Linear Regression

6.1

with Multiple Regressors

hapter 5 ended on a worried note. Although school districts with lower

student-teacher ratios tend to have higher test scores in the California data set,
perhaps students from districts with small classes have other advantages that help
them perform well on standardized tests. Could this have produced a misleading
estimate of the causal effect of class size on test scores, and, if so, what can be done?

Omitted factors, such as student characteristics, can, in fact, make the ordinary
least squares (OLS) estimator of the effect of class size on test scores misleading or,
more precisely, biased. This chapter explains this “omitted variable bias” and intro-
duces multiple regression, a method that can eliminate omitted variable bias. The key
idea of multiple regression is that if we have data on these omitted variables, then we
can include them as additional regressors and thereby estimate the causal effect of
one regressor (the student-teacher ratio) while holding constant the other variables
(such as student characteristics).

Alternatively, if one is interested not in causal inference but in prediction, the
multiple regression model makes it possible to use multiple variables as regressors—that
is, multiple predictors—to improve upon predictions made using a single regressor.

This chapter explains how to estimate the coefficients of the multiple linear
regression model. Many aspects of multiple regression parallel those of regression
with a single regressor, studied in Chapters 4 and 5. The coefficients of the multiple
regression model can be estimated from data using OLS; the OLS estimators in
multiple regression are random variables because they depend on data from a random
sample; and in large samples, the sampling distributions of the OLS estimators are
approximately normal.

Omitted Variable Bias

By focusing only on the student-teacher ratio, the empirical analysis in Chapters 4
and 5 ignored some potentially important determinants of test scores by collecting
their influences in the regression error term. These omitted factors include school
characteristics,such as teacher quality and computer usage, and student characteristics,
such as family background. We begin by considering an omitted student characteris-
tic that is particularly relevant in California because of its large immigrant popula-
tion: the prevalence in the school district of students who are still learning English.
By ignoring the percentage of English learners in the district, the OLS estimator
of the effect on test scores of the student-teacher ratio could be biased; that is, the
mean of the sampling distribution of the OLS estimator might not equal the true causal
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effect on test scores of a unit change in the student—teacher ratio. Here is the reasoning.
Students who are still learning English might perform worse on standardized tests than
native English speakers. If districts with large classes also have many students still
learning English, then the OLS regression of test scores on the student-teacher ratio
could erroneously find a correlation and produce a large estimated coefficient, when
in fact the true causal effect of cutting class sizes on test scores is small, even zero.
Accordingly, based on the analysis of Chapters 4 and 5, the superintendent might hire
enough new teachers to reduce the student-teacher ratio by 2, but her hoped-for
improvement in test scores will fail to materialize if the true coefficient is small or zero.

A look at the California data lends credence to this concern. The correlation
between the student-teacher ratio and the percentage of English learners (students
who are not native English speakers and who have not yet mastered English) in the
district is 0.19. This small but positive correlation suggests that districts with more
English learners tend to have a higher student-teacher ratio (larger classes). If the
student—teacher ratio were unrelated to the percentage of English learners, then it
would be safe to ignore English proficiency in the regression of test scores against
the student—teacher ratio. But because the student—teacher ratio and the percentage
of English learners are correlated, it is possible that the OLS coefficient in the regres-
sion of test scores on the student—teacher ratio reflects that influence.

Definition of Omitted Variable Bias

If the regressor (the student-teacher ratio) is correlated with a variable that has been omit-
ted from the analysis (the percentage of English learners) and that determines, in part, the
dependent variable (test scores), then the OLS estimator will have omitted variable bias.
Omitted variable bias occurs when two conditions are true: (1) the omitted variable
is correlated with the included regressor and (2) the omitted variable is a determinant of
the dependent variable. To illustrate these conditions, consider three examples of vari-
ables that are omitted from the regression of test scores on the student—teacher ratio.

Example 1: Percentage of English learners. Because the percentage of English
learners is correlated with the student-teacher ratio, the first condition for omitted
variable bias holds. It is plausible that students who are still learning English will do
worse on standardized tests than native English speakers, in which case the percent-
age of English learners is a determinant of test scores and the second condition for
omitted variable bias holds. Thus the OLS estimator in the regression of test scores on
the student—teacher ratio could incorrectly reflect the influence of the omitted variable,
the percentage of English learners. That is, omitting the percentage of English learners
may introduce omitted variable bias.

Example 2: Time of day of the test. Another variable omitted from the analysis is
the time of day that the test was administered. For this omitted variable, it is plausible
that the first condition for omitted variable bias does not hold but that the second
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Omitted Variable Bias in Regression
with a Single Regressor 6.1

Omitted variable bias is the bias in the OLS estimator of the causal effect of X
on Y that arises when the regressor, X, is correlated with an omitted variable. For
omitted variable bias to occur, two conditions must be true:

1. Xis correlated with the omitted variable.

2. The omitted variable is a determinant of the dependent variable, Y.

condition does. If the time of day of the test varies from one district to the next in a
way that is unrelated to class size, then the time of day and class size would be uncor-
related, so the first condition does not hold. Conversely, the time of day of the test
could affect scores (alertness varies through the school day), so the second condition
holds. However, because in this example the time of day the test is administered is
uncorrelated with the student-teacher ratio, the student-teacher ratio could not be
incorrectly picking up the “time of day” effect. Thus omitting the time of day of the
test does not result in omitted variable bias.

Example 3: Parking lot space per pupil. Another omitted variable is parking lot
space per pupil (the area of the teacher parking lot divided by the number of stu-
dents). This variable satisfies the first but not the second condition for omitted vari-
able bias. Specifically, schools with more teachers per pupil probably have more
teacher parking space, so the first condition would be satisfied. However, under the
assumption that learning takes place in the classroom, not the parking lot, parking
lot space has no direct effect on learning; thus the second condition does not hold.
Because parking lot space per pupil is not a determinant of test scores, omitting it
from the analysis does not lead to omitted variable bias.
Onmitted variable bias is summarized in Key Concept 6.1.

Omitted variable bias and the first least squares assumption. Omitted variable bias
means that the first least squares assumption for causal inference —that E(u; | X;) = 0,
as listed in Key Concept 4.3 —does not hold. To see why, recall that the error term u; in the
linear regression model with a single regressor represents all factors, other than X, that are
determinants of Y, If one of these other factors is correlated with X, this means that the
error term (which contains this factor) is correlated with X;. In other words, if an omitted
variable is a determinant of Y;, then it is in the error term, and if it is correlated with X;, then
the error term is correlated with X;. Because u; and X; are correlated, the conditional
mean of u; given X; is nonzero. This correlation therefore violates the first least squares
assumption, and the consequence is serious: The OLS estimator is biased. This bias
does not vanish even in very large samples, and the OLS estimator is inconsistent.
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A Formula for Omitted Variable Bias

The discussion of the previous section about omitted variable bias can be summarized
mathematically by a formula for this bias. Let the correlation between X; and u; be
corr(X;, ;) = py,. Suppose that the second and third least squares assumptions
hold, but the first does not because py, is nonzero. Then the OLS estimator has the
limit (derived in Appendix 6.1)

R oy,
Bi—= B + pxi—- (6.1)
Ox

That is, as the sample size increases, Byisclose to B, + p xu (0, /ox) with increasingly
high probability.

The formula in Equation (6.1) summarizes several of the ideas discussed above
about omitted variable bias:

1. Omitted variable bias is a problem whether the sample size is large or small.
Because él does not converge in probability to the true value B, él is biased
and inconsistent; that is, [§1 is not a consistent estimator of 8; when there is
omitted variable bias. The term py, (o, /oy) in Equation (6.1) is the bias in B

that persists even in large samples.

Is Coffee Good for Your Health?

Astudy published in the Annals of Internal
Medicine (Gunter, Murphy, Cross, et al. 2017)
suggested that drinking coffee is linked to a lower
risk of disease or death.! This study was based on
examining 521,330 participants for a mean period of
16 years in 10 European countries. From this sam-
ple group, 41,693 deaths were recorded during this
period. Another recent study published in The Jour-
nal of the American Medical Association (Loftfield,
Cornelis, Caporaso, et al. 2018) investigated the link
between heavy intake of coffee and risk of mortal-
ity. It suggested that drinking six—seven cups of cof-
fee per day was associated with a 16% lower risk of
death.? This study attracted substantial attention in
the U.K. press, with articles bearing headlines such
as “Six coffees a day could save your life” and “Have
another cup of coffee! Six cups a day could decrease
your risk of early death by up to 16 %, National Can-
cer Institute study finds.”>

Are these headlines accurate? Perhaps not. While
they suggest a causal relationship between coffee

and life expectancy, there is the potential for omitted

variable bias to influence the relationship being estab-
lished. Reviews of this study, including those by the
United Kingdom’s National Health Service (NHS)
and the BMJ,* note that some people may opt not to
drink coffee if they know they have an illness already.
Similarly, coffee can be considered as a surrogate
endpoint for factors that affect health—income,
education, or deprivation—that may confound the
observed beneficial associations and introduce errors.

According to a paper published in BMJ (Poole,
Kennedy, Roderick, et al. 2017), randomized con-
trolled trials (RCTs), or randomized controlled experi-
ments, allow for many of these errors to be removed.
In this case, removing the ability of people to select if
they should drink coffee and how much they should
consume would remove any omitted variable bias aris-
ing from differences in income or in expectations about
health among coffee drinkers and non-coffee drinkers.

Sometimes, however, there may be neither a
genuine relationship that an RCT could detect, nor
even an omitted variable responsible for the rela-

tionship. The website “Spurious Correlations™



details many such examples. For instance, the per
capita consumption of mozzarella cheese over time
shows a strong, and coincidental, relationship with
the award of civil engineering doctorates. Be careful

when interpreting the results of regressions!

ISee the studies by Gunter, Murphy, Cross, et al., “Cof-
fee Drinking and Mortality in 10 European Countries: A
Multinational Cohort Study,” Annals of Internal Medicine,
http://annals.org, July 11, 2017.

2Read the paper on “Association of Coffee Drinking With
Mortality by Genetic Variation in Caffeine Metabolism,
Findings From the UK Biobank,” by See Loftfield, Cornelis,
Caporaso, et al., published in JAMA Internal Medicine,
July 2, 2018.

6.1 Omitted Variable Bias

Laura Donnelly, “Six Coffees a Day Could save Your
Life,” The Telegraph, July 2, 2018, https://www.telegraph
.co.uk; and Mary Kekatos, “Have Another Cup of Coffee!
Six Cups a Day Could Decrease Your Risk of Early Death
by up to 16%, National Cancer Institute Study Finds,” The
Daily Mail, July 2, 2018.

“For further reading, see “Another Study Finds Coffee
Might Reduce Risk of Premature Death,” on the NHS
website; and “Coffee Consumption and Health: Umbrella
Review of Meta-analyses of Multiple Health Outcomes,”
by Robin Poole, Oliver J Kennedy, Paul Roderick, Jona-
than A. Fallowfield, Peter C Hayes, and Julie Parkes,
published on the British Medical Journal (BMJ) website,
October 16, 2017, http://dx.doi.org/10.1136/bm;.j5024.

SFor further information, see Spurious Correlations, http:/
www.tylervigen.com/spurious-correlations.
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2. Whether this bias is large or small in practice depends on the correlation
px. between the regressor and the error term. The larger |py,| is, the
larger the bias.

3. The direction of the bias in j3; depends on whether X and u are positively or
negatively correlated. For example, we speculated that the percentage of stu-
dents learning English has a negative effect on district test scores (students still
learning English have lower scores), so that the percentage of English learn-
ers enters the error term with a negative sign. In our data, the fraction of Eng-
lish learners is positively correlated with the student-teacher ratio (districts
with more English learners have larger classes). Thus the student-teacher
ratio (X) would be negatively correlated with the error term (u), so py, < 0
and the coefficient on the student-teacher ratio ﬁl would be biased toward a
negative number. In other words, having a small percentage of English learn-
ers is associated with both high test scores and low student—teacher ratios, so
one reason that the OLS estimator suggests that small classes improve test
scores may be that the districts with small classes have fewer English learners.

Addressing Omitted Variable Bias by Dividing
the Data into Groups

What can you do about omitted variable bias? In the test score example, class size is
correlated with the fraction of English learners. One way to address this problem is
to select a subset of districts that have the same fraction of English learners but have
different class sizes: For that subset of districts, class size cannot be picking up the
English learner effect because the fraction of English learners is held constant. More
generally, this observation suggests estimating the effect of the student—teacher ratio
on test scores, holding constant the percentage of English learners.

Table 6.1 reports evidence on the relationship between class size and test scores within
districts with comparable percentages of English learners. Districts are divided into eight
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( Differences in Test Scores for California School Districts with Low and High
Student-Teacher Ratios, by the Percentage of English Learners in the District
Difference in Test Scores,
Student-Teacher Student-Teacher Low vs. High Student-
Ratio < 20 Ratio = 20 Teacher Ratio
Average Average
Test Score n Test Score n Difference  t-statistic
All districts 6574 238 650.0 182 74 4.04
Percentage of English learners
<19% 664.5 76 665.4 27 —0.9 —0.30
1.9-8.8% 665.2 64 661.8 44 33 1.13
8.8-23.0% 654.9 54 649.7 50 52 1.72
> 23.0% 636.7 44 634.8 61 1.9 0.68 )

groups. First, the districts are broken into four categories that correspond to the quartiles
of the distribution of the percentage of English learners across districts. Second, within each
of these four categories, districts are further broken down into two groups, depending on
whether the student-teacher ratio is small (STR < 20) or large (STR = 20).

The first row in Table 6.1 reports the overall difference in average test scores
between districts with low and high student-teacher ratios—that is, the difference in
test scores between these two groups without breaking them down further into the
quartiles of English learners. (Recall that this difference was previously reported in
regression form in Equation (5.18) as the OLS estimate of the coefficient on D; in the
regression of TestScore on D;, where D; is a binary regressor that equals 1 if STR; < 20
and equals 0 otherwise.) Over the full sample of 420 districts, the average test score
is 74 points higher in districts with a low student-teacher ratio than a high one; the
t-statistic is 4.04, so the null hypothesis that the mean test score is the same in the two
groups is rejected at the 1% significance level.

The final four rows in Table 6.1 report the difference in test scores between districts
with low and high student—teacher ratios, broken down by the quartile of the percentage
of English learners. This evidence presents a different picture. Of the districts with the few-
est English learners (< 1.9% ), the average test score for those 76 with low student—
teacher ratios is 664.5, and the average for the 27 with high student—teacher ratios is 665.4.
Thus, for the districts with the fewest English learners, test scores were, on average, 0.9
points lower in the districts with low student—teacher ratios! In the second quartile, districts
with low student—teacher ratios had test scores that averaged 3.3 points higher than those
with high student-teacher ratios; this gap was 5.2 points for the third quartile and only 1.9
points for the quartile of districts with the most English learners. Once we hold the percent-
age of English learners constant, the difference in performance between districts with high
and low student—teacher ratios is perhaps half (or less) of the overall estimate of 74 points.

At first, this finding might seem puzzling. How can the overall effect of test scores be
twice the effect of test scores within any quartile? The answer is that the districts with the
most English learners tend to have both the highest student—teacher ratios and the lowest
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test scores. The difference in the average test scores between districts in the lowest and
highest quartiles of the percentage of English learners is large, approximately 30 points.
The districts with few English learners tend to have lower student—teacher ratios: 74%
(76 of 103) of the districts in the first quartile of English learners have small classes
(STR < 20), while only 42% (44 of 105) of the districts in the quartile with the most
English learners have small classes. So the districts with the most English learners have
both lower test scores and higher student—teacher ratios than the other districts.

This analysis reinforces the superintendent’s worry that omitted variable bias is pres-
ent in the regression of test scores against the student—teacher ratio. By looking within
quartiles of the percentage of English learners, the test score differences in the second part
of Table 6.1 improve on the simple difference-of-means analysis in the first line of Table 6.1.
Still, this analysis does not yet provide the superintendent with a useful estimate of the
effect on test scores of changing class size, holding constant the fraction of English learners.
Such an estimate can be provided, however, using the method of multiple regression.

The Multiple Regression Model

The multiple regression model extends the single variable regression model of Chapters 4
and 5 to include additional variables as regressors. When used for causal inference, this
model permits estimating the effect on Y; of changing one variable ( X;;) while holding
the other regressors (X5;, X3;, and so forth) constant. In the class size problem, the mul-
tiple regression model provides a way to isolate the effect on test scores (Y;) of the
student-teacher ratio (X;;) while holding constant the percentage of students in the
district who are English learners ( X>;). When used for prediction, the multiple regression
model can improve predictions by using multiple variables as predictors.

As in Chapter 4, we introduce the terminology and statistics of multiple regres-
sion in the context of prediction. Section 6.5 returns to causal inference and formal-
izes the requirements for multiple regression to eliminate omitted variable bias in the
estimation of a causal effect.

The Population Regression Line

Suppose for the moment that there are only two independent variables, X;; and X5;.
In the linear multiple regression model, the average relationship between these two
independent variables and the dependent variable, Y, is given by the linear function

E(Y|Xy; = x1, X0 = x3) = By + Bix1 + Boxa, (6.2)

where E(Y;|X;; = x1, X5; = x,) is the conditional expectation of Y; given that
X,; = x; and Xy; = x,. That is, if the student—teacher ratio in the i district (X;;)
equals some value x; and the percentage of English learners in the i" district (X5;)
equals x,, then the expected value of Y; given the student—teacher ratio and the
percentage of English learners is given by Equation (6.2).
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Equation (6.2) is the population regression line or population regression function
in the multiple regression model. The coefficient B, is the intercept; the coefficient 3;
is the slope coefficient of X;; or, more simply, the coefficient on Xj;; and the coeffi-
cient 3, is the slope coefficient of X,; or, more simply, the coefficient on X,;.

The interpretation of the coefficient B; in Equation (6.2) is different than it was when
X,; was the only regressor: In Equation (6.2), 3; is the predicted difference in Y between
two observations with a unit difference in X7, holding X, constant or controlling for X,.

This interpretation of B; follows from comparing the predictions (conditional
expectations) for two observations with the same value of X, but with values of X
that differ by AXj, so that the first observation has X values (X}, X) and the second
observation has X values (X; + AXj, X5). For the first observation, the predicted
value of Y is given by Equation (6.2); write this as Y = B, + B,X; + B,X;. For the
second observation, the predicted value of Yis Y + AY, where

An equation for AY in terms of AX] is obtained by subtracting the equation
Y = By + B1X; + B,X; from Equation (6.3),yielding AY = B;AX;. Rearranging this
equation shows that

B = AA)}(Z’ holding X, constant. (6.4)
Thus the coefficient B is the difference in the predicted values of Y (the difference
in the conditional expectations of Y) between two observations with a unit difference
in Xj, holding X fixed. Another term used to describe g, is the partial effect on Y of
X1, holding X; fixed.

