Review of Probability

his chapter reviews the core ideas of the theory of probability that are needed to

understand regression analysis and econometrics. We assume that you have taken
an introductory course in probability and statistics. If your knowledge of probability is
stale, you should refresh it by reading this chapter. If you feel confident with the mate-
rial, you still should skim the chapter and the terms and concepts at the end to make
sure you are familiar with the ideas and notation.

Most aspects of the world around us have an element of randomness. The theory
of probability provides mathematical tools for quantifying and describing this random-
ness. Section 2.1 reviews probability distributions for a single random variable, and
Section 2.2 covers the mathematical expectation, mean, and variance of a single ran-
dom variable. Most of the interesting problems in economics involve more than one
variable, and Section 2.3 introduces the basic elements of probability theory for two
random variables. Section 2.4 discusses three special probability distributions that
play a central role in statistics and econometrics: the normal, chi-squared, and
F distributions.

The final two sections of this chapter focus on a specific source of randomness of
central importance in econometrics: the randomness that arises by randomly drawing
a sample of data from a larger population. For example, suppose you survey ten recent
college graduates selected at random, record (or “observe”) their earnings, and com-
pute the average earnings using these ten data points (or “observations”). Because you
chose the sample at random, you could have chosen ten different graduates by pure
random chance; had you done so, you would have observed ten different earnings,
and you would have computed a different sample average. Because the average earn-
ings vary from one randomly chosen sample to the next, the sample average is itself a
random variable. Therefore, the sample average has a probability distribution, which is
referred to as its sampling distribution because this distribution describes the different
possible values of the sample average that would have occurred had a different sample
been drawn.

Section 2.5 discusses random sampling and the sampling distribution of the sam-
ple average. This sampling distribution is, in general, complicated. When the sample
size is sufficiently large, however, the sampling distribution of the sample average is
approximately normal, a result known as the central limit theorem, which is discussed
in Section 2.6.
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2.1

Random Variables and Probability
Distributions

Probabilities, the Sample Space, and Random Variables

Probabilities and outcomes. The sex of the next new person you meet, your grade
on an exam, and the number of times your wireless network connection fails while
you are writing a term paper all have an element of chance or randomness. In each
of these examples, there is something not yet known that is eventually revealed.

The mutually exclusive potential results of a random process are called the
outcomes. For example, while writing your term paper, the wireless connection might
never fail, it might fail once, it might fail twice, and so on. Only one of these outcomes
will actually occur (the outcomes are mutually exclusive), and the outcomes need not
be equally likely.

The probability of an outcome is the proportion of the time that the outcome
occurs in the long run. If the probability of your wireless connection not failing while
you are writing a term paper is 80%, then over the course of writing many term
papers, you will complete 80% without a wireless connection failure.

The sample space and events. The set of all possible outcomes is called the sample
space. An event is a subset of the sample space; that is,an event is a set of one or more
outcomes. The event “my wireless connection will fail no more than once” is the set
consisting of two outcomes: “no failures” and “one failure.”

Random variables. A random variable is a numerical summary of a random out-
come. The number of times your wireless connection fails while you are writing a
term paper is random and takes on a numerical value, so it is a random variable.
Some random variables are discrete and some are continuous. As their names sug-
gest, a discrete random variable takes on only a discrete set of values, like 0,1,2, .. .,
whereas a continuous random variable takes on a continuum of possible values.

Probability Distribution of a Discrete Random Variable

Probability distribution. The probability distribution of a discrete random variable
is the list of all possible values of the variable and the probability that each value will
occur. These probabilities sum to 1.

For example, let M be the number of times your wireless network connection
fails while you are writing a term paper. The probability distribution of the random
variable M is the list of probabilities of all possible outcomes: The probability that
M = 0, denoted Pr(M = 0), is the probability of no wireless connection failures;
Pr(M = 1) is the probability of a single connection failure; and so forth. An example
of a probability distribution for M is given in the first row of Table 2.1. According to
this distribution, the probability of no connection failures is 80%; the probability of
one failure is 10%; and the probabilities of two, three, and four failures are,
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(4 ope . . oge . \
L.\:I1 PR Probability of Your Wireless Network Connection Failing M Times
Outcome (number of failures)
0 1 2 3 4

Probability distribution 0.80 0.10 0.06 0.03 0.01

\Cumulative probability distribution 0.80 0.90 0.96 0.99 1.00
J

respectively, 6%, 3%, and 1%. These probabilities sum to 100%. This probability
distribution is plotted in Figure 2.1.

Probabilities of events. The probability of an event can be computed from the prob-
ability distribution. For example, the probability of the event of one or two failures
is the sum of the probabilities of the constituent outcomes. That is,
Pr(M=1lorM=2)=Pr(M=1) + Pr(M=2)=0.10 + 0.06 = 0.16, or 16%.

Cumulative probability distribution. The cumulative probability distribution is the
probability that the random variable is less than or equal to a particular value. The final
row of Table 2.1 gives the cumulative probability distribution of the random variable M.
For example, the probability of at most one connection failure, Pr (M =< 1),is 90%,
which is the sum of the probabilities of no failures (80% ) and of one failure (10%).

A cumulative probability distribution is also referred to as a cumulative distribu-
tion function, a c.d.f., or a cumulative distribution.

The height of each bar is the probability that the Probability

P
m Probability Distribution of the Number of Wireless Network Connection Failures

wireless connection fails the indicated number of 0.8
times. The height of the first bar is 0.8, so the prob-
ability of 0 connection failures is 80%. The height 07 F
of the second bar is 0.1, so the probability of
1 failure is 10%, and so forth for the other bars. 0.6
0.5
0.4
0.3
0.2~
0.1+ .
0 1 2 3 4

Number of failures
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The Bernoulli distribution. An important special case of a discrete random variable
is when the random variable is binary; that is, the outcome is 0 or 1. A binary random
variable is called a Bernoulli random variable (in honor of the 17th-century Swiss
mathematician and scientist Jacob Bernoulli), and its probability distribution is
called the Bernoulli distribution.

For example, let G be the sex of the next new person you meet, where G = 0
indicates that the person is male and G = 1 indicates that the person is female. The
outcomes of G and their probabilities thus are

{1 with probability p
= . . (2.1)
0 with probability 1 — p,

where p is the probability of the next new person you meet being a woman. The prob-
ability distribution in Equation (2.1) is the Bernoulli distribution.

Probability Distribution of a Continuous
Random Variable

Cumulative probability distribution. The cumulative probability distribution for a
continuous variable is defined just as it is for a discrete random variable. That is, the
cumulative probability distribution of a continuous random variable is the probabil-
ity that the random variable is less than or equal to a particular value.

For example, consider a student who drives from home to school. This student’s
commuting time can take on a continuum of values, and because it depends on ran-
dom factors such as the weather and traffic conditions, it is natural to treat it as a
continuous random variable. Figure 2.2a plots a hypothetical cumulative distribution
of commuting times. For example, the probability that the commute takes less than
15 minutes is 20%, and the probability that it takes less than 20 minutes is 78%.

Probability density function. Because a continuous random variable can take on a con-
tinuum of possible values, the probability distribution used for discrete variables, which
lists the probability of each possible value of the random variable, is not suitable for
continuous variables. Instead, the probability is summarized by the probability density
function. The area under the probability density function between any two points is the
probability that the random variable falls between those two points. A probability
density function is also called a p.d.f., a density function, or simply a density.

Figure 2.2b plots the probability density function of commuting times corre-
sponding to the cumulative distribution in Figure 2.2a. The probability that the com-
mute takes between 15 and 20 minutes is given by the area under the p.d.f. between
15 minutes and 20 minutes, which is 0.58, or 58%. Equivalently, this probability can
be seen on the cumulative distribution in Figure 2.2a as the difference between the
probability that the commute is less than 20 minutes (78% ) and the probability that
it is less than 15 minutes (20% ). Thus the probability density function and the cumu-
lative probability distribution show the same information in different formats.
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~
m Cumulative Probability Distribution and Probability Density Functions
of Commuting Time

Probability
1.0 Pr (Commuting time = 20) = 0.78
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(a) Cumulative probability distribution function of commuting times

Probability density
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Pr (Commuting time > 20) = 0.22
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(b) Probability density function of commuting times

Figure 2.2b shows the probability density function (or p.d.f.) of commuting times. Probabilities are given by areas

area under the curve between 15 and 20 minutes.

Figure 2.2a shows the cumulative probability distribution function (c.d.f.) of commuting times. The probability that a
commuting time is less than 15 minutes is 0.20 (or 20%), and the probability that it is less than 20 minutes is 0.78 (78%).

under the p.d.f. The probability that a commuting time is between 15 and 20 minutes is 0.58 (58%) and is given by the
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2.2

2.1

Expected Values, Mean, and Variance

The Expected Value of a Random Variable

Expected value. The expected value of a random variable Y, denoted E(Y), is the
long-run average value of the random variable over many repeated trials or occur-
rences. The expected value of a discrete random variable is computed as a weighted
average of the possible outcomes of that random variable, where the weights are the
probabilities of that outcome. The expected value of Y is also called the expectation
of Y or the mean of Y and is denoted wy.

For example, suppose you loan a friend $100 at 10% interest. If the loan is repaid,
you get $110 (the principal of $100 plus interest of $10), but there is a risk of 1% that
your friend will default and you will get nothing at all. Thus the amount you are
repaid is a random variable that equals $110 with probability 0.99 and equals $0 with
probability 0.01. Over many such loans, 99% of the time you would be paid back
$110, but 1% of the time you would get nothing, so on average you would be repaid
$110 x 0.99 + $0 X 0.01 = $108.90. Thus the expected value of your repayment is
$108.90.

As a second example, consider the number of wireless network connection failures
M with the probability distribution given in Table 2.1. The expected value of M —that
is, the mean of M —is the average number of failures over many term papers, weighted
by the frequency with which a given number of failures occurs. Accordingly,

E(M)=0x0.80+1x010+2Xx0.06 +3x003+4x001 =035 (22)

That is, the expected number of connection failures while writing a term paper is 0.35.
Of course, the actual number of failures must always be an integer; it makes no sense
to say that the wireless connection failed 0.35 times while writing a particular term
paper! Rather, the calculation in Equation (2.2) means that the average number of
failures over many such term papers is 0.35.

The formula for the expected value of a discrete random variable Y that can take
on k different values is given in Key Concept 2.1. (Key Concept 2.1 uses summation
notation, which is reviewed in Exercise 2.25.)

Expected Value and the Mean

Suppose that the random variable Y takes on k possible values, y;, ..., y;, where
y;1 denotes the first value, y, denotes the second value, and so forth, and that the
probability that Y takes on y, is p;, the probability that Y takes on y; is p,, and so
forth. The expected value of Y, denoted E(Y), is

k
E(Y) =yipr + yopy + -+ + yiDi = ;)ﬁpi, (2.3)

where the notation Ef-‘: 1v;p; means “the sum of y;p; for i running from 1 to k.”
The expected value of Y is also called the mean of Y or the expectation of Y and
is denoted wy.



2.2 Expected Values, Mean, and Variance 61

Expected value of a Bernoulli random variable. An important special case of the
general formula in Key Concept 2.1 is the mean of a Bernoulli random variable.
Let G be the Bernoulli random variable with the probability distribution in
Equation (2.1). The expected value of G is

E(G)=0X (1-p)+1Xp=p. (2.4)

Thus the expected value of a Bernoulli random variable is p, the probability that it
takes on the value 1.

Expected value of a continuous random variable. The expected value of a continu-
ous random variable is also the probability-weighted average of the possible out-
comes of the random variable. Because a continuous random variable can take on a
continuum of possible values, the formal mathematical definition of its expectation
involves calculus and its definition is given in Appendix 18.1.

The Standard Deviation and Variance

The variance and standard deviation measure the dispersion or the “spread” of a
probability distribution. The variance of a random variable Y, denoted var(Y), is the
expected value of the square of the deviation of Y from its mean: var (Y) =
E[(Y - IU«Y)Z]-

Because the variance involves the square of Y, the units of the variance are the
units of the square of Y, which makes the variance awkward to interpret. It is there-
fore common to measure the spread by the standard deviation, which is the square
root of the variance and is denoted oy. The standard deviation has the same units

as Y. These definitions are summarized in Key Concept 2.2.
For example, the variance of the number of connection failures M is the

probability-weighted average of the squared difference between M and its mean, 0.35:

var (M) = (0 — 0.35)2 % 0.80 + (1 — 0.35)2 X 0.10 + (2 — 0.35)2 X 0.06
+ (3= 035)%2 % 0.03 + (4 — 035)2 X 0.01 = 0.6475. (2.5)

The standard deviation of M is the square root of the variance, so oy =

V0.64750 = 0.80.

Variance and Standard Deviation

The variance of the discrete random variable Y, denoted o%/, is

k
oy =var(Y) = E[(Y = uy)?] = > (3 = »y) P (2.6)

=

The standard deviation of Y is oy, the square root of the variance. The units of the
standard deviation are the same as the units of Y.

2.2
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Variance of a Bernoulli random variable. The mean of the Bernoulli random vari-
able G with the probability distribution in Equation (2.1) is ug = p [Equation (2.4)],
s0 its variance is

var(G) = o= (0-p)? X (1=p) + (1 =p)*xXp=p(1-p). @7)
Thus the standard deviation of a Bernoulli random variable is o0 = Vp(1 — p).

Mean and Variance of a Linear Function
of a Random Variable

This section discusses random variables (say, X and Y) that are related by a linear func-
tion. For example, consider an income tax scheme under which a worker is taxed at a rate
of 20% on his or her earnings and then given a (tax-free) grant of $2000. Under this tax
scheme, after-tax earnings Y are related to pre-tax earnings X by the equation

Y = 2000 + 0.8X. (2.8)

That is, after-tax earnings Y is 80% of pre-tax earnings X, plus $2000.

Suppose an individual’s pre-tax earnings next year are a random variable with
mean uy and variance o%. Because pre-tax earnings are random, so are after-tax
earnings. What are the mean and standard deviations of her after-tax earnings under
this tax? After taxes, her earnings are 80% of the original pre-tax earnings, plus
$2000. Thus the expected value of her after-tax earnings is

E(Y) = py = 2000 + 0.8uy. (2.9)

The variance of after-tax earnings is the expected value of (Y — uy)2 Because
Y = 2000 + 0.8X, Y — uy = 2000 + 0.8X — (2000 + 0.8uy) = 0.8(X — ux).
Thus E[ (Y — py)?] = E{[0.8(X — uy)]*} = 0.64E[ (X — wy)?].It follows that
var(Y) = 0.64var(X),so, taking the square root of the variance, the standard devia-
tion of Y'is

Oy = O.SO'X. (210)

That is, the standard deviation of the distribution of her after-tax earnings is 80% of
the standard deviation of the distribution of her pre-tax earnings.

This analysis can be generalized so that Y depends on X with an intercept a
(instead of $2000) and a slope b (instead of 0.8) so that

Y=a+ bX. (2.11)

Then the mean and variance of Y are
Mmy = a + buy and (2.12)
o} = b*o%, (2.13)

and the standard deviation of Yis oy = boy. The expressions in Equations (2.9) and
(2.10) are applications of the more general formulas in Equations (2.12) and (2.13)
with a = 2000 and b = 0.8.
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Other Measures of the Shape of a Distribution

The mean and standard deviation measure two important features of a distribution:
its center (the mean) and its spread (the standard deviation). This section discusses
measures of two other features of a distribution: the skewness, which measures the
lack of symmetry of a distribution, and the kurtosis, which measures how thick, or
“heavy,” are its tails. The mean, variance, skewness, and kurtosis are all based on what
are called the moments of a distribution.

Skewness. Figure 2.3 plots four distributions, two that are symmetric (Figures 2.3a
and 2.3b) and two that are not (Figures 2.3c and 2.3d). Visually, the distribution in
Figure 2.3d appears to deviate more from symmetry than does the distribution in

- N
m Four Distributions with Different Skewness and Kurtosis
05r 0.6
0.4+ 03
0.4
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0.3
02F
0.2
01 0.1
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—4 -3 2 -1 0 1 2 3 4 —4 -3 2 -1 0 1 2 3 4
(a) Skewness = 0, kurtosis = 3 (b) Skewness = 0, kurtosis = 20
05r 1.0
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021 0.4F
03F
0.1F 0.2F
0.1F
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(c) Skewness = —0.1, kurtosis = 5 (d) Skewness = 0.6, kurtosis = 5
All of these distributions have a mean of 0 and a variance of 1. The distributions with skewness of 0 (a and b) are
symmetric; the distributions with nonzero skewness (c and d) are not symmetric. The distributions with kurtosis
exceeding 3 (b, ¢, and d) have heavy tails.

A\ J
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Figure 2.3c. The skewness of a distribution provides a mathematical way to describe
how much a distribution deviates from symmetry.
The skewness of the distribution of a random variable Y is

E[(Y = py)°]

b
Ty

Skewness = (2.14)

where oy is the standard deviation of Y. For a symmetric distribution, a value of Y a
given amount above its mean is just as likely as a value of Y the same amount below
its mean. If so, then positive values of (Y — wuy)> will be offset on average (in expec-
tation) by equally likely negative values. Thus, for a symmetric distribution,
E(Y — wy)? = 0:The skewness of a symmetric distribution is 0. If a distribution is
not symmetric, then a positive value of (Y — uy)? generally is not offset on average
by an equally likely negative value, so the skewness is nonzero for a distribution that
is not symmetric. Dividing by o3 in the denominator of Equation (2.14) cancels the
units of Y? in the numerator, so the skewness is unit free; in other words, changing
the units of Y does not change its skewness.

Below each of the four distributions in Figure 2.3 is its skewness. If a distribution has
a long right tail, positive values of (Y — uy)? are not fully offset by negative values, and
the skewness is positive. If a distribution has a long left tail, its skewness is negative.

Kurtosis. The kurtosis of a distribution is a measure of how much mass is in its tails
and therefore is a measure of how much of the variance of Y arises from extreme
values. An extreme value of Y is called an outlier. The greater the kurtosis of a dis-
tribution, the more likely are outliers.

The kurtosis of the distribution of Y is

E[(Y_IJ«Y)“].

