wy, where W, ~ N(O,H), H = E(Z,Z}u?)  (19.50)

and W pis(m +r + 1) X 1.

Application of Equation (19.50) and of the limits X'Z/n —£= Qy, and
Z'Z /n —%> Q4, to Equation (19.49) yields the result that, under the IV regression
assumptions, the TSLS estimator is asymptotically normally distributed:

Vn (BTES - B) — (0x207707x) ' Ox2077¥ zv ~ N(0, 2 7515), (19.51)
where

3T = (Qxz07202x) ' Ox2072 HO77 Q7% (0x207202x) ", (19.52)
where H is defined in Equation (19.50).

Standard errors for TSLS. The formula in Equation (19.52) is daunting. Nevertheless,
it provides a way to estimate %7555 by substituting sample moments for the popula-
tion moments. The resulting variance estimator is

STSLS = (0x207507x) "' 0x,075H07,0 1% (0x207,02x)™",  (19.53)

where Oxz = X'Z /n,Qzz = Z'Z /n,Qzx = Z'X/n, and
L1 R . R
H=_ > Z,Z;i}, where U = Y — X555, (19.54)
=1
so that U is the vector of TSLS residuals, and where #; is the i'" element of that vector
(the TSLS residual for the i observation).
The TSLS standard errors are the square roots of the diagonal elements of

iTSLS/n_

Properties of TSLS When the Errors Are Homoskedastic

If the errors are homoskedastic, then the TSLS estimator is asymptotically efficient
among the class of IV estimators in which the instruments are linear combinations
of the rows of Z. This result is the IV counterpart to the Gauss-Markov theorem and
constitutes an important justification for using TSLS.

The TSLS distribution under homoskedasticity. If the errors are homoskedastic—that is,
it Bu}|Z) = o%—then H= E(ZZ[u}) = E[E(ZZ{w}|Z)] = E[ZZIE(}|Z)] =
0,702 In this case, the variance of the asymptotic distribution of the TSLS estimator
in Equation (19.52) simplifies to

3T5LS = (Qyz07507%) ‘02 (homoskedasticity only). (19.55)
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The homoskedasticity-only estimator of the TSLS variance matrix is

ST = (0x207707x) "' 67, where 67 = e
n—k—-—r—1
(homoskedasticity only), (19.56)

and the homoskedasticity-only TSLS standard errors are the square roots of the
diagonal elements of 37555 /n.

The class of IV estimators that use linear combinations of Z. The class of IV estima-
tors that use linear combinations of Z as instruments can be generated in two equiva-
lent ways. Both start with the same moment equation: Under the assumption of
instrument exogeneity, the errors U = Y — X are uncorrelated with the exogenous
regressors; that is, at the true value of B8, Equation (19.46) implies that

E[(Y — XB)'Z) = 0. (19.57)

Equation (19.57) constitutes a system of m + r + 1 equations involving the
k + r + 1 unknown elements of 8. When m > k, these equations are redundant in
the sense that all are satisfied at the true value of 8. When these population moments
are replaced by their sample moments, the system of equations (¥ — Xb)'Z = 0 can
be solved for b when there is exact identification (m = k). This value of b is the IV
estimator of 8. However, when there is overidentification (m > k), the equations in
the system cannot be simultaneously satisfied by the same value of b because of
sampling variation —there are more equations than unknowns—and, in general, this
system does not have a solution.

The first approach to the problem of estimating 8 when there is overidentifica-
tion is to trade off the desire to satisfy each equation by minimizing a quadratic form
involving all the equations. Specifically,let A be an (m + r + 1) X (m +r + 1)
symmetric positive semidefinite weight matrix, and let [}QV denote the estimator that
minimizes

min,(Y — Xb)'ZAZ'(Y — Xb). (19.58)

The solution to this minimization problem is found by taking the derivative of the
objective function with respect to b, setting the result equal to 0, and rearranging.
Doing so yields B4, the IV estimator based on the weight matrix A:

BY = (X'ZAZ'X)"'X'ZAZ'Y. (19.59)
Comparison of Equations (19.59) and (19.48) shows that the TSLS estimator is the

IV estimator with A = (Z'Z)™'. That is, TSLS is the solution of the minimization
problem in Equation (19.58) with A = (Z'Z)™".
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The calculations leading to Equations (19.51) and (19.52), applied to [;IV, show that
\/’;(ﬁz{xv -B) -4 N(0, %), where
3 = (0xzAQzx) ' OxzAHAQ7x (OxzAQzx) ™ (19.60)

The second way to generate the class of IV estimators that use linear combina-
tions of Z is to consider IV estimators in which the instruments are ZB, where B is
an (m + r + 1) X (k + r + 1) matrix with full column rank. Then the system of
(k + r + 1) equations, (Y — Xb)'ZB = (,can be solved uniquely for the (k + r + 1)
unknown elements of b. Solving these equations for byields B/ = (B'Z'X) (B'Z'Y),
and substitution of B = AZ'X into this expression yields Equation (19.59).

Thus the two approaches to defining IV estimators that are linear combinations
of the instruments yield the same family of IV estimators. It is conventional to work
with the first approach, in which the IV estimator solves the quadratic minimization
problem in Equation (19.58), and that is the approach taken here.

Asymptotic efficiency of TSLS under homoskedasticity. If the errors are homoske-
dastic, then H = @02, and the expression for 3% in Equation (19.60) becomes

Y = (0xzAQ2x) ' 0xzA072A072x (QxzAQzx) oL (19.61)

To show that TSLS is asymptotically efficient among the class of estimators that are
linear combinations of Z when the errors are homoskedastic, we need to show that,
under homoskedasticity,

c¢'3lWe = ¢' 3155 (19.62)

for all positive semidefinite matrices A and all (k + r + 1) X 1 vectors ¢, where
3 5LS = (Qx,07507x) 'o? [Equation (19.55)]. The inequality (19.62), which is
proven in Appendix 19.6,is the same efficiency criterion as is used in the multivariate
Gauss—-Markov theorem in Key Concept 19.3. Consequently, TSLS is the efficient IV
estimator under homoskedasticity among the class of estimators in which the instru-
ments are linear combinations of Z.

The J-statistic under homoskedasticity. The J-statistic (Key Concept 12.6) tests the
null hypothesis that all the overidentifying restrictions hold against the alternative
that some or all of them do not hold.

The idea of the J-statistic is that, if the overidentifying restrictions hold, u; will be
uncorrelated with the instruments, and thus a regression of U on Z will have population
regression coefficients that all equal 0. In practice, U'is not observed, but it can be estimated
by the TSLS residuals U,soa regression of U on Z should yield statistically insignificant
coefficients. Accordingly, the TSLS J-statistic is the homoskedasticity-only F-statistic testing
the hypothesis that the coefficients on Z are all 0, in the regression of U on Z, multi-
plied by (m + r + 1) so that the F-statistic is in its asymptotic chi-squared form.
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An explicit formula for the J-statistic can be obtained using Equation (713)
for the homoskedasticity-only F-statistic. The unrestricted regression is the regres-
sion of U on the m + r + 1 regressors Z, and the restricted regression has no
regressors. Thus, in the notation of Equation (7.13), SSR,,.esiricied = f/’MZﬁ, and
SSR,osrricied = U'U, 50 SSR,osricred — SSRumresiricred = U'U — UM U = U'P,U and
the J-statistic is

U'P,U

J == - .
UMzU/(n —m —r—1)

(19.63)

The method for computing the J-statistic described in Key Concept 12.6 entails
testing only the hypothesis that the coefficients on the excluded instruments are 0.
Although these two methods have different computational steps, they produce iden-
tical J-statistics (Exercise 19.14).

It is shown in Appendix 19.6 that, under the null hypothesis that E(i;Z;) = 0,

T = 2 (19.64)

Generalized Method of Moments Estimation
in Linear Models

If the errors are heteroskedastic, then the TSLS estimator is no longer efficient
among the class of IV estimators that use linear combinations of Z as instruments.
The efficient estimator in this case is known as the efficient generalized method of
moments (GMM) estimator. In addition, if the errors are heteroskedastic, then the
J-statistic as defined in Equation (19.63) no longer has a chi-squared distribution. How-
ever, an alternative formulation of the J-statistic, constructed using the efficient GMM
estimator, does have a chi-squared distribution with m — k degrees of freedom.

These results parallel the results for the estimation of the usual regression model
with exogenous regressors and heteroskedastic errors: If the errors are heteroskedas-
tic, then the OLS estimator is not efficient among estimators that are linear in Y (the
Gauss—-Markov conditions are not satisfied), and the homoskedasticity-only F-statistic
no longer has an F distribution, even in large samples. In the regression model with
exogenous regressors and heteroskedasticity, the efficient estimator is weighted least
squares; in the I'V regression model with heteroskedasticity, the efficient estimator
uses a different weighting matrix than TSLS, and the resulting estimator is the efficient
GMM estimator.

GMM estimation. Generalized method of moments (GMM) estimation is a general
method for the estimation of the parameters of linear or nonlinear models, in which
the parameters are chosen to provide the best fit to multiple equations, each of which
sets a sample moment to 0. These equations, which in the context of GMM are called
moment conditions, typically cannot all be satisfied simultaneously. The GMM esti-
mator trades off the desire to satisfy each of the equations by minimizing a quadratic
objective function.



19.7 Instrumental Variables and Generalized Method of Moments Estimation 739

In the linear I'V regression model with exogenous variables Z, the class of GMM
estimators consists of all the estimators that are solutions to the quadratic minimiza-
tion problem in Equation (19.58). Thus the class of GMM estimators based on the
full set of instruments Z with different-weight matrices A is the same as the class of
IV estimators in which the instruments are linear combinations of Z. In the linear IV
regression model, GMM is just another name for the class of estimators we have
been studying—that is, estimators that solve Equation (19.58).