The interpretation of the intercept in the multiple regression model, 3, is similar
to the interpretation of the intercept in the single-regressor model: It is the expected
value of Y; when Xj; and Xj; are 0. Simply put, the intercept 3, determines how far up
the Y axis the population regression line starts.

The Population Multiple Regression Model

The population regression line in Equation (6.2) is the relationship between Y and X; and
X; that holds, on average, in the population. Just as in the case of regression with a single
regressor, however, this relationship does not hold exactly because many other factors
influence the dependent variable. In addition to the student-teacher ratio and the fraction
of students still learning English, for example, test scores are influenced by school charac-
teristics, other student characteristics, and luck. Thus the population regression function
in Equation (6.2) needs to be augmented to incorporate these additional factors.

Just as in the case of regression with a single regressor, the factors that determine
Y, in addition to Xj; and X); are incorporated into Equation (6.2) as an “error” term
u;. Accordingly, we have

Y= By + BiXy + BXo tupi=1,...,n, (6.5)
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where the subscript i indicates the i™ of the n observations (districts) in the sample.
Equation (6.5) is the population multiple regression model when there are two
regressors, X;; and X5;.
It can be useful to treat B, as the coefficient on a regressor that always equals 1;
think of B, as the coefficient on Xj;, where X, = 1fori = 1, ..., n. Accordingly, the
population multiple regression model in Equation (6.5) can alternatively be written as

}/i = BOXOi + Blei + Bzle' + u;, where XOi - 1,1 - 1, [ (8 (66)

The variable X, is sometimes called the constant regressor because it takes on the
same value —the value 1—for all observations. Similarly, the intercept, 3, is some-
times called the constant term in the regression.

The two ways of writing the population regression model, Equations (6.5) and
(6.6), are equivalent.

The discussion so far has focused on the case of a single additional variable, X.
In applications, it is common to have more than two regressors. This reasoning leads
us to consider a model that includes k regressors. The multiple regression model with
k regressors, Xj;, Xo;, - . . , X, 1S summarized as Key Concept 6.2.

The definitions of homoskedasticity and heteroskedasticity in the multiple regres-
sion model extend their definitions in the single-regressor model. The error term u; in the
multiple regression model is homoskedastic if the variance of the conditional distribution

of u;given Xy;,. . ., Xy, var(u;| Xy, . . ., Xy),isconstantfori = 1,. .., n,and thus does
not depend on the values of Xj,, . . ., X);. Otherwise, the error term is heteroskedastic.
The Multiple Regression Model KEY CONCEPT

6.2

The multiple regression model is

Yi = BO T Blei ar Bzle' P 000 AP Bkai ol Lli,i - 1, 000 gl (67)
where

e Y;is i" observation on the dependent variable; X;, X5;, . . . , Xj; are the i
observations on each of the k regressors; and u; is the error term.

e The population regression line is the relationship that holds between Y and
the X’s, on average, in the population:

E(Y| Xy = x1, X = X3, ..., Xy = X)) = Bo + Bixy + Boxy + ... + By

e B, is the slope coefficient on X, 3, is the slope coefficient on X;, and so on. The
coefficient B; is the expected difference in Y; associated with a unit difference
in Xj, holding constant the other regressors, X5, . . . , X;. The coefficients on
the other X’s are interpreted similarly.

¢ The intercept B is the expected value of Y when all the X’s equal 0. The intercept
can be thought of as the coefficient on a regressor, X, that equals 1 for all i.
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6.3

The OLS Estimator in Multiple Regression

To be of practical value, we need to estimate the unknown population coefficients
Bos - - -, B using a sample of data. As in regression with a single regressor, these coef-
ficients can be estimated using ordinary least squares.

The OLS Estimator

Section 4.2 shows how to estimate the intercept and slope coefficients in the single-
regressor model by applying OLS to a sample of observations of Y and X.The key idea
is that these coefficients can be estimated by minimizing the sum of squared prediction
mistakes—that is, by choosing the estimators b, and b; so as to minimize
Z:’ (Y, = Dby — biX; )2. The estimators that do so are the OLS estimators, By and B,

The method of OLS also can be used to estimate the coefficients Sy, B, . . ., B
in the multiple regression model. Let b, by, . .., b, be estimates of By, By, - . ., B
The predicted value of Y}, calculated using these estimates, is b, + b1X1, -+
b;Xy;, and the mistake in predicting Y; is Y; — (by + b1 Xy; + -+ + kak,-) =
Y; — by — b1 Xj; — - -+ — by X}, The sum of these squared prediction mistakes over
all n observations is thus

;(x —by— biXy— - — biXi)? (6.8)

The sum of the squared mistakes for the linear regression model in Expression (6.8) is
the extension of the sum of the squared mistakes given in Equation (4.4) for the
linear regression model with a single regressor.

The estimators of the coefficients Sy, B, ..., B; that minimize the sum of
squared mistakes in Expression (6.8) are called the ordinary least squares (OLS)
estimators of S, By, . .., Bi. The OLS estimators are denoted ,80, ,81, R ,Bk.

The terminology of OLS in the linear multiple regression model is the same as
in the linear regression model with a single regressor. The OLS regression line is the
straight line constructed using the OLS estimators: ﬁo + ,éle,- +oe+ ,éka,-. The
predlcted value of Y, glven Xy, - .., Xy, based on the OLS regression line, is
Y Bo + Bth -+ Ble, The OLS residual for the i observation is the differ-
ence between Y; and its OLS predicted value; that is, the OLS residualis &t; = Y, — Y,-.

The OLS estimators could be computed by trial and error, repeatedly trying dif-
ferent values of by, . .., b, until you are satisfied that you have minimized the total
sum of squares in Expression (6.8). It is far easier, however, to use explicit formulas for
the OLS estimators that are derived using calculus. The formulas for the OLS estima-
tors in the multiple regression model are similar to those in Key Concept 4.2 for the
single-regressor model. These formulas are incorporated into modern statistical soft-
ware. In the multiple regression model, the formulas are best expressed and discussed
using matrix notation, so their presentation is deferred to Section 19.1.

The definitions and terminology of OLS in multiple regression are summarized
in Key Concept 6.3.
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The OLS Estimators, Predicted Values, and Residuals
in the Multiple Regression Model 6.3
The OLS estimators ﬁ’o, él, ceey ék are the values of by, by, . . ., b, that minimize
the sum of squared prediction errors X';_, (Y; — by — b1 X;; — -+ - — by Xy,) > The
OLS predicted values IA/, and residuals ; are
2=,L§0+,L§1X1i+"'+ékai,i=l,...,n,and (69)
B, =Y —-Y,i=1,...,n (6.10)
The OLS estimators ﬁo, fﬁ, ce ék and residual #1; are computed from a sample
of n observations of (Xj;, ..., Xy, Y;),i = 1,...,n. These are estimators of the
unknown true population coefficients Sy, B, - . . , B and error term u;.

Application to Test Scores and the Student-Teacher Ratio

In Section 4.2, we used OLS to estimate the intercept and slope coefficient of the
regression relating test scores (TestScore) to the student-teacher ratio (STR), using
our 420 observations for California school districts. The estimated OLS regression
line, reported in Equation (4.9), is

—_—
TestScore = 698.9 — 2.28 X STR. (6.11)

From the perspective of the father looking for a way to predict test scores, this rela-
tion is not very satisfying: its R? is only 0.051; that is, the student—teacher ratio
explains only 5.1% of the variation in test scores. Can this prediction be made more
precise by including additional regressors?

To find out, we estimate a multiple regression with test scores as the dependent
variable (Y;) and with two regressors: the student-teacher ratio (Xj;) and the per-
centage of English learners in the school district (X5;). The OLS regression line,

estimated using our 420 districts (i = 1, ...,420),is
/\
TestScore = 686.0 — 1.10 X STR — 0.65 X PctEL, (6.12)

where PctEL is the percentage of students in the district who are English learners.
The OLS estimate of the intercept ([§0) is 686.0, the OLS estimate of the coefficient
on the student-teacher ratio ( ,él) is —1.10, and the OLS estimate of the coefficient
on the percentage English learners ( éz) is —0.65.

The coefficient on the student—teacher ratio in the multiple regression is approx-
imately half as large as when the student—teacher ratio is the only regressor, —1.10

vs. —2.28. This difference occurs because the coefficient on STR in the multiple
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6.4

regression holds constant (or controls for) PctEL, whereas in the single-regressor
regression, PctEL is not held constant.

The decline in the magnitude of the coefficient on the student—teacher ratio,
once one controls for PctEL, parallels the findings in Table 6.1. There we saw that,among
schools within the same quartile of percentage of English learners, the difference in test
scores between schools with a high vs. a low student—teacher ratio is less than the differ-
ence if one does not hold constant the percentage of English learners. As in Table 6.1, this
strongly suggests that, from the perspective of causal inference, the original estimate of
the effect of the student-teacher ratio on test scores in Equation (6.11) is subject to
omitted variable bias.

Equation (6.12) provides multiple regression estimates that the father can use
for prediction, now using two predictors; we have not yet, however, answered his
question as to whether the quality of that prediction has been improved. To do so, we
need to extend the measures of fit in the single-regressor model to multiple
regression.

Measures of Fit in Multiple Regression

Three commonly used summary statistics in multiple regression are the standard
error of the regression, the regression R? and the adjusted R? (also known as R?). All
three statistics measure how well the OLS estimate of the multiple regression line
describes, or “fits,” the data.

The Standard Error of the Regression (SER)

The standard error of the regression (SER) estimates the standard deviation of the
error term u;. Thus the SER is a measure of the spread of the distribution of Y around
the regression line. In multiple regression, the SER is

1 . R
SER = Sp = \/ST%, where Sﬁz = m l;ﬁlz = n_SSﬁ (613)

no A2

and where SSR is the sum of squared residuals, SSR = X;_ ;.

The only difference between the definition of the SER in Equation (6.13) and
the definition of the SER in Section 4.3 for the single-regressor model is that here
the divisor is n — k — 1 rather than n — 2. In Section 4.3, the divisor n — 2 (rather
than n) adjusts for the downward bias introduced by estimating two coefficients (the
slope and intercept of the regression line). Here, the divisor n — k — 1 adjusts for
the downward bias introduced by estimating k + 1 coefficients (the k slope coeffi-
cients plus the intercept). As in Section 4.3, using n — k — 1 rather than n is called a
degrees-of-freedom adjustment. If there is a single regressor, then k£ = 1, so the for-
mula in Section 4.3 is the same as that in Equation (6.13). When # is large, the effect
of the degrees-of-freedom adjustment is negligible.
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The R?

The regression R? is the fraction of the sample variance of Y; explained by (or pre-
dicted by) the regressors. Equivalently, the R? is 1 minus the fraction of the variance
of Y; not explained by the regressors.

The mathematical definition of the R? is the same as for regression with a single
regressor:

_ESS _ SSR

2 _ B0 9O
R TSS 7SS’

(6.14)
where the explained sum of squares is ESS = E'Ll(f’,- — Y)? and the total sum of
squaresis 7SS = X';_,(Y; — V)%

In multiple regression, the R? increases whenever a regressor is added unless the
estimated coefficient on the added regressor is exactly 0. To see this, think about
starting with one regressor and then adding a second. When you use OLS to estimate
the model with both regressors, OLS finds the values of the coefficients that minimize
the sum of squared residuals. If OLS happens to choose the coefficient on the new
regressor to be exactly 0, then the SSR will be the same whether or not the second
variable is included in the regression. But if OLS chooses any value other than 0,
then it must be that this value reduced the SSR relative to the regression that
excludes this regressor. In practice, it is extremely unusual for an estimated coef-
ficient to be exactly 0, so in general the SSR will decrease when a new regressor is
added. But this means that the R? generally increases (and never decreases) when
a new regressor is added.

The Adjusted R?

Because the R? increases when a new variable is added, an increase in the R? does
not mean that adding a variable actually improves the fit of the model. In this sense,
the R? gives an inflated estimate of how well the regression fits the data. One way to
correct for this is to deflate or reduce the R? by some factor, and this is what the
adjusted R?, or R?, does.

The adjusted R or R?, is a modified version of the R* that does not necessarily
increase when a new regressor is added. The R? is

2
52_,__n=-1 SSR 5
R*=1— =1 = (6.15)

The difference between this formula and the second definition of the R? in Equation
(6.14) is that the ratio of the sum of squared residuals to the total sum of squares is mul-
tiplied by the factor (n — 1)/(n — k — 1).Asthe second expression in Equation (6.15)
shows, this means that the adjusted R?is 1 minus the ratio of the sample variance of the
OLS residuals [with the degrees-of-freedom correction in Equation (6.13)] to the sample
variance of Y.
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There are three useful things to know about the R 2. First, (n — 1) /(n —k — 1)
is always greater than 1,so R % is always less than R

Second, adding a regressor has two opposite effects on the R?. On the one hand,
the SSR falls, which increases the R>. On the other hand, the factor
(n —1)/(n — k — 1) increases. Whether the R” increases or decreases depends on
which of these two effects is stronger.

Third, the R? can be negative. This happens when the regressors, taken together,
reduce the sum of squared residuals by such a small amount that this reduction fails
to offset the factor (n — 1)/(n — k — 1).

Application to Test Scores

Equation (6.12) reports the estimated regression line for the multiple regression
relating test scores (7TestScore) to the student-teacher ratio (STR) and the
percentage of English learners (PctEL). The R? for this regression line is
R? = 0.426, the adjusted R?is R*> = 0.424,and the standard error of the regression
is SER = 14.5.

Comparing these measures of fit with those for the regression in which PctEL
is excluded [Equation (5.8)] shows that including PctEL in the regression increases
the R? from 0.051 to 0.426. When the only regressor is STR, only a small fraction of
the variation in TestScore is explained; however, when PctEL is added to the regres-
sion, more than two-fifths (42.6%) of the variation in test scores is explained. In
this sense, including the percentage of English learners substantially improves the
fit of the regression. Because # is large and only two regressors appear in Equation
(6.12), the difference between R? and adjusted R? is very small (R*> = 0.426 vs.
R* = 0.424).

The SER for the regression excluding PctEL is 18.6; this value falls to 14.5 when
PctEL is included as a second regressor. The units of the SER are points on the stan-
dardized test. The reduction in the SER tells us that predictions about standardized test
scores are substantially more precise if they are made using the regression with both
STR and PctEL than if they are made using the regression with only STR as a
regressor.

Using the R? and adjusted R’. The R? is useful because it quantifies the extent to
which the regressors account for, or explain, the variation in the dependent variable.
Nevertheless, heavy reliance on the R? (or R?) can be a trap.

In applications in which the goal is to produce reliable out-of-sample predictions,
including many regressors can produce a good in-sample fit but can degrade the out-
of-sample performance. Although the R? improves upon the R? for this purpose,
simply maximizing the R still can produce poor out-of-sample forecasts. We return
to this issue in Chapter 14.

In applications in which the goal is causal inference, the decision about whether
to include a variable in a multiple regression should be based on whether including
that variable allows you better to estimate the causal effect of interest. The least
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squares assumptions for causal inference in multiple regression make precise the
requirements for an included variable to eliminate omitted variable bias, and we now
turn to those assumptions.

The Least Squares Assumptions for Causal
Inference in Multiple Regression

In this section, we make precise the requirements for OLS to provide valid inferences
about causal effects. We consider the case in which we are interested in knowing the
causal effects of all k regressors in the multiple regression model; that is, all the coef-
ficients By, . . . , By are causal effects of interest. Section 6.8 presents the least squares
assumptions that apply when only some of the coefficients are causal effects, while
the rest are coefficients on variables included to control for omitted factors and do
not necessarily have a causal interpretation. Appendix 6.4 provides the least squares
assumptions for prediction with multiple regression.

There are four least squares assumptions for causal inference in the multiple
regression model. The first three are those of Section 4.3 for the single-regressor model
(Key Concept 4.3) extended to allow for multiple regressors, and they are discussed
here only briefly. The fourth assumption is new and is discussed in more detail.

Assumption 1: The Conditional Distribution of u; Given
X1i, X5, - . ., X Has a Mean of O

The first assumption is that the conditional distribution of u; given Xj;, . . ., X, has a
mean of 0. This assumption extends the first least squares assumption with a single
regressor to multiple regressors. This assumption is implied if Xj;, ..., X}; are ran-
domly assigned or are as-if randomly assigned; if so, for any value of the regressors,
the expected value of u; is 0. As is the case for regression with a single regressor, this
is the key assumption that makes the OLS estimators unbiased.

Assumption 2: (X],‘, Xz,', R Xk,‘, yi)r = 1, ..., N Are i.i.d.

The second assumption is that (Xj;, ..., X,Y;),i = 1, ..., n,are independently and
identically distributed (i.i.d.) random variables. This assumption holds automatically if
the data are collected by simple random sampling. The comments on this assumption
appearing in Section 4.3 for a single regressor also apply to multiple regressors.

Assumption 3: Large Outliers Are Unlikely

The third least squares assumption is that large outliers—that is, observations with
values far outside the usual range of the data—are unlikely. This assumption serves
as a reminder that, as in the single-regressor case, the OLS estimator of the coeffi-
cients in the multiple regression model can be sensitive to large outliers.
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The assumption that large outliers are unlikely is made mathematically precise by
assuming that Xj, ..., X, and Y; have nonzero finite fourth moments:
0< E(X}) <=, ...,0<E(X},)<wand0 < E(Y}) < . Another way to state
this assumption is that the dependent variable and regressors have finite kurtosis. This
assumption is used to derive the properties of OLS regression statistics in large samples.

Assumption 4: No Perfect Multicollinearity

The fourth assumption is new to the multiple regression model. It rules out an incon-
venient situation called perfect multicollinearity, in which it is impossible to compute
the OLS estimator. The regressors are said to exhibit perfect multicollinearity (or to
be perfectly multicollinear) if one of the regressors is a perfect linear function of the
other regressors. The fourth least squares assumption is that the regressors are not
perfectly multicollinear.

Why does perfect multicollinearity make it impossible to compute the OLS esti-
mator? Suppose you want to estimate the coefficient on STR in a regression of
TestScore; on STR; and PctEL; but you make a typographical error and accidentally
type in STR; a second time instead of PctELj; that is, you regress TestScore; on STR;
and STR;. This is a case of perfect multicollinearity because one of the regressors (the
first occurrence of STR) is a perfect linear function of another regressor (the second
occurrence of STR). Depending on how your software package handles perfect mul-
ticollinearity, if you try to estimate this regression, the software will do one of two
things: Either it will drop one of the occurrences of STR, or it will refuse to calculate
the OLS estimates and give an error message. The mathematical reason for this fail-
ure is that perfect multicollinearity produces division by 0 in the OLS formulas.