Ty

Kurtosis = (2.15)

If a distribution has a large amount of mass in its tails, then some extreme departures
of Y from its mean are likely, and these departures will lead to large values, on aver-
age (in expectation), of (Y — uy)* Thus, for a distribution with a large amount of
mass in its tails, the kurtosis will be large. Because (Y — uy)* cannot be negative, the
kurtosis cannot be negative.

The kurtosis of a normally distributed random variable is 3, so a random variable
with kurtosis exceeding 3 has more mass in its tails than a normal random variable.
A distribution with kurtosis exceeding 3 is called leptokurtic or, more simply, heavy-
tailed. Like skewness, the kurtosis is unit free, so changing the units of Y does not
change its kurtosis.

Below each of the four distributions in Figure 2.3 is its kurtosis. The distributions
in Figures 2.3b—d are heavy-tailed.

Moments. The mean of Y, E(Y),is also called the first moment of Y, and the expected
value of the square of Y, E( YZ), is called the second moment of Y. In general, the
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expected value of Y is called the ' moment of the random variable Y. That is, the '
moment of Y is E(Y"). The skewness is a function of the first, second, and third
moments of Y, and the kurtosis is a function of the first through fourth moments of Y.

Standardized Random Variables

A random variable can be transformed into a random variable with mean 0 and vari-
ance 1 by subtracting its mean and then dividing by its standard deviation, a process
called standardization. Specifically, let Y have mean w, and variance o%. Then the
standardized random variable computed from Yis (Y — uy)/oy. The mean of the
standardized random variable is E(Y — uy)/oy = (EY — py)/oy = 0, and its
variance is var [ (Y — uy) /oy] = var(Y)/o} = 1. Standardized random variables
do not have any units, such as dollars or meters, because the units of Y are canceled
by dividing through by oy, which also has the units of Y.

Two Random Variables

Most of the interesting questions in economics involve two or more variables. Are
college graduates more likely to have a job than nongraduates? How does the distri-
bution of income for women compare to that for men? These questions concern the
distribution of two random variables, considered together (education and employ-
ment status in the first example, income and sex in the second). Answering such
questions requires an understanding of the concepts of joint, marginal, and condi-
tional probability distributions.

Joint and Marginal Distributions

Joint distribution. The joint probability distribution of two discrete random variables,
say X and Y, is the probability that the random variables simultaneously take on cer-
tain values, say x and y. The probabilities of all possible (x, y) combinations sum to 1.
The joint probability distribution can be written as the function Pr(X = x, Y = y).

For example, weather conditions—whether or not it is raining —affect the com-
muting time of the student commuter in Section 2.1. Let Y be a binary random vari-
able that equals 1 if the commute is short (less than 20 minutes) and that equals 0
otherwise, and let X be a binary random variable that equals 0 if it is raining and 1 if
not. Between these two random variables, there are four possible outcomes: it rains
and the commute is long (X = 0, Y = 0);rain and short commute (X = 0, Y = 1);
no rain and long commute (X = 1, Y = 0); and no rain and short commute
(X =1, Y = 1). The joint probability distribution is the frequency with which each
of these four outcomes occurs over many repeated commutes.

An example of a joint distribution of these two variables is given in Table 2.2.
According to this distribution, over many commutes, 15% of the days have rain and
a long commute (X = 0, Y = 0); that is, the probability of a long rainy commute is
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P
10.\:] 13 » 3 Joint Distribution of Weather Conditions and Commuting Times
Rain (X = 0) No Rain (X = 1) Total
Long commute (Y = 0) 0.15 0.07 0.22
Short commute (Y = 1) 0.15 0.63 0.78
\Total 0.30 0.70 1.00 )

15%, or Pr(X =0, Y =0) = 0.15. Also, Pr(X =0, Y =1) = 0.15, Pr(X =1,
Y =0) =007, and Pr(X =1, Y = 1) = 0.63. These four possible outcomes
are mutually exclusive and constitute the sample space, so the four probabilities
sum to 1.

Marginal probability distribution. The marginal probability distribution of a ran-
dom variable Y'is just another name for its probability distribution. This term is used
to distinguish the distribution of Y alone (the marginal distribution) from the joint
distribution of Y and another random variable.

The marginal distribution of Y can be computed from the joint distribution of X
and Y by adding up the probabilities of all possible outcomes for which Y takes
on a specified value. If X can take on / different values xy, . . ., x;, then the marginal
probability that Y takes on the value y is

Pr(Y=y)= iPr(X =x,Y=y). (2.16)
i=1

For example, in Table 2.2, the probability of a long rainy commute is 15%, and the
probability of a long commute with no rain is 7%, so the probability of a long com-
mute (rainy or not) is 22%. The marginal distribution of commuting times is given in
the final column of Table 2.2. Similarly, the marginal probability that it will rain is
30%, as shown in the final row of Table 2.2.

Conditional Distributions

Conditional distribution. The distribution of a random variable Y conditional on
another random variable X taking on a specific value is called the conditional
distribution of Y given X. The conditional probability that Y takes on the value y
when X takes on the value x is written Pr(Y = y|X = x).

For example, what is the probability of a long commute (Y = 0) if you know it
is raining (X = 0)? From Table 2.2, the joint probability of a rainy short commute
is 15%, and the joint probability of a rainy long commute is 15%, so if it is raining,
a long commute and a short commute are equally likely. Thus the probability of a
long commute (Y = 0) conditional on it being rainy (X = 0) is 50%, or
Pr(Y = 0|X = 0) = 0.50. Equivalently, the marginal probability of rain is 30%;
that is, over many commutes, it rains 30% of the time. Of this 30% of commutes,
50% of the time the commute is long (0.15/0.30).
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( . g . . . . . \
L.\: 13 %3 Joint and Conditional Distributions of Number of Wireless Connection
Failures (M) and Network Age (A)
A. Joint Distribution
M=0 M=1 M=2 M=3 M=4 Total
Old network (A = 0) 0.35 0.065 0.05 0.025 0.01 0.50
New network (A = 1) 0.45 0.035 0.01 0.005 0.00 0.50
Total 0.80 0.10 0.06 0.03 0.01 1.00
B. Conditional Distributions of M given A
M=0 M=1 M=2 M=3 M=4 Total
Pr(M|A = 0) 0.70 0.13 0.10 0.05 0.02 1.00
Pr(M|A = 1) 0.90 0.07 0.02 0.01 0.00 1.00
A J
In general, the conditional distribution of Y given X = x is
Pr(X=x,Y=y)
Pr(Y=y|X=x) = (2.17)

Pr(X = x)

For example, the conditional probability of a long commute given that it is rainy
isPr(Y=0/X=0)=Pr(X=0,Y=0)/Pr(X=0) =0.15/0.30 = 0.50.
As a second example, consider a modification of the network connection failure

example. Suppose that half the time you write your term paper in the school library,

which has a new wireless network; otherwise, you write it in your room, which has an

old wireless network. If we treat the location where you write the term paper as

random, then the network age A ( = 1 if the network is new, = 0 if it is old) is a

random variable. Suppose the joint distribution of the random variables M and A is

given in Part A of Table 2.3. Then the conditional distributions of connection failures

given the age of the network are shown in Part B of the table. For example, the joint

probability of M = Oand A = 0is 0.35; because half the time you use the old network,

the conditional probability of no failures given that you use the old network is
Pr(M=0/A=0)=Pr(M=0,A=0)/Pr(A=0)=0.35/0.50 = 0.70,0r 70%.
In contrast, the conditional probability of no failures given that you use the new
network is 90%. According to the conditional distributions in Part B of Table 2.3, the
new network is less likely to fail than the old one; for example, the probability of

three failures is 5% using the old network but 1% using the new network.

Conditional expectation. The conditional expectation of Y given X, also called the

conditional mean of Y given X, is the mean of the conditional distribution of Y

given X. That is, the conditional expectation is the expected value of Y, computed

using the conditional distribution of Y given X. If Y takes on k values y, . . .

the conditional mean of Y given X = x is

k
E(Y|X = x) = SyPr(Y = ylX = x).
i=1

, Yk, then

(2.18)
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For example, based on the conditional distributions in Table 2.3, the expected
number of connection failures, given that the network is old, is E(M|A = 0) =
0x070 +1 X 013+2 x 0.10 + 3 X 0.05 + 4 X 0.02 = 0.56. The expected num-
ber of failures, given that the network is new,is E(M|A = 1) = 0.14, less than for the
old network.

The conditional expectation of Y given X = x is just the mean value of Y when
X = x. In the example of Table 2.3, the mean number of failures is 0.56 for the old
network, so the conditional expectation of Y given that the network is old is 0.56.
Similarly, for the new network, the mean number of failures is 0.14; that is, the con-
ditional expectation of Y given that the network is new is 0.14.

The law of iterated expectations. The mean of Y is the weighted average of the
conditional expectation of Y given X, weighted by the probability distribution of X.
For example, the mean height of adults is the weighted average of the mean height
of men and the mean height of women, weighted by the proportions of men and
women. Stated mathematically, if X takes on the / values xy, . . ., x;, then

l
E(Y) = DE(Y|X = x;)Pr (X = x;). (2.19)
i=1
Equation (2.19) follows from Equations (2.18) and (2.17) (see Exercise 2.19).
Stated differently, the expectation of Y is the expectation of the conditional
expectation of Y given X,

E(Y) = E[E(Y|X)], (2.20)

where the inner expectation on the right-hand side of Equation (2.20) is computed
using the conditional distribution of Y given X and the outer expectation is com-
puted using the marginal distribution of X. Equation (2.20) is known as the law of
iterated expectations.

For example, the mean number of connection failures M is the weighted aver-
age of the conditional expectation of M given that it is old and the conditional
expectation of M given that it is new,so E(M) = E(M|A = 0) X Pr(A =0) +
E(M|A =1) XPr(A =1) =0.56 X 050 + 0.14 X 0.50 = 0.35.This is the mean
of the marginal distribution of M, as calculated in Equation (2.2).

The law of iterated expectations implies that if the conditional mean of Y given
X is 0, then the mean of Y is 0. This is an immediate consequence of Equation (2.20):
if E(Y|X) =0, then E(Y) = E[E(Y|X)] = E[0] = 0. Said differently, if the
mean of Y given X is 0, then it must be that the probability-weighted average of these
conditional means is 0; that is, the mean of Y must be 0.

The law of iterated expectations also applies to expectations that are conditional
on multiple random variables. For example, let X, Y, and Z be random variables
that are jointly distributed. Then the law of iterated expectations says that
E(Y) = E[E(Y|X, Z)], where E(Y|X, Z) is the conditional expectation of Y
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given both X and Z. For example, in the network connection illustration of Table 2.3,
let P denote the number of people using the network; then E(M|A, P) is the
expected number of failures for a network with age A that has P users. The expected
number of failures overall, E(M), is the weighted average of the expected number
of failures for a network with age A and number of users P, weighted by the propor-
tion of occurrences of both A and P.

Exercise 2.20 provides some additional properties of conditional expectations
with multiple variables.

Conditional variance. The variance of Y conditional on X is the variance of
the conditional distribution of Y given X. Stated mathematically, the conditional
variance of Y given X is

k
var (Y|X = x) = ;[y,- —E(Y|X=x)?Pr(Y =y|X=1x). (221)

For example, the conditional variance of the number of failures given that the
network is old is var (M|A = 0) = (0 — 0.56)% X 0.70 + (1 — 0.56) X 0.13 +
(2 —0.56)% X 0.10 + (3 — 0.56)2 X 0.05 + (4 — 0.56)% X 0.02 = 0.99.The stan-
dard deviation of the conditional distribution of M given that A = 0 is thus
V' 0.99 = 0.99.The conditional variance of M given that A = 1 is the variance of the
distribution in the second row of Part B of Table 2.3, which is 0.22, so the standard
deviation of M for the new network is V' 0.22 = 0.47. For the conditional distribu-
tions in Table 2.3, the expected number of failures for the new network (0.14) is less
than that for the old network (0.56), and the spread of the distribution of the number
of failures, as measured by the conditional standard deviation, is smaller for the new
network (0.47) than for the old (0.99).

Bayes’ rule. Bayes’ rule says that the conditional probability of Y given X is the
conditional probability of X given Y times the relative marginal probabilities of YV
and X:

Pr(X =x|Y =y)Pr(Y =y)
Pr(X = x)
Equation (2.22) obtains from the definition of the conditional distribution in Equa-
tion (2.17), which implies that Pr (X = x,Y = y) = Pr(Y = y|X = x) Pr(X = x)
and that Pr(X = x,Y = y) = Pr(X = x|Y = y)Pr(Y = y); equating the second

parts of these two equalities and rearranging gives Bayes’ rule.

Pr(Y=y|lX=x)= (Bayes’ rule). (2.22)

Bayes’ rule can be used to deduce conditional probabilities from the reverse
conditional probability, with the help of marginal probabilities. For example, suppose
you told your friend that you were dropped by the network three times last night
while working on your term paper and your friend knows that half the time you work
in the library and half the time you work in your room. Then your friend could
deduce from Table 2.3 that the probability you worked in your room last night given
three network failures is 83% (Exercise 2.28).
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The conditional mean is the minimum mean squared error prediction. The condi-
tional mean plays a central role in prediction; in fact it is, in a precise sense, the opti-
mal prediction of Y given X = x.

A common formulation of the statistical prediction problem is to posit that the cost
of making a prediction error increases with the square of that error. The motivation for
this squared-error prediction loss is that small errors in prediction might not matter
much, but large errors can be very costly in real-world applications. Stated mathemati-
cally, the prediction problem thus is: what is the function g(X) that minimizes the mean
squared prediction error, E{[Y — g(X)]*}? The answer is the conditional mean
E(Y]X): Of all possible ways to use the information X, the conditional mean minimizes
the mean squared prediction error. This result is proven in Appendix 2.2.

Independence

Two random variables X and Y are independently distributed, or independent, if
knowing the value of one of the variables provides no information about the other.
Specifically, X and Y are independent if the conditional distribution of Y given X
equals the marginal distribution of Y.That is, X and Y are independently distributed
if, for all values of x and y,

Pr(Y = y|X = x) = Pr(Y = y) (independence of X and Y).  (2.23)

Substituting Equation (2.23) into Equation (2.17) gives an alternative expression for
independent random variables in terms of their joint distribution. If X and Y are
independent, then

Pr(X=x,Y=y) =Pr(X =x)Pr(Y=y). (2.24)

That is, the joint distribution of two independent random variables is the product of
their marginal distributions.

Covariance and Correlation

Covariance. One measure of the extent to which two random variables move
together is their covariance. The covariance between X and Y is the expected value
E[(X — puyx) (Y — py) ], where uy is the mean of X and puy is the mean of Y. The
covariance is denoted cov(X, Y) or oyy. If X can take on / values and Y can take on
k values, then the covariance is given by the formula

cov(X, Y) = oxy = E[(X — ux) (Y — py)]

!
- .:1;(3‘/ = ux) (i — my)Pr(X =x, Y = y). (2.25)

To interpret this formula, suppose that when X is greater than its mean (so that
X — py is positive), then Y tends be greater than its mean (so that Y — uy is
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positive) and that when X is less than its mean (so that X — uy < 0), then Y tends
to be less than its mean (so that Y — uy < 0). In both cases, the product
(X — py) X (Y — uy) tends to be positive, so the covariance is positive. In contrast,
if X and Y tend to move in opposite directions (so that X is large when Y is small,
and vice versa), then the covariance is negative. Finally, if X and Y are independent,
then the covariance is 0 (see Exercise 2.19).

Correlation. Because the covariance is the product of X and Y, deviated from their
means, its units are, awkwardly, the units of X multiplied by the units of Y. This
“units” problem can make numerical values of the covariance difficult to interpret.
The correlation is an alternative measure of dependence between X and Y that
solves the “units” problem of the covariance. Specifically, the correlation between X
and Y is the covariance between X and Y divided by their standard deviations:
cov(X, Y) Oxy

corr(X, Y) = var (X) var (1) = e (2.26)

Because the units of the numerator in Equation (2.26) are the same as those of the
denominator, the units cancel, and the correlation is unit free. The random variables
X and Y are said to be uncorrelated if corr (X, Y) = 0.

The correlation always is between —1 and 1; that is, as proven in Appendix 2.1,

—1 =corr(X,Y) =1 (correlation inequality). (2.27)

Correlation and conditional mean. 1f the conditional mean of Y does not depend
on X, then Y and X are uncorrelated. That is,

if E(Y|X) = uy, then cov(Y, X) = 0and corr (Y, X) = 0. (2.28)

We now show this result. First, suppose Y and X have mean 0, so that
cov(Y, X) = E[(Y — uy) (X — pnx)] = E(YX). By the law of iterated expecta-
tions [Equation (2.20)], E(YX) = E[E(YX|X)] = E[E(Y|X)X] = 0 because
E(Y|X) =0, so cov(Y, X) = 0. Equation (2.28) follows by substituting
cov (Y, X) = 0 into the definition of correlation in Equation (2.26). If Y and X do
not have mean 0, subtract off their means, and then the preceding proof applies.

It is not necessarily true, however, that if X and Y are uncorrelated, then the
conditional mean of Y given X does not depend on X. Said differently, it is possible
for the conditional mean of Y to be a function of X but for Y and X nonetheless to
be uncorrelated. An example is given in Exercise 2.23.

The Mean and Variance of Sums of Random Variables

The mean of the sum of two random variables, X and Y, is the sum of their means:

E(X +Y) = E(X) + E(Y) = uy + uy. (2.29)
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The Distribution of Adulthood Earnings in the United

Kingdom by Childhood Socioeconomic Circumstances

P oliticians sometimes talk about how
inequality in income arises as a result of dif-
ferences in individual ability and effort. Are these
politicians right? Or, in contrast, do childhood cir-
cumstances affect an individual’s income during
adulthood? For example, do children who grow up
with fewer advantages go on to be part of house-
holds with lower average income?

One way to answer these questions is by con-
sidering how an individual’s household income as

an adult varies according to their father’s occupa-
tional type. While no two occupations are identical,
researchers often group similar jobs into a given
number of meaningful classes. One method of doing
this, as seen in the United Kingdom’s National Sta-
tistics Socio-economic Classification (NS-SEC),!
is grouping jobs into a hierarchy of three classes:
higher, intermediate, and routine.