The asymptotically efficient GMM estimator. Among the class of GMM estimators,
the efficient GMM estimator is the GMM estimator with the smallest asymptotic
variance matrix [where the smallest variance matrix is defined as in Equation (19.62)].
Thus the result in Equation (19.62) can be restated as saying that TSLS is the efficient
GMM estimator in the linear model when the errors are homoskedastic.

To motivate the expression for the efficient GMM estimator when the errors are
heteroskedastic, recall that when the errors are homoskedastic, H [the variance
matrix of Zu;; see Equation (19.50)] equals Q702 and the asymptotically efficient
weight matrix is obtained by setting A = (Z'Z)™!, which yields the TSLS estimator.
In large samples, using the weight matrix A = (Z'Z)"! is equivalent to using
A = (Qzz02)™' = H'. This interpretation of the TSLS estimator suggests that, by
analogy, the efficient IV estimator under heteroskedasticity can be obtained by
setting A = H~! and solving

min,(Y — Xb)'ZH 'Z'(Y — Xb). (19.65)

This analogy is correct: The solution to the minimization problem in Equation (19.65)
is the efficient GMM estimator. Let ﬁEffGMM denote the solution to the minimization
problem in Equation (19.65). By Equation (19.59), this estimator is

’B‘Eff.GMM _ (X/ZH‘lz’X)_lX’ZH_IZ/Y. (19.66)

The asymptotic distribution of BEIGMM s obtained by substituting A = H™! into
Equation (19.60) and simplifying; thus

V(BTN — g) —C> N(O, SHFOMM),
where 3EFOMM — (9 H™'Q,4) L. (19.67)
The result that MM is the efficient GMM estimator is proven by showing that

c'3lWe = ¢/ SEFOMMe for all vectors ¢, where 3 is given in Equation (19.60). The

proof of this result is given in Appendix 19.6.

Feasible efficient GMM estimation. The GMM estimator defined in Equation
(19.66) is not a feasible estimator because it depends on the unknown variance
matrix H. However, a feasible efficient GMM estimator can be computed by
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substituting a consistent estimator of H into the minimization problem of Equation
(19.65) or, equivalently, by substituting a consistent estimator of H into the formula
for BFIFGMM in Equation (19.66).

The efficient GMM estimator can be computed in two steps. In the first step,
estimate B using any consistent estimator. Use this estimator of 8 to compute the
residuals from the equation of interest, and then use these residuals to compute an
estimator of H. In the second step, use this estimator of H to estimate the optimal
weight matrix H~! and to compute the efficient GMM estimator. To be concrete, in
the linear IV regression model, it is natural to use the TSLS estimator in the first step
and to use the TSLS residuals to estimate H. If TSLS is used in the first step, then the
feasible efficient GMM estimator computed in the second step is

BEGMM — (x'ZH\Z' X)X’ ZH\Z'Y, (19.68)

where H is given in Equation (19.54).
Because H —2> H, \/Z(ﬁEff‘GMM — BEFGMMY P () (Exercise 19.12), and

Vn(BEFGMM _ gy —Ls N(0, 3 EI-GMMY (19.69)

where 3E1OMM = (Q\,H™ Q%)™ [Equation (19.67)]. That is, the feasible two-step
estimator BFIFOMM in Equation (19.68) is, asymptotically, the efficient GMM
estimator.

The heteroskedasticity-robust J-statistic. The heteroskedasticity-robust J-statistic,
also known as the GMM J-statistic, is the counterpart of the TSLS-based J-statistic,
computed using the efficient GMM estimator and weight function. That is, the GMM
J-statistic is given by

~ GMM

I = (270" A (2 0™ /n, (19.70)
where UMM =y — XﬂAEff‘GMM are the residuals from the equation of interest, esti-
mated by (feasible) efficient GMM, and H™is the weight matrix used to compute
BEFGMM.

Under the null hypothesis E(Zu;) = 0, —4 Xz.— i (see Appendix 19.6).

GMM with time series data. The results in this section were derived under the IV
regression assumptions for cross—sectional data. In many applications, however, these
results extend to time series applications of IV regression and GMM. Although a
formal mathematical treatment of GMM with time series data is beyond the scope
of this book (for such a treatment, see Hayashi, 2000, Chapter 6), we nevertheless
will summarize the key ideas of GMM estimation with time series data. This sum-
mary assumes familiarity with the material in Chapters 14 and 16. For this discussion,
it is assumed that the variables are stationary.
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Itis useful to distinguish between two types of applications: applications in which the
error term u, is serially correlated and applications in which ; is serially uncorrelated. If
the error term u, is serially correlated, then the asymptotic distribution of the GMM
estimator continues to be normally distributed, but the formula for H in Equation (19.50)
is no longer correct. Instead, the correct expression for H depends on the autocovari-
ances of Zu, and is analogous to the formula given in Equation (16.14) for the variance
of the OLS estimator when the error term is serially correlated. The efficient GMM
estimator is still constructed using a consistent estimator of H; however, that consistent
estimator must be computed using the HAC methods discussed in Chapter 16.

If Z,u,is not serially correlated, then HAC estimation of H is unnecessary, and the
formulas presented in this section all extend to time series GMM applications. In
modern applications to finance and macroeconometrics, it is common to encounter
models in which the error term represents an unexpected or unforecastable distur-
bance, in which case the model typically implies that Zu, is serially uncorrelated. For
example, consider a model with a single included endogenous variable and no included
exogenous variables so that the equation of interest is Y; = B, + B X, + u,. Suppose
that an economic theory implies that u, is unpredictable given past information. Then
the theory implies the moment condition

E(ut‘Yt—b Xt—l» Zt—17 Yt—2’ Xt—2» Zt—25 cee ) = 0’ (1971)

where Z,_; is the lagged value of some other variable. The moment condition in
Equation (19.71) implies that all the lagged variables Y;_1, X;—1, Z;_1, Yi—2, Xi_,
Z,_», ... are candidates for being valid instruments (they satisfy the exogeneity con-
dition). Moreover, because u,_; = Y, — By — B1X;—, the moment condition in
Equation (19.71) is equivalent to E(u, |t,—1, X;—1, Zi—1, Uy—2, Xy—2, Z—2, ... ) = 0.
Because u, is serially uncorrelated, HAC estimation of H is unnecessary. The theory
of GMM presented in this section, including efficient GMM estimation and the
GMM J-statistic, therefore applies directly to time series applications with moment
conditions of the form in Equation (19.71), under the hypothesis that the moment
condition in Equation (19.71) is, in fact, correct.

Summary

1. The linear multiple regression model in matrix form is Y = X + U, where
Y is the n X 1 vector of observations on the dependent variable, X is the
n X (k + 1) matrix of n observations on the k + 1 regressors (including a
constant), B is the k + 1 vector of unknown parameters, and U is the n X 1
vector of error terms.

2. The OLS estimator is ﬁ = (X'X)"'X'Y. Under the first four least squares
assumptions in Key Concept 19.1, B is consistent and asymptotically normally
distributed. If in addition the errors are homoskedastic, then the conditional
variance of B is var(B|X) = oX(X'X)"\.
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3. General linear restrictions on 3 can be written as the g equations Rf3 = r, and
this formulation can be used to test joint hypotheses involving multiple coef-
ficients or to construct confidence sets for elements of B.

4. When the regression errors are i.i.d. and normally distributed, conditional on
X, ﬁ has an exact normal distribution, and the homoskedasticity-only ¢- and
F-statistics have exact t,_,_; and F, ,_;—; distributions, respectively.

5. The Gauss—Markov theorem says that, if the errors are homoskedastic and condi-
tionally uncorrelated across observations and if E(x;|X) = 0, the OLS estimator is
efficient among linear conditionally unbiased estimators (that is, OLS is BLUE).

6. If the error covariance matrix €2 is not proportional to the identity matrix and
if  is known or can be estimated, then the GLS estimator is asymptotically
more efficient than OLS. However, GLS requires that, in general, «; be uncor-
related with all observations on the regressors, not just with Xj, as is required
by OLS, an assumption that must be evaluated carefully in applications.

7. The TSLS estimator is a member of the class of GMM estimators of the linear
model. In GMM, the coefficients are estimated by making the sample covari-
ance between the regression error and the exogenous variables as small as
possible —specifically, by solving min, [(Y — Xb)'Z]A[Z'(Y — Xb)], where A
is a non-random positive definite matrix. The asymptotically efficient GMM esti-
mator sets A = [ E(Z;Z; u?)]~'. When the errors are homoskedastic, the asymp-
totically efficient GMM estimator in the linear IV regression model is TSLS.

Key Terms

Gauss—Markov conditions for multiple generalized method of moments
regression (726) (GMM) (738)
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Exercises 743

Review the Concepts

19.1

19.2

19.3

19.4

19.5

A researcher studying the relationship between earnings and workers’ sex speci-
fies the regression model Y; = B, + X;,8; + X538, + u;, where Xj; is a binary
variable that equals 1 if the i'" person is a female and X5, is a binary variable
that equals 1 if the /" person is a male. Write the model in the matrix form of
Equation (19.2) for a hypothetical set of n = 5 observations. Show that the col-
umns of X are linearly dependent, so that X does not have full rank. Explain how
you would respecify the model to eliminate the perfect multicollinearity.

You are analyzing a linear regression model with 500 observations and one
regressor. Explain how you would construct a confidence interval for B if

a. Assumptions 1 through 4 in Key Concept 19.1 are true but you think
assumption 5 or 6 might not be true.

b. Assumptions 1 through 5 are true but you think assumption 6 might not
be true. (Give two ways to construct the confidence interval.)

c. Assumptions 1 through 6 are true.

Suppose that assumptions 1 through 5 in Key Concept 19.1 are true but that
assumption 6 is not. Does the result in Equation (19.31) hold? Explain.