At an intuitive level, perfect multicollinearity is a problem because you are ask-
ing the regression to answer an illogical question. In multiple regression, the coeffi-
cient on one of the regressors is the effect of a change in that regressor, holding the
other regressors constant. In the hypothetical regression of TestScore on STR and
STR, the coefficient on the first occurrence of STR is the effect on test scores of a
change in STR, holding constant STR. This makes no sense, and OLS cannot estimate
this nonsensical partial effect.

The solution to perfect multicollinearity in this hypothetical regression is sim-
ply to correct the typo and to replace one of the occurrences of STR with the vari-
able you originally wanted to include. This example is typical: When perfect
multicollinearity occurs, it often reflects a logical mistake in choosing the regres-
sors or some previously unrecognized feature of the data set. In general, the solu-
tion to perfect multicollinearity is to modify the regressors to eliminate the
problem.

Additional examples of perfect multicollinearity are given in Section 6.7 which
also defines and discusses imperfect multicollinearity.

The least squares assumptions for the multiple regression model are summarized
in Key Concept 6.4.
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The Least Squares Assumptions for Causal Inference
in the Multiple Regression Model 6.4
=Bt BXi + BoXoi + -+ BiXyy T upi =1,....n,
where By, . . ., B, are causal effects and
1. u; has a conditional mean of 0 given Xj;, X;, . . ., Xj; that is,

2. (lei’ X2i9 ..

E(u;| X1 X4 . . ., Xpg) = 0.

X Y:),i =1,...,n, are independently and identically dis-

tributed (i.i.d.) draws from their joint distribution.

3. Large outliers are unlikely: Xj,, ..., X}; and Y; have nonzero finite fourth

moments.

4. There is no perfect multicollinearity.

6.6

The Distribution of the OLS Estimators
in Multiple Regression

Because the data differ from one sample to the next, different samples produce dif-
ferent values of the OLS estimators. This variation across possible samples gives rise
to the uncertainty associated with the OLS estimators of the population regression
coefficients, By, Bi, - - - , Br. Just as in the case of regression with a single regressor, this
variation is summarized in the sampling distribution of the OLS estimators.

Recall from Section 4.4 that, under the least squares assumptions, the OLS esti-
mators (,éo and fﬁ) are unbiased and consistent estimators of the unknown coeffi-
cients (By and B;) in the linear regression model with a single regressor. In addition,
in large samples, the sampling distribution of Bo and By is well approximated by a
bivariate normal distribution.

These results carry over to multiple regression analysis. That is, under the least

squares assumptions of Key Concept 6.4, the OLS estimators Bo, Bi, - - ., Br are unbi-
ased and consistent estimators of S, By, - . ., B¢ in the linear multiple regression
model. In large samples, the joint sampling distribution of ﬁo, ﬁl, e ,ék is well

approximated by a multivariate normal distribution, which is the extension of the
bivariate normal distribution to the general case of two or more jointly normal
random variables (Section 2.4).

Although the algebra is more complicated when there are multiple regressors,
the central limit theorem applies to the OLS estimators in the multiple regression
model for the same reason that it applies to Y and to the OLS estimators when there
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6.5

6.7

Large-Sample Distribution of LA%O, fﬁ, ce. ,ﬁk

If the least squares assumptlons (Key Concept 6.4) hold, then in large samples
the OLS estimators [30, Bl, .. ,Bk are jointly normally distributed, and each ,8]
is distributed N(;, (rﬁ/_), j= O, .ok

is a single regressor: The OLS estimators éo, [§1, ce ék are averages of the randomly
sampled data, and if the sample size is sufficiently large, the sampling distribution of
those averages becomes normal. Because the multivariate normal distribution is best
handled mathematically using matrix algebra, the expressions for the joint distribu-
tion of the OLS estimators are deferred to Chapter 19.

Key Concept 6.5 summarizes the result that, in large samples, the distribution of
the OLS estimators in multiple regression is approximately jointly normal. In gen-
eral, the OLS estimators are correlated; this correlation arises from the correlation
between the regressors. The joint sampling distribution of the OLS estimators is dis-
cussed in more detail for the case where there are two regressors and homoskedastic
errors in Appendix 6.2, and the general case is discussed in Section 19.2.

Multicollinearity

As discussed in Section 6.5, perfect multicollinearity arises when one of the regressors
is a perfect linear combination of the other regressors. This section provides some
examples of perfect multicollinearity and discusses how perfect multicollinearity can
arise, and can be avoided, in regressions with multiple binary regressors. Imperfect
multicollinearity arises when one of the regressors is very highly correlated—but not
perfectly correlated —with the other regressors. Unlike perfect multicollinearity, imper-
fect multicollinearity does not prevent estimation of the regression, nor does it imply
a logical problem with the choice of regressors. However, it does mean that one or
more regression coefficients could be estimated imprecisely.

Examples of Perfect Multicollinearity

We continue the discussion of perfect multicollinearity from Section 6.5 by examin-
ing three additional hypothetical regressions. In each, a third regressor is added to
the regression of TestScore; on STR; and PctEL;in Equation (6.12).

Example 1: Fraction of English learners. Let FracEL; be the fraction of English
learners in the i'" district, which varies between 0 and 1. If the variable FracEL; were
included as a third regressor in addition to STR; and PctEL;, the regressors would be
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perfectly multicollinear. The reason is that PctEL is the percentage of English learners,
so that PctEL; = 100 X FracEL; for every district. Thus one of the regressors
(PctEL;) can be written as a perfect linear function of another regressor (FracEL;).

Because of this perfect multicollinearity, it is impossible to compute the OLS
estimates of the regression of TestScore; on STR;, PctEL;, and FracEL,. At an intui-
tive level, OLS fails because you are asking, What is the effect of a unit change in the
percentage of English learners, holding constant the fraction of English learners?
Because the percentage of English learners and the fraction of English learners move
together in a perfect linear relationship, this question makes no sense, and OLS can-
not answer it.

Example 2: “Not very small” classes. Let NV, be a binary variable that equals 1 if
the student—teacher ratio in the i district is “not very small”; specifically, NVS;
equals 1 if STR; = 12 and equals 0 otherwise. This regression also exhibits perfect
multicollinearity, but for a more subtle reason than the regression in the previous
example. There are, in fact, no districts in our data set with STR; < 12; as you can see
in the scatterplot in Figure 4.2, the smallest value of STR is 14. Thus NVS; = 1 for all
observations. Now recall that the linear regression model with an intercept can
equivalently be thought of as including a regressor, X, that equals 1 for all i, as
shown in Equation (6.6). Thus we can write NVS; = 1 X Xj; for all the observations
in our data set; that is, NV'S; can be written as a perfect linear combination of the
regressors; specifically, it equals Xj;.

This illustrates two important points about perfect multicollinearity. First, when
the regression includes an intercept, then one of the regressors that can be implicated
in perfect multicollinearity is the constant regressor Xj,. Second, perfect multicol-
linearity is a statement about the data set you have on hand. While it is possible to
imagine a school district with fewer than 12 students per teacher, there are no such
districts in our data set, so we cannot analyze them in our regression.

Example 3: Percentage of English speakers. Let PctES; be the percentage of English
speakers in the i district, defined to be the percentage of students who are not
English learners. Again the regressors will be perfectly multicollinear. Like the previ-
ous example, the perfect linear relationship among the regressors involves the con-
stant regressor X;;: For every district, PctES; = 100 — PctEL; = 100 X X, — PctEL;
because X; = 1 for all i.

This example illustrates another point: Perfect multicollinearity is a feature of
the entire set of regressors. If either the intercept (that is, the regressor X)) or PctEL,;
were excluded from this regression, the regressors would not be perfectly
multicollinear.

The dummy variable trap. Another possible source of perfect multicollinearity
arises when multiple binary, or dummy, variables are used as regressors. For example,
suppose you have partitioned the school districts into three categories: rural,
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suburban, and urban. Each district falls into one (and only one) category. Let these
binary variables be Rural;, which equals 1 for a rural district and equals 0 otherwise;
Suburban;; and Urban,. If you include all three binary variables in the regression
along with a constant, the regressors will be perfectly multicollinear: Because each
districtbelongstoone and onlyonecategory, Rural; + Suburban; + Urban; = 1 = X,
where Xp; denotes the constant regressor introduced in Equation (6.6). Thus, to esti-
mate the regression, you must exclude one of these four variables, either one of the
binary indicators or the constant term. By convention, the constant term is typically
retained, in which case one of the binary indicators is excluded. For example, if Rural;
were excluded, then the coefficient on Suburban; would be the average difference
between test scores in suburban and rural districts, holding constant the other vari-
ables in the regression.

In general, if there are G binary variables, if each observation falls into one and
only one category, if there is an intercept in the regression, and if all G binary vari-
ables are included as regressors, then the regression will fail because of perfect mul-
ticollinearity. This situation is called the dummy variable trap. The usual way to avoid
the dummy variable trap is to exclude one of the binary variables from the multiple
regression, so only G — 1 of the G binary variables are included as regressors. In this
case, the coefficients on the included binary variables represent the incremental
effect of being in that category, relative to the base case of the omitted category, hold-
ing constant the other regressors. Alternatively, all G binary regressors can be
included if the intercept is omitted from the regression.

Solutions to perfect multicollinearity. Perfect multicollinearity typically arises when
a mistake has been made in specifying the regression. Sometimes the mistake is easy
to spot (as in the first example), but sometimes it is not (as in the second example).
In one way or another, your software will let you know if you make such a mistake
because it cannot compute the OLS estimator if you have.

When your software lets you know that you have perfect multicollinearity, it is
important that you modify your regression to eliminate it. You should understand the
source of the multicollinearity. Some software is unreliable when there is perfect
multicollinearity, and at a minimum, you will be ceding control over your choice of
regressors to your computer if your regressors are perfectly multicollinear.

Imperfect Multicollinearity

Despite its similar name, imperfect multicollinearity is conceptually quite different
from perfect multicollinearity. Imperfect multicollinearity means that two or more
of the regressors are highly correlated in the sense that there is a linear function of
the regressors that is highly correlated with another regressor. Imperfect multicol-
linearity does not pose any problems for the theory of the OLS estimators; on the
contrary, one use of OLS is to sort out the independent influences of the various
regressors when the regressors are correlated.
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If the regressors are imperfectly multicollinear, then the coefficients on at least
one individual regressor will be imprecisely estimated. For example, consider the
regression of TestScore on STR and PctEL. Suppose we were to add a third regressor,
the percentage of the district’s residents who are first-generation immigrants. First-
generation immigrants often speak English as a second language, so the variables
PctEL and percentage immigrants will be highly correlated: Districts with many
recent immigrants will tend to have many students who are still learning English.
Because these two variables are highly correlated, it would be difficult to use these
data to estimate the coefficient on PctEL, holding constant the percentage of immi-
grants. In other words, the data set provides little information about what happens to
test scores when the percentage of English learners is low but the fraction of immi-
grants is high, or vice versa. As a result, the OLS estimator of the coefficient on
PctEL in this regression will have a larger variance than if the regressors PctEL and
percentage immigrants were uncorrelated.

The effect of imperfect multicollinearity on the variance of the OLS estimators
can be seen mathematically by inspecting Equation (6.20) in Appendix 6.2, which is
the variance of B in a multiple regression with two regressors (X; and X,) for the
special case of a homoskedastic error. In this case, the variance of By is inversely
proportional to 1 — pg(b x,» Where py x, is the correlation between X; and X,. The
larger the correlation between the two regressors, the closer this term is to 0, and the
larger is the variance of $,. More generally, when multiple regressors are imperfectly
multicollinear, the coefficients on one or more of these regressors will be imprecisely
estimated; that is, they will have a large sampling variance.

Perfect multicollinearity is a problem that often signals the presence of a logical
error. In contrast, imperfect multicollinearity is not necessarily an error but rather
just a feature of OLS, your data, and the question you are trying to answer. If the
variables in your regression are the ones you meant to include —the ones you chose
to address the potential for omitted variable bias—then imperfect multicollinearity
implies that it will be difficult to estimate precisely one or more of the partial effects
using the data at hand.

Control Variables and Conditional
Mean Independence

In the test score example, we included the percentage of English learners in the
regression to address omitted variable bias in the estimate of the effect of class size.
Specifically, by including percent English learners in the regression, we were able to
estimate the effect of class size, controlling for the percent English learners.

In this section, we make explicit the distinction between a regressor for which we
wish to estimate a causal effect —that is, a variable of interest—and control variables.
A control variable is not the object of interest in the study; rather, it is a regressor
included to hold constant factors that, if neglected, could lead the estimated causal
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effect of interest to suffer from omitted variable bias. This distinction leads to a modi-
fication of the first least squares assumption in Key Concept 6.4, in which some of
the variables are control variables. If this alternative assumption holds, the OLS esti-
mator of the effect of interest is unbiased, but the OLS coefficients on control vari-
ables are, in general, biased and do not have a causal interpretation.

For example, consider the potential omitted variable bias arising from omitting
outside learning opportunities from a test score regression. Although “outside learn-
ing opportunities” is a broad concept that is difficult to measure, those opportunities
are correlated with the students’ economic background, which can be measured. Thus
a measure of economic background can be included in a test score regression to
control for omitted income-related determinants of test scores, like outside learning
opportunities. To this end, we augment the regression of test scores on STR and
PctEL with the percentage of students receiving a free or subsidized school lunch
(LchPct). Students are eligible for this program if their family income is less than a certain
threshold (approximately 150% of the poverty line), so LchPct measures the fraction of
economically disadvantaged children in the district. The estimated regression is

/\
TestScore = 700.2 — 1.00 X STR — 0.122 X PctEL — 0.547 X LchPct. (6.16)

In this regression, the coefficient on the student-teacher ratio is the effect of the
student-teacher ratio on test scores, controlling for the percentage of English learn-
ers and the percentage eligible for a reduced-price lunch. Including the control
variable LchPct does not substantially change any conclusions about the class size
effect: The coefficient on STR changes only slightly from its value of —1.10 in Equa-
tion (6.12) to —1.00 in Equation (6.16).

What does one make of the coefficient on LchPctin Equation (6.16)? That coef-
ficient is very large: The difference in test scores between a district with LchPct = 0%
and one with LchPct = 50% is estimated to be 274 points [= 0.547 X (50 — 0)],
approximately the difference between the 75th and 25th percentiles of test scores in
Table 4.1. Does this coefficient have a causal interpretation? Suppose that upon see-
ing Equation (6.16) the superintendent proposed eliminating the reduced-price
lunch program so that, for her district, LchPct would immediately drop to 0. Would
eliminating the lunch program boost her district’s test scores? Common sense sug-
gests that the answer is no; in fact, by leaving some students hungry, eliminating the
reduced-price lunch program might well have the opposite effect. But does it make
sense to treat as causal the coefficient on the variable of interest STR but not the
coefficient on the control variable LchPct?

Control Variables and Conditional Mean
Independence

To distinguish between variables of interest and control variables, we modify the
notation of the linear regression model to include k variables of interest, denoted by
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The Least Squares Assumptions for Causal Inference
in the Multiple Regression Model with Control Variables 6.6

=0+ BXu + T BXi + BeetWii + - + B W tui=1,...,n,

where B, . . .

, By are causal effects; the W’s are control variables; and

1. u;has a conditional mean that does not depend on the X’s given the W’s; that is,

2‘ (lel" .

E(ui|Xli" .. ania‘/Vlb‘ °o ,‘/V”') = E(uilvvlia’ .. ,W/”')

(conditional mean independence). (6.17)

S XiW oo WY, i =1, ..., n,are independently and identically

distributed (i.i.d.) draws from their joint distribution.

3. Large outliers are unlikely: Xj;, ..., X, Wi, . .. ,W,;, and Y; have nonzero

finite fourth moments.

4. There is no perfect multicollinearity.

X, and r control variables, denoted by W. Accordingly, the multiple regression model
with control variables is

Y, =B+ BiXy; + + BiXg + Brs Wi+ B Wt u,i = 1,...,n. (6.18)

The coefficients on the X’s, B4, . . ., By, are causal effects of interest.

The reason for including control variables in multiple regression is to make the
variables of interest no longer correlated with the error term, once the control vari-
ables are held constant. This idea is made precise by replacing assumption 1 in Key
Concept 6.4 with an assumption called conditional mean independence. Conditional
mean independence requires that the conditional expectation of u; given the variable
of interest and the control variables does not depend on (is independent of) the vari-
able of interest, although it can depend on control variables.

The least squares assumptions for causal inference with control variables are
summarized in Key Concept 6.6. The first of these assumptions is a mathematical
statement of the conditional mean independence requirement. The remaining three
assumptions are extensions of their counterparts in Key Concept 6.4.

The idea of conditional mean independence is that once you control for the W’s,
the X’s can be treated as if they were randomly assigned, in the sense that the condi-
tional mean of the error term no longer depends on X. Controlling for W makes the
X’s uncorrelated with the error term, so that OLS can estimate the causal effects on
Y of a change in each of the X’s. The control variables, however, remain correlated
with the error term, so the coefficients on the control variables are subject to omitted
variable bias and do not have a causal interpretation. The mathematics of this
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interpretation is laid out in Appendix 6.5, where it is shown that if conditional mean
independence holds, then the OLS estimators of the coefficients on the X’s are unbi-
ased estimators of the causal effects of the X’s, but the OLS estimators of the coef-
ficients on the W’s are in general biased. This bias does not pose a problem because
we are interested in the coefficients on the X’s, not on the W’s.

In the class size example, LchPct can be correlated with factors, such as learn-
ing opportunities outside school, that enter the error term; indeed, it is because of
this correlation that LchPct is a useful control variable. This correlation between
LchPct and the error term means that the estimated coefficient on LchPct does
not have a causal interpretation. What the conditional mean independence
assumption requires is that, given the control variables in the regression (PctEL
and LchPct), the mean of the error term does not depend on the student-teacher
ratio. Said differently, conditional mean independence says that among schools
with the same values of PctEL and LchPct, class size is “as-if” randomly assigned:
Including PctEL and LchPct in the regression controls for omitted factors so that
STR is uncorrelated with the error term. If so, the coefficient on the student-
teacher ratio has a causal interpretation even though the coefficient on LchPct
does not.

The first least squares assumption for multiple regression with control variables
makes precise the requirement needed to eliminate the omitted variable bias with which
this chapter began: Given, or holding constant, the values of the control variables, the
variable of interest is as-if randomly assigned in the sense that the mean of the error
term no longer depends on X given the control variables. This requirement serves as a
useful guide for choosing of control variables and for judging their adequacy.