Figure 2.4 illustrates these three conditional dis-
tributions of household income for individuals in

by Occupational Type of Father

Density

7 N
m Conditional Distributions of Household Income of U.K. individuals in 2009-2010,

0.0003 |

— Higher NS-SEC
—— Routine NS-SEC

—— Intermediate NS-SEC

0.0002

0.0001 |

0 5000

routine jobs.

10000

The three distributions of household incomes are for individuals in the United Kingdom, based on the
National Statistics Socio-economic Classification (NS-SEC) of their father—higher, intermediate, and

15000 20000
Household income

For further details refer to “The National Statistics Socio-economic classification (NS-SEC),” The Office for National

Statistics, https://www.ons.gov.uk/, 2010.
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(< N\
Lr.\: 11Xy Summaries of the Conditional Distribution of Monthly Household Income for
Individuals in the United Kingdom Given NS-SEC of Father’'s Occupation
Percentile
NS-SEC of Standard 50%
Father’s Job Mean Deviation 25% (median) 75% 90%
(a) Higher £3,149.27 £2,434.33 £1,663.33 £2,626.92 £3,973.74 £5,629.00
(b) Intermediate 2,692.01 2,18753 1,362.44 2,23756 3,382.00 4,881.99
\(c) Routine 2,440.94 1,878.58 1,291.00 2,049.74 3,067.76 4,339.84 )

the United Kingdom in 2009 and 2010 according to
the NS-SEC of their father’s occupation in that indi-
vidual’s childhood.? The lower the classification of
paternal occupation, the more concentrated in the
lower end of the distribution is household income
in adulthood.

The statistics for monthly household income for
these individuals by NS-SEC classification are sum-
marized in Table 2.4. For example, the mean income
of individuals whose father’s occupation is classified
as routine, that is, E(Income|Father’s social class =
routine), was £2,440.94. This is over £700 less than
that for individuals whose father’s occupation is clas-
sified as higher, that is, E(Income|Father’s social class

= higher), which is £3149.27. Furthermore, these

differences are much greater at higher ends of the

2Conditional distributions were estimated from data from
the first wave of the United Kingdom’s Understanding
Society dataset (gathered during 2009 and 2010). More
details are available at https://www.understandingsociety
.ac.uk/. Individuals with missing observations are excluded.

distribution, with the difference in income between
these groups being over £900 at the 75th percentile
and almost £1,300 at the 90th percentile. The stan-
dard deviation of household income also increases
with occupation classification, meaning that the
spread of household income is also greater accord-
ing to this measure.

This information is critical when examining the
sort of claim discussed earlier. It appears that child-
hood circumstances may play some part in deter-
mining an individual’s socioeconomic circumstances
later in life. Can we say this for certain? Is there
anything more to consider? These circumstances and
others like a “gender gap” in earnings are an impor-
tant aspect of the distribution of income. We revisit

this topic in later chapters.
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2.3

Means, Variances, and Covariances of Sums
of Random Variables

Let X, Y, and V be random variables; let uy and 0% be the mean and variance

of X and let oyy be the covariance between X and Y (and so forth for the other
variables); and let a, b, and ¢ be constants. Equations (2.30) through (2.36) follow

from the definitions of the mean, variance, and covariance:

E(a + bX +cY) = a + buy + cuy,
var (a + bY) = b’o?,
var (aX + bY) = a’c% + 2aboyy + b’c%,
E(Y?) = o} + ui,
cov(a + bX + ¢V, Y) = boyy + coyy,

E(XY) = oxy + puxpy,

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

|corr(X, Y)| =1 and |oyy| = Voko¥ (correlation inequality). (2.36)

The variance of the sum of X and Y is the sum of their variances plus two times

their covariance:

var(X + Y) = var(X) + var(Y) + 2cov(X,Y) = 0% + 03 + 20xy-

(2.37)

If X and Y are independent, then the covariance is 0, and the variance of their sum

is the sum of their variances:

var(X + Y) = var(X) + var(Y) = ok + 0%

(if X and Y are independent).

(2.38)

Useful expressions for means, variances, and covariances involving weighted sums of

random variables are collected in Key Concept 2.3. The results in Key Concept 2.3

are derived in Appendix 2.1.
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2.4 The Normal, Chi-Squared, Student t, and
F Distributions

The probability distributions most often encountered in econometrics are the nor-
mal, chi-squared, Student ¢, and F distributions.

The Normal Distribution

A continuous random variable with a normal distribution has the familiar bell-
shaped probability density shown in Figure 2.5. The function defining the normal
probability density is given in Appendix 18.1. As Figure 2.5 shows, the normal density
with mean p and variance o is symmetric around its mean and has 95% of its prob-
ability between . — 1.960 and u + 1.960.

Some special notation and terminology have been developed for the normal

distribution. The normal distribution with mean u and variance o2

is expressed con-
cisely as N(u, o?). The standard normal distribution is the normal distribution with
mean p = 0 and variance o> = 1 and is denoted N (0, 1). Random variables that
have a N (0, 1) distribution are often denoted Z, and the standard normal cumula-
tive distribution function is denoted by the Greek letter ®; accordingly,
Pr(Z = ¢) = ®(c),where cis a constant. Values of the standard normal cumulative
distribution function are tabulated in Appendix Table 1.

To look up probabilities for a normal variable with a general mean and variance,
we must first standardize the variable. For example, suppose Y is distributed
N(1, 4)—thatis, Y is normally distributed with a mean of 1 and a variance of 4. What
is the probability that Y = 2—that is, what is the shaded area in Figure 2.6a? The stan-
dardized version of Y is Y minus its mean, divided by its standard deviation; that is,
(Y—-1)/ V4 = (Y = 1). Accordingly, the random variable (Y — 1) is normally
distributed with mean 0 and variance 1 (see Exercise 2.8); it has the standard normal

e N\
m The Normal Probability Density

The normal probability density function

with mean u and variance o is a bell-
shaped curve, centered at u. The area under
the normal p.d.f. between w — 1.960 and

u + 1.960 is 0.95. The normal distribution is
denoted N(u, o?).

95%

T T
un—1.960 “w n+ 1.960 y
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~
m Calculating the Probability That Y = 2 When Y Is Distributed N(1, 4)

To calculate Pr(Y = 2), standardize Y,
then use the standard normal distribution
table. Y is standardized by subtracting its
mean (u = 1) and dividing by its stan-
dard deviation (o = 2). The probability
that Y = 2 is shown in Figure 2.6a, and the

2 4 Random Variables

Suppose Y is normally distributed with mean p and variance o
Y is distributed N(u, o). Then Y is standardized by subtracting its mean and

corresponding probability after standard- Pr(y =2)
izing Y is shown in Figure 2.6b. Because the
standardized random variable, (Y — 1) /2, N(1, 4) distribution
is a standard normal (Z) random variable,
Pr(y=2) =Pr(*51 =%37) = :
Pr(Z = 0.5). From Appendix Table 1, ] 1020 Y
Pr(Z = 05) = ®(0.5) = 0.691. (@) N1, 4)
PI(Z = 0.5) 0691
N(0, 1) distribution
I
0.0 05 z
(b) N(O, 1)
\
Ja<\[d348 Computing Probabilities and Involving Normal

2

dividing by its standard deviation, that is, by computing Z = (Y — u) /0.

Let ¢; and ¢, denote two numbers with ¢; < ¢y,andletd; = (¢; — p) /o and

dz = (CZ - /.L)/O'Then

Pr(Y =c¢,) =Pr(Z = d,) = ®(d,),
Pr(Y=c¢) =Pr(Z=d)) =1-d(d,),
Pr(c; =Y =c¢)=Pr(d =Z=d,) = d(d,) — ®(dy).

(2.39)
(2.40)
(2.41)

The normal cumulative distribution function @ is tabulated in Appendix Table 1.

;in other words,
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distribution shown in Figure 2.6b.Now Y < 2is equivalentto3(Y — 1) = 3(2 — 1);
thatis,}(Y — 1) = 1. Thus

Pr(Y=2)=Pr[}(Y—-1) =1 =Pr(Z=1) =d05) =0691, (2.42)
where the value 0.691 is taken from Appendix Table 1.

The same approach can be used to compute the probability that a normally distrib-
uted random variable exceeds (or is less than) some value or that it falls in a certain
range. These steps are discussed in Key Concept 2.4. The box “The Unpegging of the
Swiss Franc” presents an unusual application of the cumulative normal distribution.

The normal distribution is symmetric, so its skewness is 0. The kurtosis of the
normal distribution is 3.

The multivariate normal distribution. The normal distribution can be generalized
to describe the joint distribution of a set of random variables. In this case, the distri-
bution is called the multivariate normal distribution or, if only two variables are
being considered, the bivariate normal distribution. The formula for the bivariate
normal p.d.f. is given in Appendix 18.1, and the formula for the general multivariate
normal p.d.f. is given in Appendix 19.2.

The multivariate normal distribution has four important properties. If X and Y
have a bivariate normal distribution with covariance oyy and if a and b are two con-

stants, then X + bY has the normal distribution:

aX + bY is distributed N (auy + buy, a’ck + b’c% + 2aboyy)

(X, Y bivariate normal).

(2.43)

The Unpegging of the Swiss Franc

O n Thursday, January 15, 2015, the value of
the euro fell by 17472% from 1.201 to 0.991

against the Swiss franc. This was a huge shift, illus-
trated in the downward spike in Figure 2.7, given
that the previous year had not seen a day’s move-
ment greater than 0.544%. If you had woken up as
a statistical analyst for a financial company on that
Thursday morning, how might you have estimated
the probability of this happening that day?

If you had assumed the data was normally dis-
tributed, you would have required an estimate of the
standard deviation of daily percentage change in the

euro/Swiss franc exchange rates. Using Datastream

data’ for the year to January 14, 2015, you can esti-
mate this as 0.112%.

What was the probability of a drop of 17472%?
We can first calculate the number of standard devia-
tions that describes a change of this magnitude as
% = 156. If the daily percentage changes are nor-
mally distributed, then the estimate of the probabil-
ity of a fall at least as big as 156 standard deviations
corresponds to an inconceivably small number—

8.175 X 1075288 which is derived using Equation (2.39).

'Datastream, maintained by Thomson Reuters, is a global
financial and macroeconomic data platform that acts as a
repository of financial and economic data.

continued on next page
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Percent change
5 ~

p
H{Y N Daily Percentage Change in the Euro/Swiss Franc Exchange Rate

—20
2014

the unpegging of the Swiss franc on January 15, 2015.

The day-on-day percentage change in the value of the euro in Swiss francs for a year before and a year after

]
2016
Year

1
2015

So was the probability of a fall at least this large
really so small? Well, no. The error here is to not
investigate the nature of our data further, and to fail
to understand the actual process that determined the
value of the currency. The Swiss franc had in fact been
kept within very small bounds due to the actions of
the country’s central bank in setting a so-called “peg”
for the currency. In the previous twelve months, this
had been within the range of 1.2008 and 1.236 Swiss
francs per euro. In fact, the introduction of this peg
over three years earlier had caused an appreciation
of the euro against the Swiss franc of over 20 stan-
dard deviations (again, assuming a normal distribu-

tion derived from previous daily changes!).>

It was the introduction of the peg that had caused
such little volatility in—or such a low standard devia-
tion of —the value of the currency. Once this peg was
removed, as happened on that particular Thursday,
the value of the currency was able to float and vary
according to market factors. Investors responded to
the removal of the peg by bidding down the value of
the euro against the franc substantially.

It is not only the removal of a currency peg in this

way that can cause extreme fluctuations. The result

2See the article published in Reuters, “Charts of the Dat,
Swiss Franc Edition,” by Felix Salmon, September 6, 2011.



24 The Normal, Chi-Squared, Student t, and F Distributions

of the 2016 “Brexit” referendum in the United
Kingdom —an event that, while seen as unlikely, was at
least partly foreseeable —led to an appreciation in the
value of the euro against British pound sterling on June
24,2016, of 6.17%. This is equivalent to 9.80 standard
deviations (based on data from the previous year), or
an event with an apparent probability of 5.629 X 1072,
While it may seem substantially more likely to occur,
the probability of such an event actually taking place is
less than once every 1,000,000,000,000,000,000 years
(a total of 18 zeros)!® Again, it seems unlikely that this

is an accurate characterization of the probability of
such an event occurring.

Clearly, it is dangerous to assume that data is
normally distributed or that recent observations of a
variable will provide a useful prediction of the range
of future values. Indeed, it is partly for this reason
that advertisements for financial products in the
United Kingdom must carry a disclaimer that “past

performance is not a guide to future performance.”

3This is based on the assumption of 260 trading days per year.
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More generally, if n random variables have a multivariate normal distribution,
then any linear combination of these variables (such as their sum) is normally
distributed.

Second, if a set of variables has a multivariate normal distribution, then the mar-
ginal distribution of each of the variables is normal [this follows from Equation
(2.43) by settinga = 1 and b = 0].

Third, if variables with a multivariate normal distribution have covariances that equal
0,then the variables are independent. Thus,if X and Y have a bivariate normal distribution
and oyy = 0, then X and Y are independent (this is shown in Appendix 18.1). In
Section 2.3, it was shown that if X and Y are independent, then, regardless of their
joint distribution, oyy = 0.If X and Y are jointly normally distributed, then the con-
verse is also true. This result—that O covariance implies independence —is a special
property of the multivariate normal distribution that is not true in general.

Fourth, if X and Y have a bivariate normal distribution, then the conditional expec-
tation of Y given X is linear in X; thatis, E(Y|X = x) = a + bx, where a and b are
constants (Exercise 18.11). Joint normality implies linearity of conditional expectations,
but linearity of conditional expectations does not imply joint normality.
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The Chi-Squared Distribution

The chi-squared distribution is used when testing certain types of hypotheses in sta-
tistics and econometrics.

The chi-squared distribution is the distribution of the sum of m squared indepen-
dent standard normal random variables. This distribution depends on m, which is
called the degrees of freedom of the chi-squared distribution. For example,let Z, Z,,
and Z; be independent standard normal random variables. Then Z? + Z3 + Z3 has
a chi-squared distribution with 3 degrees of freedom. The name for this distribution
derives from the Greek letter used to denote it: A chi-squared distribution with m
degrees of freedom is denoted x2,.

Selected percentiles of the 2, distribution are given in Appendix Table 3. For
example, Appendix Table 3 shows that the 95th percentile of the 3 distribution is
781,50 Pr(Z} + Z3 + Z3 = 7.81) = 0.95.

The Student t Distribution

The Student ¢ distribution with m degrees of freedom is defined to be the distribution
of the ratio of a standard normal random variable to the square root of an independently
distributed chi-squared random variable with m degrees of freedom divided by m. That
is, let Z be a standard normal random variable, let W be a random variable with a chi-
squared distribution with m degrees of freedom, and let Z and W be independently
distributed. Then the random variable Z / V' W /m has a Student ¢ distribution (also
called the ¢ distribution) with m degrees of freedom. This distribution is denoted ¢,,,.
Selected percentiles of the Student ¢ distribution are given in Appendix Table 2.

The Student ¢ distribution depends on the degrees of freedom m. Thus the 95th
percentile of the ¢, distribution depends on the degrees of freedom m. The Student
t distribution has a bell shape similar to that of the normal distribution, but it has
more mass in the tails; that is, it is a “fatter” bell shape than the normal. When m is
30 or more, the Student ¢ distribution is well approximated by the standard normal
distribution, and the ¢., distribution equals the standard normal distribution.

The F Distribution

The F distribution with m and n degrees of freedom, denoted F,, ,,, is defined to be
the distribution of the ratio of a chi-squared random variable with degrees of free-
dom m, divided by m, to an independently distributed chi-squared random variable
with degrees of freedom 7, divided by n. To state this mathematically, let W be a chi-
squared random variable with m degrees of freedom and let V be a chi-squared
random variable with n degrees of freedom, where W and V are independently dis-
tributed. Then % has an F,, , distribution —that is, an F distribution with numerator
degrees of freedom m and denominator degrees of freedom n.

In statistics and econometrics, an important special case of the F distribution
arises when the denominator degrees of freedom is large enough that the £, ,
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distribution can be approximated by the F, .. distribution. In this limiting case, the
denominator random variable V /n is the mean of infinitely many squared standard
normal random variables, and that mean is 1 because the mean of a squared standard
normal random variable is 1 (see Exercise 2.24). Thus the F,, .. distribution is the
distribution of a chi-squared random variable with m degrees of freedom divided by
m: W /m is distributed F, ... For example, from Appendix Table 4, the 95th percentile
of the F; ., distribution is 2.60, which is the same as the 95th percentile of the 3
distribution, 781 (from Appendix Table 2), divided by the degrees of freedom, which
is3(7.81/3 = 2.60).

The 90th, 95th, and 99th percentiles of the F,, , distribution are given in Appen-
dix Table 5 for selected values of m and n. For example, the 95th percentile of the F; 5
distribution is 2.92, and the 95th percentile of the F} g, distribution is 2.71. As the
denominator degrees of freedom 7 increases, the 95th percentile of the F3, distribu-
tion tends to the F; ., limit of 2.60.

Random Sampling and the Distribution
of the Sample Average

Almost all the statistical and econometric procedures used in this text involve aver-
ages or weighted averages of a sample of data. Characterizing the distributions of
sample averages therefore is an essential step toward understanding the performance
of econometric procedures.

This section introduces some basic concepts about random sampling and the
distributions of averages that are used throughout the book. We begin by discussing
random sampling. The act of random sampling— that is, randomly drawing a sample
from a larger population —has the effect of making the sample average itself a ran-
dom variable. Because the sample average is a random variable, it has a probability
distribution, which is called its sampling distribution. This section concludes with
some properties of the sampling distribution of the sample average.

Random Sampling

Simple random sampling. Suppose our commuting student from Section 2.1 aspires
to be a statistician and decides to record her commuting times on various days. She
selects these days at random from the school year, and her daily commuting time has
the cumulative distribution function in Figure 2.2a. Because these days were selected
at random, knowing the value of the commuting time on one of these randomly
selected days provides no information about the commuting time on another of the
days; that is, because the days were selected at random, the values of the commuting
time on the different days are independently distributed random variables.