When is the GLS estimator more efficient than the OLS estimator within the
class of linear conditionally unbiased estimators?

Construct an example of a regression model that satisfies the assumption
E(u;| X;) = 0but for which E(U| X) # 0,.

Exercises

19.1

19.2

Consider the population regression of test scores against income and the
square of income in Equation (8.1).

a. Write the regression in Equation (8.1) in the matrix form of Equation
(19.5). Define Y, X, U, and B.

b. Explain how to test the null hypothesis that the relationship between test
scores and income is linear against the alternative that it is quadratic. Write
the null hypothesis in the form of Equation (19.20). What are R, r, and g?

Suppose that a sample of n = 20 households has the sample means and sam-
ple covariances below for a dependent variable and two regressors:

Sample Covariances w
Sample Means Y X, X,
Y 6.39 0.26 0.22 0.32
X 7.24 0.80 0.28

L

L X 4.00 2.40
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19.3

19.4

19.5

19.6

19.7

a. Calculate the OLS estimates of 3, B8;, and 3,. Calculate s3. Calculate the
R? of the regression.

b. Suppose that all six assumptions in Key Concept 19.1 hold. Test the
hypothesis that 8; = 0 at the 5% significance level.

Let Wbe anm X 1 vector with covariance matrix 2y, where 2y is finite and
positive definite. Let ¢ be a nonrandom m X 1 vector, and let Q = ¢'W.

a. Show that var(Q) = ¢'Zyec.
b. Suppose that ¢ # 0,,. Show that 0 < var(Q) < o.

Consider the regression model Y; = By + B;X; + u; from Chapter 4, and
assume that the least squares assumptions in Key Concept 4.3 hold.

a. Write the model in the matrix form given in Equations (19.2) and (19.3).
b. Show that assumptions 1 through 4 in Key Concept 19.1 are satisfied.

c. Use the general formula for [} in Equation (19.11) to derive the expressions
for By and B given in Key Concept 4.2.

d. Show that the (1, 1) element of 34 in Equation (19.13) is equal to the
expression for 0'50 given in Key Concept 4.4.

Let Py and My be as defined in Equations (19.24) and (19.25).

a. Prove that PyMy = 0,, « ,, and that Py and My are idempotent.
b. Derive Equations (19.27) and (19.28).

¢. Show that rank(Py) = k + 1 and rank(My) = n — k — 1. [Hint: First
solve Exercise 19.10, and then use the fact that trace(AB) = trace(BA)
for conformable matrices A and B.]

Consider the regression model in matrix form, Y = X + Wy + U, where
X is an n X k; matrix of regressors and Wis an n X k, matrix of regressors.
Then, as shown in Exercise 19.17, the OLS estimator ﬁ can be expressed

B = (X' MyX) (X' MyY).

Now let PV be the “binary variable” fixed effects estimator computed by
estimating Equation (10.11) by OLS, and let ,é{)M be the “demeaning” fixed
effects estimator computed by estimating Equation (10.14) by OLS, in which
the entity-specific sample means have been subtracted from X and Y. Use the
expression for [§ given above to prove that ,é{? V= A{) M | Hint: Write Equation
(10.11) using a full set of fixed effects, D1, D2, ..., D,; and no constant term.
Include all of the fixed effects in W. Write out the matrix MyX.]

Consider the regression model Y, = BX; + B,W, + u;, where for simplicity
the intercept is omitted and all variables are assumed to have a mean of 0.
Suppose that X; is distributed independently of (W;, u;) but W; and u; might
be correlated, and let [§1 and [§2 be the OLS estimators for this model.
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a. Show that whether or not W, and u; are correlated, fj’l — B,.
b. Show that if W; and u; are correlated, then éz is inconsistent.

c. Let é{ be the OLS estimator from the regression of Y on X (the restricted
regression that excludes W). Will B, have a smaller asymptotic variance
than 3, allowing for the possibility that W; and u; are correlated? Explain.

Consider the regression model Y, = B, + B X; + u;, where u; = u; and
u; = 0.5u;_ + u;fori = 2,3,...,n Suppose that u; are i.i.d. with mean 0
and variance 1 and are distributed independently of X; for all i and j.

a. Derive an expression for E(UU’) = Q.

b. Explain how to estimate the model by GLS without explicitly inverting
the matrix €. (Hint: Transform the model so that the regression errors
are iy, ty, . . ., U,.)

This exercise shows that the OLS estimator of a subset of the regression
coefficients is consistent under the conditional mean independence assump-
tion stated in Key Concept 6.6. Consider the multiple regression model in
matrix form Y = X8 + Wy + U, where X and W are, respectively, n X k
and n X k, matrices of regressors. Let X! and W/ denote the i rows of X
and W [as in Equation (19.4)]. Assume that (i) E(u|X;, W;) = W;'8, where &
is a k, X 1 vector of unknown parameters; (i) (X;, W,, Y;) are i.i.d.; (iii) (X}, W;, u,)
have four finite nonzero moments; and (iv) there is no perfect multicollinearity.
These are assumptions 1 through 4 of Key Concept 19.1, with the conditional mean
independence assumption (i) replacing the usual conditional mean 0 assumption.

a. Use the expression for ﬁ given in Exercise 19.6 to write [} -B=
(X' MyX) \(n7I X' My U).

b. Show that n ' X' MyX —— 3 yx — X xw w2 wx, where 2 yy =
E(XX)), 2 xw = E(X;W}),and so forth. [The matrix A, —*— A if
A, i — A;; for all i, ] pairs, where A,, ;; and A;; are the (i, ) elements of
A,and A.]

¢. Show that assumptions (i) and (ii) imply that E(U|X, W) = Wé.

d. Use (c) and the law of iterated expectations to show that
X' MyU —= 0, « 1.

e. Use (a) through (d) to conclude that, under assumptions (i) through (iv),
B = B.

19.10 Let C be a symmetric idempotent matrix.

a. Show that the eigenvalues of C are either 0 or 1. (Hint: Note that Cq = yq
implies0 = Cq — yq = CCq — yq = yCq — yq = y*q — yq,and solve
for y.)

b. Show that trace(C) = rank(C).

c. Letdbe ann X 1 vector. Show that d'Cd = 0.
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19.11 Suppose that Cis an n X n symmetric idempotent matrix with rank r, and let
vV~ N, I,).

a.

b

C.

19.12 a.

=

C.

Show that C = AA’, where A isn X rwith A’A = I,. (Hint: C is positive
semidefinite and can be written as @ A Q’, as explained in Appendix 19.1.)
Show that A’V ~ N(0, 1,).

Show that V'CV ~ x2.

Show that [NBEff'GMM is the efficient GMM estimator —that is, that [NBEff'GMM
in Equation (19.66) is the solution to Equation (19.65).

Show that \/Z(ﬁEffGMM _ EEff-GMM) 250

Show that JOMM —4; Xk

19.13 Consider the problem of minimizing the sum of squared residuals, subject to
the constraint that Rb = r,where Ris g X (k + 1) with rank g. Let B be the
value of b that solves the constrained minimization problem.

a.

Show that the Lagrangian for the minimization problem is

L(b,y) = (Y — Xb)' (Y — Xb) + v'(Rb — r),whereyisaqg X 1
vector of Lagrange multipliers.

Show that B = B — (X' X)"'R'[R(X'X)"'R']"\(RB — r).

Show that (Y — XB)"(Y — XB) — (Y — XB)(Y — Xp) =

(RB = r)'[RX'X)'R')]' (R — ).

Show that F in Equation (19.36) is equivalent to the homoskedasticity-
only F-statistic in Equation (7.13).

19.14 Consider the regression model Y = XB + U. Partition X as [X; X;] and B
as [Bi B3], where X has ky columns and X, has k, columns. Suppose that

X5
a.
b.

Y = 0k2><1' Let R = [Ikl 0k1><k2}'

Show that B'(X'X)B = (RB)'[R(X'X)"'R]™'(RP).

Consider the regression described in Equation (12.17).

LetW =1 W, W, ... W,],wherelisann X 1 vector of 1’s, W;

is the n X 1 vector with i'" element W;;, and so forth. Let U”SS denote

the vector of two stage least squares residuals.

i. Show that W UTSLS = (),

ii. Show that the method for computing the J-statistic described in Key
Concept 12.6 (using a homoskedasticity-only F-statistic) and that using
the formula in Equation (19.63) produce the same value for the J-statistic.
[Hint: Use the results in (a), (b.i), and Exercise 19.13.]

19.15 (Consistency of clustered standard errors.) Consider the panel data model

Y

= BX;, + «; + u;, where all variables are scalars. Assume that assumptions
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1,2, and 4 in Key Concept 10.3 hold and strengthen assumption 3, so that X,
and u;, have eight nonzero finite moments. Let M = I —T 'u’, where ¢is a
T X lvectorofI's.AlsoletY; = (Y;; Y, -+ Yip), X;= (X; Xp - Xip)'s
w = (uy up - wy),Y, = MY, X, = MX, and u; = Mu;. For the
asymptotic calculations in this problem, suppose that 7 is fixed and

n ——> «,

a. Show that the fixed effects estimator of 8 from Section 10.3 can be written
as B = (SLXX) ' SL XY,
b. Show that 8 — B = (S, X/ X,)"' "L X/ u;. (Hint: M is idempotent.)
c. LetQyx= T_lE(X-’}NI,-) and QA); = ,}72?:12,11)?,-2[. Show that QA); —£5 0%
d. Letn;= )?,-’u,-/\/f and o% = var(n,). Show that \/%E?:m,- -4 N(O, 0%).
e. Use your answers to (b) through (d) to prove Equation (10.25); that is,
5 d 2
show that VnT(B — B) — N(0, a’%/Q)} ).
f. Let &%yclumred be the infeasible clustered variance estimator,
computed using the true errors instead of the residuals so that
a-zl,clustereal = %Ezr';l(xztui)z- Show that a-g;,cluslered —L- 0-31-
g Letii; = ¥, — BX;and 62 cuered = 77 r i1 (X} ;)2 [this is
Equation (10.27) in matrix form]. Show that &3’, clustered —2— cr%,.
[Hint: Use an argument like that used in Equation (18.16) to show that

A A

a'%’ clustered = o-f,, clusiered —— 0, and then use your answer to (f).]