Conclusion

Regression with a single regressor is vulnerable to omitted variable bias: If an omitted
variable is a determinant of the dependent variable and is correlated with the regres-
sor, then the OLS estimator of the causal effect will be biased and will reflect both
the effect of the regressor and the effect of the omitted variable. Multiple regression
makes it possible to mitigate or eliminate omitted variable bias by including the omit-
ted variable in the regression. The coefficient on a regressor, Xj, in multiple regres-
sion is the partial effect of a change in Xj, holding constant the other included
regressors. In the test score example, including the percentage of English learners as
a regressor made it possible to estimate the effect on test scores of a change in
the student—teacher ratio, holding constant the percentage of English learners. Doing
so reduced by half the estimated effect on test scores of a change in the student—
teacher ratio.

The statistical theory of multiple regression builds on the statistical theory of
regression with a single regressor. The least squares assumptions for multiple regres-
sion are extensions of the three least squares assumptions for regression with a single
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regressor, plus a fourth assumption ruling out perfect multicollinearity. Because the

regression coefficients are estimated using a single sample, the OLS estimators have

a joint sampling distribution and therefore have sampling uncertainty. This sampling

uncertainty must be quantified as part of an empirical study, and the ways to do so

in the multiple regression model are the topic of the next chapter.

Summary

1.

Omitted variable bias occurs when an omitted variable (a) is correlated with
an included regressor and (b) is a determinant of Y.

2. The multiple regression model is a linear regression model that includes
multiple regressors, X, X5, . . . , X). Associated with each regressor is a regres-
sion coefficient, By, B, . . ., Br. The coefficient By is the expected difference
in Y associated with a one-unit difference in X7, holding the other regressors
constant. The other regression coefficients have an analogous interpretation.

3. The coefficients in multiple regression can be estimated by OLS. When the four
least squares assumptions in Key Concept 6.4 are satisfied, the OLS estimators
of the causal effect are unbiased, consistent, and normally distributed in large
samples.

4. The role of control variables is to hold constant omitted factors so that the
variable of interest is no longer correlated with the error term. Properly chosen
control variables can eliminate omitted variable bias in the OLS estimate of
the causal effect of interest.

5. Perfect multicollinearity, which occurs when one regressor is an exact linear
function of the other regressors, usually arises from a mistake in choosing
which regressors to include in a multiple regression. Solving perfect multicol-
linearity requires changing the set of regressors.

6. The standard error of the regression, the R?, and the R? are measures of fit for
the multiple regression model.

Key Terms

omitted variable bias (212) holding X, constant (218)
multiple regression model (217) controlling for X, (218)
population regression line (218) partial effect (219)

population regression function (218) population multiple regression
intercept (218) model (219)

slope coefficient of Xj; (218) constant regressor (219)
coefficient on Xj; (218) constant term (219)

slope coefficient of X5, (218) homoskedastic (219)

coefficient on X5; (218) heteroskedastic (219)
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ordinary least squares (OLS) dummy variable trap (230)
estimators of By, By, - - . , B (220) imperfect multicollinearity (230)
OLS regression line (220) control variable (231)
predicted value (220) multiple regression model with control
OLS residual (220) variables (233)
R? (223) conditional mean independence (233)

adjusted R*(R?) (223)
perfect multicollinearity (226)
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Review the Concepts

6.1

6.2

6.3

6.4

6.5

A researcher is estimating the effect of studying on the test scores of student’s
from a private school. She is concerned, however, that she does not have infor-
mation on the class size to include in the regression. What effect would the
omission of the class size variable have on her estimated coefficient on the
private school indicator variable? Will the effect of this omission disappear if
she uses a larger sample of students?

A multiple regression includes two regressors: Y; = By + B X|; + X0, + u;.
What is the expected change in Y if X increases by 8 units and X, is
unchanged? What is the expected change in Y if X, decreases by 3 units and
X is unchanged? What is the expected change in Y if X increases by 4 units
and X, decreases by 7 units?

What are the measures of fit commonly used for multiple regressions? How
can an adjusted R? take on negative values?

What is a dummy variable trap? Explain how it is related to multicollinearity
of regressor. What is the solution for this form of multicollinearity?

How is imperfect collinearity of regressors different from perfect collinear-
ity? Compare the solutions for these two concerns with multiple regression
estimation.
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Exercises

The first four exercises refer to the table of estimated regressions on page 238,
computed using data for 2015 from the Current Population Survey. The data set
consists of information on 7178 full-time, full-year workers. The highest educational
achievement for each worker was either a high school diploma or a bachelor’s degree.
The workers’ ages ranged from 25 to 34 years. The data set also contains information
on the region of the country where the person lived, marital status, and number of
children. For the purposes of these exercises, let

AHE = average hourly earnings

College = binary variable (1 if college, 0 if high school)

Female = binary variable (1 if female, 0 if male)

Age = age (in years)

Northeast = binary variable (1 if Region = Northeast, 0 otherwise)
Midwest = binary variable (1 if Region = Midwest, 0 otherwise)
South = binary variable (1 if Region = South, 0 otherwise)

West = binary variable (1 if Region = West, 0 otherwise)

6.1 Compute R for each of the regressions.
6.2 Using the regression results in column (1):
a. Do workers with college degrees earn more, on average, than workers
with only high school diplomas? How much more?

b. Do men earn more than women, on average? How much more?
6.3 Using the regression results in column (2):

a. Is age an important determinant of earnings? Explain.

b. Sally is a 29-year-old female college graduate. Betsy is a 34-year-old
female college graduate. Predict Sally’s and Betsy’s earnings.

6.4 Using the regression results in column (3):

a. Do there appear to be important regional differences?

b. Why is the regressor West omitted from the regression? What would
happen if it were included?

c. Juanita is a 28-year-old female college graduate from the South. Jennifer
is a 28-year-old female college graduate from the Midwest. Calculate the
expected difference in earnings between Juanita and Jennifer.

6.5 Data were collected from a random sample of 200 home sales from a com-
munity in 2013. Let Price denote the selling price (in $1000s), BDR denote
the number of bedrooms, Bath denote the number of bathrooms, Hsize denote
the size of the house (in square feet), Lsize denote the lot size (in square feet),
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Results of Regressions of Average Hourly Earnings on Sex and Education
Binary Variables and Other Characteristics, Using 2015 Data from the
Current Population Survey

Dependent variable: average hourly earnings (AHE).

Regressor (1) (2) (3)

College (X7) 10.47 10.44 10.42
Female (X5) —4.69 —4.56 —4.57
Age (X3) 0.61 0.61
Northeast (X;) 0.74
Midwest (Xs) —1.54
South (Xg) —0.44
Intercept 18.15 0.11 0.33

Summary Statistics

SER 12.15 12.03 12.01
R? 0.165 0.182 0.185
R?

n 7178 7178 7178

&

Age denote the age of the house (in years), and Poor denote a binary vari-
able that is equal to 1 if the condition of the house is reported as “poor.” An
estimated regression yields

Price = 109.7 + 0.567BDR + 26.9Bath + 0.239Hsize + 0.005Lsize
+ 0.1Age — 56.9Poor, R*> = 0.85, SER = 45.8.

a. Suppose that a homeowner converts part of an existing family room in
her house into a new bathroom. What is the expected increase in the
value of the house?

b. Suppose that a homeowner adds a new bathroom to her house, which
increases the size of the house by 80 square feet. What is the expected
increase in the value of the house?

¢. What is the loss in value if a homeowner lets his house run down so that
its condition becomes “poor”?

d. Compute the R? for the regression.

A researcher plans to study the causal effect of a strong legal system on the
number of scandals in a country, using data from a random sample of coun-
tries in Asia. The researcher plans to regress the number of scandals on how
strong a legal system is in the countries (an indicator variable taking the value
1 or 0, based on expert opinion).
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a. Do you think this regression suffers from omitted variable bias? Explain
why. Which variables would you add to the regression?

b. Using the expression for omitted variable bias given in Equation (6.1),
assess whether the regression will likely over- or underestimate the
effect of a strong legal system on the number of scandals in a country.
That is, do you think that [§1 > B, or él < B?

Critique each of the following proposed research plans. Your critique should
explain any problems with the proposed research and describe how the research
plan might be improved. Include a discussion of any additional data that need to
be collected and the appropriate statistical techniques for analyzing those data.

a. A researcher wants to determine whether a leading global university
is guilty of racial bias in admissions. To determine potential bias, the
researcher collects data on the race of all applicants to the university
for a given year. The researcher plans to conduct a difference-in-means
test to determine whether the proportion of acceptances among Black
candidates is systematically different from the proportion of acceptances
among other candidates.

b. A researcher is interested in identifying the impact of a mother’s
education on the educational attainment of her child. She collects data
on a random sample of individuals aged between 25 and 40 years who
are out of the schooling system. The data set contains information on
each person’s level of schooling, the type of school attended, gender and
ethnicity, as well as information on the schooling of their parents and the
demographic characteristics of the household in which they grew up. The
researcher plans to regress years of schooling achieved by an individual
on the years of schooling of their mother, including in the regression
the other potential determinants of schooling (number of siblings and
whether parents lived together or are separated) as controls.

A government study found that people who eat chocolate frequently weigh
less than people who don’t. Researchers questioned 1000 individuals from
Cairo between the ages of 20 and 85 about their eating habits, and measured
their weight and height. On average, participants ate chocolate twice a week
and had a body mass index (BMI) of 28. There was an observed difference of
five to seven pounds in weight between those who ate chocolate five times a
week and those who did not eat any chocolate at all, with the chocolate eat-
ers weighing less on average. Frequent chocolate eaters also consumed more
calories, on average, than people who consumed less chocolate. Based on this
summary, would you recommend that Egyptians who do not presently eat
chocolate should consider eating chocolate up to five times a week if they
want to lose weight? Why or why not? Explain.

(Y, Xy, X5;) satisfy the assumptions in Key Concept 6.4. You are interested in
By, the causal effect of X; on Y. Suppose X and X, are uncorrelated. You esti-
mate B; by regressing Y onto X, (so that X, is not included in the regression).
Does this estimator suffer from omitted variable bias? Explain.
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6.10

6.11

6.12

(Y, Xy, X5;) satisfy the assumptions in Key Concept 6.4; in addition,
var(u; | X1;, Xp;) = 4 and var(X;;) = 6. A random sample of size n = 400 is
drawn from the population.

a. Assume that X| and X, are uncorrelated. Compute the variance of ﬁl.
[Hint: Look at Equation (6.20) in Appendix 6.2.]

b. Assume that corr(X;, X,) = 0.5. Compute the variance of 3;.

c¢. Comment on the following statements: “When X; and X, are correlated,
the variance of /§1 is larger than it would be if X; and X, were uncor-
related. Thus, if you are interested in B, it is best to leave X, out of the
regression if it is correlated with X;.”

(Requires calculus) Consider the regression model

Y, = BiXi; + BXoi + i

for i = 1,...,n. (Notice that there is no constant term in the regression.)
Following analysis like that used in Appendix 4.2:

a. Specify the least squares function that is minimized by OLS.

b. Compute the partial derivatives of the objective function with respect to
b, and b,.

¢. Suppose that 3/ | X;.Xo; = 0. Show that 8, = 3" | X,,Y;/ S X}

d. Suppose that 3/_ X;;X5; # 0. Derive an expression for [§1 as a function
of the data (Y, Xj;, X5),i = 1,...,n.

e. Suppose that the model includes an intercept: Y; = By + B1Xy; + BoXo; + u,.
Show that the least squares estimators satisfy ﬁo =Y - él)_(l - éz)_(z.

f. Asin (e),suppose that the model contains an intercept. Also
suppose that ", (X;; — X;) (X5 — X;) = 0. Show that
Bi= /(X — X)(Y, = Y)/ZL,(X;; — X;)% How does this
compare to the OLS estimator of B; from the regression that omits X,?

A school district undertakes an experiment to estimate the effect of class size
on test scores in second-grade classes. The district assigns 50% of its previous
year’s first graders to small second-grade classes (18 students per classroom)
and 50% to regular-size classes (21 students per classroom). Students new
to the district are handled differently: 20% are randomly assigned to small
classes and 80% to regular-size classes. At the end of the second-grade school
year, each student is given a standardized exam. Let Y; denote the exam score
for the i™ student, X; denote a binary variable that equals 1 if the student is
assigned to a small class, and W, denote a binary variable that equals 1 if the
student is newly enrolled. Let B8, denote the causal effect on test scores of
reducing class size from regular to small.
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a. Consider the regression Y; = By + B X; + u;. Do you think that
E(u;|X;) = 0? Is the OLS estimator of 8; unbiased and consistent?
Explain.

b. Consider the regression Y; = By + B1X; + BW; + u;. Do you think that
E(u;| X;,W;) depends on X;? Is the OLS estimator of 8; unbiased and
consistent? Explain. Do you think that E(u;| X;,W;) depends on W;? Will
the OLS estimator of 3, provide an unbiased and consistent estimate of
the causal effect of transferring to a new school (that is, being a newly
enrolled student)? Explain.

Empirical Exercises

(Only two empirical exercises for this chapter are given in the text, but you can find
more on the text website, http://www.pearsonglobaleditions.com.)

E6.1 Use the Birthweight_Smoking data set introduced in Empirical Exercise ES.3
to answer the following questions.

a. Regress Birthweight on Smoker. What is the estimated effect of smoking
on birth weight?

b. Regress Birthweight on Smoker, Alcohol, and Nprevist.

i. Using the two conditions in Key Concept 6.1, explain why the
exclusion of Alcohol and Nprevist could lead to omitted variable bias
in the regression estimated in (a).

ii. Is the estimated effect of smoking on birth weight substantially
different from the regression that excludes Alcohol and Nprevist?
Does the regression in (a) seem to suffer from omitted variable bias?

iii. Jane smoked during her pregnancy, did not drink alcohol, and had 8
prenatal care visits. Use the regression to predict the birth weight of
Jane’s child.

iv. Compute R? and R%. Why are they so similar?

v. How should you interpret the coefficient on Nprevist? Does the
coefficient measure a causal effect of prenatal visits on birth weight?
If not, what does it measure?

c. Estimate the coefficient on Smoking for the multiple regression model
in (b), using the three-step process in Appendix 6.3 (the Frisch-Waugh
theorem). Verify that the three-step process yields the same estimated
coefficient for Smoking as that obtained in (b).

d. An alternative way to control for prenatal visits is to use the binary
variables Tripre( through Tripre3. Regress Birthweight on Smoker,
Alcohol, Tripre0, Tripre2, and Tripre3.
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i. Why is Triprel excluded from the regression? What would happen if
you included it in the regression?

ii. The estimated coefficient on 7ripre0 is large and negative. What does
this coefficient measure? Interpret its value.

iii. Interpret the value of the estimated coefficients on Tripre2 and Tripre3.

iv. Does the regression in (d) explain a larger fraction of the variance in
birth weight than the regression in (b)?

E6.2 Using the data set Growth described in Empirical Exercise E4.1, but exclud-
ing the data for Malta, carry out the following exercises.

a.

Construct a table that shows the sample mean, standard deviation,

and minimum and maximum values for the series Growth, TradeShare,
YearsSchool, Oil, Rev_Coups, Assassinations, and RGD P60. Include the
appropriate units for all entries.

Run a regression of Growth on TradeShare, YearsSchool, Rev_Coups,
Assassinations, and RGDP60. What is the value of the coefficient on
Rev_Coups? Interpret the value of this coefficient. Is it large or small in
a real-world sense?

Use the regression to predict the average annual growth rate for a
country that has average values for all regressors.

Repeat (c), but now assume that the country’s value for TradeShare is
one standard deviation above the mean.

Why is Oil omitted from the regression? What would happen if it were
included?

Derivation of Equation (6.1)

This appendix presents a derivation of the formula for omitted variable bias in Equation (6.1).

Equation (4.28) in Appendix 4.3 states

. ;[; (}(t - X)uz
B =P+ T (6.19)
;;(Xi -X)?

Under the last two assumptions in Key Concept 4.3, (1/n) 3" (X; — X)> > 0% and

(1/n)X7_

(X — X)u; =25 cov(u;, X;) = pyu0o,0y. Substitution of these limits into

Equation (6.19) yields Equation (6.1).
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Distribution of the OLS Estimators
When There Are Two Regressors
and Homoskedastic Errors

Although the general formula for the variance of the OLS estimators in multiple regression is
complicated, if there are two regressors (kK = 2) and the errors are homoskedastic, then the
formula simplifies enough to provide some insights into the distribution of the OLS
estimators.

Because the errors are homoskedastic, the conditional variance of u; can be written as
var(u;| Xy, Xop) = o2. When there are two regressors, X;; and X,;, and the error term is homo-
skedastic, in large samples the sampling distribution of ,él is N(By, aél ), where the variance of

this distribution, a'él, is

2
ol = %(71 ) Tu (6.20)

2 2
1- PX.x,/ Ox,

where py, x,1s the population correlation between the two regressors X; and X, and ag(l is the
population variance of Xj.

The variance 012% of the sampling distribution of ,él depends on the squared correlation
between the regressors. If X; and X, are highly correlated, either positively or negatively, then
P%(I,X2 is close to 1, so the term 1 — P%(I,X2 in the denominator of Equation (6.20) is small and
the variance of ,él is larger than it would be if Px;, x, were close to 0.

Another feature of the joint normal large-sample distribution of the OLS estimators is that
ﬁl and ,éz are,in general, correlated. When the errors are homoskedastic, the correlation between
the OLS estimators /§1 and ,éz is the negative of the correlation between the two regressors (see
Exercise 19.18):

corr(Br. Br) = —px, x» (6:21)

The Frisch-Waugh Theorem

The OLS estimator in multiple regression can be computed by a sequence of shorter
regressions. Consider the multiple regression model in Equation (6.7). The OLS estimator of
B can be computed in three steps:

1. Regress Xjon X5, X3, ..., X}, and let )N(l denote the residuals from this regression;

2. Regress Yon X5, X5, ..., X;,and let Y denote the residuals from this regression; and

3. Regress Y on )~(1,
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where the regressions include a constant term (intercept). The Frisch—-Waugh theorem states
that the OLS coefficient in step 3 equals the OLS coefficient on X, in the multiple regression
model [Equation (6.7)].

This result provides a mathematical statement of how the multiple regression coefficient
,él estimates the effect on Y of X, controlling for the other X’s: Because the first two regres-
sions (steps 1 and 2) remove from Y and X their variation associated with the other X’s, the
third regression estimates the effect on Y of Xj using what is left over after removing (control-
ling for) the effect of the other X’s. The Frisch—-Waugh theorem is proven in Exercise 19.17

This theorem suggests how Equation (6.20) can be derived from Equation (5.27). Because
/§1 is the OLS regression coefficient from the regression of Y onto )?1, Equation (5.27) suggests

2 i

that the homoskedasticity-only variance of ﬁl is o b= where a-)% is the variance of )N(l
nhog;
X,

Because X; is the residual from the regression of X; onto X, (recall that Equation (6.20) per-

tains to the model with & = 2 regressors), Equation (6.15) implies that s)% = (1 = R%, x,)5%,»

where R}h X, 1s the adjusted R? from the regression of X; onto X. Equation (6.20) follows from

2 P 2 32 P, 2 2 P, o
sy, — > 0x. Ry x, = px xpand sy, — og,.

The Least Squares Assumptions for
Prediction with Multiple Regressors

This appendix extends the least squares assumptions for prediction with a single regressor in
Appendix 4.4 to multiple regressors. It then discusses the unbiasedness of the OLS estimator
of the population regression line and the unbiasedness of the forecasts.