The situation described in the previous paragraph is an example of the simplest
sampling scheme used in statistics, called simple random sampling, in which » objects are
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Simple Random Sampling and i.i.d. Random Variables

In a simple random sample, n objects are drawn at random from a population, and
each object is equally likely to be drawn. The value of the random variable Y for
the /" randomly drawn object is denoted Y;. Because each object is equally likely
to be drawn and the distribution of Y; is the same for all i, the random variables
Y, ..., Y, are independently and identically distributed (i.i.d.); that is, the distri-
bution of Y; is the same for alli = 1, ..., n,and Y] is distributed independently
of Y5, ..., Y, and so forth.

selected at random from a population (the population of commuting days) and each
member of the population (each day) is equally likely to be included in the sample.

The n observations in the sample are denoted Y}, ..., Y,, where Y] is the first
observation, Y, is the second observation, and so forth. In the commuting example,
Y] is the commuting time on the first of the n randomly selected days, and Y; is the
commuting time on the i" of the randomly selected days.

Because the members of the population included in the sample are selected at
random, the values of the observations Y}, ..., Y, are themselves random. If differ-
ent members of the population are chosen, their values of Y will differ. Thus the act
of random sampling means that Yj, ..., Y, can be treated as random variables.
Before they are sampled, Y}, . . ., Y, can take on many possible values; after they are
sampled, a specific value is recorded for each observation.

ii.d. draws. Because Y}, ..., Y, are randomly drawn from the same population, the
marginal distribution of Y;is the same for eachi = 1, ..., n;this marginal distribu-
tion is the distribution of Y in the population being sampled. When Y, has the same
marginal distribution fori = 1, ..., n,then Yj, ..., Y, are said to be identically
distributed.

Under simple random sampling, knowing the value of Y] provides no informa-
tion about Y5, so the conditional distribution of Y, given Y] is the same as the mar-
ginal distribution of Y,. In other words, under simple random sampling, Y; is
distributed independently of Y5, ..., Y,.

When Y}, ..., Y, are drawn from the same distribution and are independently
distributed, they are said to be independently and identically distributed (i.i.d.).

Simple random sampling and i.i.d. draws are summarized in Key Concept 2.5.

The Sampling Distribution of the Sample Average

The sample average or sample mean, Y, of the n observations Y, .. ., Y, is

S |-
=

— 1
Y=;(Y1+Yz+“'+Yn)= Y. (2.44)

i=1
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An essential concept is that the act of drawing a random sample has the effect of
making the sample average Y a random variable. Because the sample was drawn at
random, the value of each Y;is random. Because Y, . . ., Y, are random, their average
is random. Had a different sample been drawn, then the observations and their sam-
ple average would have been different: The value of Y differs from one randomly
drawn sample to the next.

For example, suppose our student commuter selected five days at random to
record her commute times, then computed the average of those five times. Had she
chosen five different days, she would have recorded five different times—and thus
would have computed a different value of the sample average.

Because Y is random, it has a probability distribution. The distribution of Y is
called the sampling distribution of Y because it is the probability distribution associ-
ated with possible values of Y that could be computed for different possible samples
Yi,....,Y,.

The sampling distribution of averages and weighted averages plays a central role
in statistics and econometrics. We start our discussion of the sampling distribution of
Y by computing its mean and variance under general conditions on the population
distribution of Y.

Mean and variance of\_/. Suppose that the observations Y}, . . ., Y, are i.i.d.,and let
wy and o3 denote the mean and variance of Y; (because the observations are i.i.d.,
the mean is the same for alli = 1,..., n, and so is the variance). When n = 2, the
mean of the sum Y; + Y, is given by applying Equation (2.29): E(Y; + V,) =
my + uy = 2uy. Thus the mean of the sample average is E[%(Yl +Y)]=
% X 2uy = py.In general,

E(Y) = L REY) = ur (2.45)

The variance of Y is found by applying Equation (2.38). For example, for
n =2, var(Y; + Y,) = 20%,s0 [by applying Equation (2.32) with a = b = } and
cov(Y;, ¥5) = 0], var (Y) = %o-%/. For general n,because Y}, . . ., Y, arei.id., Y;and
Y; are independently distributed for i # j,so cov(Y; Y;) = 0.Thus

— 1&
var (Y) = Var<2 Y,»)
ni=y
n 1 n n
=S 2var(Y) + 5> > cov(Y, )
n-i=1 n=i=1j=1,j+#i
oy

_ v (2.46)

The standard deviation of Y is the square root of the variance, oy/ V.
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Financial Diversification and Portfolios

I he principle of diversification says that you
can reduce your risk by holding small invest-

ments in multiple assets, compared to putting all
your money into one asset. That is, you shouldn’t put
all your eggs in one basket.

The math of diversification follows from Equa-
tion (2.46). Suppose you divide $1 equally among n
assets. Let Y] represent the payout in one year of $1
invested in the i™ asset. Because you invested 1/n
dollars in each asset, the actual payoff of your portfo-
+Y)/n=Y.
To keep things simple, suppose that each asset has the

lio after one yearis (Y; + ¥, + ---

same expected payout, uy, the same variance, a?,and

E(Y) = py,and for large n, the variance of the port-
folio payout is var (Y) = po? (Exercise 2.26). Putting
all your money into one asset or spreading it equally
across all n assets has the same expected payout, but
diversifying reduces the variance from o to po2.
The math of diversification has led to financial
products such as stock mutual funds, in which the
fund holds many stocks and an individual owns a
share of the fund, thereby owning a small amount
of many stocks. But diversification has its limits: For
many assets, payouts are positively correlated, so
var(Y) remains positive even if 7 is large. In the case
of stocks, risk is reduced by holding a portfolio, but

the same positive correlation, p, across assets [so that  that portfolio remains subject to the unpredictable

cov(Y;, Y;) = po?]. Then the expected payout is

f fluctuations of the overall stock market.

In summary, if v}, ..., Y, are i.i.d., the mean, the variance, and the standard

deviation of Y are

E(Y) = uy, (2.47)
v 2 oy
var(Y) = oy = —, and (2.48)
— Oy
std.dev(Y) = oy = —= (2.49)

These results hold whatever the distribution of Y is; that is, the distribution of Y does
not need to take on a specific form, such as the normal distribution, for Equations
(2.47) through (2.49) to hold.

The notation o% denotes the variance of the sampling distribution of the sample
average Y. In contrast, 0% is the variance of each individual Y, that is, the variance of
the population distribution from which the observation is drawn. Similarly, oy
denotes the standard deviation of the sampling distribution of Y.

Sampling distribution of Y when Y is normally distributed. SupposethatY;, ..., Y,
are i.i.d. draws from the N(uy, o%) distribution. As stated following Equation (2.43),
the sum of n normally distributed random variables is itself normally distributed.
Because the mean of Y is uy and the variance of Y is 0% /n, this means that, if
Y,,..., Y, are ii.d. draws from the N(uy, o%) distribution, then Y is distributed

N(,LLy, 0'%1/7’1)
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Large-Sample Approximations
to Sampling Distributions

Sampling distributions play a central role in the development of statistical and econo-
metric procedures, so it is important to know, in a mathematical sense, what the
sampling distribution of Y is. There are two approaches to characterizing sampling
distributions: an “exact” approach and an “approximate” approach.

The exact approach entails deriving a formula for the sampling distribution that
holds exactly for any value of n. The sampling distribution that exactly describes the
distribution of Y for any n is called the exact distribution or finite-sample distribution
of Y. For example, if Y is normally distributed and Y}, . .., Y, are ii.d., then (as dis-
cussed in Section 2.5) the exact distribution of Y is normal with mean u, and variance
0%/ n. Unfortunately, if the distribution of Y is not normal, then in general the exact
sampling distribution of Y is very complicated and depends on the distribution of Y.

The approximate approach uses approximations to the sampling distribution
that rely on the sample size being large. The large-sample approximation to the sam-
pling distribution is often called the asymptotic distribution— “asymptotic” because
the approximations become exact in the limit that n — %. As we see in this section,
these approximations can be very accurate even if the sample size is only n = 30
observations. Because sample sizes used in practice in econometrics typically number
in the hundreds or thousands, these asymptotic distributions can be counted on to
provide very good approximations to the exact sampling distribution.

This section presents the two key tools used to approximate sampling distribu-
tions when the sample size is large: the law of large numbers and the central limit
theorem. The law of large numbers says that when the sample size is large, Y will be
close to uy with very high probability. The central limit theorem says that when the
sample size is large, the sampling distribution of the standardized sample average,
(Y — wy) /0y, is approximately normal.

Although exact sampling distributions are complicated and depend on the dis-
tribution of Y, the asymptotic distributions are simple. Moreover —remarkably —the
asymptotic normal distribution of (Y — wy) /0y does not depend on the distribution
of Y. This normal approximate distribution provides enormous simplifications and
underlies the theory of regression used throughout this text.

The Law of Large Numbers and Consistency

The law of large numbers states that, under general conditions, Y will be near wy with very
high probability when 7 is large. This is sometimes called the “law of averages.” When a large
number of random variables with the same mean are averaged together, the large values
tend to balance the small values, and their sample average is close to their common mean.

For example, consider a simplified version of our student commuter’s experi-
ment in which she simply records whether her commute was short (less than
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2.6

Convergence in Probability, Consistency,
and the Law of Large Numbers

The sample average Y converges in probability to uy (or, equivalently, Y is con-
sistent for wy) if the probability that Y is in the range (uy — ¢) to (uy + ¢)
becomes arbitrarily close to 1 as n increases for any constant ¢ > 0. The conver-
gence of Y to uy in probability is written ¥ —— puy.

The law of large numbers says thatif ¥}, . . ., Y, are independently and identi-
cally distributed with E(Y;) = uy and if large outliers are unlikely (technically if
var (Y;) = 0% < *),then Y —= puy.

20 minutes) or long. Let ¥; = 1 if her commute was short on the i" randomly selected
day and Y; = 0if it was long. Because she used simple random sampling, Y}, ..., Y,
areii.d. Thus Y, ..., Y, areii.d. draws of a Bernoulli random variable, where (from
Table 2.2) the probability that Y; = 1is 0.78. Because the expectation of a Bernoulli
random variable is its success probability, E(Y;) = uy = 0.78. The sample average
Y is the fraction of days in her sample in which her commute was short.

Figure 2.8 shows the sampling distribution of Y for various sample sizes 7. When
n = 2 (Figure 2.8a), Y can take on only three values: 0, %, and 1 (neither commute was
short, one was short, and both were short), none of which is particularly close to the
true proportion in the population, 0.78. As n increases, however (Figures 2.8b—d),
Y takes on more values, and the sampling distribution becomes tightly centered on py.

The property that Y is near uy with probability increasing to 1 as n increases is
called convergence in probability or, more concisely, consistency (see Key Con-
cept 2.6). The law of large numbers states that under certain conditions Y converges
in probability to uy or, equivalently, that Y is consistent for wy.

The conditions for the law of large numbers that we will use in this text are that
Y,, ..., Y, areii.d. and that the variance of Y;, 0%, is finite. The mathematical role
of these conditions is made clear in Section 18.2, where the law of large numbers is
proven. If the data are collected by simple random sampling, then the i.i.d. assump-
tion holds. The assumption that the variance is finite says that extremely large values
of Y,—that is, outliers—are unlikely and are observed infrequently; otherwise, these
large values could dominate Y, and the sample average would be unreliable. This
assumption is plausible for the applications in this text. For example, because there
is an upper limit to our student’s commuting time (she could park and walk if the
traffic is dreadful), the variance of the distribution of commuting times is finite.

The Central Limit Theorem

The central limit theorem says that, under general conditions, the distribution of Y is
well approximated by a normal distribution when 7 is large. Recall that the mean of
Y is uy and its variance is 02? = 0% /n. According to the central limit theorem, when
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m Sampling Distribution of the Sample Average of n Bernoulli Random Variables
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The distributions are the sampling distributions of Y, the sample average of n independent Bernoulli random variables
with p = Pr(Y; = 1) = 0.78 (the probability of a short commute is 78%). The variance of the sampling distribution
of Y decreases as n gets larger, so the sampling distribution becomes more tightly concentrated around its mean,
= 0.78, as the sample size n increases.

n is large, the distribution of Y is approximately N ( iy, o-%) . As discussed at the end

of Section 2.5, the distribution of Y is exactly N(uy, 0-127) when the sample is drawn

from a population with the normal distribution N (uy, o%).The central limit theorem

says that this same result is approximately true when n is large even if Y7, . .

not themselves normally distributed.
The convergence of the distribution of Y to the bell-shaped, normal approxima-

., Y, are

tion can be seen (a bit) in Figure 2.8. However, because the distribution gets quite

tight for large n, this requires some squinting. It would be easier to see the shape of
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p
m Distribution of the Standardized Sample Average of n Bernoulli Random
Variables with p = 0.78
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The sampling distributions of Y in Figure 2.8 are plotted here after standardizing Y. Standardization centers the distri-
butions in Figure 2.8 and magnifies the scale on the horizontal axis by a factor of \V/n. When the sample size is large,
the sampling distributions are increasingly well approximated by the normal distribution (the solid line), as predicted
by the central limit theorem. The normal distribution is scaled so that the height of the distribution is approximately
the same in all figures.
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the distribution of Y if you used a magnifying glass or had some other way to zoom
in or to expand the horizontal axis of the figure.

One way to do this is to standardize Y so that it has a mean of 0 and a variance
of 1. This process leads to examining the distribution of the standardized version of
Y, (Y — uy) /oy. According to the central limit theorem, this distribution should
be well approximated by a N(0, 1) distribution when # is large.

The distribution of the standardized average (Y — uy)/oy is plotted in
Figure 2.9 for the distributions in Figure 2.8; the distributions in Figure 2.9 are exactly
the same as in Figure 2.8, except that the scale of the horizontal axis is changed so
that the standardized variable has a mean of 0 and a variance of 1. After this change
of scale, it is easy to see that, if  is large enough, the distribution of Y is well approxi-
mated by a normal distribution.

One might ask, how large is “large enough”? That is, how large must n be for the
distribution of Y to be approximately normal? The answer is, “It depends.” The qual-
ity of the normal approximation depends on the distribution of the underlying Y, that
make up the average. At one extreme, if the Y; are themselves normally distributed,
then Y is exactly normally distributed for all z. In contrast, when the underlying Y;
themselves have a distribution that is far from normal, then this approximation can
require n = 30 or even more.

This point is illustrated in Figure 2.10 for a population distribution, shown in Fig-
ure 2.10a, that is quite different from the Bernoulli distribution. This distribution has a
long right tail (it is skewed to the right). The sampling distribution of Y, after centering
and scaling, is shown in Figures 2.10b—d for n = 5, 25, and 100, respectively. Although
the sampling distribution is approaching the bell shape for n = 25, the normal approxi-
mation still has noticeable imperfections. By n = 100, however, the normal approxima-
tion is quite good. In fact, for n = 100, the normal approximation to the distribution
of Y typically is very good for a wide variety of population distributions.

The central limit theorem is a remarkable result. While the “small n” distribu-
tions of Y in parts b and c of Figures 2.9 and 2.10 are complicated and quite different
from each other, the “large n” distributions in Figures 2.9d and 2.10d are simple and,
amazingly, have a similar shape. Because the distribution of Y approaches the normal
as n grows large, Y is said to have an asymptotic normal distribution.

The convenience of the normal approximation, combined with its wide applica-
bility because of the central limit theorem, makes it a key underpinning of applied
econometrics. The central limit theorem is summarized in Key Concept 2.7

The Central Limit Theorem
Suppose that V;, ..., Y, are i.i.d. with E(Y;) = uy and var (Y;) = 0%, where 27
0 < g} < ». Asn — =, the distribution of (Y — uy) /oy (where 03 = 0% /n)
becomes arbitrarily well approximated by the standard normal distribution.
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Population Distribution
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The figures show sampling distributions of the standardized sample average of n draws from the skewed (asymmetric)
population distribution shown in Figure 2.10a. When n is small (n = 5), the sampling distribution, like the population
distribution, is skewed. But when n is large (n = 100), the sampling distribution is well approximated by a standard
normal distribution (solid line), as predicted by the central limit theorem. The normal distribution is scaled so that the
height of the distribution is approximately the same in all figures.
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Summary

1.

The probabilities with which a random variable takes on different values are
summarized by the cumulative distribution function, the probability distribu-
tion function (for discrete random variables), and the probability density func-
tion (for continuous random variables).

The expected value of a random variable Y (also called its mean, uy),
denoted E(Y), is its probability-weighted average value. The variance of Y is
0% = E[(Y — uy)?], and the standard deviation of Y is the square root of its
variance.

The joint probabilities for two random variables, X and Y, are summarized by their
joint probability distribution. The conditional probability distribution of Y given
X = xis the probability distribution of Y, conditional on X taking on the value x.
A normally distributed random variable has the bell-shaped probability density
in Figure 2.5. To calculate a probability associated with a normal random vari-
able, first standardize the variable, and then use the standard normal cumula-

tive distribution tabulated in Appendix Table 1.

5. Simple random sampling produces n random observations, Y, . . .

,Y,, that are

independently and identically distributed (i.i.d.).

6. The sample average, Y, varies from one randomly chosen sample to the next and

thus is a random variable with a sampling distribution. If Y}, . . .

, Y, areii.d., then
2

a. the sampling distribution of Y has mean iy and variance oy = o3 /n;

b. the law of large numbers says that Y converges in probability to uy; and

c. the central limit theorem says that the standardized version of Y.
(Y — uy) /oy, has a standard normal distribution [N (0, 1) distribution]

when 7 is large.