This exercise takes up the problem of missing data discussed in Section 9.2.
Consider the regressionmodel Y; = X;8 + u;,i = 1, ..., n,where all variables
are scalars and the constant term/intercept is omitted for convenience.

a. Suppose that the least squares assumptions in Key Concept 4.3 are satis-
fied. Show that the least squares estimator of 3 is unbiased and consistent.

b. Now suppose that some of the observations are missing. Let /; denote a
binary random variable that indicates the nonmissing observations; that
is, I; = 1 if observation i is not missing, and /; = 0 if observation i is miss-
ing. Assume that {/;, X;, u;} are i.i.d.

i. Show that the OLS estimator can be written as
. n -1/ n n -1/ n
B = (EIiXiXi’) (EIIXZYI) = B + <EIiXiXi’) (2[,’Xil/li).
i=1 i=1 i=1 i=1

ii. Suppose that data are missing “completely at random” in the sense that
Pr(l; = 1| X, u;) = p, where p is a constant. Show that [§ is unbiased
and consistent.

iii. Suppose that the probability that the i'" observation is missing depends
of X; but not on u;; that is, Pr(; = 1| X;, u;) = p(X;). Show that B is
unbiased and consistent.
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iv. Suppose that the probability that the i'" observation is missing depends
on both X; and u; that is, Pr(; = 1| X, u;) = p(X;, u;). Is ,é unbiased?
Is B consistent? Explain.

c. Suppose that 8 = 1 and that X; and u; are mutually independent standard
normal random variables [so that both X; and u; are distributed N(0, 1)].
Suppose that ; = 1 when Y; = O but that /; = Owhen Y; < 0.1Is ﬁ
unbiased? Is B consistent? Explain.

19.17 Consider the regression model in matrix form ¥ = X8 + Wy + U, where X
and W are matrices of regressors and 3 and vy are vectors of unknown regression
coefficients. Let X = My X and Y = MyY,where My, = I — W(W W) 'W.
a. Show that the OLS estimators of 8 and y can be written as

{ﬁ} 3 {X/X X'W'—l[X’Y}
v WX WWw| (WY

b. Show that

[X’X xw !
WX WW,|

(X MyX)! — (X My X)X WOV W)

CL—(WW)TIWXX MX)Tt (WW)T + (WW) WX (X My X)X W(W W)L

APPENDIX

19.1

(Hint: Show that the product of the two matrices is equal to the identity
matrix.)

c. Show that B = (X'MyX)"'X'MyY.

d. The Frisch-Waugh theorem (Appendix 6.2) says that 8 = (X'X)"'X"Y.
Use the result in (c) to prove the Frisch-Waugh theorem.

19.18 Consider the homoskedastic linear regression model with two regressors, and
let py, x, = corr(Xj, X;). Show that corr(él, ,232) — —px, x, [Equation (6.21)]
as n increases.

Summary of Matrix Algebra

This appendix summarizes vectors, matrices, and the elements of matrix algebra used in Chapter 19.
The purpose of this appendix is to review some concepts and definitions from a course in

linear algebra, not to replace such a course.

Definitions of Vectors and Matrices
A vector is a collection of n numbers or elements, collected either in a column (a column
vector) or in a row (a row vector). The n-dimensional column vector b and the n-dimensional

row vector ¢ are
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by

b
b 2 lande = [er ¢ - ¢,
by,
where b, is the first element of b and, in general, b; is the i element of b.
Throughout, a boldface denotes a vector or matrix.
A matrix is a collection, or an array, of numbers or elements, in which the elements are

laid out in columns and rows. The dimension of a matrix is n X m, where n is the number of

rows and m is the number of columns. The n X m matrix A is

app ap a1
a a a

A = 21 _22 2m ’
apy (&%) pm

where a;; is the (i, ) element of A; that is, a; is the element that appears in the i" row and jh
column. An n X m matrix consists of n row vectors or, alternatively, of m column vectors.
To distinguish one-dimensional numbers from vectors and matrices, a one-dimensional

number is called a scalar.

Types of Matrices

Square, symmetric, and diagonal matrices. A matrix is said to be square if the number of
rows equals the number of columns. A square matrix is said to be symmetric if its (i,j) element
equals its (j, 7) element. A diagonal matrix is a square matrix in which all the off-diagonal ele-

ments equal 0; that is, if the square matrix A is diagonal, then a; = 0 for i # j.

Special matrices. An important matrix is the identity matrix, I,,, which is an n X n diagonal
matrix with 1’s on the diagonal. The null matrix, 0, ,,, is the n X m matrix with all elements
equal to 0.

The transpose. The transpose of a matrix switches the rows and the columns. That is, the
transpose of a matrix turns the n X m matrix A into the m X n matrix, which is denoted by
A’,where the (i,]) element of A becomes the (j, ) element of A’;said differently, the transpose
of the matrix A turns the rows of A into the columns of A". If g;; is the (i, ) element of A, then
A’ (the transpose of A) is

apn  an to an1
A = app dp am
Ay Qo e Ay

The transpose of a vector is a special case of the transpose of a matrix. Thus the transpose of
a vector turns a column vector into a row vector; that is, if b is an n X 1 column vector, then

its transpose is the 1 X n row vector:
b' = [bl b2 A bn]

The transpose of a row vector is a column vector.
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Elements of Matrix Algebra: Addition

and Multiplication

Matrix addition. Two matrices A and B that have the same dimensions (for example, that are
both n X m) can be added together. The sum of two matrices is the sum of their elements; that
is,if C = A + B,thenc; = a; + b;. A special case of matrix addition is vector addition: If a and
b are both n X 1 column vectors, then their sum, ¢ = a + b, is the element-wise sum; that is,
¢ = a; + b,

Vector and matrix multiplication. Let a and b be twon X 1 column vectors. Then the product
of the transpose of a (which is itself a row vector) and bis a’b = 3] a;b;. Applying this defi-
nition with b = ayieldsa’'a = 3/, a?.

Similarly, the matrices A and B can be multiplied together if they are conformable —that
is, if the number of columns of A equals the number of rows of B. Specifically, suppose that A
has dimension n X m and B has dimension m X r. Then the product of A and Bisann X r
matrix, C; that is, C = AB, where the (i, j) element of C'is ¢; = E;f:ﬂikbkf Said differently,
the (i, ) element of AB is the product of multiplying the row vector that is the i row of A by
the column vector that is the j column of B.

The product of a scalar d with the matrix A has the (i, ) element da;; that is, each element

of A is multiplied by the scalar d.

Some useful properties of matrix addition and multiplication. Let A and B be matrices. Then
a. A+ B=B+ A;
b. (A+B)+C=A+ (B + C);
¢. (A+B) =A+B;
d. If Aisn X m,then AI,, = Aand I,LA = A;
e. A(BC) = (AB)C;
f. (A + B)C = AC + BC;and
g. (AB) = B'A".

In general, matrix multiplication does not commute; that is, in general AB # BA,
although there are some special cases in which matrix multiplication commutes; for example,
if A and B are both n X n diagonal matrices, then AB = BA.

Matrix Inverse, Matrix Square Roots,

and Related Topics

The matrix inverse. Let A be a square matrix. Assuming that it exists, the inverse of the
matrix A is defined as the matrix for which A™'A = I,,. If, in, fact the inverse matrix A~!
exists, then A is said to be invertible or nonsingular. If both A and B are invertible, then
(AB)' = B'A7L.
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Positive definite and positive semidefinite matrices. Let V be an n X n square matrix.
Then V is positive definite if ¢’ Vc > 0 for all nonzero n X 1 vectors c. Similarly, V'is positive
semidefinite if ¢'Ve = 0 for all nonzero n X 1 vectors c. If V' is positive definite, then it is

invertible.

Linear independence. The n X 1 vectors a; and a, are linearly independent if there do not
exist nonzero scalars ¢; and ¢, such that cja; + c,a, = 0,,1. More generally, the set of k vectors
ai, a,, ..., ais linearly independent if there do not exist nonzero scalars ¢y, ¢, ... , ¢, such

that aa, + ca, + - t+ca = 0n><1~

The rank of a matrix. The rank of the n X m matrix A is the number of linearly independent
columns of A. The rank of A is denoted rank(A). If the rank of A equals the number of col-
umns of A, then A is said to have full column rank. If the n X m matrix A has full column rank,
then there does not exist a nonzero m X 1 vector ¢ such that Ac = 0,,«;. If A is n X n with
rank(A) = n, then A is nonsingular. If the n X m matrix A has full column rank, then A’A is

nonsingular.

The trace of a matrix. The trace of the n X n (square) matrix A is the sum of the diagonal ele-
ments; that is, trace(A) = 3/_;a;. For n X n matrices A and B and n X 1 vector ¢, the trace
satisfies these properties: trace(A) = trace(A'), trace(A + B) = trace(A) + trace(B),
trace(AB) = trace(BA), trace(BAB™) = trace(A), and ¢'Bc =trace(Bcc').

The matrix square root. Let V be an n X n square symmetric positive definite matrix. The
matrix square root of V' is defined to be an n X n matrix F such that F'F = V. The matrix
square root of a positive definite matrix will always exist, but it is not unique. The matrix
square root has the property that FV~'F' = I,,. In addition, the matrix square root of a posi-

tive definite matrix is invertible,so F''VF~! = I .