Adopt the notation of the least square assumptions for prediction with a single regressor
in Appendix 4.4, so that the out-of-sample (“00s”) observation is (X9, ..., X7%,Y°?).The
aim is to predict Y% given X{*°,..., X{®. Let (Xy;, ..., X4,Y:),i = 1,...,n, be the data
used to estimate the regression coefficients. The least squares assumptions for prediction with

multiple regressors are
E(Y|X,....,X) =B+ BXi + -+ BXeandu = Y- E(Y|X,, ..., X,), where
1 (X9, ..., X3, Y°") are randomly drawn from the same population distribution as
(Xtijs.- -, X Yi),i=1,...,n.
2. (X, X3, i), i = 1, ..., n,are i.i.d. draws from their joint distribution.
3. Large outliers are unlikely: X3;, . . ., X}; and Y¥; have nonzero finite fourth moments.
4. There is no perfect multicollinearity.

As in the case of a single X in Appendix 4.4, for prediction the B’s are defined to be the
coefficients of the population conditional expectation. These 8’s may or may not have a causal
interpretation. Assumption 1 ensures that this conditional expectation, estimated using the
in-sample data, is the same as the conditional expectation that applies to the out-of-sample



APPENDIX

6.5

Distribution of OLS Estimators in Multiple Regression with Control Variables 245

prediction observation. The remaining assumptions are technical assumptions that play the
same role as they do for causal inference.

Under the definition that the 8’s are the coefficients of the linear conditional expectation,
the error u necessarily has a conditional mean of 0, so that £ (u;| Xj;, . . ., Xi;) = 0.Thus the
calculations in Chapter 19 show that the OLS estimators ,éo, ,731, ey ,ék are unbiased for the
respective population slope coefficients. Under the additional technical conditions of assump-
tions 2—4, the OLS estimators are consistent for these conditional expectation slope coeffi-
cients and are normally distributed in large samples.

The unbiasedness of the out-of-sample forecast follows from the unbiasedness of the OLS
estimators and the first prediction assumption, which ensures that the out-of-sample observa-
tion and in-sample observations are independently drawn from the same distribution.

Specifically,
E(YO%| X% = x§%, ..., X7 = x{%)
= E(By + BXT™ + oo+ BXPZ|XE = 29 X = 1)
= E(B| X9 = x, ... XP = ) + E(BX{”| X9 = x{”, ..., X0 = x{)
+ o+ E(BXTCIXTS = X9, X0 = )
= By + B + oo+ B
= E(Y°"| X7 = x{%, ..., X0 = x™), (6.22)

where the third equality follows from the independence of the out-of-sample and in-sample
observations and from the unbiasedness of the OLS estimators for the population slope coef-
ficients of the in-sample conditional expectation, and where the final equality follows from the

in- and out-of-sample observations being drawn from the same distribution.

Distribution of OLS Estimators in Multiple
Regression with Control Variables

This appendix shows that under least squares assumption 1 for multiple regression with con-
trol variables [Equation (6.18)], the OLS coefficient estimator is unbiased for the causal effect
of the variables of interest. Moreover, with the addition of technical assumptions 2—4 in Key
Concept 6.6, the OLS estimator is a consistent estimator of the causal effect and has a normal
distribution in large samples. The OLS estimator of the coefficients on the control variables
estimates the slope coefficient in a conditional expectation and is normally distributed in large
samples around that slope coefficient; however, that slope coefficient does not, in general, have
a causal interpretation.

As we have throughout, assume that conditional expectations are linear, so that the con-
ditional mean independence assumption is

E(ui| Xips -, XeisWaiy oo W) = E(ui| W ... W) = y0 + viWa; + -+ + Wi (6.23)
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where the y’s are coefficients. Then the conditional expectation of Y, is

E(Y [ Xiir - oy XeaosWhis . . W)

=EBy+ BiXy + F BXi + BeotWai + 0+ B W + i Xii o X Wi W)
=B+ BXy + o+ BXi + BeriWi 0 Bee W + E(ui| Xy X Wi W)

= (Bo+v0) *+BXu+ -+ BXu + (Bt TyOWu + -+ (Bewr + 7)) Wy

=8 + BiXy + - F B X + W - + 6 W, (6.24)

where the first equality uses Equation (6.17), the second equality distributes the conditional
expectation, the third equality uses Equation (6.23), and the fourth equality defines
80 = BO + yoand(S]- = Bk+j+ ’Yj,j= 1,...,]’.

It follows from Equation (6.24) that we can rewrite the multiple regression model with

control variables as
Y =20+ BiX + -+ BXu + W+ + W + v, (6.25)

where the error term v; has a conditional mean of 0: E(v;| X, . . ., X4 Wiiy « - . ,W,;) = 0.Thus,
for this rewritten regression, the least squares assumptions in Key Concept 6.4 apply, with the
reinterpretation of the coefficients as being those of Equation (6.24).

Three conclusions follow from the rewritten form of the multiple regression model with
control variables given in Equation (6.25). First, OLS provides unbiased estimators for the 8’s
and &’s in Equation (6.25), and under the additional assumptions 2—4 of Key Concept 6.6, the
OLS estimators are consistent and have a normal distribution in large samples. Second, under
the conditional mean independence assumption, the OLS estimators of the coefficients on the
X’s have a causal interpretation; that is, they are unbiased for the causal effects Sy, . . ., B.
Third, the coefficients on the control variables do not, in general, have a causal interpretation.
The reason is that those coefficients estimate any direct causal effect of the control variables,
plus a term (the y’s) arising because of correlation between u; and the control variable. Thus,
under conditional mean independence, the OLS estimator of the coefficients on the control
variables, in general, suffer from omitted variable bias, even though the coefficients on the

variables of interest do not.



Hypothesis Tests and

7.1

Confidence Intervals
in Multiple Regression

As discussed in Chapter 6, multiple regression analysis provides a way to mitigate
the problem of omitted variable bias by including additional regressors, thereby
controlling for the effects of those additional regressors. The coefficients of the multi-
ple regression model can be estimated by OLS. Like all estimators, the OLS estimator
has sampling uncertainty because its value differs from one sample to the next.

This chapter presents methods for quantifying the sampling uncertainty of the
OLS estimator through the use of standard errors, statistical hypothesis tests, and
confidence intervals. One new possibility that arises in multiple regression is a
hypothesis that simultaneously involves two or more regression coefficients. The
general approach to testing such “joint” hypotheses involves a new test statistic, the
F-statistic.

Section 7.1 extends the methods for statistical inference in regression with a single
regressor to multiple regression. Sections 7.2 and 7.3 show how to test hypotheses
that involve two or more regression coefficients. Section 7.4 extends the notion of
confidence intervals for a single coefficient to confidence sets for multiple coefficients.
Deciding which variables to include in a regression is an important practical issue, so
Section 7.5 discusses ways to approach this problem. In Section 7.6, we apply multiple
regression analysis to obtain improved estimates of the causal effect on test scores of a
reduction in the student-teacher ratio using the California test score data set.

Hypothesis Tests and Confidence Intervals
for a Single Coefficient

This section describes how to compute the standard error, how to test hypotheses,
and how to construct confidence intervals for a single coefficient in a multiple regres-
sion equation.

Standard Errors for the OLS Estimators

Recall that, in the case of a single regressor, it was possible to estimate the variance
of the OLS estimator by substituting sample averages for expectations, which led to
the estimator &%l given in Equation (5.4). Under the least squares assumptions,
the law of large numbers implies that these sample averages converge to their
population counterparts, so, for example, 6',2§1 / o-%l —> 1.The square root of 6'%1 is
the standard error of 3, SE(,él), an estimator of the standard deviation of the
sampling distribution of Bi.

247
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All this extends directly to multiple regression. The OLS estimator ,é]» of the j
regression coefficient has a standard deviation, and this standard deviation is esti-
mated by its standard error, SE([%»). The formula for the standard error is best
stated using matrices (see Section 19.2). The important point is that, as far as stan-
dard errors are concerned, there is nothing conceptually different between the
single- and multiple-regressor cases. The key ideas— the large-sample normality of
the estimators and the ability to estimate consistently the standard deviation of
their sampling distribution—are the same whether there are one, two, or a dozen
regressors.

Hypothesis Tests for a Single Coefficient

Suppose that you want to test the hypothesis that a change in the student-teacher
ratio has no effect on test scores, holding constant the percentage of English learners
in the district. This corresponds to hypothesizing that the true coefficient 8; on the
student-teacher ratio is 0 in the population regression of test scores on STR and
PctEL.More generally, we might want to test the hypothesis that the true coefficient
B; on the j th regressor takes on some specific value, Bjo- The null value B;, comes
either from economic theory or, as in the student-teacher ratio example, from the
decision-making context of the application. If the alternative hypothesis is two-sided,
then the two hypotheses can be written mathematically as

Hy:B; = Bjgvs. Hi:B; # By (two-sided alternative). (7.1)

For example, if the first regressor is STR, then the null hypothesis that changing the
student-teacher ratio has no effect on test scores corresponds to the null hypothesis
that 8; = 0 (so B9 = 0). Our task is to test the null hypothesis H, against the alter-
native H; using a sample of data.

Key Concept 5.2 gives a procedure for testing this null hypothesis when there is
a single regressor. The first step in this procedure is to calculate the standard error of
the coefficient. The second step is to calculate the ¢-statistic using the general formula
in Key Concept 5.1. The third step is to compute the p-value of the test using the
cumulative normal distribution in Appendix Table 1 or, alternatively, to compare
the f-statistic to the critical value corresponding to the desired significance level of
the test. The theoretical underpinnings of this procedure are that the OLS estimator
has a large-sample normal distribution that, under the null hypothesis, has as its mean
the hypothesized true value and that the variance of this distribution can be esti-
mated consistently.

These underpinnings are present in multiple regression as well. As stated in Key
Concept 6.5, the sampling distribution of ﬁj is approximately normal. Under the null
hypothesis, the mean of this distribution is ;. The variance of this distribution can
be estimated consistently. Therefore we can simply follow the same procedure as in
the single-regressor case to test the null hypothesis in Equation (7.1).
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Testing the Hypothesis g; = B;,
Against the Alternative g; # B;, 7T

1. Compute the standard error of ,é]-, SE (ﬁl)
2. Compute the t-statistic:

B — B
r=——2 (72)
SE(B))
3. Compute the p-value:
p-value = 20 (—| "), (7.3)

where %

is the value of the f-statistic actually computed. Reject the hypothesis
at the 5% significance level if the p-value is less than 0.05 or, equivalently, if
| 17| > 1.96.

The standard error and (typically) the t-statistic and p-value testing B; = 0 are

computed automatically by regression software.

The procedure for testing a hypothesis on a single coefficient in multiple regres-
sion is summarized as Key Concept 7.1. The ¢-statistic actually computed is denoted
t““" in this box. However, it is customary to denote this simply as ¢, and we adopt this

simplified notation for the rest of the book.

Confidence Intervals for a Single Coefficient

The method for constructing a confidence interval in the multiple regression model
is also the same as in the single-regressor model. This method is summarized as
Key Concept 7.2.

The method for conducting a hypothesis test in Key Concept 7.1 and the method
for constructing a confidence interval in Key Concept 7.2 rely on the large-sample
normal approximation to the distribution of the OLS estimator é] Accordingly, it
should be kept in mind that these methods for quantifying the sampling uncertainty
are only guaranteed to work in large samples.

Application to Test Scores and the Student-Teacher Ratio

Can we reject the null hypothesis that a change in the student-teacher ratio has no
effect on test scores, once we control for the percentage of English learners in the
district? What is a 95% confidence interval for the effect on test scores of a change
in the student-teacher ratio, controlling for the percentage of English learners? We
are now able to find out. The regression of test scores against STR and PctEL,
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/.2

Confidence Intervals for a Single Coefficient
in Multiple Regression

A 95% two-sided confidence interval for the coefficient §; is an interval that con-
tains the true value of g; with a 95% probability; that is, it contains the true value
of B;in 95% of all possible randomly drawn samples. Equivalently, it is the set of
values of B; that cannot be rejected by a 5% two-sided hypothesis test. When the
sample size is large, the 95% confidence interval is

95% confidence interval for 8; = [B; — 1.96 SE(B;), B; +1.96 SE(B;)]. (7.4)

A 90% confidence interval is obtained by replacing 1.96 in Equation (7.4)
with 1.64.

estimated by OLS, was given in Equation (6.12) and is restated here with standard
errors in parentheses below the coefficients:

/\
TestScore = 686.0 — 1.10 X STR — 0.650 X PctEL. (7.5)
(8.7) (0.43) (0.031)

To test the hypothesis that the true coefficient on STR is 0, we first need to compute
the r-statistic in Equation (7.2). Because the null hypothesis says that the true value
of this coefficient is 0, the s-statistic is t = (—1.10 — 0) /0.43 = —2.54. The associ-
ated p-value is 2d(—2.54) = 1.1%; that is, the smallest significance level at which
we can reject the null hypothesis is 1.1%. Because the p-value is less than 5%, the
null hypothesis can be rejected at the 5% significance level (but not quite at the 1%
significance level).

A 95% confidence interval for the population coefficient on STR is
—1.10 £ 1.96 X 043 = (—1.95, —0.26); that is, we can be 95% confident that the
true value of the coefficient is between —1.95 and —0.26. Interpreted in the context
of the superintendent’s interest in decreasing the student-teacher ratio by 2,
the 95% confidence interval for the effect on test scores of this reduction is
(=026 X =2,-1.95 X =2) = (0.52,3.90).

Adding expenditures per pupil to the equation. Your analysis of the multiple regression
in Equation (7.5) has persuaded the superintendent that, based on the evidence so far,
reducing class size will improve test scores in her district. Now, however, she moves on
to a more nuanced question. If she is to hire more teachers, she can pay for those teach-
ers either by making cuts elsewhere in the budget (no new computers, reduced mainte-
nance, and so on) or by asking for an increase in her budget, which taxpayers do not
favor. What, she asks, is the effect on test scores of reducing the student-teacher ratio,
holding expenditures per pupil (and the percentage of English learners) constant?
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This question can be addressed by estimating a regression of test scores on the
student-teacher ratio, total spending per pupil, and the percentage of English learn-
ers. The OLS regression line is

—
TestScore = 649.6 — 0.29 X STR + 3.87 X Expn — 0.656 X PctEL, (7.6)
(15.5) (0.48) (1.59) (0.032)

where Expn is total annual expenditures per pupil in the district in thousands of
dollars.

The result is striking. Holding expenditures per pupil and the percentage of
English learners constant, changing the student-teacher ratio is estimated to have a
very small effect on test scores: The estimated coefficient on STR is —1.10 in
Equation (7.5), but after adding Expn as a regressor in Equation (7.6), it is only
—0.29. Moreover, the t-statistic for testing that the true value of the coefficient is 0 is
nowt = (—0.29 — 0)/0.48 = —0.60, so the hypothesis that the population value of
this coefficient is indeed 0 cannot be rejected even at the 10% significance level
(| = 0.60| < 1.64).Thus Equation (7.6) provides no evidence that hiring more teach-
ers improves test scores if overall expenditures per pupil are held constant.

One interpretation of the regression in Equation (7.6) is that, in these California data,
school administrators allocate their budgets efficiently. Suppose, counterfactually, that the
coefficient on STR in Equation (7.6) were negative and large. If so, school districts could
raise their test scores simply by decreasing funding for other purposes (textbooks, tech-
nology, sports, and so on) and using those funds to hire more teachers, thereby reducing
class sizes while holding expenditures constant. However, the small and statistically insig-
nificant coefficient on STR in Equation (7.6) indicates that this transfer would have little
effect on test scores. Put differently, districts are already allocating their funds efficiently.

Note that the standard error on STR increased when Expn was added, from 0.43
in Equation (7.5) to 0.48 in Equation (7.6). This illustrates the general point, intro-
duced in Section 6.7 in the context of imperfect multicollinearity, that correlation
between regressors (the correlation between STR and Expn is —(0.62) can make the
OLS estimators less precise.

What about our angry taxpayer? He asserts that the population values of both
the coefficient on the student-teacher ratio (B;) and the coefficient on spending per
pupil (B,) are 0; that is, he hypothesizes that both 8; = 0 and 8, = 0. Although it
might seem that we can reject this hypothesis because the ¢-statistic testing 8, = 0 in
Equation (7.6) is t = 3.87/1.59 = 2.43, this reasoning is flawed. The taxpayer’s
hypothesis is a joint hypothesis, and to test it we need a new tool, the F-statistic.

Tests of Joint Hypotheses

This section describes how to formulate joint hypotheses on multiple regression
coefficients and how to test them using an F-statistic.
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Testing Hypotheses on Two or More Coefficients

Joint null hypotheses. Consider the regression in Equation (7.6) of the test score
against the student-teacher ratio, expenditures per pupil, and the percentage of
English learners. Our angry taxpayer hypothesizes that neither the student-teacher
ratio nor expenditures per pupil have an effect on test scores, once we control for the
percentage of English learners. Because STR is the first regressor in Equation (7.6)
and Expn is the second, we can write this hypothesis mathematically as

Hy: B =0and B, = 0vs. H: By # Oand/or 3, # 0. (7.7)

The hypothesis that both the coefficient on the student-teacher ratio (B;) and
the coefficient on expenditures per pupil (3,) are 0 is an example of a joint hypothesis
on the coefficients in the multiple regression model. In this case, the null hypothesis
restricts the value of two of the coefficients, so as a matter of terminology we can say
that the null hypothesis in Equation (7.7) imposes two restrictions on the multiple
regression model: B; = 0 and 3, = 0.

In general, a joint hypothesis is a hypothesis that imposes two or more restric-
tions on the regression coefficients. We consider joint null and alternative hypotheses

of the form
Hy:B; = Bio» Bn = Bmo» - - - » for a total of g restrictions, vs.
H;: one or more of the g restrictions under H, does not hold, (7.8)
where Bj, B, . . . , refer to different regression coefficients and B;, B0, - - - , refer to

the values of these coefficients under the null hypothesis. The null hypothesis in
Equation (7.7) is an example of Equation (7.8). Another example is that, in a regres-
sion with k = 6 regressors, the null hypothesis is that the coefficients on the second,
fourth, and fifth regressors are 0; thatis, 3, = 0, B, = 0,and B5 = 0, so that there are
q = 3 restrictions. In general, under the null hypothesis H, there are g such
restrictions.