Key Terms

outcomes (56)

probability (56)

sample space (56)

event (560)

discrete random variable (56)

continuous random variable (56)

probability distribution (56)

cumulative probability distribution (57)

cumulative distribution function
(c.d.f) (57)

cumulative distribution (57)

Bernoulli random variable (58)

Bernoulli distribution (58)

probability density function (p.d.f.) (58)
density function (58)

density (58)

expected value (60)
expectation (60)

mean (60)

variance (61)

standard deviation (61)
moments of a distribution (63)
skewness (64)

kurtosis (64)

outlier (64)

leptokurtic (64)
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" moment (65) chi-squared distribution (80)
standardized random variable (65) Student ¢ distribution (80)

joint probability distribution (65) t distribution (80)

marginal probability distribution (66) F distribution (80)

conditional distribution (66) simple random sampling (81)
conditional expectation (67) population (82)

conditional mean (67) identically distributed (82)

law of iterated expectations (68) independently and identically
conditional variance (69) distributed (i.i.d.) (82)

Bayes’ rule (69) sample average (82)

independently distributed (70) sample mean (82)

independent (70) sampling distribution (83)

covariance (70) exact (finite-sample) distribution (85)
correlation (71) asymptotic distribution (85)
uncorrelated (71) law of large numbers (85)

normal distribution (75) convergence in probability (86)
standard normal distribution (75) consistency (86)

multivariate normal distribution (77) central limit theorem (86)

bivariate normal distribution (77) asymptotic normal distribution (89)
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Review the Concepts

2.1 Examples of random variables used in this chapter included (a) the sex of
the next person you meet, (b) the number of times a wireless network fails,
(c) the time it takes to commute to school, and (d) whether it is raining or not.
Explain why each can be thought of as random.

2.2 Suppose that the random variables X and Y are independent and you know
their distributions. Explain why knowing the value of X tells you nothing
about the value of Y.

2.3 Suppose that X denotes the amount of rainfall in your hometown during a
randomly selected month and Y denotes the number of children born in Los
Angeles during the same month. Are X and Y independent? Explain.
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A math class has 100 students, and the mean student weight is 65 kg. A
random sample of five students is selected from the class, and their average
weight is calculated. Will the average weight of the students in the sample
equal 65 kg? Why or why not? Use this example to explain why the sample
average, Y, is a random variable.

Suppose that Y}, . .., Y, areii.d.random variables with a N(2, 6) distribution.
Sketch the probability density of Y when n = 2. Repeat this for n = 15 and
n = 200. Describe how the densities differ. What is the relationship between
your answers and the law of large numbers?

Suppose that Yi, ..., Y, are i.i.d. random variables with probability distribu-
tion given in Figure 2.10a. You want to calculate Pr(Y = 0.2). Would it be
reasonable to use normal approximation if n = 8? How about when n = 30
and n = 150? Explain.

Y is a random variable with uy = 0; oy = 1,skewness = 0, and kurtosis = 90.
Sketch a hypothetical probability distribution of Y. Explain why n random
variables drawn from this distribution might have some large outliers.

Exercises
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Let Y denote the number of “heads” that occur when two coins are tossed.
Assume the probability of a heads is 0.4 on either coin.

a. Derive the probability distribution of Y.

b. Derive the mean and variance of Y.

Use the probability distribution given in Table 2.2 to compute (a) E(Y) and
E(X); (b) 0% and o%; and (c) oxy and corr(X, Y).

Using the random variables X and Y from Table 2.2, consider two new ran-
dom variables, W = 4 + 8X and V = 11 — 2Y.Compute (a) E(W) and E(V);
(b) o}y and o}; and (c) oy and corr(W, V).

Suppose X is a Bernoulli random variable with Pr(X = 1) = p.
a. Show E(X*) = p.
b. Show E(X*) = pfork > 0.

c. Suppose that p = 0.53. Compute the mean, variance, skewness, and kur-
tosis of X. (Hint: You might find it helpful to use the formulas given in
Exercise 2.21.)
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In July, Lugano’s, a city in Switzerland, daily high temperature has a mean of
65°F and a standard deviation of 5°F. What are the mean, standard deviation,
and variance in degrees Celsius?

The following table gives the joint probability distribution between employ-
ment status and college graduation among those either employed or looking
for work (unemployed) in the working-age population of South Africa.

( Unemployed Employed W
(Y =0) (YyY=1) Total
Non-college grads (X = 0) 0.078 0.673 0.751
College grads (X = 1) 0.042 0.207 0.249
Total 0.12 0.88 1.000

a. Compute E(Y).

b. The unemployment rate is the fraction of the labor force that is unem-
ployed. Show that the unemployment rate is given by 1 — E(Y).

c. Calculate E(Y|X = 1) and E(Y|X = 0).

d. Calculate the unemployment rate for (i) college graduates and (ii) non-
college graduates.

e. A randomly selected member of this population reports being unem-
ployed. What is the probability that this worker is a college graduate?
A non-college graduate?

f. Are educational achievement and employment status independent?
Explain.

In a given population of two-earner male-female couples, male earnings have
amean of $50,000 per year and a standard deviation of $15,000. Female earn-
ings have a mean of $48,000 per year and a standard deviation of $13,000.
The correlation between male and female earnings for a couple is 0.90. Let C
denote the combined earnings for a randomly selected couple.

a. What is the mean of C?

b. What is the covariance between male and female earnings?

c¢. What is the standard deviation of C?

d. Convert the answers to (a) through (c) from U.S. dollars ($) to euros (€).

The random variable Y has a mean of 4 and a variance of % LetZ = 3(Y — 4).
Find the mean and the variance of Z.
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2.9 X and Y are discrete random variables with the following joint distribution:

Value of Y h
2 4 6 8 10
3 0.04 0.09 0.03 0.12 0.01
Value of X 6 0.10 0.06 0.15 0.03 0.02
9 0.13 0.11 0.04 0.06 0.01 )

That is, Pr(X = 3, Y = 2) = 0.04, and so forth.

a. Calculate the probability distribution, mean, and variance of Y.

b. Calculate the probability distribution, mean, and variance of Y given

C.

X =6.

Calculate the covariance and correlation between X and Y.

2.10 Compute the following probabilities:

a.
b.
c.
d.

If Yis distributed N(4,9), find Pr(Y = 5).

If Y is distributed N(5, 16), find Pr (Y > 2).

If Yis distributed N(1,4),find Pr(2 = Y = 5).
If Yis distributed N(2,1),find Pr(1 = Y = 4).

A

2.11 Compute the following probabilities:

/0

a. If Yis distributed 3, find Pr (Y = 6.25).
b.

If Y is distributed x3, find Pr(Y = 15.51).
If Y is distributed F§ .., find Pr(Y = 1.94).
Why are the answers to (b) and (c) the same?

If Y is distributed x3, find Pr(Y = 0.5). (Hint: Use the definition of the
X1 distribution.)

2.12 Compute the following probabilities:

T op

N

e.
f.

If Y is distributed #,, find Pr(Y = 1.36).

If Y is distributed f3¢, find Pr(—1.70 = Y = 1.70).

If Yis distributed N(0, 1), find Pr(—1.70 = Y = 1.70).

When do the critical values of the normal and the ¢ distribution coincide?
If Y is distributed Fj 1, find Pr(Y > 3.36).

If Y is distributed F5 5, find Pr(Y > 4.87).

2.13 X is a Bernoulli random variable with Pr(X = 1) = 0.90; Y is distrib-
uted N(0, 4); W is distributed N(0, 16); and X, Y, and W are independent.
Let S = XY + (1 — X)W.(Thatis,S = Y when X = 1,and S§ = W when
X =0)



96

CHAPTER2 Review of Probability

2.14

2.15

2.16

2.17

2.18

a. Show that E(Y?) = 4and E(W?) = 16.

b. Show that E(Y?) = 0and E(W?) = 0. (Hint: What is the skewness for
a symmetric distribution?)

c. Show that E(Y*) = 3 X 4% and E(W*) = 3 X 16%. (Hint: Use the fact
that the kurtosis is 3 for a normal distribution.)

d. Derive E(S), E(S?), E(S%),and E(S*). (Hint: Use the law of iterated
expectations conditioningon X = 0and X = 1.)

e. Derive the skewness and kurtosis for S.

In a population, uy = 50 and 03 = 21. Use the central limit theorem to
answer the following questions:

a. In a random sample of size n = 50, find Pr(Y = 51).
150, find Pr(Y > 49).
¢. In arandom sample of size n = 45, find Pr(50.5 = Y = 51).

b. In arandom sample of size n

Suppose Y, I = 1,2,..., n are i.i.d. random variables, each distributed
N(20, 4).

a. Compute Pr(19.6 = Y = 20.4) when (i) n = 25, (ii) n = 100, and
(iii) n = 800.

b. Suppose c is a positive number. Show that Pr(20 — ¢ = Y = 20 + ¢)
becomes close to 1.0 as n grows large.

c. Use your answer in (b) to argue that Y converges in probability to 20.

Y is distributed N(10, 100) and you want to calculate Pr(Y = 5.8). Unfor-
tunately, you do not have your textbook, and do not have access to a normal
probability table like Appendix Table 1. However, you do have your computer
and a computer program that can generate i.i.d. draws from the N(10, 100)
distribution. Explain how you can use your computer to compute an accurate
approximation for Pr(Y = 5.8).

Y,i=1,..., n,are ii.d. Bernoulli random variables with p = 0.6. Let Y
denote the sample mean.

a. Use the central limit theorem to compute approximations for
i. Pr(Y = 0.64) when n = 50.
ii. Pr(Y = 0.56) when n = 200.

b. How large would n need to be to ensure that Pr(0.65 > Y > 0.55) = 0.95?
(Use the central limit theorem to compute an approximate answer.)

In any year, the weather can inflict storm damage to a home. From year to
year, the damage is random. Let Y denote the dollar value of damage in any
given year. Suppose that in 95% of the years Y = $0, but in 5% of the years
Y = $30,000.
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a. What are the mean and standard deviation of the damage in any year?

b. Consider an “insurance pool” of 120 people whose homes are sufficiently
dispersed so that, in any year, the damage to different homes can be
viewed as independently distributed random variables. Let Y denote the
average damage to these 120 homes in a year. (i) What is the expected
value of the average damage Y? (ii) What is the probability that Y
exceeds $3,000?

Consider two random variables, X and Y. Suppose that Y takes on k values
Vi, - - - » Vi and that X takes on [ values xy, . .., x;.

a. Show that Pr(Y = y;) = 3',_ Pr(Y = yj|X = x;) Pr(X = x,). [Hint:
Use the definition of Pr(Y = y;|X = x;).]
b. Use your answer to (a) to verify Equation (2.19).

¢. Suppose that X and Y are independent. Show that oy = 0 and
corr(X, Y) = 0.

Consider three random variables, X, Y, and Z. Suppose that Y takes on k
values yy, ..., y; that X takes on [ values xy,... , x;; and that Z takes
on m values zi, ..., z,. The joint probability distribution of X, Y, Z is

Pr(X = x, Y = y, Z = z),and the conditional probability distribution of Y

given Xand ZisPr(Y = y|X =x, Z=2z) = Pr(};rTXy’:X:ZX’:ZZ)z 2

a. Explain how the marginal probability that Y = y can be calculated
from the joint probability distribution. [Hint: This is a generalization of
Equation (2.16).]

b. Show that E(Y) = E[E(Y|X, Z)].[Hint: This is a generalization of
Equations (2.19) and (2.20).]

X is a random variable with moments E(X), E(X?), E(X?), and so forth.
a. Show E(X — n)® = E(X?) = 3[E(XH)][E(X)] +2[E(X) ]’

b. Show
E(X—p)*=E(X*) —4[E(X)][E(X)] + 6[E(X)*[E(X?)] — 3[E(X)]*".

Suppose you have some money to invest, for simplicity $1, and you are plan-
ning to put a fraction w into a stock market mutual fund and the rest,1 — w,
into a mutual fund. Suppose that $1 invested in a stock fund yields R after
one year and that $1 invested in mutual fund yields. R,. Suppose that R; is
random with mean 0.06 and standard deviation 0.09, and suppose that R, is
random with mean 0.04 and standard deviation 0.05. The correlation between
R, and Ry, is 0.3. If you place a fraction w of your money in the stock fund
and the rest,1 — w,in the mutual fund, then the return on your investment is
R = wR; + (1 — w)R,.

a. Suppose that w = 0.2. Compute the mean and standard deviation of R.
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b. Suppose that w = 0.8. Compute the mean and standard deviation of R.

c¢. What value of w makes the mean of R as large as possible? What is the
standard deviation of R for this value of w?

d. (Harder) What is the value of w that minimizes the standard deviation

of R? (Show using a graph, algebra, or calculus.)

This exercise provides an example of a pair of random variables, X and Y, for
which the conditional mean of Y given X depends on X but corr(X, Y) = 0.
Let X and Z be two independently distributed standard normal random vari-
ables,andlet Y = X2 + Z.

a. Show that E(Y|X) = X2

b. Show that uy = 1.

c. Show that E(XY) = 0. (Hint: Use the fact that the odd moments of a
standard normal random variable are all 0.)

d. Show thatcov(X, Y) = 0 and thus corr(X, Y) = 0.
Suppose Y; is distributed i.i.d. N(0, 0'2) fori=1,2,...,n.
a. Show that E(Y?/0?) = 1.

b. Show that W = (1/0?)X}_,Y7is distributed 2.

c. Show that E(W) = n.[Hint: Use your answer to (a).]
SiaYi

d. Show thatV = Y1/ is distributed ¢, _ .
(Review of summation notation) Let xy, ..., x, denote a sequence of num-
bers; yy, . . ., y, denote another sequence of numbers; and a, b, and ¢ denote
three constants. Show that

n n
a. Eax,- = aEx,-,

i=1 i=1
n

n n
b. > (xi+y) = ;xi + ;yi,

=

n
C. Ea =n X a,and
=1
n n n n
> (a+ bx; + cy)? = na* + b*Dx7 + D yF + 2ab D x;
=1 =1 = =
n

+ 2a62y,- + 2bc2xiy,».
i=1 i=1

Suppose that Y}, Y5, ..., Y, are random variables with a common mean uy;
a common variance o}; and the same correlation p (so that the correlation
between Y; and Y] is equal to p for all pairs i and j, where i # j).

a. Show that cov(Y;, Y;) = poy fori # j.

b. Suppose that n = 2. Show that E(Y) = uy and var (Y) = 10} + 3po?.
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c. Forn = 2,show that E(Y) = pyandvar(Y) =o%/n +
[(n—1)/n]pos.
d. When 7 is very large, show that var (Y) = po?.

Consider the problem of predicting Y using another variable, X, so that the
prediction of Y is some function of X, say g(X). Suppose that the quality of
the prediction is measured by the squared prediction error made on average
over all predictions, that is, by E{[Y — g(X)]*}. This exercise provides a
non-calculus proof that of all possible prediction functions g, the best predic-
tion is made by the conditional expectation, E( Y| X).

a. LetY = E(Y|X),andletu = Y — Y denote its prediction error. Show
that E(u) = 0. (Hint: Use the law of iterated expectations.)

b. Show that E(uX) = 0.

c. LetY = g(X) denote a different prediction of Y using X, and let
v = Y — Y denote its error. Show that E[ (Y — Y)?] > E[(Y — ¥)?].
[Hint: Let h(X) = g(X) — E(Y|X),sothatv = [Y — E(Y|X)] — h(X).
Derive E(v?).]

Refer to Part B of Table 2.3 for the conditional distribution of the number of

network failures M given network age A. Let Pr(A = 0) = 0.5; that is, you
work in your room 50% of the time.

a. Compute the probability of three network failures, Pr(M = 3).
b. Use Bayes’ rule to compute Pr(A = 0| M = 3).

c¢. Now suppose you work in your room one-fourth of the time, so
Pr(A = 0) = 0.25. Use Bayes’ rule to compute Pr(A = 0| M = 3).

Empirical Exercise

E21

On the text website, http://www.pearsonglobaleditions.com, you will find the
spreadsheet Age_HourlyEarnings, which contains the joint distribution of
age (Age) and average hourly earnings (A HE) for 25- to 34-year-old full-time
workers in 2015 with an education level that exceeds a high school diploma.
Use this joint distribution to carry out the following exercises. (Note: For these
exercises, you need to be able to carry out calculations and construct charts
using a spreadsheet.)

a. Compute the marginal distribution of Age.

b. Compute the mean of AHE for each value of Age; that is, compute,
E(AHE|Age = 25), and so forth.

c¢. Compute and plot the mean of AHE versus Age. Are average hourly
earnings and age related? Explain.
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d. Use the law of iterated expectations to compute the mean of AHE; that
is, compute E(AHE).

Compute the variance of AHE.
Compute the covariance between AHE and Age.

Compute the correlation between AHE and Age.

Fooe o= 0

Relate your answers in (f) and (g) to the plot you constructed in (c).

APPENDIX

2.1 Derivation of Results in Key Concept 2.3

This appendix derives the equations in Key Concept 2.3.

Equation (2.30) follows from the definition of the expectation.

To derive Equation (2.31), use the definition of the variance to write var(a + bY) =
E{[a+bY — E(a + bY)]%} = E{[b(Y — uy) %} = BE[(Y — uy)?] = bo}.

To derive Equation (2.32), use the definition of the variance to write

var (aX + bY) = E{[(aX + bY) — (apx + buy)]*}

= E{[a(X — px) + b(Y — uy)]*}

= E[a*(X — py)?] + 2E[ab(X — px) (Y — py)]
+ E[D* (Y — py)?]
a’var (X) + 2ab cov(X, Y) + b? var (Y)

= a’0% + 2aboyy + b*o?, (2.50)

where the second equality follows by collecting terms, the third equality follows by expanding
the quadratic, and the fourth equality follows by the definition of the variance and covariance.
To derive Equation (2.33), write

E(Y?) = E{(Y = py) + uy]*} = E[(Y = py)?] + 2 wyE(Y — py) + py = 0% + uf

because E(Y — uy) = 0.
To derive Equation (2.34), use the definition of the covariance to write

cov(a + bX + cV,Y) [a+bX +cV—E(a+bX+cV)][Y— nyl}

[b(X = px) + (V= wy) J[Y = pyl}
b

[b(X = ux) J[Y = py]} + E{[c(V = w)][Y = ny]}
boxy + coyy, (2.51)

E{
E{
E{

which is Equation (2.34).



APPENDIX

2.2

The Conditional Mean as the Minimum Mean Squared Error Predictor 101

To derive Equation (2.35), write

E(XY) = E{[(X — px) + pux][(Y — py) + pyl}
=E[(X = px)(Y —py)] + uxE(Y — py) + myE(X — py) + pxpy

= oxy T pxpy.