Eigenvalues and eigenvectors. Let A be ann X nmatrix. If the n X 1 vector g and the scalar
A satisfy Aq = Ag, where ¢'q = 1, then A is an eigenvalue of A, and q is the eigenvector of A
associated with that eigenvalue. An n X n matrix has n eigenvalues, which need not take on
distinct values, and n eigenvectors.

If Visann X nsymmetric positive definite matrix, then the eigenvalues of V are positive
real numbers, and the eigenvectors of V are real. Also, V can be written in terms of its eigen-
values and eigenvectors as V = QAQ’, where A is a diagonal n X n matrix with diagonal
elements that equal the eigenvalues of V and Q is an n X n matrix consisting of the eigenvec-
tors of V,arranged so that the i column of Q is the eigenvector corresponding to the eigen-
value A;, which is the /" diagonal element of A.The eigenvectors are orthonormal, so
Q'0 = I,,. The trace of V equals the sum of its eigenvectors: trace(V) = trace(QAQ’) =
trace(AQ'Q) = trace(A) = DA,

Idempotent matrices. A matrix C is idempotent if C is square and CC = C.If Cisann X n
idempotent matrix that is also symmetric, then C is positive semidefinite, and C has r eigen-

values that equal 1 and n — r eigenvalues that equal 0, where r = rank(C) (Exercise 19.10).
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Multivariate Distributions

This appendix collects various definitions and facts about distributions of vectors of random
variables. We start by defining the mean and covariance matrix of the n-dimensional random
variable V. Next we present the multivariate normal distribution. Finally, we summarize some
facts about the distributions of linear and quadratic functions of jointly normally distributed

random variables.

The Mean Vector and Covariance Matrix

The first and second moments of an m X 1 vector of random variables, V =
(Vi Vv, --- V,)', are summarized by its mean vector and covariance matrix.

Because V' is a vector, the vector of its means—that is, its mean vector—is E(V) = py.
The i™ element of the mean vector is the mean of the i element of V.

The covariance matrix of V'is the matrix consisting of the variance var(V;),i = 1, ... ,m,
along the diagonal and the (i, j) off-diagonal elements cov(V;, V). In matrix form, the covari-
ance matrix V'is

var(Vy) e eov(Vy, V)
Sy = E[(V = pp)(V — )] = : : (19.72)
cov(V,,, Vi) - var(V,,)

The Multivariate Normal Distribution

The m X 1 vector random variable V has a multivariate normal distribution with mean vector

v and covariance matrix Xy if it has the joint probability density function

fv) = xp| =5 (V= w7V = ) | (19.73)

S S e
\V (2m)"det(Xy)
where det(2y) is the determinant of the matrix 2 y. The multivariate normal distribution is
denoted N(my, 2 y).

An important fact about the multivariate normal distribution is that if two jointly nor-
mally distributed random variables are uncorrelated (or, equivalently, have a block-diagonal
covariance matrix), then they are independently distributed. That is, let ¥V; and V, be jointly
normally distributed random variables with respective dimensions n; X 1 andm, X 1.Then
if cov(Vy, Vo) = E[(Vy — py)(Va — my,)'] = 0,y V1 and V, are independent.

If {V}} areii.d. N(0,0?),then 3y = 21, and the multivariate normal distribution simpli-

fies to the product of m univariate normal densities.

Distributions of Linear Combinations and Quadratic
Forms of Normal Random Variables

Linear combinations of multivariate normal random variables are themselves normally distrib-
uted, and certain quadratic forms of multivariate normal random variables have a chi-squared
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distribution. Let V be an m X 1 random variable distributed N(my, 2 v), let A and B be non-
random a X m and b X m matrices, and let d be a nonrandom a X 1 vector. Then

d + AV is distributed N(d + Apy, A% yA’), and (19.74)

cov (AV,BV) = AXB’; (19.75)

if A yB’ = 0,y;, then AV and BV are independently distributed; and ~ (19.76)
(V = uyp)' 2V — ) is distributed y2,. (19.77)

Let U be an m-dimensional multivariate standard normal random variable with distribution
N(0,1,,). If C is symmetric and idempotent, then

U'CU has a y? distribution, where r = rank(C). (19.78)

Equation (19.78) is proven as Exercise 19.11.

Derivation of the Asymptotic
Distribution of 8

This appendix provides the derivation of the asymptotic normal distribution of \/I;(ﬁ -B)
given in Equation (19.12). An implication of this result is that  —2— B.

First consider the “denominator” matrix X'X/n = %Ef;lXiX »in Equation (19.15). The
(j, 1) element of this matrix is s, XXy By the second assumption in Key Concept 19.1,
X is i.i.d., so Xj;Xj; is i.i.d. By the third assumption in Key Concept 19.1, each element of
X; has four moments, so, by the Cauchy-Schwarz inequality (Appendix 18.2), X X); has two
moments. Because X, X}; is i.i.d. with two moments, %27:1 X X;; obeys the law of large
numbers, so %27:1)(,«[}(,,« —£ E(Xj; X;;). This is true for all the elements of X'X/n, so
X'X/n —= E(XX}) = Ox.

Next consider the “numerator” matrix in Equation (19.15), X'U/ Vn = \/%E?ZIV[,
where V; = Xu;. By the first assumption in Key Concept 19.1 and the law of iterated expecta-
tions, E(V;) = E[X;E(u;|X;)] = 0. By the second least squares assumption, V;is i.i.d. Let
¢ be a finite k + 1 dimensional vector. By the Cauchy-Schwarz inequality,
E[(c'V}?] = E[(¢'Xu;)*] = E[(¢'X)*(u)’] = VE[(¢'X;)*] E(u}), which is finite by the
third least squares assumption. This is true for every such vector ¢,so E(V;V}) = 3y is finite
and, we assume, positive definite. Thus the multivariate central limit theorem of Key Concept

19.2 applies to V%E:Lﬂﬁ = \%X’U; that is,
n

1 )
— XU -5 N0, 2. (19.79)

Vn

The result in Equation (19.12) follows from Equations (19.15) and (19.79), the consistency of X' X / 1,
the fourth least squares assumption (which ensures that (X’ X)™! exists), and Slutsky’s theorem.
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Derivations of Exact Distributions of OLS
Test Statistics with Normal Errors

This appendix presents the proofs of the distributions under the null hypothesis of the
homoskedasticity-only z-statistic in Equation (19.35) and the homoskedasticity-only F-statistic
in Equation (19.37), assuming that all six assumptions in Key Concept 19.1 hold.

Proof of Equation (19.35)

If (i) Z has a standard normal distribution, (ii) W has a 2, distribution, and (iii) Z and W are
independently distributed, then the random variable Z /" W/m has the ¢ distribution with m
degrees of freedom (Appendix 18.1). To put  in this form, notice that ég = (sé /0-12,)2[}|X.
Then rewrite Equation (19.34) as

_ B = Bo)/V (i
VW/n—k—1)

where W = (n - k - 1)(s2 /o2), and let Z = (B — Bio)/ V(S x)yand m = n — k — 1.
With these definitions, 7 = Z/ W/m. Thus, to prove the result in Equation (19.35), we
must show (i) through (iii) for these definitions of Z, W, and m.

(19.80)

i. An implication of Equation (19.30) is that, under the null hypothesis, Z =
(,éj = Bio)/ V(24 |x); has an exact standard normal distribution, which shows (i).
ii. From Equation (19.31), W is distributed as x%_;_1, which shows (ii).
iii. To show (iii), it must be shown that ,éj and s3 are independently distributed.

From Equations (19.14) and (19.29), B — B = (X’X)"'X'U and s} = (MyU) (MyU)/
(n — k — 1). Thus B — B and s} are independent if (X'X)™'X'U and MU are independent.
Both (X’X)™'X'U and MU are linear combinations of U, which has an N(0,,,;, o°2I,,) distribu-
tion, conditional on X. But because MyX(X'X) ™! = 0, %+ 1) [Equation (19.26)], it follows that
(X'X)"'X'U and MyU are independently distributed [Equation (19.76)]. Consequently, under
all six assumptions in Key Concept 19.1,

B and s? are independently distributed, (19.81)

which shows (iii) and thus proves Equation (19.35).

Proof of Equation (19.37)

The F, ,, distribution is the distribution of (W,/n;)/(W,/n,), where (i) W, is distributed
Xf,l; (ii) W, is distributed Xﬁz; and (iii) W; and W, are independently distributed (Appendix
18.1). To express F in this form, let W, = (R — r)'[R(X'X)"'R'¢2]"{(RB — r) and
W, = (n — k — 1)s3 /o%. Substitution of these definitions into Equation (19.36) shows that
F = (W;/q)/[W,/(n — k — 1)]. Thus, by the definition of the F distribution, F has an
F, k-1 distribution if (i) through (iii) hold withn; = gandn, = n — k — 1.
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i. Under the null hypothesis, RB—r= R(ﬁ — B).Because B has the conditional normal
distribution in Equation (19.30) and because R is a nonrandom matrix, R(ﬁ — P) is dis-
tributed N(0, 1, R(X 'X)"'R'02), conditional on X. Thus, by Equation (19.77) in Appen-
dix 192, (RB — r)'[R(X'X)R' o2 (RB — r) is distributed XZ, proving (i).

ii. Requirement (ii) is shown in Equation (19.31).

iii. It has already been shown that ﬁ — B and s3 are independently distributed
[Equation (19.81)]. It follows that R — rand s are independently distributed, which in
turn implies that W; and W, are independently distributed, proving (iii) and completing
the proof.