If at least one of the equalities comprising the null hypothesis H,in Equation (7.8)
is false, then the joint null hypothesis itself is false. Thus the alternative hypothesis is
that at least one of the equalities in the null hypothesis H, does not hold.

Why can't | just test the individual coefficients one at a time? Although it seems it
should be possible to test a joint hypothesis by using the usual #-statistics to test the
restrictions one at a time, the following calculation shows that this approach is unreli-
able. Specifically, suppose you are interested in testing the joint null hypothesis in
Equation (7.6) that 8; = 0 and B, = 0. Let #; be the t-statistic for testing the null
hypothesis that 8; = 0,and let ¢, be the -statistic for testing the null hypothesis that
B, = 0. What happens when you use the “one-at-a-time” testing procedure: Reject
the joint null hypothesis if either ¢, or ¢, exceeds 1.96 in absolute value?
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Because this question involves the two random variables ¢; and ¢,, answering it
requires characterizing the joint sampling distribution of #; and f,. As mentioned in
Section 6.6, in large samples, B, and j3, have a joint normal distribution, so under the
joint null hypothesis the ¢-statistics #; and ¢, have a bivariate normal distribution,
where each #-statistic has a mean equal to 0 and variance equal to 1.

First, consider the special case in which the #-statistics are uncorrelated and thus
are independent in large samples. What is the size of the one-at-a-time testing proce-
dure; that is, what is the probability that you will reject the null hypothesis when it is
true? More than 5%! In this special case, we can calculate the rejection probability
of this method exactly. The null is not rejected only if both | £ | = 1.96and |1,| = 1.96.
Because the f-statistics are independent, Pr(|f;| = 1.96 and |5,| = 1.96) =
Pr(|t;| = 1.96) X Pr(|t,] = 1.96) = 0.95 = 0.9025 = 90.25%. So the probability
of rejecting the null hypothesis when it is true is 1 — 0.95% = 9.75%. This one-at-a-
time method rejects the null too often because it gives you too many chances: If you
fail to reject using the first ¢-statistic, you get to try again using the second.

If the regressors are correlated, the situation is more complicated. The size of the
one-at-a-time procedure depends on the value of the correlation between the regres-
sors. Because the one-at-a-time testing approach has the wrong size —that is, its rejec-
tion rate under the null hypothesis does not equal the desired significance level —a
new approach is needed.

One approach is to modify the one-at-a-time method so that it uses different
critical values that ensure that its size equals its significance level. This method, called
the Bonferroni method, is described in Appendix 7.1. The advantage of the Bonferroni
method is that it applies very generally. Its disadvantage is that it can have low power:
It frequently fails to reject the null hypothesis when, in fact, the alternative hypoth-
esis is true.

Fortunately, there is another approach to testing joint hypotheses that is more
powerful, especially when the regressors are highly correlated. That approach is
based on the F-statistic.

The F-Statistic

The F-statistic is used to test a joint hypothesis about regression coefficients. The
formulas for the F-statistic are integrated into modern regression software. We first
discuss the case of two restrictions then turn to the general case of g restrictions.

The F-statistic with q = 2 restrictions. When the joint null hypothesis has the two
restrictions that 8; = 0 and 3, = 0, the F-statistic combines the two t-statistics ¢; and
t, using the formula

Pl (t% +15 - Zﬁzl,zztm), 719)

2 1= ﬁtzhfz

where p,,,, is an estimator of the correlation between the two z-statistics.



254

CHAPTER7 Hypothesis Tests and Confidence Intervals in Multiple Regression

To understand the F-statistic in Equation (7.9), first suppose we know that the
t-statistics are uncorrelated, so we can drop the terms involving p, ,,. If so, Equation
(7.9) simplifies, and F = 3(¢7 + ¢3); that is, the F-statistic is the average of the
squared t-statistics. Under the null hypothesis, #; and ¢, are independent standard
normal random variables (because the z-statistics are uncorrelated by assumption),
so under the null hypothesis F has an F .. distribution (Section 2.4). Under the alter-
native hypothesis that either 3, is nonzero or 3, is nonzero (or both), then either ¢
or 13 (or both) will be large, leading the test to reject the null hypothesis.

In general, the #-statistics are correlated, and the formula for the F-statistic in
Equation (7.9) adjusts for this correlation. This adjustment is made so that under the
null hypothesis the F-statistic has an F, ., distribution in large samples whether or not
the t-statistics are correlated.

The F-statistic with q restrictions. The formula for the heteroskedasticity-robust
F-statistic testing the g restrictions of the joint null hypothesis in Equation (7.8) is
given in Section 19.3. This formula is incorporated into regression software, making
the F-statistic easy to compute in practice.

Under the null hypothesis, the F-statistic has a sampling distribution that,in large
samples, is given by the F, .. distribution. That is, in large samples, under the null
hypothesis

the F-statistic is distributed F ... (7.10)

Thus the critical values for the F-statistic can be obtained from the tables of the F ..
distribution in Appendix Table 4 for the appropriate value of ¢ and the desired
significance level.

Computing the heteroskedasticity-robust F-statistic in statistical software. If the
F-statistic is computed using the general heteroskedasticity-robust formula, its large-n
distribution under the null hypothesis is F; .. regardless of whether the errors are
homoskedastic or heteroskedastic. As discussed in Section 5.4, for historical reasons,
most statistical software computes homoskedasticity-only standard errors by default.
Consequently, in some software packages you must select a “robust” option so that the
F-statistic is computed using heteroskedasticity-robust standard errors (and, more
generally, a heteroskedasticity-robust estimate of the “covariance matrix”). The
homoskedasticity-only version of the F-statistic is discussed at the end of this section.

Computing the p-value using the F-statistic. The p-value of the F-statistic can be
computed using the large-sample F, ., approximation to its distribution. Let F*
denote the value of the F-statistic actually computed. Because the F-statistic has a
large-sample F, .. distribution under the null hypothesis, the p-value is

p-value = Pr[F, .. > F*]. (7.11)
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The p-value in Equation (7.11) can be evaluated using a table of the F, ., distribu-
tion (or, alternatively, a table of the )(é distribution because a Xﬁ—distributed ran-
dom variable is g times an F, .-distributed random variable). Alternatively, the
p-value can be evaluated using a computer because formulas for the cumulative
chi-squared and F distributions have been incorporated into most modern statisti-
cal software.

The overall regression F-statistic. The overall regression F-statistic tests the joint
hypothesis that a/l the slope coefficients are 0. That is, the null and alternative hypoth-
eses are

Hy:By=0,B8,=0,...,B=0vs. H;:B; # 0, atleastone j,j = 1,...,k. (7.12)

Under this null hypothesis, none of the regressors explains any of the variation in Y,
although the intercept (which under the null hypothesis is the mean of Y;) can be
nonzero. The null hypothesis in Equation (7.12) is a special case of the general null
hypothesis in Equation (7.8), and the overall regression F-statistic is the F-statistic
computed for the null hypothesis in Equation (7.12). In large samples, the overall
regression F-statistic has an Fy .. distribution when the null hypothesis is true.

The F-statistic when g = 1. When g = 1, the F-statistic tests a single restriction.
Then the joint null hypothesis reduces to the null hypothesis on a single regression
coefficient, and the F-statistic is the square of the f-statistic.

Application to Test Scores
and the Student-Teacher Ratio

We are now able to test the null hypothesis that the coefficients on both the student—
teacher ratio and expenditures per pupil are 0 against the alternative that at least one
coefficient is nonzero, controlling for the percentage of English learners in the
district.

To test this hypothesis, we need to compute the heteroskedasticity-robust
F-statistic testing the null hypothesis that 8; = 0 and 3, = 0 using the regression of
TestScore on STR, Expn, and PctEL reported in Equation (7.6). This F-statistic is
5.43. Under the null hypothesis, in large samples this statistic has an F; .. distribution.
The 5% critical value of the F; ., distribution is 3.00 (Appendix Table 4), and the 1%
critical value is 4.61. The value of the F-statistic computed from the data,5.43, exceeds
4.61, so the null hypothesis is rejected at the 1% level. It is very unlikely that we
would have drawn a sample that produced an F-statistic as large as 5.43 if the null
hypothesis really were true (the p-value is 0.005). Based on the evidence in
Equation (7.6) as summarized in this F-statistic, we can reject the taxpayer’s hypoth-
esis that neither the student-teacher ratio nor expenditures per pupil have an effect
on test scores (holding constant the percentage of English learners).
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The Homoskedasticity-Only F-Statistic

One way to restate the question addressed by the F-statistic is to ask whether relaxing
the g restrictions that constitute the null hypothesis improves the fit of the regression
by enough that this improvement is unlikely to be the result merely of random sam-
pling variation if the null hypothesis is true. This restatement suggests that there is a
link between the F-statistic and the regression R*: A large F-statistic should, it seems,
be associated with a substantial increase in the R?. In fact, if the error u;is homoskedastic,
this intuition has an exact mathematical expression. Specifically, if the error term is
homoskedastic, the F-statistic can be written in terms of the improvement in the fit of
the regression as measured either by the decrease in the sum of squared residuals or
by the increase in the regression R’ The resulting F-statistic is referred to as the
homoskedasticity-only F-statistic because it is valid only if the error term is
homoskedastic. In contrast, the heteroskedasticity-robust F-statistic computed using the
formula in Section 19.3 (and reported above) is valid whether the error term is homo-
skedastic or heteroskedastic. Despite this significant limitation of the homoskedasticity-
only F-statistic, its simple formula sheds light on what the F-statistic is doing. In addition,
the simple formula can be computed using standard regression output, such as might
be reported in a table that includes regression R”’s but not F-statistics.

The homoskedasticity-only F-statistic is computed using a simple formula based
on the sum of squared residuals from two regressions. In the first regression, called
the restricted regression, the null hypothesis is forced to be true. When the null
hypothesis is of the type in Equation (7.8), where all the hypothesized values are 0,
the restricted regression is the regression in which those coefficients are set to 0; that
is, the relevant regressors are excluded from the regression. In the second regression,
called the unrestricted regression, the alternative hypothesis is allowed to be true. If
the sum of squared residuals is sufficiently smaller in the unrestricted than in the
restricted regression, then the test rejects the null hypothesis.

The homoskedasticity-only F-statistic is given by the formula

(SS Riestrictea — SSRunrestricted)/ q

F= , 7.13
SSRunrestriczed/ (I’l - kunreszricted - 1) ( )

where SSR, gricea 15 the sum of squared residuals from the restricted regression,
SSRresiriciea 15 the sum of squared residuals from the unrestricted regression, q is the
number of restrictions under the null hypothesis, and k,,,.sicieq 15 the number of
regressors in the unrestricted regression. An alternative equivalent formula for the
homoskedasticity-only F-statistic is based on the R? of the two regressions:

F= (Rlzmrestricted - R%estricted )/ q (7 1 4)
(1 - Rlzmrestricted )/ (n - kunrestricted - 1)

If the errors are homoskedastic, then the difference between the homoskedasticity-
only F-statistic computed using Equation (7.13) or (7.14) and the heteroskedasticity-
robust F-statistic vanishes as the sample size n increases. Thus, if the errors are
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homoskedastic, the sampling distribution of the homoskedasticity-only F-statistic
under the null hypothesis is, in large samples, £, ...

These formulas are easy to compute and have an intuitive interpretation in terms
of how well the unrestricted and restricted regressions fit the data. Unfortunately, the
formulas apply only if the errors are homoskedastic. Because homoskedasticity is a
special case that cannot be counted on in applications with economic data—or more
generally with data sets typically found in the social sciences—in practice the
homoskedasticity-only F-statisticisnotasatisfactory substitute for the heteroskedasticity-
robust F-statistic.

Using the homoskedasticity-only F-statistic when n is small. If the errors are i.i.d.,
homoskedastic, and normally distributed, then the homoskedasticity-only F-statistic
defined in Equations (7.13) and (7.14) has an F,
null hypothesis (see Section 19.4). Critical values for this distribution, which depend

_1 distribution under the

1= Kunrestricred

on both g and n — k,,esriced — 1, are given in Appendix Table 5. As discussed in
Section 2.4, the F;
increases; for large sample sizes, the differences between the two distributions are

-1 distribution converges to the Fj .. distribution as n

= Kuprestricted

negligible. For small samples, however, the two sets of critical values differ.

Application to test scores and the student-teacher ratio. To test the null hypothesis
that the population coefficients on STR and Expn are 0, controlling for PctEL, we
need to compute the R? (or SSR) for the restricted and unrestricted regressions. The
unrestricted regression has the regressors STR, Expn, and PctEL and is given in
Equation (7.6). Its R? is 0.4366; that is, R2,,.sicea = 0.4366.The restricted regression
imposes the joint null hypothesis that the true coefficients on STR and Expn are 0;
that is, under the null hypothesis STR and Expn do not enter the population regres-
sion, although PctEL does (the null hypothesis does not restrict the coefficient on
PctEL).The restricted regression, estimated by OLS, is

/\
TestScore = 664.7 — 0.671 X PctEL, R* = 0.4149, (7.15)
(1.0)  (0.032)

SO R2,ricred = 0.4149.The number of restrictions is ¢ = 2, the number of observations
isn = 420, and the number of regressors in the unrestricted regression is k = 3.The
homoskedasticity-only F-statistic, computed using Equation (7.14), is

(0.4366 — 0.4149)/2

F=0"0m66) /a0 —3-1) >0

Because 8.01 exceeds the 1% critical value of 4.61, the hypothesis is rejected at the
1% level using the homoskedasticity-only test.

This example illustrates the advantages and disadvantages of the homoskedasticity-
only F-statistic. An advantage is that it can be computed using a calculator. Its main
disadvantage is that the values of the homoskedasticity-only and heteroskedasticity-
robust F-statistics can be very different: The heteroskedasticity-robust F-statistic
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testing this joint hypothesis is 5.43, quite different from the less reliable homoskedasticity-
only value of 8.01.

Testing Single Restrictions Involving
Multiple Coefficients

Sometimes economic theory suggests a single restriction that involves two or more
regression coefficients. For example, theory might suggest a null hypothesis of the
form B; = B,; that is, the effects of the first and second regressors are the same. In
this case, the task is to test this null hypothesis against the alternative that the two
coefficients differ:

H0: Bl = BzVS. H1: Bl # Bz. (716)

This null hypothesis has a single restriction,so ¢ = 1, but that restriction involves mul-
tiple coefficients (B, and $3,). We need to modify the methods presented so far to test
this hypothesis. There are two approaches; which is easier depends on your software.

Approach 1: Test the restriction directly. Some statistical packages have a special-
ized command designed to test restrictions like Equation (7.16), and the result is an
F-statistic that, because g = 1, has an F ., distribution under the null hypothesis.
(Recall from Section 2.4 that the square of a standard normal random variable has
an I ,, distribution, so the 95% percentile of the F; ., distribution is 1.96% = 3.84.)

Approach 2: Transform the regression. Tf your statistical package cannot test the restric-
tion directly, the hypothesis in Equation (7.16) can be tested using a trick in which the
original regression equation is rewritten to turn the restriction in Equation (7.16) into a
restriction on a single regression coefficient. To be concrete, suppose there are only two
regressors, Xj; and X5, in the regression, so the population regression has the form

Y, = By + BiXi; + BXy + u; (7.17)

Here is the trick: By subtracting and adding 3,Xj;, we have that B1Xj; + B, X =
BiXii — B Xy + BoXi + BoXo; = (B — Bo) X + Bo(Xu + X)) = viXi + BV,
where y; = B — B,and V; = Xj; + X;;. Thus the population regression in Equation
(7.17) can be rewritten as

Y= By + viXiu + BV + u; (7.18)

Because the coefficient y; in this equation is y; = 8y — [3,, under the null hypothesis
in Equation (7.16) y; = 0, while under the alternative y; # 0. Thus, by turning
Equation (7.17) into Equation (7.18), we have turned a restriction on two regression
coefficients into a restriction on a single regression coefficient.
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Because the restriction now involves the single coefficient yy, the null hypothesis
in Equation (7.16) can be tested using the ¢-statistic method of Section 7.1. In prac-
tice, this is done by first constructing the new regressor V; as the sum of the two origi-
nal regressors, then estimating the regression of Y; on Xj; and V. A 95% confidence
interval for the difference in the coefficients B; — B, can be calculated as
v1 T 1.96 SE(¥,).

This method can be extended to other restrictions on regression equations using
the same trick (see Exercise 7.9).

The two methods (approaches 1 and 2) are equivalent in the sense that the
F-statistic from the first method equals the square of the #-statistic from the second
method.

Extension to q > 1. In general, it is possible to have ¢ restrictions under the null
hypothesis in which some or all of these restrictions involve multiple coefficients. The
F-statistic of Section 7.2 extends to this type of joint hypothesis. The F-statistic can
be computed by either of the two methods just discussed for ¢ = 1. Precisely how
best to do this in practice depends on the specific regression software being used.

Confidence Sets for Multiple Coefficients

This section explains how to construct a confidence set for two or more regression
coefficients. The method is conceptually similar to the method in Section 7.1 for
constructing a confidence set for a single coefficient using the ¢-statistic except that
the confidence set for multiple coefficients is based on the F-statistic.

A 95% confidence set for two or more coefficients is a set that contains the true
population values of these coefficients in 95% of randomly drawn samples. Thus a
confidence set is the generalization to two or more coefficients of a confidence inter-
val for a single coefficient.

Recall that a 95% confidence interval is computed by finding the set of values of
the coefficients that are not rejected using a ¢-statistic at the 5% significance level.
This approach can be extended to the case of multiple coefficients. To make this
concrete, suppose you are interested in constructing a confidence set for two coeffi-
cients, B; and f3,. Section 7.2 showed how to use the F-statistic to test a joint null
hypothesis that 8; = B, and 8, = 3. Suppose you were to test every possible
value of B,y and 3, at the 5% level. For each pair of candidates (83; o, B,), you com-
pute the F-statistic and reject it if it exceeds the 5% critical value of 3.00. Because
the test has a 5% significance level, the true population values of 8; and 3, will not
be rejected in 95% of all samples. Thus the set of values not rejected at the 5% level
by this F-statistic constitutes a 95% confidence set for 8; and S,.

Although this method of trying all possible values of 3, ; and 3, , works in theory,
in practice it is much simpler to use an explicit formula for the confidence set. This
formula for the confidence set for an arbitrary number of coefficients is obtained
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FIGURE 7.1
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using the formula for the F-statistic given in Section 19.3. When there are two coef-
ficients, the resulting confidence sets are ellipses.