We now prove the correlation inequality in Equation (2.36); that is, |corr(X, Y) = 1.|
Leta = —oyy/o% and b = 1. Applying Equation (2.32), we have,

var (aX + Y ) = d’c% + 0% + 2a0yy
= (=oxy/o%) 0% + 0% + 2(—oxy/ok)oxy

= o} — o%y/o% (2.52)

Because var(aX + Y) is a variance, it cannot be negative, so from the final line of Equa-
tion (2.52), it must be that 03 — 0%y /0% = 0. Rearranging this inequality yields

%y = 0%o% (covariance inequality). (2.53)

The covariance inequality implies that 0%y / (0%0%) = 1or,equivalently, |oyy/(oxoy) | =1,
which (using the definition of the correlation) proves the correlation inequality,
[corr(X Y)| = 1.

The Conditional Mean as the Minimum
Mean Squared Error Predictor

At a general level, the statistical prediction problem is, how does one best use the information
in a random variable X to predict the value of another random variable Y?

To answer to this question, we must first make precise mathematically what it means for
one prediction to be better than another. A common way to do so is to consider the cost of
making a prediction error. This cost, which is called the prediction loss, depends on the mag-
nitude of the prediction error. For example, if your job is to predict sales so that a production
supervisor can develop a production schedule, being off by a small amount is unlikely to
inconvenience customers or to disrupt the production process. But if you are off by a large
amount and production is set far too low, your company might lose customers who need to
wait a long time to receive a product they order, or if production is far too high, the company
will have costly excess inventory on its hands. In either case, a large prediction error can be

disproportionately more costly than a small one.
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One way to make this logic precise is to let the cost of a prediction error depend on the
square of that error, so an error twice as large is four times as costly. Specifically, suppose that
your prediction of Y, given the random variable X, is g(X). The prediction error is Y — g(X),
and the quadratic loss associated with this prediction is,

Loss = E{[Y — g(X)]?}. (2.54)

We now show that, of all possible functions g(X), the loss in Equation (2.54) is minimized
by g(X) = E(Y]X).We show this result using discrete random variables, however this result
extends to continuous random variables. The proof here uses calculus; Exercise 2.27 works
through a non-calculus proof of this result.

First consider the simpler problem of finding a number, 7, that minimizies E[ (Y — m)?].
From the definition of the expectation, E[ (Y — m)?] = Ele( Y; — m)?p,. To find the value
of m that minimizes E[ (Y — m)?], take the derivative of 2?:1( Y; — m)?p; with respect to

m and set it to zero:

k k
LS = myp= 23,00 = mp = =2 S - m3p)
i=1

i=1
= _2(2 i — m) =0, (2.55)

where the final equality uses the fact that probabilities sum to 1. It follow from the final equality in
Equation (2.55) that the squared error prediction loss is minimized by m = Ef: Yo = E(Y),
that is, by setting m equal to the mean of Y.

To find the predictor g(X) that minimizes the loss in Equation (2.54), use the law of iterated
expectations to write that loss as, Loss = E{[Y — g(X)]*} = E(E{[Y — g(X) ?|X}).
Thus, if the function g(X) minimizes E{[Y — g(X)]*|X = x} for each value of x, it mini-
mizes the loss in Equation (2.54). But for a fixed value X = x, g(X) = g(x) is a fixed number,
so this problem is the same as the one just solved, and the loss is minimized by choosing g(x)
to be the mean of Y, given X = x.This is true for every value of x. Thus the squared error loss
in Equation (2.54) is minimzed by g(X) = E(Y|X).
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Review of Statistics

Statistics is the science of using data to learn about the world around us. Statistical
tools help us answer questions about unknown characteristics of distributions in
populations of interest. For example, what is the mean of the distribution of earnings
of recent college graduates? Do mean earnings differ for men and women and, if so,
by how much?

These questions relate to the distribution of earnings in the population of workers.
One way to answer these questions would be to perform an exhaustive survey of the
population of workers, measuring the earnings of each worker and thus finding the
population distribution of earnings. In practice, however, such a comprehensive survey
would be extremely expensive. Comprehensive surveys that do exist, also known as
censuses, are often undertaken periodically (for example, every ten years in India, the
United States of America and the United Kingdom). This is because the process of con-
ducting a census is an extraordinary commitment, consisting of designing census
forms, managing and conducting surveys, and compiling and analyzing data. Censuses
across the world have a long history, with accounts of censuses recorded by Babylo-
nians in 4000 BC. According to historians, censuses have been conducted as far back as
Ancient Rome; the Romans would track the population by making people return to
their birthplace every year in order to be counted." In England and other parts of
Wales, a notable census was the Domesday Book, which was compiled in 1086 by
William the Conqueror. The U.K. census in its current form dates back to 1801 after
essays by economist Thomas Malthus (1798) inspired parliament to want to accurately
know the size of the population. Over time the census has evolved from amounting to
a mere headcount to the much more ambitious survey of the 2011 U.K. census costing
an estimated £482 million. In India, there are accounts of censuses recorded around
300 BC, but the census in its current form has been undertaken since 1872 and every
ten years since 1881. In comparison to the U.K. census of 2011, the most recent census
of India, also conducted in 2011, approximately cost a mere 2200 crore (U5$320 million)!
Despite the considerable efforts made to ensure that the census records all individuals,
many people slip through the cracks and are not surveyed. Thus a different, more
practical approach is needed.

The key insight of statistics is that one can learn about a population distribution by
selecting a random sample from that population. Rather than survey the entire popu-
lation of China (1.4 billion in 2018), we might survey, say, 1000 members of the popu-
lation, selected at random by simple random sampling. Using statistical methods, we

ISource: Office for National Statistics, https://www.ons.gov.uk, accessed on August 23,2018.
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3.1

can use this sample to reach tentative conclusions—to draw statistical inferences—
about characteristics of the full population.?

Three types of statistical methods are used throughout econometrics: estimation,
hypothesis testing, and confidence intervals. Estimation entails computing a “best
guess” numerical value for an unknown characteristic of a population distribution,
such as its mean, from a sample of data. Hypothesis testing entails formulating a
specific hypothesis about the population and then using sample evidence to decide
whether it is true. Confidence intervals use a set of data to estimate an interval or
range for an unknown population characteristic. Sections 3.1, 3.2, and 3.3 review
estimation, hypothesis testing, and confidence intervals in the context of statistical
inference about an unknown population mean.

Most of the interesting questions in economics involve relationships between two or
more variables or comparisons between different populations. For example, is there a gap
between the mean earnings for male and female recent college graduates? In Section 3.4,
the methods for learning about the mean of a single population in Sections 3.1 through
3.3 are extended to compare means in two different populations. Section 3.5 discusses
how the methods for comparing the means of two populations can be used to estimate
causal effects in experiments. Sections 3.2 through 3.5 focus on the use of the normal dis-
tribution for performing hypothesis tests and for constructing confidence intervals when
the sample size is large. In some special circumstances, hypothesis tests and confidence
intervals can be based on the Student t distribution instead of the normal distribution;
these special circumstances are discussed in Section 3.6. The chapter concludes with a
discussion of the sample correlation and scatterplots in Section 3.7.

Estimation of the Population Mean

Suppose you want to know the mean value of Y (that is, uy) in a population, such as
the mean earnings of women recently graduated from college. A natural way to esti-
mate this mean is to compute the sample average Y from a sample of n indepen-
dently and identically distributed (i.i.d.) observations, Yi,..., Y, (recall that
Yi, ..., Y, are ii.d.if they are collected by simple random sampling). This section
discusses estimation of uy and the properties of Y as an estimator of uy.

Estimators and Their Properties

Estimators. The sample average Y is a natural way to estimate uy, but it is not the
only way. For example, another way to estimate uy is simply to use the first
observation, Y;. Both Y and Y; are functions of the data that are designed to estimate
uy; using the terminology in Key Concept 3.1, both are estimators of uy. When
evaluated in repeated samples, Y and Y; take on different values (they produce

%Estimates of the ‘live’ population of China can be found here using the ‘official’ China Population Clock:
http://data.stats.gov.cn/english/
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Estimators and Estimates KEY CONCEPT

An estimator is a function of a sample of data to be drawn randomly from a popu-

3.1

lation. An estimate is the numerical value of the estimator when it is actually com-

puted using data from a specific sample. An estimator is a random variable because

of randomness in selecting the sample, while an estimate is a nonrandom number.

different estimates) from one sample to the next. Thus the estimators Y and Y; both
have sampling distributions. There are, in fact, many estimators of ., of which Y and
Y] are two examples.

There are many possible estimators, so what makes one estimator “better” than
another? Because estimators are random variables, this question can be phrased
more precisely: What are desirable characteristics of the sampling distribution of an
estimator? In general, we would like an estimator that gets as close as possible to the
unknown true value, at least in some average sense;in other words, we would like the
sampling distribution of an estimator to be as tightly centered on the unknown value
as possible. This observation leads to three specific desirable characteristics of an
estimator: unbiasedness (a lack of bias), consistency, and efficiency.

Unbiasedness. Suppose you evaluate an estimator many times over repeated ran-
domly drawn samples. It is reasonable to hope that, on average, you would get the
right answer. Thus a desirable property of an estimator is that the mean of its sam-
pling distribution equals uy; if so, the estimator is said to be unbiased.

To state this concept mathematically, let iy denote some estimator of uy, such
as Y or Y]. [The caret (*) notation will be used throughout this text to denote an
estimator, so fy is an estimator of wy.] The estimator fy is unbiased if E(dy) = uy,
where E(fy) is the mean of the sampling distribution of fiy; otherwise, {1y is biased.

Bias, Consistency, and Efficiency

Let iy be an estimator of wy. Then:

3.2

The bias of py is E(fy) — py-
Wy is an unbiased estimator of py if E(fiy) = py.
[y is a consistent estimator of wy if iy ——= wy.

Let gy be another estimator of uy, and suppose that both 1y and wy are
unbiased. Then fiy is said to be more efficient than iy if var (dy) < var(my).
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Consistency. Another desirable property of an estimator uy is that when the sample
size is large, the uncertainty about the value of uy arising from random variations in
the sample is very small. Stated more precisely, a desirable property of fiy is that the
probability that it is within a small interval of the true value uy approaches 1 as the
sample size increases; that is, 1y is consistent for uy (Key Concept 2.6).

Variance and efficiency. Suppose you have two candidate estimators, 4y and py,
both of which are unbiased. How might you choose between them? One way to do
so is to choose the estimator with the tightest sampling distribution. This suggests
choosing between y and iy by picking the estimator with the smallest variance. If
[y has a smaller variance than iy, then fiy is said to be more efficient than fiy. The
terminology “efficiency” stems from the notion that if i, has a smaller variance than
Wy, then it uses the information in the data more efficiently than does iy.

Bias, consistency, and efficiency are summarized in Key Concept 3.2.

Properties of Y

How does Y fare as an estimator of wuy when judged by the three criteria of bias,
consistency, and efficiency?

Bias and consistency. The sampling distribution of Y has already been examined in
Sections 2.5 and 2.6. As shown in Section 2.5, E(Y) = uy,so Y is an unbiased esti-
mator of uy. Similarly, the law of large numbers (Key Concept 2.6) states that
Y —2> puy:thatis, Y is consistent.

Efficiency. What can be said about the efficiency of Y? Because efficiency entails a
comparison of estimators, we need to specify the estimator or estimators to which Y
is to be compared.

We start by comparing the efficiency of Y to the estimator Y;. Because Y}, . .. .Y,
are i.i.d., the mean of the sampling distribution of Y] is E(Y;) = uy; thus Y] is an
unbiased estimator of uy. Its variance is var(Y;) = o%. From Section 2.5, the vari-
ance of Y is 0'%1/ n.Thus, for n = 2, the variance of Y is less than the variance of Y;;
that is, Y is a more efficient estimator than Y}, so, according to the criterion of effi-
ciency, Y should be used instead of ;. The estimator Y; might strike you as an obvi-
ously poor estimator—why would you go to the trouble of collecting a sample of
n observations only to throw away all but the first? —and the concept of efficiency
provides a formal way to show that Y is a more desirable estimator than Y;.

What about a less obviously poor estimator? Consider the weighted average in
which the observations are alternately weighted by % and %:

~ 1/1 3 1 3 1 3
Y—n<2Yl+2Yz+2Ys+2Y4+"‘ +2Yn—1+2Yn)a (G.1)

where the number of observations z is assumed to be even for convenience. The
mean of Y is uy, and its variance is var(Y) = 1.25 0% /n (Exercise 3.11). Thus Y is
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Efficiency of Y: Y Is BLUE KEY CONCEPT
Let 4y be an estimator of uy that is a weighted average of Yj,..., Y,; that is, :
ay = (1/n)X';_, ;Y;,, where aj, . . . , a, are nonrandom constants. If {iy is unbi-

ased, then var(Y) < var(fiy) unless iy = Y. Thus Y is the Best Linear Unbi-
ased Estimator (BLUE); that is, Y is the most efficient estimator of uy among all
unbiased estimators that are weighted averages of Yi,..., Y.

unbiased, and because var( 17) —0asn— ==, Y is consistent. However, Y has a
larger variance than Y. Thus Y is more efficient than Y.

The estimators Y, Y}, and Y have a common mathematical structure: They are
weighted averages of Y}, ..., Y,. The comparisons in the previous two paragraphs
show that the weighted averages Y; and Y have larger variances than Y. In fact, these
conclusions reflect a more general result: Y is the most efficient estimator of all
unbiased estimators that are weighted averages of V;, . .., Y,. Said differently, Y is
the Best Linear Unbiased Estimator (BLUE); that is, it is the most efficient (best)
estimator among all estimators that are unbiased and are linear functions of
Y1, ..., Y,. This result is stated in Key Concept 3.3 and is proved in Chapter 5.

Y is the least squares estimator of ju,. The sample average Y provides the best fit to
the data in the sense that the average squared differences between the observations
and Y are the smallest of all possible estimators.

Consider the problem of finding the estimator m that minimizes

> (Yi—m)?, (3-2)
i=1
which is a measure of the total squared gap or distance between the estimator m and
the sample points. Because m is an estimator of E(Y), you can think of it as a predic-
tion of the value of Y}, so the gap Y; — m can be thought of as a prediction mistake.
The sum of squared gaps in Expression (3.2) can be thought of as the sum of squared
prediction mistakes.

The estimator m that minimizes the sum of squared gaps Y; — m in Expression (3.2)
is called the least squares estimator. One can imagine using trial and error to solve
the least squares problem: Try many values of 7 until you are satisfied that you have
the value that makes Expression (3.2) as small as possible. Alternatively, as is done
in Appendix 3.2, you can use algebra or calculus to show that choosing m = Y mini-
mizes the sum of squared gaps in Expression (3.2), so that Y is the least squares
estimator of wy.
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I n 2009, India’s general elections, also referred to
as the national elections, was the largest demo-
cratic election in the world until the Indian general
elections 2014 held from April 7 2014. Shortly before
the general elections, pollsters predicted a close fight
between the coalition parties—the United Progressive
Alliance (UPA) and the National Democratic Alliance
(NDA). Psephologists envisaged that while the UPA
might have had the upper hand, the NDA could not
be written off. They predicted that the UPA would get
between 201 and 235 seats in the 14th Lok Sabha (the
lower house of India’s bicameral Parliament) and the
NDA between 165 and 186 seats. The actual results

What could be the possible reasons for opinion
polls being wide off the mark? In countries that do not
have a homogenous population, such as India, caste,
religion, and geographies influence electoral outcomes
greatly. Vulnerable sections of the population may
be afraid to disclose their actual preference. Political
polls have since become much more sophisticated and
adjust for sampling bias, but they still can make mis-
takes. If opinion polls do not randomly select samples
across various locations and sections of people, they

may still not hit the mark.

Source: Atul Thakur, “Why Opinion Polls Are Often Wide

. ) off the Mark,” The Times of India, April 13, 2014.
were surprising: UPA got 262 seats, while NDA could

only manage to get 157 seats.

The Importance of Random Sampling

We have assumed that Y, ..
obtained from simple random sampling. This assumption is important because non-

., Y, are i.i.d. draws, such as those that would be

random sampling can result in Y being biased. Suppose that to estimate the monthly
national unemployment rate, a statistical agency adopts a sampling scheme in which
interviewers survey working-age adults sitting in city parks at 10 a.m. on the second
Wednesday of the month. Because most employed people are at work at that hour
(not sitting in the park!), the unemployed are overly represented in the sample, and
an estimate of the unemployment rate based on this sampling plan would be biased.
This bias arises because this sampling scheme overrepresents, or oversamples, the
unemployed members of the population. This example is fictitious, but the
“Off the Mark!” box gives a real-world example of biases introduced by sampling
that is not entirely random.

It is important to design sample selection schemes in a way that minimizes bias.
Appendix 3.1 includes a discussion of what the Bureau of Labor Statistics actually
does when it conducts the U.S. Current Population Survey (CPS), the survey it uses
to estimate the monthly U.S. unemployment rate.
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Hypothesis Tests Concerning
the Population Mean

Many hypotheses about the world around us can be phrased as yes/no questions.
Do the mean hourly earnings of recent U.S. college graduates equal $20 per hour? Are
mean earnings the same for male and female college graduates? Both these questions
embody specific hypotheses about the population distribution of earnings. The statisti-
cal challenge is to answer these questions based on a sample of evidence. This section
describes hypothesis tests concerning the population mean (Does the population
mean of hourly earnings equal $20?). Hypothesis tests involving two populations (Are
mean earnings the same for men and women?) are taken up in Section 3.4.

Null and Alternative Hypotheses

The starting point of statistical hypotheses testing is specifying the hypothesis to be
tested, called the null hypothesis. Hypothesis testing entails using data to compare
the null hypothesis to a second hypothesis, called the alternative hypothesis, that
holds if the null does not.