Proof of the Gauss-Markov Theorem
for Multiple Regression

This appendix proves the Gauss-Markov theorem (Key Concept 19.3) for the multiple regres-
sion model. Let [3 be a linear conditionally unbiased estimator of B so that E = A'Y and
E(B|X) = B,where A isann X (k + 1) matrix that can depend on X and nonrandom con-
stants. We show that var(c’[%) = var(c¢’B) for all k + 1 dimensional vectors ¢, where the
inequality holds with equality only if B =48

Because B is linear, it can be written as B = AY = A'(XB + U) = (AX)B + AU.
By the first Gauss—-Markov condition, E(U|X) = 0,1, so E(B |X) = (A’X)p, but because
B is conditionally unbiased, E(B | X) = B = (A'X)B, which implies that AX = I, ;. Thus
B =B+ AU,sovar(B |X) = var(AU|X) = E(AUU'A|X) = AE(UU'|X)A = c2AA,
where the third equality follows because A can depend on X but not U and the final equality
follows from the second Gauss—Markov condition. That is, if E is linear and unbiased, then

under the Gauss—-Markov conditions,
AX = I, and var(B|X) = 02 AA. (19.82)

The results in Equation (19.82) also apply to Bwith A = A = X(X'X)~", where (X'X) ! exists
by the third Gauss—Markov condition.

Now let A = A + D, so that D is the difference between the matrices A and A.
Note that A'A = (X’X)"'X’A = (X'X)"" [by Equation (19.82)] and A'A =
XX XXXX)"' = XX, so AD=A(A-A) =A'A-A'A= 04 xpry
Substituting A = A + D into the formula for the conditional variance in Equation (19.82)
yields

oA + D)'(A + D)
=¢l[A’A + A'D + D'A + D'D]
= o2(X'XY"' + 02D'D, (19.83)

var(B|X)

where the final equality uses the facts A’A = (X'X) "' and A'D = O+ 1yx(k+ 1)-
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Because var(f |X) = 02(X'X)"!, Equations (19.82) and (19.83) imply that
var(B |X) — Var(ﬁ|X) = ¢2D’'D.The difference between the variances of the two estimators

of the linear combination ¢'g thus is
var(c' B|X) — var(c'B|X) = o%¢'D'Dc = 0. (19.84)

The inequality in Equation (19.84) holds for all linear combinations ¢'B, and the inequality
holds with equality for all nonzero ¢ only if D = 0, (x+1)—that is,if A = A or, equivalently,
E = [3 Thus c’ﬁ has the smallest variance of all linear conditionally unbiased estimators of
¢’ B; that is, the OLS estimator is BLUE.

Proof of Selected Results for IV
and GMM Estimation

The Efficiency of TSLS Under Homoskedasticity
[Proof of Equation (19.62)]

When the errors u; are homoskedastic, the difference between 24 [Equation (19.61)] and
3, T5LS [Equation (19.55)] is given by

S — 25 = (QxzA02x) ' OxzA0722A07x(0xzA07x) 0% — (0x207407x) "0
= (QxzA02%) ' OxzA[0Q72 — Qzx(0x2077 Ozx) ' Oxz)AQ2zx(QxzAQ7x) ok, (19.85)

where the second term within the brackets in the second equality follows from
(OxzAQ2x) ' QOxzAQ 1y = I+ r+ 1) Let F be the matrix square root of Qzz,s0 Qzz = F'F
and @7, = F7'F~" [The latter equality follows from noting that (F'F)™' = F~'F'~! and
F'~!' = F~!] Then the final expression in Equation (19.85) can be rewritten to yield

W = 3B = (QxzA072%) " OxzAF (I = F V' Qzx(QxzF "'F " Q7x) ' Ox2F 7'
X FAQzx(QxzAQzx) oy, (19.86)

where the second expression within the brackets uses F'/F~'" = I.Thus
(Y - =T8¢ = d'[I — D(D'D)™'D']do?, (19.87)

where d = FAQ;x(QxzAQ,x) 'c and D = F™'Q,y. Now I — D(D'D)"'D’ is a symmetric
idempotent matrix (Exercise 19.5). As a result, I — D(D'D)™'D’ has eigenvalues that are
either 0 or 1,and d'[I — D(D'D)"'D']d = 0 (Exercise 19.10). Thus ¢/ (24 — 2755 ¢ = 0,
proving that TSLS is efficient under homoskedasticity.
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Asymptotic Distribution of the J-Statistic Under
Homoskedasticity

The J-statistic is defined in Equation (19.63). First note that

f] =Y — XATSLS
=Y - XX'PX)'X'P,Y
= (XB + U) — X(X'PX)"'X'P,(XB + U)
=U - XX'PX)'X'P,U
=[I - X(X'P,X)"'X'P,|U. (19.88)

Thus

UP,U = U'[I — P,X(X'P,X)"'X'|P,I — X(X'P,X)"'X'P,)U
= U'[P; — P,X(X'P,X)"'X'P,U, (19.89)

where the second equality follows by simplifying the preceding expression. Because Z'Z is
symmetric and positive definite, it can be written in terms of its matrix square root,
Z'Z = (Z'2)V*(Z'Z)"?, and this matrix square root is invertible, so (Z'Z)™! =
(2'2)7V*(2'2)™V?*, where (Z'Z)™/* = [(Z'Z)"/*]"". Thus P, can be written as P; =
Z(Z'Z)"'Z' = BB’ where B = Z(Z'Z)™'/?. Substituting this expression for Py into the final
expression in Equation (19.89) yields

ur,U

U'[BB' — BB'X(X'BB'X)"' X'BB'|U
U'B|I - BX(X'BB'X)"'X'B|B'U
= U'BMyyB'U, (19.90)

where Mgy = I — B'X(X'BB'X)"'X'B is a symmetric idempotent matrix.

The asymptotic null distribution of U ’PZﬁ is found by computing the limits in probability
and in distribution of the various terms in the final expression in Equation (19.90) under the
null hypothesis. Under the null hypothesis that E(Zu;) = 0, Z'U/\/;z has mean 0, and
the central limit theorem applies, so Z’U/\/;z —4 N(0, Qzz02). In addition,
Z'Z/n 5 Qyz and X'Z/n —> Q. Thus B'U = (Z'Z)"?Z2'U = (Z'Zin)y™'*
(Z’U/\/;z) -4 0,2, where z is distributed N(0,,4,+1,I,,+,+1). In addition, B’X/\/;z =
(Z’Z/n)_l/zr(zrx/”) —> Qzlz/ZQZXv so Mpgx e Q?Z/ZQZX(QXZ lez/z QEIZ/ZQZX)_I
0x,07/’= M, 0;120,,- Thus

UP0—5 (Mg, 0,02)07. (19.91)

Under the null hypothesis, the TSLS estimator is consistent, and the coefficients in the regres-
sionof Uon Z converge in probability to 0 [an implication of Equation (19.91)], so the denom-

inator in the definition of the J-statistic is a consistent estimator of o2
UMU/(n —m—r—1) 5 o2 (19.92)
From the definition of the J-statistic and Equations (19.91) and (19.92), it follows that

;- U'P,U J
ﬁ'MZﬁ/(n -m-r—1)

2’ Mg g,z (19.93)
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Because z is a standard normal random vector and Myp;)/2g, is a symmetric idempotent
matrix, J is distributed as a chi-squared random variable with degrees of freedom that equals
the rank of My-129, [Equation (19.78)]. Because Q?Z/ZQZX is(m+r+1)X(k+r+1)
and m > k, the rank of Mg-129, ism—k [Exercise 19.5]. Thus J —4 Xz, which is the result
stated in Equation (19.64).

The Efficiency of the Efficient GMM Estimator
The infeasible efficient GMM estimator, BESMM s defined in Equation (19.66). The proof

that BEI-OMM is efficient entails showing that ¢/ (324 — S EFOMM)e = ( for all vectors c. The
proof closely parallels the proof of the efficiency of the TSLS estimator in the first section of
this appendix, with the sole modification that H™! replaces Q02 in Equation (19.85) and

subsequently.

Distribution of the GMM J-Statistic

The GMM J-statistic is given in Equation (19.70). The proof that, under the null hypothesis,
JeMM 45 12 closely parallels the corresponding proof for the TSLS J-statistic under

homoskedasticity.

Regression with Many Predictors:
MSPE, Ridge Regression, and Principal
Components Analysis

This appendix presents the derivations for various results used in Chapter 14 that rely on

matrix calculations.

The MSPE for Linear Regression Estimated by OLS
We first derive Equation (14.4), the mean squared prediction error (MSPE) of the OLS esti-

mator under homoskedasticity.
Let the & X 1 vector X°* denote the values of the X’s for the out-of-sample observation
(“00s”) to be predicted. With this notation, the MSPE in Equation (14.3), written using matrix

notation, is
MSPE = o2 + E[(B — B)' X°*]%, (19.94)
where [3 denotes any estimator of 8, not just the OLS estimator.
Under the least squares assumptions for prediction, the out-of-sample observation is

assumed to be an i.i.d. draw from the same population as the estimation sample. Under this

assumption, the MSPE in Equation (19.94) can be written

MSPE = o + trace{E[(B — B)(B — B)'1Qx}. (19.95)
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where Qy = E(X'X). Equation (19.95) follows from Equation (19.94) by
writing, E[(B — B)'X°*]> = E[X*"'(B — B)(B — B)'X**"] = traceE[(B — B)(B — B)'
X°X°%"] = traceE[(B — B)(B — B)’ ]Qyx, where the second inequality uses the property of
the trace that @’ Ba = trace(Baa') for n X nmatrix B and n X 1 vector @ and where the final
equality uses the assumptions that the out-of-sample observation is independent of the estima-
tion observations and that it is drawn from the same distribution, so that E(X°*X°*) = Qy.