As an illustration, Figure 7.1 shows a 95% confidence set (confidence ellipse) for
the coefficients on the student-teacher ratio and expenditures per pupil, holding
constant the percentage of English learners, based on the estimated regression in
Equation (7.6). This ellipse does not include the point (0, 0). This means that the null
hypothesis that these two coefficients are both 0 is rejected using the F-statistic at the
5% significance level, which we already knew from Section 7.2. The confidence
ellipse is a fat sausage with the long part of the sausage oriented in the lower-left/
upper- rlght direction. The reason for this orientation is that the estimated correlation
between f3; and 3, is positive, which in turn arises because the correlation between
the regressors STR and Expn is negative (schools that spend more per pupil tend to
have fewer students per teacher).

Model Specification for Multiple Regression

When estimating a causal effect, the job of determining which variables to include in
multiple regression—that is, the problem of choosing a regression specification —can
be quite challenging, and no single rule applies in all situations. But do not despair,
because some useful guidelines are available. The starting point for choosing a regres-
sion specification is thinking through the possible sources of omitted variable bias. It
is important to rely on your expert knowledge of the empirical problem and to focus
on obtaining an unbiased estimate of the causal effect of interest; do not rely primar-
ily on purely statistical measures of fit such as the R? or R>.
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Model Specification and Choosing Control Variables

Multiple regression makes it possible to control for factors that could lead to omitted
variable bias in the estimate of the effect of interest. But how does one determine the
“right” set of control variables?

At a general level, this question is answered by the conditional mean indepen-
dence condition of Key Concept 6.5.That is, to eliminate omitted variables bias, a set
of control variables must satisfy E (u;|X;,W;) = E(u;|W;),where X; denotes the vari-
able or variables of interest and W, denotes one or more control variables. This condi-
tion requires that, among observations with the same values of the control variables,
the variable of interest is randomly assigned or as-if randomly assigned in the sense
that the mean of u no longer depends on X. If this condition fails, then there remain
omitted determinants of Y that are correlated with X, even after holding W constant,
and the result is omitted variable bias.

In practice, determining which control variables to include requires thinking
through the application and using judgment. For example, economic conditions could
vary substantially across school districts with the same percentage of English learn-
ers. Because the budget of a school district depends in part on the affluence of the
district, more affluent districts would be expected to have lower class sizes, even
among districts with the same percentage of English learners. Moreover, more afflu-
ent families tend to have more access to outside learning opportunities. If so, the
affluence of the district satisfies the two conditions for omitted variable bias in
Key Concept 6.1, even after controlling for the percentage of English learners. This
logic leads to including one or more additional control variables in the test score
regressions, where the additional control variables measure economic conditions of
the district.

Our approach to the challenge of choosing control variables is twofold. First, a
core or base set of regressors should be chosen using a combination of expert judg-
ment, economic theory,and knowledge of how the data were collected; the regression
using this base set of regressors is sometimes referred to as a base specification. This
base specification should contain the variables of primary interest and the control
variables suggested by expert judgment and economic theory. Expert judgment and
economic theory are rarely decisive, however, and often the variables suggested by
economic theory are not the ones on which you have data. Therefore the next step is
to develop a list of candidate alternative specifications —that is, alternative sets of
regressors. If the estimates of the coefficients of interest are numerically similar
across the alternative specifications, then this provides evidence that the estimates
from your base specification are reliable. If, on the other hand, the estimates of the
coefficients of interest change substantially across specifications, this often provides
evidence that the original specification had omitted variable bias and heightens the
concern that so might your alternative specifications.We elaborate on this approach
to model specification in Section 9.2 after studying some additional tools for specify-
ing regressions.
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Interpreting the R? and the Adjusted R? in Practice

An R? or an R? near 1 means that the regressors are good at predicting the values of
the dependent variable in the sample, and an R? or an R” near 0 means that they are
not. This makes these statistics useful summaries of the predictive ability of the
regression. However, it is easy to read more into them than they deserve.

There are four potential pitfalls to guard against when using the R? or R%:

1. An increase in the R* or R? does not necessarily mean that an added vari-
able is statistically significant. The R increases whenever you add a regressor,
whether or not it is statistically significant. The R? does not always increase,
but if it does, this does not necessarily mean that the coefficient on that added
regressor is statistically significant. To ascertain whether an added variable is
statistically significant, you need to perform a hypothesis test using the t-statistic.

2. A high R? or R* does not mean that the regressors are a true cause of the depen-
dent variable. Imagine regressing test scores against parking lot area per pupil.
Parking lot area is correlated with the student-teacher ratio, with whether the
school is in a suburb or a city, and possibly with district income —all things that are
correlated with test scores. Thus the regression of test scores on parking lot area per
pupil could have a high R? and R?, but the relationship is not causal (try telling the
superintendent that the way to increase test scores is to increase parking space!).

3. A high R? or R? does not mean that there is no omitted variable bias. Recall
the discussion of Section 6.1, which concerned omitted variable bias in the regres-
sion of test scores on the student—teacher ratio. The R? of the regression was not
mentioned because it played no logical role in this discussion. Omitted variable
bias can occur in regressions with a low R?, a moderate R?, or a high R?. Con-
versely, a low R? does not imply that there necessarily is omitted variable bias.

4. A high R*? or R* does not necessarily mean that you have the most appropriate
set of regressors, nor does a low R* or R? necessarily mean that you have an
inappropriate set of regressors. The question of what constitutes the right set of
regressors in multiple regression is difficult, and we return to it throughout this
textbook. Decisions about the regressors must weigh issues of omitted variable
bias, data availability, data quality, and, most importantly, economic theory and
the nature of the substantive questions being addressed. None of these ques-
tions can be answered simply by having a high (or low) regression R* or R>.

These points are summarized in Key Concept 7.3.

7.6 Analysis of the Test Score Data Set

This section presents an analysis of the effect on test scores of the student-teacher
ratio using the California data set. This analysis illustrates how multiple regression
analysis can be used to mitigate omitted variable bias. It also shows how to use a table
to summarize regression results.



7.6 Analysis of the Test Score Data Set 263

R? and R?: What They Tell You—and What They Don't
The R* and R? tell you whether the regressors are good at predicting, or 73
“explaining,” the values of the dependent variable in the sample of data on hand.

If the R? (or R?) is nearly 1, then the regressors produce good predictions of

the dependent variable in that sample in the sense that the variance of the OLS

residual is small compared to the variance of the dependent variable. If the R? (or

R?) is nearly 0, the opposite is true.

The R* and R? do NOT tell you whether
1. An included variable is statistically significant,
2. The regressors are a true cause of the dependent variable,
3. There is omitted variable bias, or

4. You have chosen the most appropriate set of regressors.

Discussion of the base and alternative specifications. This analysis focuses on esti-
mating the effect on test scores of a change in the student—teacher ratio, controlling
for factors that otherwise could lead to omitted variable bias. Many factors poten-
tially affect the average test score in a district. Some of these factors are correlated
with the student-teacher ratio, so omitting them from the regression results in omit-
ted variable bias. Because these factors, such as outside learning opportunities, are
not directly measured, we include control variables that are correlated with these
omitted factors. If the control variables are adequate in the sense that the conditional
mean independence assumption holds, then the coefficient on the student-teacher
ratio is the effect of a change in the student-teacher ratio, holding constant these
other factors. Said differently, our aim is to include control variables such that, once
they are held constant, the student-teacher ratio is as-if randomly assigned.

Here we consider three variables that control for background characteristics of
the students that could affect test scores: the fraction of students who are still learn-
ing English, the percentage of students who are eligible to receive a subsidized or
free lunch at school, and a new variable, the percentage of students in the district
whose families qualify for a California income assistance program. Eligibility for this
income assistance program depends in part on family income, with a higher (stricter)
threshold than the subsidized lunch program. The final two variables thus are differ-
ent measures of the fraction of economically disadvantaged children in the district
(their correlation coefficient is 0.74). Theory and expert judgment do not tell us
which of these two variables to use to control for determinants of test scores related
to economic background. For our base specification, we use the percentage eligible
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for a subsidized lunch, but we also consider an alternative specification that uses the
fraction eligible for the income assistance program.

Scatterplots of tests scores and these variables are presented in Figure 7.2. Each
of these variables exhibits a negative correlation with test scores. The correlation
between test scores and the percentage of English learners is —0.64, between test
scores and the percentage eligible for a subsidized lunch is —0.87, and between test
scores and the percentage qualifying for income assistance is —0.63.

What scale should we use for the regressors? A practical question that arises in
regression analysis is what scale you should use for the regressors. In Figure 7.2, the
units of the variables are percentages, so the maximum possible range of the data is
0to 100. Alternatively, we could have defined these variables to be a decimal fraction
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rather than a percentage; for example, PctEL could be replaced by the fraction of
English learners, FracEL(= PctEL/100), which would range between 0 and 1
instead of between 0 and 100. More generally, in regression analysis some decision
usually needs to be made about the scale of both the dependent and the independent
variables. How, then, should you choose the scale, or units, of the variables?

The general answer to the question of choosing the scale of the variables is to
make the regression results easy to read and to interpret. In the test score application,
the natural unit for the dependent variable is the score of the test itself. In the regres-
sion of TestScore on STR and PctEL reported in Equation (7.5), the coefficient on
PctEL is —0.650. If instead the regressor had been FracEL, the regression would
have had an identical R* and SER; however, the coefficient on FracEL would have
been —65.0. In the specification with PctEL, the coefficient is the predicted change
in test scores for a 1-percentage-point increase in English learners, holding STR con-
stant; in the specification with FracEL, the coefficient is the predicted change in test
scores for an increase by 1 in the fraction of English learners—that is, for a
100-percentage-point-increase —holding S7TR constant. Although these two specifi-
cations are mathematically equivalent, for the purposes of interpretation the one
with PctEL seems, to us, more natural.

Another consideration when deciding on a scale is to choose the units of the
regressors so that the resulting regression coefficients are easy to read. For example,
if a regressor is measured in dollars and has a coefficient of 0.00000356, it is easier
to read if the regressor is converted to millions of dollars and the coefficient 3.56 is
reported.

Tabular presentation of result. We are now faced with a communication problem.
What is the best way to show the results from several multiple regressions that con-
tain different subsets of the possible regressors? So far, we have presented regression
results by writing out the estimated regression equations, as in Equations (7.6) and
(7.19).This works well when there are only a few regressors and only a few equations,
but with more regressors and equations, this method of presentation can be confus-
ing. A better way to communicate the results of several regressions is in a table.

Table 7.1 summarizes the results of regressions of the test score on various sets
of regressors. Each column presents a separate regression. Each regression has the
same dependent variable, test score. The first row reports statistics that provide infor-
mation about the causal effect of interest, the effect of the student—teacher ratio on
test scores. The first entry is the OLS estimate, below which is its standard error (in
parentheses). Below the standard error in brackets is a 95% confidence interval for
the population coefficient. Although a reader could take out his or her calculator and
compute the confidence interval from the estimate and its standard error, doing so is
inconvenient, so the table provides this information for the reader. A reader inter-
ested in testing the null hypothesis that the coefficient takes on some particular
value, for example 0, at the 5% significance level can do so by checking whether that
value is included in the 95% confidence interval.
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P
Lr.\:18y A B Results of Regressions of Test Scores on the Student-Teacher Ratio and Student
Characteristic Control Variables Using California Elementary School Districts

Dependent variable: average test score in the district.

Regressor (1) (2) (3) (4) (5)
Student-teacher ratio (X;) —2.28 -1.10 —1.00 -1.31 —1.01
(0.52) (0.43) (0.27) (0.34) (0.27)

[~3.30,-1.26] [~1.95,—025] [~1.53,-047] [~197, —0.64] [~1.54,—0.49]

Control variables

Percentage English learners (X;) —0.650 —0.122 —0.488 —0.130
(0.031) (0.033) (0.030) (0.036)
Percentage eligible for subsidized —0.547 —0.529
lunch (X3) (0.024) (0.038)
Percentage qualifying for income —0.790 0.048
assistance (X}) (0.068) (0.059)
Intercept 698.9 686.0 700.2 698.0 700.4
(10.4) (8.7) (5.6) (6.9) (5.5)
Summary Statistics
SER 18.58 14.46 9.08 11.65 9.08
R? 0.049 0.424 0.773 0.626 0.773
n 420 420 420 420 420

These regressions were estimated using the data on K-8 school districts in California, described in Appendix 4.1. Heteroskedasticity-
robust standard errors are given in parentheses under coefficients. For the variable of interest, the student-teacher ratio, the 95%
confidence interval is given in brackets below the standard error.

\ J

The remaining variables are control variables and the constant term (intercept);
for these, only the OLS estimate and its standard error are reported. Because the
coefficients on the control variables do not, in general, have a causal interpretation,
these coefficient estimates are often of limited independent interest, so no confi-
dence interval is reported, although a reader who wants a confidence interval for one
of those coefficients can compute it using the information provided. In cases in which
there are many control variables, as there are in regressions later in this text, some-
times a table will report no information at all about their coefficients or standard
errors and will simply list the included control variables. Similarly, the value of the
intercept often is of limited interest, so it, too, might not be reported.

The final three rows contain summary statistics for the regression (the standard
error of the regression, SER, and the R?) and the sample size (which is the same for
all of the regressions, 420 observations).

All the information that we have presented so far in equation format appears in
this table. For example, consider the regression of the test score against the student—
teacher ratio, with no control variables. In equation form, this regression is

— —
TestScore = 698.9 — 2.28 X STR, R> = 0.049, SER = 18.58,n = 420. (7.21)
(10.4) (0.52)
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All this information appears in column (1) of Table 7.1. The estimated coefficient on
the student-teacher ratio (—2.28) appears in the first row of numerical entries, and
its standard error (0.52) appears in parentheses just below the estimated coefficient.
The table augments the information in Equation (7.21) by reporting the 95% confi-
dence interval. The intercept (698.9) and its standard error (10.4) are given in the row
labeled “Intercept.” (Sometimes you will see this row labeled “Constant” because, as
discussed in Section 6.2, the intercept can be viewed as the coefficient on a regressor
that is always equal to 1.) Similarly, the R? (0.049), the SER (18.58), and the sample
size n (420) appear in the final rows. The blank entries in the rows of the other regres-
sors indicate that those regressors are not included in this regression.

Although the table does not report f-statistics, they can be computed from the
information provided; for example, the ¢-statistic testing the hypothesis that the coef-
ficient on the student-teacher ratio in column (1) is 0 is —2.28/0.52 = —4.38. This
hypothesis is rejected at the 1% level.

Regressions that include the control variables measuring student characteristics
are reported in columns (2) through (5). Column (2), which reports the regression of
test scores on the student—teacher ratio and on the percentage of English learners,
was previously stated as Equation (7.5).

Column (3) presents the base specification, in which the regressors are the
student-teacher ratio and two control variables, the percentage of English learners
and the percentage of students eligible for a subsidized lunch.

Columns (4) and (5) present alternative specifications that examine the effect
of changes in the way the economic background of the students is measured. In
column (4), the percentage of students qualifying for income assistance is included
as a regressor, and in column (5), both of the economic background variables are
included.

Discussion of empirical results. These results suggest three conclusions:

1. Controlling for these student characteristics cuts the estimated effect of the
student—teacher ratio on test scores approximately in half. This estimated
effect is not very sensitive to which specific control variables are included in
the regression. In all cases, the hypothesis that the coefficient on the student—
teacher ratio is 0 can be rejected at the 5% level. In the four specifications with
control variables, regressions (2) through (5), reducing the student-teacher
ratio by one student per teacher is estimated to increase average test scores by
approximately 1 point, holding constant student characteristics.

2. The student characteristic variables are potent predictors of test scores. The
student-teacher ratio alone explains only a small fraction of the variation in
test scores: The R? in column (1) is 0.049. The R? jumps, however, when the
student characteristic variables are added. For example, the R? in the base
specification, regression (3), is 0.773. The signs of the coefficients on the stu-
dent demographic variables are consistent with the patterns seen in Figure 7.2:
Districts with many English learners and districts with many poor children
have lower test scores.
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3. In contrast to the other two control variables, the percentage qualifying for
income assistance appears to be redundant. As reported in regression (5),
adding it to regression (3) has a negligible effect on the estimated coefficient
on the student-teacher ratio or its standard error.

Conclusion

Chapter 6 began with a concern: In the regression of test scores against the student—
teacher ratio, omitted student characteristics that influence test scores might be
correlated with the student—teacher ratio in the district, and, if so, the student—teacher
ratio in the district would pick up the effect on test scores of these omitted student
characteristics. Thus the OLS estimator would have omitted variable bias. To mitigate
this potential omitted variable bias, we augmented the regression by including variables
that control for various student characteristics (the percentage of English learners and
two measures of student economic background). Doing so cuts the estimated effect of
a unit change in the student—teacher ratio in half, although it remains possible to reject
the null hypothesis that the population effect on test scores, holding these control
variables constant, is 0 at the 5% significance level. Because they eliminate omitted
variable bias arising from these student characteristics, these multiple regression
estimates, hypothesis tests, and confidence intervals are much more useful for advising
the superintendent than are the single-regressor estimates of Chapters 4 and 5.

The analysis in this and the preceding chapter has presumed that the population
regression function is linear in the regressors—that is, that the conditional expecta-
tion of Y; given the regressors is a straight line. There is, however, no particular reason
to think this is so. In fact, the effect of reducing the student-teacher ratio might be
quite different in districts with large classes than in districts that already have small
classes. If so, the population regression line is not linear in the X’s but rather is a
nonlinear function of the X’s. To extend our analysis to regression functions that are
nonlinear in the X’s, however, we need the tools developed in the next chapter.

Summary

1. Hypothesis tests and confidence intervals for a single regression coefficient
are carried out using essentially the same procedures used in the one-variable
linear regression model of Chapter 5. For example, a 95% confidence interval
for B, is given by B, + 1.96 SE([%).

2. Hypotheses involving more than one restriction on the coefficients are called
joint hypotheses. Joint hypotheses can be tested using an F-statistic.

3. Regression specification proceeds by first determining a base specification cho-
sen to address concern about omitted variable bias. The base specification can be
modified by including additional regressors that control for other potential sources
of omitted variable bias. Simply choosing the specification with the highest R* can
lead to regression models that do not estimate the causal effect of interest.
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Key Terms

restrictions (252) homoskedasticity-only F-statistic (256)
joint hypothesis (252) 95% confidence set (259)

F-statistic (253) base specification (261)

restricted regression (256) alternative specifications (261)
unrestricted regression (256) Bonferroni test (275)
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Review the Concepts

7.1 What is a joint hypothesis? Explain how an F-statistic is constructed to
test a joint hypothesis. What is the hypothesis that is tested by construct-
ing the overall regression F-statistic in the multiple regression model
Y, = By + BiXi; + BXo; + u;? Explain using the concepts of restricted and
unrestricted regressions. Why is it important for a researcher to have informa-
tion on the distribution of the error terms when implementing these tests?