The null hypothesis is that the population mean, E(Y), takes on a specific value,
denoted wy . The null hypothesis is denoted H, and thus is

Hy: E(Y) = py,o. (33)

For example, the conjecture that, on average in the population, college graduates
earn $20 per hour constitutes a null hypothesis about the population distribution of
hourly earnings. Stated mathematically, if Y is the hourly earnings of a randomly
selected recent college graduate, then the null hypothesis is that £(Y) = 20; that is,
wyo = 20 in Equation (3.3).

The alternative hypothesis specifies what is true if the null hypothesis is not. The
most general alternative hypothesis is that E(Y) # wy,(, which is called a two-sided
alternative hypothesis because it allows E(Y) to be either less than or greater than
Wy . The two-sided alternative is written as

H,: E(Y) # wy, (two-sided alternative). (3.4)

One-sided alternatives are also possible, and these are discussed later in this
section.

The problem facing the statistician is to use the evidence in a randomly selected
sample of data to decide whether to accept the null hypothesis H, or to reject it in
favor of the alternative hypothesis H;. If the null hypothesis is “accepted,” this does
not mean that the statistician declares it to be true; rather, it is accepted tentatively
with the recognition that it might be rejected later based on additional evidence. For
this reason, statistical hypothesis testing can be posed as either rejecting the null
hypothesis or failing to do so.
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The p-Value

In any given sample, the sample average Y will rarely be exactly equal to the hypoth-
esized value wy . Differences between Y and My o can arise because the true mean, in
fact, does not equal uy  (the null hypothesis is false) or because the true mean equals
Wy (the null hypothesis is true) but Y differs from uy,o because of random sampling.
It is impossible to distinguish between these two possibilities with certainty. Although
a sample of data cannot provide conclusive evidence about the null hypothesis, it is
possible to do a probabilistic calculation that permits testing the null hypothesis in a
way that accounts for sampling uncertainty. This calculation involves using the data
to compute the p-value of the null hypothesis.

The p-value, also called the significance probability, is the probability of drawing
a statistic at least as adverse to the null hypothesis as the one you actually computed
in your sample, assuming the null hypothesis is correct. In the case at hand, the
p-value is the probability of drawing Y at least as far in the tails of its distribution
under the null hypothesis as the sample average you actually computed.

For example, suppose that, in your sample of recent college graduates, the aver-
age wage is $22.64. The p-value is the probability of observing a value of Y at least as
different from $20 (the population mean under the null hypothesis) as the observed
value of $22.64 by pure random sampling variation, assuming that the null hypothesis
is true. If this p-value is small (say, 0.1%), then it is very unlikely that this sample
would have been drawn if the null hypothesis is true; thus it is reasonable to conclude
that the null hypothesis is not true. By contrast, if this p-value is large (say,40% ), then
it is quite likely that the observed sample average of $22.64 could have arisen just by
random sampling variation if the null hypothesis is true; accordingly, the evidence
against the null hypothesis is weak in this probabilistic sense, and it is reasonable not
to reject the null hypothesis.

To state the definition of the p-value mathematically, let Y’ denote the value of
the sample average actually computed in the data set at hand, and let Pr, denote the
probability computed under the null hypothesis (that is, computed assuming that
E(Y) = py.o). The p-value is

p-value = Pry [|Y —pyo | > [Y* =y, ]. (3.5)

That is, the p-value is the area in the tails of the distribution of Y under the null
hypothesis beyond pyy * | Y’ — uyo|. If the p-value is large, then the observed
value Y““ is consistent with the null hypothesis, but if the p-value is small, it is not.
To compute the p-value, it is necessary to know the sampling distribution of Y
under the null hypothesis. As discussed in Section 2.6, when the sample size is small,
this distribution is complicated. However, according to the central limit theorem,
when the sample size is large, the sampling distribution of Y is well approximated by
a normal distribution. Under the null hypothesis the mean of this normal distribution
is f1y 9, 0 under the null hypothesis Y is distributed Ny, 0127) ,where 0% = 0% /n.
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This large-sample normal approximation makes it possible to compute the p-value
without needing to know the population distribution of Y, as long as the sample size
is large. The details of the calculation, however, depend on whether ¢% is known.

Calculating the p-Value When oy Is Known

The calculation of the p-value when oy is known is summarized in Figure 3.1. If the
sample size is large, then under the null hypothesis the sampling distribution of Y is
Ny o%),where 0'217 = 0% /n. Thus, under the null hypothesis, the standardized
version of Y, (Y — uyg) /oy, has a standard normal distribution. The p-value is the
probability of obtaining a value of Y farther from py, than Y* under the null
hypothesis or, equivalently, it is the probability of obtaining (Y — Wyo) /oy greater
than (Y — uy) /oy in absolute value. This probability is the shaded area shown
in Figure 3.1. Written mathematically, the shaded tail probability in Figure 3.1 (that
is, the p-value) is

Y act
Yo' — My,0

— Myp
>

gy

?act _
)- s

gy

p-value = PrHO( ), (3.6)

gy

where @ is the standard normal cumulative distribution function. That is, the p-value
is the area in the tails of a standard normal distribution outside + |Y“ — Kyol/ov.

The formula for the p-value in Equation (3.6) depends on the variance of the
population distribution, ¢%. In practice, this variance is typically unknown. [An
exception is when Y; is binary, so that its distribution is Bernoulli, in which case the
variance is determined by the null hypothesis; see Equation (2.7) and Exercise 3.2.]
Because in general o3 must be estimated before the p-value can be computed, we
now turn to the problem of estimating o%.

(m Calculating a p-value W

The p-value is the
probability of drawing a
value of Y that differs from
My by at least as much

as Y2 In large samples,

Y is distributed N(uy o, 0%)
under the null hypothesis,
50 (Y = pyp) /oy

is distributed N (0,1).
Thus the p-value is the
shaded standard normal
tail probability outside
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The Sample Variance, Sample Standard Deviation,
and Standard Error

The sample variance, s%, is an estimator of the population variance, o'3; the sample
standard deviation, sy, is an estimator of the population standard deviation, oy; and
the standard error of the sample average, Y, is an estimator of the standard deviation
of the sampling distribution of Y.

The sample variance and standard deviation. The sample variance, s%, is

! ilw,» — ) 3.7)

n—1i=

% =

The sample standard deviation, sy, is the square root of the sample variance.

The formula for the sample variance is much like the formula for the population
variance. The population variance, E(Y — uy)?,is the average value of (Y — uy)?
in the population distribution. Similarly, the sample variance is the sample average
of (Y; — My)z, i =1,---, n,with two modifications: First, uy is replaced by Y, and
second, the average uses the divisor n — 1 instead of n.

The reason for the first modification —replacing uy by Y —is that uy is unknown
and thus must be estimated; the natural estimator of uy is Y. The reason for
the second modification—dividing by n — 1 instead of by n—is that estimating uy
by Y introduces a small downward bias in (Y; — Y)?2. Specifically, as is shown
in Exercise 3.18, E[(Y; — Y)?] = [(n — 1)/n]o}. Thus EX;_ (Y, — Y)?=
nE[(Y; — Y)?] = (n — 1)0%. Dividing by n — 1 in Equation (3.7) instead of n
corrects for this small downward bias, and as a result s% is unbiased.

Dividing by n — 1 in Equation (3.7) instead of  is called a degrees of freedom
correction: Estimating the mean uses up some of the information—that is, uses up 1
“degree of freedom” —in the data, so that only n — 1 degrees of freedom remain.

Consistency of the sample variance. The sample variance is a consistent estimator
of the population variance:

53— o (3.8)

In other words, the sample variance is close to the population variance with high
probability when # is large.

The result in Equation (3.9) is proven in Appendix 3.3 under the assumptions
that Y;,..., Y, are i.i.d. and Y; has a finite fourth moment; that is, E(Y?) < oo,
Intuitively, the reason that s% is consistent is that it is a sample average, so s} obeys
the law of large numbers. For s to obey the law of large numbers in Key Concept 2.6,
(Y; — wy)? must have finite variance, which in turn means that E(Y}) must be finite;
in other words, Y; must have a finite fourth moment.
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The Standard Error of Y
The standard error of Y is an estimator of the standard deviation of Y. The 34
standard error of Y is denoted SE(Y) or 67.When V,, ..., Y, areii.d.,

SE(Y) = 65 = sy/ Vn. (3.9)

The standard error of Y. Because the standard deviation of the sampling distribution
of Yis oy = oy/ Vn, Equation (3.9) justifies using sy/ Vn as an estimator of oy.
The estimator of oy, sy/ Vn,is called the standard error of Y and is denoted SE(Y)
or 6. The standard error of Y is summarized as in Key Concept 3.4.

When Y, ...,Y, are i.i.d. draws from a Bernoulli distribution with success
probability p, the formula for the variance of Y simplifies to p(1 — p)/n (see
Exercise 3.2). The formula for the standard error also takes on a simple form that

depends only on Y and n: SE(Y) = VY(1 - Y) /n.

Calculating the p-Value When gy Is Unknown

Because s% is a consistent estimator of o3, the p-value can be computed by replacing

oy in Equation (3.6) by the standard error, SE(Y) = &y. That is, when oy is

unknown and Y}, . .., Y, are i.i.d., the p-value is calculated using the formula
?act _
p-value = 2@(— - fEo ) (3.10)
SE(Y)

The t-Statistic

The standardized sample average (Y — pyo) /SE(Y) plays a central role in testing
statistical hypotheses and has a special name, the #-statistic or #-ratio:

Y — pyp
t=——=— (3.11)
SE(Y)
In general, a test statistic is a statistic used to perform a hypothesis test. The #-statistic
is an important example of a test statistic.

Large-sample distribution of the t-statistic. When n is large, s% is close to o'} with
high probability. Thus the distribution of the #-statistic is approximately the same as
the distribution of (Y — Wyo) /oy, which in turn is well approximated by the
standard normal distribution when 7 is large because of the central limit theorem
(Key Concept 2.7). Accordingly, under the null hypothesis,

t is approximately distributed N (0, 1) for large n. (3.12)
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The formula for the p-value in Equation (3.10) can be rewritten in terms of the
t-statistic. Let 1% denote the value of the r-statistic actually computed:

}_/act _
ar — = _Hro (3.13)
SE(Y)
Accordingly, when # is large, the p-value can be calculated using
p-value = 20 (— | |). (3.14)

As a hypothetical example, suppose that a sample of n = 200 recent college
graduates is used to test the null hypothesis that the mean wage, E(Y), is $20 per
hour. The sample average wage is Y%’ = $22.64, and the sample standard deviation
is sy = $18.14. Then the standard error of Y is sy/Vn = 18.14/V200 = 1.28. The
value of the r-statistic is 1" = (22.64 — 20) /1.28 = 2.06. From Appendix Table 1,
the p-value is 2 (—2.06) = 0.039, or 3.9%. That is, assuming the null hypothesis to
be true, the probability of obtaining a sample average at least as different from the
null as the one actually computed is 3.9%.

Hypothesis Testing with a Prespecified Significance Level

When you undertake a statistical hypothesis test, you can make two types of mistakes:
You can incorrectly reject the null hypothesis when it is true, or you can fail to reject the
null hypothesis when it is false. Hypothesis tests can be performed without computing
the p-value if you are willing to specify in advance the probability you are willing to toler-
ate of making the first kind of mistake —that is, of incorrectly rejecting the null hypoth-
esis when it is true. If you choose a prespecified probability of rejecting the null hypothesis
when it is true (for example, 5% ), then you will reject the null hypothesis if and only if
the p-value is less than 0.05. This approach gives preferential treatment to the null
hypothesis, but in many practical situations, this preferential treatment is appropriate.

Hypothesis tests using a fixed significance level. Suppose it has been decided
that the hypothesis will be rejected if the p-value is less than 5%. Because the area
under the tails of the standard normal distribution outside + 1.96 is 5%, this gives a
simple rule:

Reject Hy if [t*| > 1.96. (3.15)

That is, reject if the absolute value of the f-statistic computed from the sample is
greater than 1.96. If n is large enough, then under the null hypothesis the ¢-statistic
has a N(0, 1) distribution. Thus the probability of erroneously rejecting the null
hypothesis (rejecting the null hypothesis when it is, in fact, true) is 5%.

This framework for testing statistical hypotheses has some specialized
terminology, summarized in Key Concept 3.5. The significance level of the test in
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The Terminology of Hypothesis Testing

A statistical hypothesis test can make two types of mistakes: a type I error,
in which the null hypothesis is rejected when in fact it is true; and a type II error, in
which the null hypothesis is not rejected when in fact it is false. The prespecified
rejection probability of a statistical hypothesis test when the null hypothesis is
true —that is, the prespecified probability of a type I error —is the significance
level of the test. The critical value of the test statistic is the value of the statistic
for which the test just rejects the null hypothesis at the given significance level.
The set of values of the test statistic for which the test rejects the null hypothesis
is the rejection region, and the set of values of the test statistic for which it does
not reject the null hypothesis is the acceptance region. The probability that the test
actually incorrectly rejects the null hypothesis when it is true is the size of the test,
and the probability that the test correctly rejects the null hypothesis when the
alternative is true is the power of the test.

The p-value is the probability of obtaining a test statistic, by random sampling
variation, at least as adverse to the null hypothesis value as is the statistic actually
observed, assuming that the null hypothesis is correct. Equivalently, the p-value is
the smallest significance level at which you can reject the null hypothesis.

3.5

Equation (3.15) is 5%, the critical value of this two-sided test is 1.96, and the rejection
region is the values of the t-statistic outside * 1.96. If the test rejects at the 5%
significance level, the population mean wy is said to be statistically significantly dif-
ferent from wy at the 5% significance level.

Testing hypotheses using a prespecified significance level does not require
computing p-values. In the previous example of testing the hypothesis that the mean
earnings of recent college graduates is $20 per hour, the t-statistic was 2.06. This value
exceeds 1.96, so the hypothesis is rejected at the 5% level. Although performing the test
with a 5% significance level is easy, reporting only whether the null hypothesis is rejected
at a prespecified significance level conveys less information than reporting the p-value.

What significance level should you use in practice? This is a question of active
debate. Historically, statisticians and econometricians have used a 5% significance
level. If you were to test many statistical hypotheses at the 5% level, you would incor-
rectly reject the null, on average, once in 20 cases. Whether this is a small number
depends on how you look at it. If only a small fraction of all null hypotheses tested
are, in fact, false, then among those tests that reject, the probability of the null actu-
ally being false can be small (Exercise 3.22). This probability —the fraction of incor-
rect rejections among all rejections—is called the false positive rate. The false positive
rate can have great practical importance. For example, for newly reported statistically
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Testing the Hypothesis E(Y) = uy

3.6

Against the Alternative E(Y) # uyg

1. Compute the standard error of Y, SE(Y) [Equation (3.8)].
2. Compute the t-statistic [Equation (3.13)].

3. Compute the p-value [Equation (3.14)]. Reject the hypothesis at the 5%
significance level if the p-value is less than 0.05 (equivalently, if | 7%/| > 1.96).

significant findings of effective medical treatments, it is the fraction for which the
treatment is in fact ineffective. Concern that the false positive rate can be high when
the 5% significance level is used has led some statisticians to recommend using
instead a 0.5% significance level when reporting new results (Benjamin et al.,2017).
Similar concerns can apply in a legal setting, where justice might aim to keep the
fraction of false convictions low. Using a 0.5% significance level leads to two-sided
rejection when the t-statistic exceeds 2.81 in absolute value. In such cases, a p-value
between 0.05 and 0.005 can be viewed as suggestive, but not conclusive, evidence
against the null that merits further investigation.

The choice of significance level requires judgment and depends on the applica-
tion. In some economic applications, a false positive might be less of a problem than
in a medical context, where the false positive could lead to patients receiving ineffec-
tive treatments. In such cases, a 5% significance level could be appropriate.

Whatever the significance level, it is important to keep in mind that p-values are
designed for tests of a null hypothesis, so they, like #-statistics, are useful only when
the null hypothesis itself is of interest. This section uses the example of earnings.
Even though many interns are unpaid, nobody thinks that, on average, workers earn
nothing at all, so the null hypothesis that earnings are zero is economically uninter-
esting and not worth testing. In contrast, the null hypothesis that the mean earnings
of men and of women are the same is interesting and of societal importance, and that
null hypothesis is examined in Section 3.4.

Key Concept 3.6 summarizes hypothesis tests for the population mean against
the two-sided alternative.

One-Sided Alternatives

In some circumstances, the alternative hypothesis might be that the mean exceeds wy .
For example, one hopes that education helps in the labor market, so the relevant alterna-
tive to the null hypothesis that earnings are the same for college graduates and non—
college graduates is not just that their earnings differ, but rather that graduates earn more
than nongraduates. This is called a one-sided alternative hypothesis and can be written

H,: E(Y) > uy, (one-sided alternative). (3.16)
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The general approach to computing p-values and to hypothesis testing is the same for
one-sided alternatives as it is for two-sided alternatives, with the modification that only
large positive values of the t-statistic reject the null hypothesis rather
than values that are large in absolute value. Specifically, to test the one-sided hypothesis
in Equation (3.16), construct the #-statistic in Equation (3.13). The p-value is the area
under the standard normal distribution to the right of the calculated #-statistic. That is,
the p-value, based on the N(0, 1) approximation to the distribution of the -statistic, is

p-value = Pry (Z > ") =1 — &(1"). (3.17)

The N(0, 1) critical value for a one-sided test with a 5% significance level is 1.64. The
rejection region for this test is all values of the f-statistic exceeding 1.64.

The one-sided hypothesis in Equation (3.16) concerns values of uy exceed-
ing wy . If instead the alternative hypothesis is that E(Y) < uy,, then the discussion
of the previous paragraph applies except that the signs are switched; for example, the
5% rejection region consists of values of the ¢-statistic less than —1.64.

Confidence Intervals
for the Population Mean

Because of random sampling error, it is impossible to learn the exact value of the
population mean of Y using only the information in a sample. However, it is possible
to use data from a random sample to construct a set of values that contains the true
population mean uy with a certain prespecified probability. Such a set is called a
confidence set, and the prespecified probability that uy is contained in this set is
called the confidence level. The confidence set for wy turns out to be all the possible
values of the mean between a lower and an upper limit, so that the confidence set is
an interval, called a confidence interval.