The MSPE for OLS obtains by substituting the expression for OLS in Equation (19.14)
into Equation (19.95) and simplifying. First note that, under the assumption of homoskedastic-
ity, for the OLS estimator,

E[(X'X)" X uu' X(X'X)!]
E[(X'X)"'X E(uu' | X)X(X'X)™!]
E[((X'X)"'X'X(X'X) oy = E[(X'X)']og,

E[(B-BB-P)]

where the first equality uses Equation (19.14); the second equality uses the law of iterated
expectations; the third equality uses the assumption of homoskedasticity, so E(uu’ | X) = o2l,;
and the final equality simplifies. Substitution of E[ (8 — B)(B — B)'] = E[(X'X)"']o? into
Equation (19.95) and multiplying and dividing the second term by 1/n yields

’ -1
MSPEq; s = o2 + ltrace{E[(X X ) }Qx}af,. (19.96)
n n

Equation (19.96) is the MSPE for a prediction made using the OLS estimator under the
least squares assumptions for prediction with homoskedastic errors.

Equation (14.4) is an approximation to Equation (19.96) when # is large relative to k. In that
case,X'X/n = Qy (specifically, for fixed k, X' X/n —2= Qy)sotrace{ E[(X'X/n)"']Qx} =
trace{ Qx'Qx} = trace{I,} = k. Substitution of this final expression into Equation (19.96)
and collecting terms yields Equation (14.4):

MSPEq; s = (1 + 5)03. (19.97)
n

Connection to the final prediction error (FPE). Equation (19.97) is used in the derivation of
the final prediction error (FPE) for time series forecasting given in Equation (15.21) (with a
change in notation so that n is replaced by 7 and k is replaced by p + 1).The key difference
between the cross-section and time-series cases is the relation of the out-of-sample observa-
tion to the in-sample observations. In the deriviation here, the in- and out-of-sample observa-
tions are independent. If the values of the predictors in the time series application are
independent of the data used to estimate the coefficients, then the derivation here applies
directly. Typically this will not be the case, however, because the final observations in the
sample (the ones used to make the out-of-sample forecast) are correlated with the in-sample
observations. If the sample size is large, however, then the dependence between the estimated
regression coefficients and the out-of-sample predictors is small, so Equation (19.97) still holds

as an approximation when the sample size is large relative to the number of regressors.
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Ridge Regression

Equation (14.8) provides an expression for the ridge regression estimator with a single regressor.
This appendix derives an expression for the case of multiple regressors.
The ridge regression estimator minimizes the penalized sum of squared residuals in Equa-

tion (14.7), written here using matrix notation:
SR (b; Agiage) = (¥ — Xb)'(Y — Xb) + Agigeeb'b. (19.98)

Taking the derivative of the right-hand side of Equation (19.98) and setting it to 0 yields
the system solved by the ridge regression estimator ﬁRi"g’f, -2X'(Y — XﬁRi"g’f) + 21 R,»dgeﬁRidg"
= 0 [cf. Equations (19.9) and (19.10) for OLS)]. Solving this system yields the formula for the

ridge regression estimator,
BRI = (X'X + Agiagelt) ' X' Y. (19.99)

We note two implications of this formula that are discussed in Sections 14.3 and 14.4,
respectively.

First, if the regressors are uncorrelated in the estimation sample, the ridge regression
estimator can be written as the OLS estimator, shrunk toward 0 by a factor that depends on the
data, that is, ﬁfi"g" = (1 + ARidge E?:lXﬁ)'l,éj, which is Equation (14.8). Moreover, if in
addition the regressors are standardized using the sample standard deviation, as they are in
the empirical work in Chapter 14, that shrinkage factor simplifies to [1 + AR /(n — 1)]7\,
To show these results, note that if the regressors are uncorrelated, then X'X is diagonal,
so that X'X + Agjgel is diagonal with j™ diagonal element 2?:1)(,2[ + ARidge Then
Equation (19.99) simplifies, so that the ridge estimator of the j coefficient Bj is
Bl = (T iXG + XYL XY = (1 + XS X (S X)) 2L X Y =
(1 + ARidge 57 lXﬁ)_lﬁ,«, where ﬁj is the OLS estimator for these uncorrelated regressors.
Thus, with uncorrelated regressors, the ridge regression estimator shrinks the OLS estimator
toward 0 by the factor (1 + ARidse/ 37 lXﬁ)_l. If in addition the regressors are standardized
using the sample standard deviation, then ;- 1Xﬁ~ =n — 1, in which case ﬁRidg’f =
[1+ X/ (n — 1)]7'B.

Second, as is discussed in Section 14.4, predictions made using the ridge regression estima-
tor, in general, change if different linear combinations of the regressors are used as predictors.
Specifically, if X denotes the matrix of predictors, then the ridge predictions made using X and
using XA differ, where A is a nonsingular k X k matrix. This is an important difference
between ridge and OLS because OLS yields the same predictions whether X or XA is used.

To show this result, consider the ridge regression estimator computed using XA, and

idge

denote that estimator by BEHse Tn this notation, the ridge regression estimator computed using

X without the linear transformation is X, The same linear transformation must be applied
to the out-of-sample and in-sample predictors, so the transformed out-of-sample observation
is A’ X 995 Thus the out-of-sample predicted value using BRiseis y Q05 = (A’ X005y BRidse =
X005’ ABRise T this notation, the out-of-sample predicted value using the original
regressors X is V905 = X005 gRidze From Equation (19.99), the ridge estimator

is BRise = (XA)'(XA) + Ariageli | ' (XA)'Y = (A'X'XA + Agiggels) "A'XY = [A'(X'X +
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/\R,»dgeA’_lA_l)A}_lA XY = AT'X'X + /\R,»dge(AA’)_l}_lX Y, where the equalities follow by
collecting terms using the properties of matrix inverses. Thus the ridge prediction for the
out-of-sample observation is YQ0S = x005 A gRidse = X008 [X'X + /\R,«dge(AA’)_l]'lXY,
whereas using the X’s without the linear rotation yields the prediction Y008 =
XOOS(X'X + Agiggely) ' XY. The two predictions differ because the matrix (AA")™" appears
in the expression for Y29 but not in the expression for Y905 The only time that a linear
transformation A does not change the ridge predicted value is when the linear transformation
is orthonormal —that is, when AA" = I, so that (AA Nl = I.

To see that OLS produces the same predicted value, regardless of the linear transforma-
tion A (as long as A is nonsingular), note that the OLS predicted value is the ridge predicted
value when Agyqe = 0.The result follows from substituting ¢ = 0 into the expressions for

the ridge predictions Y295 and Y995 in the previous paragraph.

Principal Components Analysis

This section presents formulas for the principal components of X and shows that the sum of
the variances of the principal components equals the sum of the variances of the X’s [Equation
(14.10)]. The section concludes with an expression for the out-of-sample prediction, computed
using the first » principal components, as in Section 14.5, expressed in terms of the out-of-
sample values of the predictors, X°S.

In Key Concept 14.2, the j principal component of X is defined to be the linear combina-
tion of X such that (a) the squared weights of the linear combinations sum to 1; (b) the /™ principal
component is uncorrelated with the previous j — 1 principal components; and (c) the j™ principal
component maximizes the variance of the linear combination, subject to (a) and (b). We now state
these criteria mathematically and use them to derive explicit formulas for the principal compo-
nents. In particular, we show that the linear combination weights used to form the first r principal
components are the eigenvectors of X' X corresponding to its r largest eigenvalues.

Let PC; denote the ™ principal component, and let W, denote the k X 1 vector of weights
used to construct PCj, so that PC; = XW,. The sum of squares of PC;is PC; PC; = W/ X'XW,,
and the sum of squares weights is W/ W;. Because X has mean 0 (the Xs are standardized), PC;
PC;/(n — 1) is the sample variance of the j™ principal component. The weights W, are chosen

to solve
maxy, PC/PC; = W/X'XW, subject to W/ W; = 1 and PC{PC; = 0 fori < j.  (19.100)

For j = 1, the constrained maximization problem is to choose W, to maximize W' X' XW;
subject to W;'W; = 1.This constrained maximization is done by maximizing the Lagrangian,
W X' XW; — AM(W{ W, — 1),where A is the Lagrange multiplier. Taking the derivative of the
Lagrangian with respect to W, and setting it to 0 yields

X'XW, = L, W,. (19.101)

Equation (19.101) shows that W is an eigenvector of X'X and A, is its corresponding
eigenvalue, where the eigenvector is normalized to have unit length. Moreover, multiplying
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both sides of Equation (19.101) by W}’ shows that W)’ X' XW; = PC;'PC; = \{,so that maxi-
mizing PC,’ PC, requires that A; be the largest eigenvalue of X' X and that W, be the eigenvec-
tor of X'X corresponding to the largest eigenvalue.

Now consider W,. There are two constraints, W, W, = 1 and PC,PC; = W, X' XW; =0,
so the Lagrangian is W, X'XW, — L,(W, W, — 1) — v,;W, X'XW,, where A, and y,; are
Lagrange multipliers. Taking the derivative of the Lagrangian with respect to W, and setting
it to 0 yields

1
X’XWz = )\2W2 + 5721X,val~ (19102)

First note that multiplying both sides of Equation (19.101) by W,’ yields W, X' XW; =
AW, Wy because W, X' XW, = (,it follows that W, W; = 0. Now multiplying both sides of
Equation (19.102) by W, yields W{ X'XW, = \L,W{ W, + Sy, W/ X' XW, = 1y, W/ X' XW,,
but because W/ X'XW, = W{ W, = 0, it must be that y,; = 0. Thus Equation (19.102)
reduces to X'XW, = A\, W,, so that W, is an eigenvector of X'X and A, is its corresponding
eigenvalue. Multiplying both sides of X'XW, = \,W, by W, and imposing the unit normaliza-
tion yields W, X'XW, = A,. Thus, the Lagrangian is maximized by choosing W, to be the
eigenvector corresponding to the largest of the remaining eigenvalues—that is, to the second-
largest eigenvalue of X'X.

Continuing, these calculations shows that W; is the unit-length eigenvector of X' X associ-
ated with A;, the jM-largest eigenvalue of X'X; that PC;PC; = Aj; and that PC{PC; = 0 for
i # j.If k < n,only the first k eigenvalues of X'X are nonzero, so the total number of princi-
pal components is min(n, k).