7.2 Describe the recommended approach towards determining model specifica-
tion. How does the R? help in determining an appropriate model? Is the ideal
model the one with the highest R?? Should a regressor be included in the
model if it increases the model R*?

7.3 What is a control variable, and how does it differ from a variable of interest?
Looking at Table 7.1, for what factors are the control variables controlling?
Do coefficients on control variables measure causal effects? Explain.

Exercises

The first six exercises refer to the table of estimated regressions on page 270, com-
puted using data on employees in a developing country. The data set consists of
information on over 10,000 full-time, full-year workers. The highest educational
achievement for each worker is either a high school diploma or a bachelor’s degree.
The workers’ ages range from 25 to 40 years. The data set also contains information
on the region of the country where the person lives, gender, and age. For the purposes
of these exercises, let
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AWE = logarithm of average weekly earnings (in 2007 units)
High School = binary variable (1 if high school, 0 if less)
Male = binary variable (1 if male, 0 if female)

Age = (in years)

North = binary variable (1 if Region = North, 0 otherwise)
East = binary variable (1 if Region = East, 0 otherwise)
South = binary variable (1 if Region = South, 0 otherwise)
West = binary variable (1 if Region = West, 0 otherwise)

(Results of Regressions of Average Weekly Earnings on Gender and Education Binary Variables and
Other Characteristics Using 2007 Data from a Developing Country Survey

Dependent variable: log average weekly earnings (AWE).

Regressor (1) (2) (3)
High school graduate (X7) 0.352 0.373 0.371
(0.021) (0.021) (0.021)

Male (X;) 0.458 0.457 0.451
(0.021) (0.020) (0.020)

Age (X3) 0.011 0.011
(0.001) (0.001)

North (X;) 0.175
(0.037)

South (Xs) 0.103
(0.033)

East (X7) —0.102
(0.043)

Intercept 12.84 12.471 12.390
(0.018) (0.049) (0.057)

Summary Statistics and Joint Tests

F-statistic for regional effects = 0 21.87
SER 1.026 1.023 1.020
R? 0.0710 0.0761 0.0814
n 10973 10973 10973
A\ J

7.1 For each of the three regressions, add * (5% level) and ** (1% level) to the
table to indicate the statistical significance of the coefficients.
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Using the regression results in column (1):

a. [s the high school earnings difference estimated from this regression sta-
tistically significant at the 5% level? Construct a 95% confidence inter-
val of the difference.

b. Is the male—female earnings difference estimated from this regression
statistically significant at the 5% level? Construct a 95% confidence
interval for the difference.

Using the regression results in column (2):

a. Is age an important determinant of earnings? Use an appropriate statis-
tical test and/or confidence interval to explain your answer.

b. Suppose Alvo is a 30-year-old male college graduate, and Kal is a
40-year-old male college graduate. Construct a 95% confidence interval
for the expected difference between their earnings.

Using the regression results in column (3):

a. Are there any important regional differences? Use an appropriate
hypothesis test to explain your answer.

b. Juan is a 32-year-old male high school graduate from the North. Mel is
a 32-year-old male college graduate from the West. Ari is a 32-year-old
male college graduate from the East.

i. Construct a 95% confidence interval for the difference in expected
earnings between Juan and Mel.

ii. Explain how you would construct a 95% confidence interval for the
difference in expected earnings between Juan and Ari. (Hint: What
would happen if you included West and excluded East from the
regression?)

The regression shown in column (2) was estimated again, this time using data
from 1993 (5000 observations selected at random and converted into 2007
units using the Consumer Price Index). The results are

m = 9.32 + 0.301 High school + 0.562 Male + 0.011Age,
(0.20) (0.019) (0.047) (0.002)

SER = 1.25, R*> = 0.08

Comparing this regression to the regression for 2012 shown in column (2),
was there a statistically significant change in the coefficient on High school?

In all of the regressions in the previous Exercises, the coefficient of High
school is positive, large, and statistically significant. Do you believe this pro-
vides strong statistical evidence of the high returns to schooling in the labor
market?



272 CHAPTER7 Hypothesis Tests and Confidence Intervals in Multiple Regression

7.7 Question 6.5 reported the following regression (where standard errors have
been added):

Price = 109.7 + 0.567BDR + 26.9Bath + 0.239Hsize + 0.005Lsize
(22.1)  (1.23) (9.76) (0.021) (0.00072)

+0.1Age — 56.9Poor, R> = 0.85, SER = 4528.
(023)  (12.23)

a. Is the coefficient on BDR statistically significantly different from zero?

Typically, four-bedroom houses sell for more than three-bedroom houses.
Is this consistent with your answer to (a) and with the regression more
generally?

A homeowner purchases 2500 square feet from an adjacent lot. Con-
struct a 95% confident interval for the change in the value of her house.

Lot size is measured in square feet. Do you think that another scale
might be more appropriate? Why or why not?

The F-statistic for omitting BDR and Age from the regression is
F = 2.38. Are the coefficients on BDR and Age statistically different
from zero at the 10% level?

7.8 Referring to the Table on page 266 used for Exercises 71 to 7.6:

a. Construct the R? for each of the regressions.

d.

Show how to construct the homoskedasticity-only F-statistic for testing
Bs = Bs = Bs = 0in the regression shown in column (3). Is the statistic
significant at the 1% level?

Test B4 = Bs = B¢ = 0in the regression shown in column (3) using the
Bonferroni test discussed in Appendix 7.1.

Construct a 99% confidence interval for B, for the regression in column (3).

7.9 Consider the regression model Y; = By + B X;; + BXy; + u;. Use approach 2
from Section 7.3 to transform the regression so that you can use a #-statistic to test

a.
b.
c.

Bi = B

B +2B, =0.

By + B, = 1. (Hint: You must redefine the dependent variable in the
regression.)

7.10 Equations (7.13) and (7.14) show two formulas for the homoskedasticity-only

F-statistic. Show that the two formulas are equivalent.

Empirical Exercises

E7.1 Use the Birthweight_Smoking data set introduced in Empirical Exercise E5.3

to answer the following questions. To begin, run three regressions:
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(1) Birthweight on Smoker
(2) Birthweight on Smoker, Alcohol, and Nprevist
(3) Birthweight on Smoker, Alcohol, Nprevist, and Unmarried

a. What is the value of the estimated effect of smoking on birth weight in
each of the regressions?

b. Construct a 95% confidence interval for the effect of smoking on birth
weight, using each of the regressions.

c. Does the coefficient on Smoker in regression (1) suffer from omitted
variable bias? Explain.

d. Does the coefficient on Smoker in regression (2) suffer from omitted
variable bias? Explain.

e. Consider the coefficient on Unmarried in regression (3).
i. Construct a 95% confidence interval for the coefficient.
ii. Is the coefficient statistically significant? Explain.
iii. Is the magnitude of the coefficient large? Explain.

iv. A family advocacy group notes that the large coefficient suggests
that public policies that encourage marriage will lead, on average, to
healthier babies. Do you agree? (Hint: Review the discussion of con-
trol variables in Section 6.8. Discuss some of the various factors that
Unmarried may be controlling for and how this affects the interpreta-
tion of its coefficient.)

f. Consider the various other control variables in the data set. Which do you
think should be included in the regression? Using a table like Table 7.1, exam-
ine the robustness of the confidence interval you constructed in (b). What is a
reasonable 95% confidence interval for the effect of smoking on birth weight?

E7.2 In the empirical exercises on earning and height in Chapters 4 and 5, you
estimated a relatively large and statistically significant effect of a worker’s
height on his or her earnings. One explanation for this result is omitted vari-
able bias: Height is correlated with an omitted factor that affects earnings.
For example, Case and Paxson (2008) suggest that cognitive ability (or intel-
ligence) is the omitted factor. The mechanism they describe is straightforward:
Poor nutrition and other harmful environmental factors in utero and in early
childhood have, on average, deleterious effects on both cognitive and physi-
cal development. Cognitive ability affects earnings later in life and thus is an
omitted variable in the regression.

a. Suppose that the mechanism described above is correct. Explain how
this leads to omitted variable bias in the OLS regression of Earnings
on Height. Does the bias lead the estimated slope to be too large or too
small? [Hint: Review Equation (6.1).]
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If the mechanism described above is correct, the estimated effect of height
on earnings should disappear if a variable measuring cognitive ability is
included in the regression. Unfortunately, there isn’t a direct measure of cogni-
tive ability in the data set, but the data set does include years of education for
each individual. Because students with higher cognitive ability are more likely
to attend school longer, years of education might serve as a control variable for
cognitive ability; in this case, including education in the regression will elimi-
nate, or at least attenuate, the omitted variable bias problem.

Use the years of education variable (educ) to construct four indicator
variables for whether a worker has less than a high school diploma
(LT_HS = 1if educ < 12,0 otherwise), a high school diploma (HS = 1 if
educ = 12,0 otherwise), some college (Some_Col = 1if 12 < educ < 16,0
otherwise), or a bachelor’s degree or higher (College = 1 if educ = 16, 0
otherwise).

b. Focusing first on women only, run a regression of (1) Earnings on Height
and (2) Earnings on Height, including LT _HS, HS, and Some_Col as
control variables.

i. Compare the estimated coefficient on Height in regressions (1) and
(2).Is there a large change in the coefficient? Has it changed in a way
consistent with the cognitive ability explanation? Explain.

ii. The regression omits the control variable College. Why?

iii. Test the joint null hypothesis that the coefficients on the education
variables are equal to 0.

iv. Discuss the values of the estimated coefficients on LT _HS, HS, and
Some_Col. (Each of the estimated coefficients is negative, and the
coefficient on LT _HS is more negative than the coefficient on HS,
which in turn is more negative than the coefficient on Some_Col.
Why? What do the coefficients measure?)

c. Repeat (b), using data for men.

APPENDIX

/.1 The Bonferroni Test of a Joint Hypothesis

The method of Section 7.2 is the preferred way to test joint hypotheses in multiple regression.
However, if the author of a study presents regression results but did not test a joint restriction
in which you are interested and if you do not have the original data, then you will not be able
to compute the F-statistic as in Section 7.2. This appendix describes a way to test joint hypoth-
eses that can be used when you have only a table of regression results. This method is an

application of a very general testing approach based on Bonferroni’s inequality.
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The Bonferroni test is a test of a joint hypothesis based on the ¢-statistics for the indi-
vidual hypotheses; that is, the Bonferroni test is the one-at-a-time #-statistic test of Section 7.2
done properly. The Bonferroni test of the joint null hypothesis 8; = B, and 3, = 3,, based
on the critical value ¢ > 0, uses the following rule:

Accept if |t = candif |t,| = c; otherwise, reject (7.22)
(Bonferroni one-at-a-time z-statistic test)

where #; and t, are the -statistics that test the restrictions on 3; and f3,, respectfully.

The trick is to choose the critical value ¢ in such a way that the probability that the one-
at-a-time test rejects when the null hypothesis is true is no more than the desired significance
level —say, 5%. This is done by using Bonferroni’s inequality to choose the critical value ¢ to
allow both for the fact that two restrictions are being tested and for any possible correlation
between t; and ¢,.

Bonferroni’s Inequality

Bonferroni’s inequality is a basic result of probability theory. Let A and B be events. Let
A B be the event “both A and B” (the intersection of A and B), and let AU B be the
event “A or B or both” (the union of A and B). Then Pr(AUB) = Pr(A) + Pr(B) —
Pr(ANB).Because Pr(A N B) = 0,it follows that Pr(AUB) = Pr(A) + Pr(B).' Now let
A be the event that |f;] > ¢ and B be the event that |t,| > c¢. Then the inequality
Pr(AUB) = Pr(A) + Pr(B) yields

Pr(|t;| > cor || > corboth) = Pr(|]| > ¢) + Pr(|6| > ). (7.23)

Bonferroni Tests

Because the event“|#;| > cor |t,| > cor both”is the rejection region of the one-at-a-time test,
Equation (7.23) leads to a valid critical value for the one-at-a-time test. Under the null hypoth-
esis in large samples, Pr(|t;| > ¢) = Pr(|t;| > ¢) = Pr(|Z]| > ¢). Thus Equation (7.23)
implies that in large samples the probability that the one-at-a-time test rejects under the null is

Pry; (one-at-a-time test rejects) = 2Pr(|Z| > ¢). (7.24)

The inequality in Equation (7.24) provides a way to choose a critical value ¢ so that the prob-
ability of the rejection under the null hypothesis equals the desired significance level. The
Bonferroni approach can be extended to more than two coefficients; if there are g restrictions
under the null, the factor of 2 on the right-hand side in Equation (7.24) is replaced by ¢.

This inequality can be used to derive other interesting inequalities. For example, it implies that
1—-Pr(AUB)=1-[Pr(A) + Pr(B)].Let Aand B°be the complements of A and B-thatis, the events
“not A” and “not B.” Because the complement of A U Bis A° (N B, 1 — Pr(A U B) = Pr(A° N BY),
which yields Bonferroni’s inequality, Pr(A° ( B) =1 — [Pr(A) + Pr(B)].
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Table 7.2 presents critical values ¢ for the one-at-a-time Bonferroni test for various sig-
nificance levels and ¢ = 2, 3, and 4. For example, suppose the desired significance level is 5%
and g = 2. According to Table 7.2, the critical value c is 2.241. This critical value is the 1.25
percentile of the standard normal distribution, so Pr(|Z| > 2.241) = 2.5%. Thus Equation
(7.24) tells us that in large samples the one-at-a-time test in Equation (7.22) will reject at most
5% of the time under the null hypothesis.

(- N\
17.\:18 3y Bonferroni Critical Values c for the One-at-a-Time t-Statistic Test
of a Joint Hypothesis
Significance Level
Number of Restrictions (q) 10% 5% 1%
2 1.960 2.241 2.807
3 2.128 2.394 2.935
4 2.241 2.498 3.023
G J

The critical values in Table 7.2 are larger than the critical values for testing a single restric-
tion. For example, with ¢ = 2, the one-at-a-time test rejects if at least one f-statistic exceeds
2.241 in absolute value. This critical value is greater than 1.96 because it properly corrects for
the fact that, by looking at two t-statistics, you get a second chance to reject the joint null
hypothesis, as discussed in Section 7.2.

If the individual #-statistics are based on heteroskedasticity-robust standard errors, then
the Bonferroni test is valid whether or not there is heteroskedasticity, but if the #-statistics are
based on homoskedasticity-only standard errors, the Bonferroni test is valid only under

homoskedasticity.

Application to Test Scores

The t-statistics testing the joint null hypothesis that the true coefficients on test scores and
expenditures per pupil in Equation (7.6) are, respectively,z; = —0.60 and t, = 2.43. Although
|t1] < 2.241, because |t,| > 2.241 we can reject the joint null hypothesis at the 5% signifi-
cance level using the Bonferroni test. However, both ¢ and ¢, are less than 2.807 in absolute
value, so we cannot reject the joint null hypothesis at the 1% significance level using the Bon-
ferroni test. In contrast, using the F-statistic in Section 7.2, we were able to reject this hypoth-
esis at the 1% significance level.
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I n Chapters 4 through 7, the population regression function was assumed to be linear;
that is, it has a constant slope. In the context of causal inference, this constant slope
corresponds to the effect on Y of a unit change in X being the same for all values of the
regressors. But what if the effect on Y of a change in X in fact depends on the value of
one or more of the regressors? If so, the population regression function is nonlinear.
This chapter develops two groups of methods for detecting and modeling nonlinear
population regression functions. The methods in the first group are useful when the rela-
tionship between Y and an independent variable, X7, depends on the value of X; itself.
For example, reducing class sizes by one student per teacher might have a greater effect
if class sizes are already manageably small than if they are so large that the teacher can
do little more than keep the class under control. If so, the test score (Y) is a nonlinear
function of the student-teacher ratio (X;), where this function is steeper when X; is small.
An example of a nonlinear regression function with this feature is shown in Figure 8.1.
Whereas the linear population regression function in Figure 8.1(a) has a constant slope,
the nonlinear population regression function in Figure 8.1(b) has a steeper slope when
Xy is small than when it is large. This first group of methods is presented in Section 8.2.
The methods in the second group are useful when the effect on Y of a change
in X; depends on the value of another independent variable—say, X,. For example,
students still learning English might especially benefit from having more one-on-one
attention; if so, the effect on test scores of reducing the student-teacher ratio will be
greater in districts with many students still learning English than in districts with few
English learners. In this example, the effect on test scores (Y) of a reduction in the
student-teacher ratio (X;) depends on the percentage of English learners in the
district (X;). As shown in Figure 8.1(c), the slope of this type of population regression func-
tion depends on the value of X,. This second group of methods is presented in Section 8.3.
In the models of Sections 8.2 and 8.3, the population regression function is a nonlinear
function of the independent variables. Although they are nonlinear in the X’s, these models
are linear functions of the unknown coefficients (or parameters) of the population regression
model and thus are versions of the multiple regression model of Chapters 6 and 7. Therefore,
the unknown parameters of these nonlinear regression functions can be estimated and
tested using OLS and the methods of Chapters 6 and 7. In some applications, the regression
function is a nonlinear function of the X's and of the parameters. If so, the parameters cannot
be estimated by OLS, but they can be estimated using nonlinear least squares. Appendix 8.1
provides examples of such functions and describes the nonlinear least squares estimator.
Sections 8.1 and 8.2 introduce nonlinear regression functions in the context of
regression with a single independent variable, and Section 8.3 extends this to two
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s N

m Population Regression Functions with Different Slopes

Y Y

Rise
Rise Run
Run
Rise
Run
X1 Xl
(a) Constant slope (b) Slope depends on the value of X;
Y
Rise Population regression
function when X, = 1
Rise
Population regression function when X, = 0
X

(c) Slope depends on the value of X,
In Figure 8.1(a), the population regression function has a constant slope. In Figure 8.1(b), the slope of the popula-
tion regression function depends on the value of X. In Figure 8.1(c), the slope of the population regression function
depends on the value of Xj.

\ J

independent variables. To keep things simple, additional regressors are omitted in the
empirical examples of Sections 8.1 through 8.3. In practice, however, if the aim is to
use the nonlinear model to estimate causal effects, it remains important to control
for omitted factors by including control variables as well. In Section 8.4, we combine
nonlinear regression functions and additional control variables when we take a close
look at possible nonlinearities in the relationship between test scores and the
student-teacher ratio, holding student characteristics constant.

The aim of this chapter is to explain the main methods for modeling nonlinear
regression functions. In Sections 8.1-8.3, we assume that the least squares assumptions
for causal inference in multiple regression (Key Concept 6.4) hold, modified for a
nonlinear regression function. Under those assumptions, the slopes of the nonlinear
regression functions can be interpreted as causal effects. The methods of this chapter
also can be used to model nonlinear population regression functions when some of
the regressors are control variables (the assumptions in Key Concept 6.6) and when
these functions are used for prediction (the assumptions in Appendix 6.4).