Because the trace of a matrix is equal to the sum of its eigenvalues,

min(n,k) min(n,k)
trace(X'X) = > A= > PC/PC,. (19.103)
=1 j=1

Dividing the first and last expressions in Equation (19.103) by n — 1 yields Equation (14.10).

Finally, we provide an expression for the out-of-sample prediction in terms of the out-
of-sample value of the predictors, X??S. The first r out-of-sample values of the principal
components are PC{YS = [pPCP9S PpPCYOS ... PCO%] =W,/ X9, where
W, =W, W, --- W,]arethe first r eigenvectors of X'X in the estimation sample. Let
¥ denote the r X 1 vector of OLS coefficients in the regression of Y on the first r principal
components in the estimation sample. Then the principal components prediction of Y995 is
Y008 = 5'PCY95. Written in terms of the original regressors, the principal components

prediction is
Y008 = 51w, ' X005, (19.104)

This expression was used to compute the entries in Table 14.4 for the principal components

prediction.



Appendix

( The Cumulative Standard Normal Distribution Function, ®(z) = Pr(Z = z)
Area=Pr(Z<z)
I
0 z
Second Decimal Value of z
z 0 1 2 3 4 5 6 7 8 9
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
—-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
—-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
—-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
—2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
—-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
—-18 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
—-17 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-15 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
—-14 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
—-13 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
—-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
—-11 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
—-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

J

(Table 1 continued)
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(Table 1 continued)

( 7
Second Decimal Value of z

z 0 1 2 3 4 5 6 7 8 9

-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-04 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
11 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
13 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
14 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
15 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
This table can be used to calculate Pr(Z = z) where Z is a standard normal variable. For example, when z = 1.17, this probability

is 0.8790, which is the table entry for the row labeled 1.1 and the column labeled 7.
S J
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( Critical Values for Two-Sided and One-Sided Tests Using the Student t Distribution
Significance Level
Degrees of 20% (2-Sided) 10% (2-Sided) 5% (2-Sided) 2% (2-Sided) 1% (2-Sided)
Freedom 10% (1-Sided) 5% (1-Sided) 2.5% (1-Sided) 1% (1-Sided) 0.5% (1-Sided)
1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 213 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 245 3.14 3.71
7 141 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 138 1.83 2.26 2.82 3.25
10 1.37 1.81 223 2.76 3.17
11 1.36 1.80 2.20 2.72 3.11
12 1.36 178 2.18 2.68 3.05
13 1.35 177 2.16 2.65 3.01
14 1.35 1.76 2.14 2.62 2.98
15 1.34 1.75 213 2.60 2.95
16 1.34 1.75 212 2.58 2.92
17 1.33 1.74 211 2.57 2.90
18 1.33 173 2.10 2.55 2.88
19 1.33 173 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
21 132 172 2.08 2.52 2.83
22 132 172 2.07 251 2.82
23 132 171 2.07 2.50 2.81
24 132 171 2.06 2.49 2.80
25 132 171 2.06 2.49 2.79
26 132 171 2.06 248 2.78
27 131 170 2.05 247 2.77
28 131 170 2.05 247 2.76
29 1.31 1.70 2.05 2.46 2.76
30 131 170 2.04 2.46 2.75
60 1.30 167 2.00 2.39 2.66
90 1.29 1.66 1.99 2.37 2.63
120 129 1.66 1.98 2.36 2.62
o0 1.28 1.64 1.96 2.33 2.58
Values are shown for the critical values for two-sided (# ) and one-sided (>) alternative hypotheses. The critical value for the
one-sided (<) test is the negative of the one-sided (>) critical value shown in the table. For example, 2.13 is the critical value for a
two-sided test with a significance level of 5% using the Student ¢ distribution with 15 degrees of freedom.
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TABLE 3 Critical Values for the 2 Distribution

Significance Level

Degrees of Freedom 10% 5% 1%
1 2.71 3.84 6.63
2 4.61 5.99 9.21
3 6.25 7.81 11.34
4 7.78 9.49 13.28
5 9.24 11.07 15.09
6 10.64 12.59 16.81
7 12.02 14.07 18.48
8 13.36 15.51 20.09
9 14.68 16.92 21.67

10 15.99 18.31 23.21
11 1728 19.68 24.72
12 18.55 21.03 26.22
13 19.81 22.36 2769
14 21.06 23.68 29.14
15 22.31 25.00 30.58
16 23.54 26.30 32.00
17 24.77 2759 33.41
18 25.99 28.87 34.81
19 2720 30.14 36.19
20 28.41 31.41 3757
21 29.62 32.67 38.93
22 30.81 33.92 40.29
23 32.01 35.17 41.64
24 33.20 36.41 42.98
25 34.38 3765 44.31
26 35.56 38.89 45.64
27 36.74 40.11 46.96
28 3792 41.34 48.28
29 39.09 42.56 49.59
30 40.26 43.77 50.89

This table contains the 90™, 95, and 99" percentiles of the y? distribution. These serve as critical values for tests with significance
levels of 10%, 5%, and 1%.
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p
LIS Critical Values for the F,, ., Distribution

Area = Significance Level

T
0 Critical Value

Significance Level

Degrees of Freedom 10% 5% 1%
1 271 3.84 6.63
2 2.30 3.00 4.61
3 2.08 2.60 378
4 194 2.37 332
5 1.85 221 3.02
6 177 2.10 2.80
7 172 2.01 2.64
8 167 194 251
9 1.63 1.88 241

10 1.60 1.83 232
11 157 179 225
12 1.55 1.75 2.18
13 152 172 213
14 1.50 1.69 2.08
15 1.49 1.67 2.04
16 1.47 164 2.00
17 1.46 162 197
18 1.44 1.60 1.93
19 1.43 1.59 1.90
20 142 157 1.88
21 1.41 1.56 1.85
22 1.40 1.54 1.83
23 1.39 1.53 1.81
24 1.38 1.52 1.79
25 1.38 1.51 1.77
26 1.37 1.50 176
27 1.36 1.49 1.74
28 1.35 1.48 1.72
29 1.35 1.47 171
30 1.34 1.46 1.70

This table contains the 90, 95", and 99" percentiles of the F,, .. distribution. These serve as critical values for tests with significance
L levels of 10%, 5%, and 1%.
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LT85T, 9 Critical Values for the F, ,,, Distribution—10% Significance Level

Denominator Numerator Degrees of Freedom (n;)

Degrees of
Freedom (n,) 1 2 3 4 5 6 7 8 9 10

1 39.86 49.50 53.59 55.83 5724 58.20 58.90 59.44 59.86 60.20
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23
4 4.54 432 4.19 411 4.05 4.01 3.98 3.95 3.94 3.92
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 332 3.30
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70
8 3.46 311 292 2.81 2.73 2.67 2.62 2.59 2.56 2.54
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 242
10 3.29 2.92 2.73 2.61 2.52 2.46 241 2.38 2.35 232
11 3.23 2.86 2.66 2.54 245 2.39 2.34 2.30 2.27 225
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 221 2.19
13 3.14 2.76 2.56 243 2.35 2.28 223 2.20 2.16 2.14
14 3.10 2.73 252 2.39 231 224 219 2.15 212 2.10
15 3.07 2.70 2.49 2.36 2.27 221 2.16 212 2.09 2.06
16 3.05 2.67 2.46 2.33 224 2.18 2.13 2.09 2.06 2.03
17 3.03 2.64 2.44 231 222 215 2.10 2.06 2.03 2.00
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98
19 2.99 2.61 2.40 2.27 2.18 211 2.06 2.02 1.98 1.96
20 297 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94
21 2.96 2.57 2.36 223 2.14 2.08 2.02 1.98 1.95 1.92
22 2.95 2.56 2.35 222 2.13 2.06 2.01 1.97 1.93 1.90
23 2.94 2.55 2.34 221 211 2.05 199 1.95 192 1.89
24 2.93 2.54 233 2.19 2.10 2.04 1.98 1.94 191 1.88
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87
26 291 252 231 217 2.08 2.01 1.96 192 1.88 1.86
27 2.90 251 2.30 217 2.07 2.00 1.95 191 1.87 1.85
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84
29 2.89 2.50 2.28 2.15 2.06 199 1.93 1.89 1.86 1.83
30 2.88 2.49 2.28 2.14 2.05 1.98 193 1.88 1.85 1.82
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71
90 2.76 2.36 2.15 2.01 191 1.84 178 174 1.70 167
120 2.75 2.35 213 1.99 1.90 182 177 172 1.68 1.65
o 271 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60

This table contains the 90" percentile of the F, ., distribution, which serves as the critical values for a test with a 10% significance
level.
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This table contains the 95" percentile of the distribution F,

level.
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Critical Values for the F,  ,, Distribution—5% Significance Level
Denominator Numerator Degrees of Freedom (n;)
Degrees of
Freedom (n,) 1 2 3 4 5 6 7 8 9 10
1 16140 199.50 21570 224.60 230.20 234.00 236.80 23890 240.50  241.90
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.39 19.40
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
4 771 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
5 6.61 5.79 541 5.19 5.05 4.95 4.88 4.82 4.77 4.74
6 5.99 5.14 4.76 4.53 4.39 4.28 421 4.15 4.10 4.06
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85
12 4.75 3.89 3.49 3.26 3.11 3.00 291 2.85 2.80 2.75
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
18 441 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 241
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 242 2.37 2.32
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27
24 4.26 3.40 3.01 2.78 2.62 2.51 242 2.36 2.30 2.25
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22
27 421 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18
30 4.17 3.32 2.92 2.69 2.53 242 2.33 2.27 221 2.16
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 191
0 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83

which serves as the critical values for a test with a 5% significance