Here is one way to construct a 95% confidence set for the population mean.
Begin by picking some arbitrary value for the mean; call it uy . Test the null hypoth-
esis that uy = wy  against the alternative that uy # uy by computing the #-statistic;
if its absolute value is less than 1.96, this hypothesized value wy is not rejected at the
5% level, so write down this nonrejected value wy o. Now pick another arbitrary value
of wy, and test it; if you cannot reject it, write down this value on your list. Do this
again and again; indeed, do so for all possible values of the population mean. Con-
tinuing this process yields the set of all values of the population mean that cannot be
rejected at the 5% level by a two-sided hypothesis test.

This list is useful because it summarizes the set of hypotheses you can and cannot
reject (at the 5% level) based on your data: If someone walks up to you with a spe-
cific number in mind, you can tell him whether his hypothesis is rejected or not
simply by looking up his number on your handy list. A bit of clever reasoning shows
that this set of values has a remarkable property: The probability that it contains the
true value of the population mean is 95%.
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3.7

Confidence Intervals for the Population Mean

A 95% two-sided confidence interval for uy is an interval constructed so that it
contains the true value of uy in 95% of all possible random samples. When the
sample size n is large, 90%, 95%, and 99% confidence intervals for py are:

90% confidence interval for uy = {Y * 1.64SE(Y)},
95% confidence interval for uy = {Y * 1.96SE(Y)},and
99% confidence interval for wy = {Y + 2.58SE(Y)}.

The clever reasoning goes like this: Suppose the true value of uy is 21.5 (although
we do not know this). Then Y has a normal distribution centered on 21.5, and the
t-statistic testing the null hypothesis wy = 21.5 hasa N(0, 1) distribution. Thus, if 7 is
large, the probability of rejecting the null hypothesis wy = 21.5 at the 5% level is 5%.
But because you tested all possible values of the population mean in constructing your
set, in particular you tested the true value, uy = 21.5.In 95% of all samples, you will
correctly accept 21.5; this means that in 95% of all samples, your list will contain the
true value of wy. Thus the values on your list constitute a 95% confidence set for wy.

This method of constructing a confidence set is impractical, for it requires you to
test all possible values of wy as null hypotheses. Fortunately, there is a much easier
approach. According to the formula for the #-statistic in Equation (3.13), a trial value
of uy, is rejected at the 5% level if it is more than 1.96 standard errors away from Y.
Thus the set of values of uy that are not rejected at the 5% level consists of those
values within +1.96SE(Y) of Y; that is, a 95% confidence interval for uy is
Y — 1.96SE(Y) = py = Y + 1.96SE(Y). Key Concept 3.7 summarizes this
approach.

As an example, consider the problem of constructing a 95% confidence interval
for the mean hourly earnings of recent college graduates using a hypothetical
random sample of 200 recent college graduates where Y = $22.64 and
SE(Y) = 1.28. The 95% confidence interval for mean hourly earnings is
22.64 £ 1.96 X 1.28 = 22.64 £2.51 = ($20.13, $25.15).

This discussion so far has focused on two-sided confidence intervals. One could
instead construct a one-sided confidence interval as the set of values of uy that can-
not be rejected by a one-sided hypothesis test. Although one-sided confidence inter-
vals have applications in some branches of statistics, they are uncommon in applied
econometric analysis.

Coverage probabilities. The coverage probability of a confidence interval for the
population mean is the probability, computed over all possible random samples, that
it contains the true population mean.



3.4

34 Comparing Means from Different Populations 119

Comparing Means from Different
Populations

Do recent male and female college graduates earn the same amount on average?
Answering this question involves comparing the means of two different population
distributions. This section summarizes how to test hypotheses and how to construct
confidence intervals for the difference in the means from two different populations.

Hypothesis Tests for the Difference Between
Two Means

To illustrate a test for the difference between two means, let ., be the mean hourly
earnings in the population of women recently graduated from college, and let u,, be
the population mean for recently graduated men. Consider the null hypothesis that
mean earnings for these two populations differ by a certain amount, say, d,,. Then the
null hypothesis and the two-sided alternative hypothesis are

Ho: M — My = do VS. H1: My — My #* do. (318)

The null hypothesis that men and women in these populations have the same mean
earnings corresponds to H in Equation (3.18) with d;, = 0.

Because these population means are unknown, they must be estimated from
samples of men and women. Suppose we have samples of n,, men and »n,, women
drawn at random from their populations. Let the sample average annual earnings be
Y, for men and Y,, for women. Then an estimator of u,, — u,,is Y,, — Y,.

To test the null hypothesis that u,, — u,, = d, using Y,, — Y,,, we need to know
the sampling distribution of Y,, — Y,,. Recall that Y,, is, according to the central limit
theorem, approximately distributed N (w,,, 02, /n,,), where o2, is the population
variance of earnings for men. Similarly, Y,, is approximately distributed
N (o, 0% /n,,), where o2 is the population variance of earnings for women. Also,
recall from Section 2.4 that a weighted average of two normal random variables is
itself normally distributed. Because Y,, and Y|, are constructed from different
randomly selected samples, they are independent random variables. Thus Y,, — Y, is
distributed N[ w,, — s (02,/0,) + (02 /n,)].

If o2, and o2, are known, then this approximate normal distribution can be used
to compute p-values for the test of the null hypothesis that u,, — w,, = d. In prac-
tice, however, these population variances are typically unknown, so they must be
estimated. As before, they can be estimated using the sample variances, s2, and s2,
where s2, is defined as in Equation (3.7), except that the statistic is computed only for
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the men in the sample, and s2, is defined similarly for the women. Thus the standard
error of Y,, — Y, is
- 2 2
SE(Y, - 7Y,) = |3m 4 3w (3.19)
n,, n,
For a simplified version of Equation (3.19) when Y is a Bernoulli random variable,
see Exercise 3.15.

The t-statistic for testing the null hypothesis is constructed analogously to the
t-statistic for testing a hypothesis about a single population mean, by subtracting
the null hypothesized value of u,, — w,, from the estimator Y,, — Y,, and dividing the
result by the standard error of Y, — Y,

(}_/m - 7w) — dy
SE(Y, — Y,)

t = (t-statistic for comparing two means). (3.20)
If both n,, and n,, are large, then this ¢-statistic has a standard normal distribution
when the null hypothesis is true.

Because the z-statistic in Equation (3.20) has a standard normal distribution
under the null hypothesis when #n,, and n,, are large, the p-value of the two-sided test
is computed exactly as it was in the case of a single population. That is, the p-value is
computed using Equation (3.14).

To conduct a test with a prespecified significance level, simply calculate the
t-statistic in Equation (3.20), and compare it to the appropriate critical value. For
example, the null hypothesis is rejected at the 5% significance level if the absolute
value of the -statistic exceeds 1.96.

If the alternative is one-sided rather than two-sided (that is, if the alternative is that
Mm — M > dg), then the test is modified as outlined in Section 3.2. The p-value is com-
puted using Equation (3.17), and a test with a 5% significance level rejects when ¢ > 1.64.

Confidence Intervals for the Difference Between
Two Population Means

The method for constructing confidence intervals summarized in Section 3.3 extends
to constructing a confidence interval for the difference between the means,
d = u,, — w,. Because the hypothesized value d, is rejected at the 5% level if
|t] > 1.96, d, will be in the confidence set if |¢| = 1.96. But |¢| = 1.96 means that
the estimated difference, Y,, — Y,,, is less than 1.96 standard errors away from d,.
Thus the 95% two-sided confidence interval for d consists of those values of
d within *+ 1.96 standard errors of Y,, — Y,,:

95% confidence interval for d = w,, — W, is
(Y, —Y,) £ 1.96SE(Y,, — Y,). (3.21)

With these formulas in hand, the box “Social Class or Education? Childhood Circum-
stances and Adult Earnings Revisited” contains an empirical investigation of differ-
ences in earnings of different households in the United Kingdom.
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Differences-of-Means Estimation of Causal
Effects Using Experimental Data

Recall from Section 1.2 that a randomized controlled experiment randomly selects
subjects (individuals or, more generally, entities) from a population of interest, then
randomly assigns them either to a treatment group, which receives the experimental
treatment, or to a control group, which does not receive the treatment. The difference
between the sample means of the treatment and control groups is an estimator of the
causal effect of the treatment.

The Causal Effect as a Difference of Conditional
Expectations

The causal effect of a treatment is the expected effect on the outcome of interest of
the treatment as measured in an ideal randomized controlled experiment. This effect
can be expressed as the difference of two conditional expectations. Specifically, the
causal effect on Y of treatment level x is the difference in the conditional expecta-
tions, E(Y|X = x) — E(Y|X = 0),where E(Y|X = x) is the expected value of Y
for the treatment group (which receives treatment level X = x) in an ideal random-
ized controlled experiment and E(Y|X = 0) is the expected value of Y for the
control group (which receives treatment level X = 0). In the context of experiments,
the causal effect is also called the treatment effect. If there are only two treatment
levels (that is, if the treatment is binary), then we can let X = 0 denote the control
group and X = 1 denote the treatment group. If the treatment is binary, then the
causal effect (that is, the treatment effect) is E(Y|X = 1) — E(Y|X = 0) in an
ideal randomized controlled experiment.

Estimation of the Causal Effect Using
Differences of Means

If the treatment in a randomized controlled experiment is binary, then the causal
effect can be estimated by the difference in the sample average outcomes between
the treatment and control groups. The hypothesis that the treatment is ineffective is
equivalent to the hypothesis that the two means are the same, which can be tested
using the ¢-statistic for comparing two means, given in Equation (3.20). A 95% con-
fidence interval for the difference in the means of the two groups is a 95% confidence
interval for the causal effect, so a 95% confidence interval for the causal effect can
be constructed using Equation (3.21).

A well-designed, well-run experiment can provide a compelling estimate of a
causal effect. For this reason, randomized controlled experiments are commonly con-
ducted in some fields, such as medicine. In economics, however, experiments tend to
be expensive, difficult to administer, and, in some cases, ethically questionable, so
they are used less often. For this reason, econometricians sometimes study “natural
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Social Class or Education? Childhood Circumstances

and Adult Earnings Revisited

T

by Childhood Socioeconomic Circumstances” sug-

he box in Chapter 2 “The Distribution of
Adulthood Earnings in the United Kingdom

gests that when an individual’s father has a “routine”
occupation, the individual, as an adult, goes on to
live in a household with lower average income.

Are there any other factors that affect it? Yes,
it is possible that there are relevant intermediate
factors like education. It is generally hypothesized
and observed that more education is associated
with greater income, which will allow individuals to
increase their contribution to household income.

Table 3.1 breaks down the differences in mean
household income for individuals according to their
father’s NS-SEC occupation type, and considers these
differences for selected highest level of educational
qualification. These categories include those with no
qualifications, those whose highest qualification level
is GCSE (exams generally taken at age 16), those
whose highest educational qualification is A-Level
(exams generally taken at age 18), and those with an
undergraduate degree or higher. For simplicity, only

individuals whose father’s NS-SEC occupational cat-
egory was either the highest (“higher”) or the lowest
(“routine”) are included in this analysis.

The data shows that, as expected, within both
groups according to the NS-SEC of a father’s occu-
pation, those with higher qualifications are part of
households with higher total income. The income
gap between those with qualifications of at least
one degree and those with no qualifications stands
at £1467.38 where the father’s NS-SEC category
is higher, and at a comparable £152798 where the
father’s NS-SEC category is routine.

It is interesting to note the differences between
mean income by the father’s occupational categori-
zation (Y, — Y,) for each of the educational group-
ings. For instance, individuals with no qualifications
whose father’s NS-SEC job categorization was
higher are part of households with a mean income
of £2223.13 while for the classification routine
this value stood at £1842.98. This implies a differ-
ence in means of £380.15, with a standard error of
\/2115.122/1129 + 1487.29%/6383 = £65.64 with

s N
.11 R Differences in Household Income According to Childhood Socioeconomic
Circumstances, Grouped by Level of Highest Qualification
Father’s NS-SEC = Higher Father’s NS-SEC = Routine Difference, Higher vs. Routine

95% Confidence

Qualification Y Sh ny Y, S, n Y,— Y, SE(Y,—Y,) Intervalford

None £222313  £2115.12 1129  £1,842.98 £1,48729 6383  £380.15 £65.64 £251.38  £508.93

GCSE/O-Level  £2,83718  £1,819.73 1962 £2,596.93  £1,73847 4042  £240.25 £49.35 £143.49  £33700

A-Level £3,045.99  £2.451.81 1216 £2,745.70  £1,912.50 1169  £300.30 £89.85 £124.11 £476.49

Undergraduate ~ £3,690.51  £2,743.55 4359  £3,370.96  £2,443.58 2505  £319.55 £64.11 £193.86  £445.23

degree or more

All categories £321571  £2,49773 8666 £2405.45 £1,886.86 14099  £810.25 £31.18 £749.13 £871.38

Source: Understanding Society.
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a 95% confidence interval of (£251.38, £508.93). It is
worth noting the difference in income, pooling these
educational categories together, between those
whose father’s NS-SEC categorization is “higher” and
those where this categorization is lower is £810.25.
The results in the table suggest a difference in com-
position by educational attainment of these groupings
according to the father’s NS-SEC category. When
broken down in this way, however, the estimated dif-
ference for every qualification level is substantially
lower than £810.25. All of these estimated differences
are significantly different from zero.

This empirical analysis suggests that levels
of education do play some part in explaining the

difference in household income according to the
socioeconomic status of the father. However, does
this analysis tell us the full story? Are individu-
als with higher levels of education likely to be in
households with more than one earner? Does the
difference in household income arise from an indi-
vidual’s own contribution to household income or,
if the individual is cohabiting, also from her or his
partner’s contribution to household income? Is this
relationship affected by changing patterns of edu-
cational attainment that are correlated with age?
We will examine questions such as these further
once we have introduced the basics of multivariate

regression in later chapters.
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experiments,” also called quasi-experiments, in which some event unrelated to the
treatment or subject characteristics has the effect of assigning different treatments to
different subjects as if they had been part of a randomized controlled experiment.
The box “A Way to Increase Voter Turnout” provides an example of such a quasi-
experiment that yielded some surprising conclusions.

3.6 Using the t-Statistic When the Sample

Size Is Small

In Sections 3.2 through 3.5, the #-statistic is used in conjunction with critical values
from the standard normal distribution for hypothesis testing and for the construction
of confidence intervals. The use of the standard normal distribution is justified by the
central limit theorem, which applies when the sample size is large. When the sample
size is small, the standard normal distribution can provide a poor approximation to
the distribution of the #-statistic. If, however, the population distribution is itself nor-
mally distributed, then the exact distribution (that is, the finite-sample distribution;
see Section 2.6) of the ¢-statistic testing the mean of a single population is the Student
t distribution with n — 1 degrees of freedom, and critical values can be taken from
the Student ¢ distribution.
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A Way to Increase Voter Turnout

Apathy among citizens toward political partici-
pation, especially in voting, has been noted in

the United Kingdom and other democratic coun-
tries. This kind of behavior is generally seen in econ-
omies where people have greater mobility, maintain
an intensive work culture, and work for private
corporate entities. Apart from these, there could
be other dominant factors that have had a negative
impact on the citizens’ willingness to participate in
elections —politicians failing to keep their promises,
inappropriately using public funds.

In 2005, during the campaign period before the
general election, a study was conducted in a Man-
chester constituency in the United Kingdom. The
constituency’s voter turnout rate in the 2001 general
election had been 48.6%, while the national average
had been 59.4%. Thus, voter participation in this con-
stituency was far below the national average. For the
experiment, three groups (two treatment groups and
one control group) were randomly selected out of the
registered voters from whom landline numbers could
be obtained. One of the treatment groups was exposed
to strong canvassing in the form of telephone calls,and
the other treatment group was exposed to strong can-
vassing in the form of door-to-door visits. No contacts
were made with the control group. The callers and
the door-to-door canvassers were given instructions
to ask respondents three questions, namely, whether
the respondents thought voting is important, whether
the respondents intended to vote, and whether they
would vote by post. The conversations were informal
and the main objective of this exercise was to per-
suade citizens to vote, by focusing on the importance

of voting. The callers and canvassers were also advised
to respond to any concerns of the voters regarding the
voting process.

The researchers got interesting results from the
elections. The participation rate was 55.1% in the
group, which was exposed to canvassing. The par-
ticipation rate for the treatment group, which was
treated with telephone calls, was 55%. Both these
rates had a difference with the control group, which
was not exposed to any experiment. Further cal-
culations using suitable methodologies gave esti-
mates of the effects of canvassing and telephone
calls. 6.7% and 73 % were the estimates of the two.
The overall experiment was a success as the two
interventions done on the two treatments groups
by a non-partisan source had impacts that were sta-
tistically significant.

This exercise illustrated that citizens can be
nudged to participate in elections by creating
awareness through personal contacts. In yet another
democracy, India, the 2014 general election saw a
record voter turnout. A top Election Commission
official has said that the Election Commission’s
efforts to increase voters’ awareness and their reg-
istration has helped the process.

Sources: 1. Alice Moseley, Corinne Wales, Gerry Stoker,
Graham Smith, Liz Richardson, Peter John, and Sarah Cot-
terill, “Nudge, Nudge, Think, Think Experimenting with
Ways to Change Civic Behaviour,” Bloomsbury Academic,
March 2013. 2. “Lok Sabha Polls 2014: Country Records
Highest Voter Turnout since Independence,” The Economic
Times, May 13, 2014.
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The t-Statistic and the Student t Distribution

The t-statistic testing the mean. Consider the z-statistic used to test the hypothesis
that the mean of Y'is uy, using data V;, . . ., Y,. The formula for this statistic is given
by Equation (3.10), where the standard error of Y is given by Equation (3.8). Substi-
tution of the latter expression into the former yields the formula for the #-statistic:

Y = pyp
= ———, (3.22)
\/s%;/n

where s is given in Equation (3.7).

As discussed in Section 3.2, under general conditions the -statistic has a standard
normal distribution if the sample size is large and the null hypothesis is true [see
Equation (3.12)]. Although the standard normal approximation to the ¢-statistic is
reliable for a wide range of distributions of Y if n is large, it can be unreliable if # is
small. The exact distribution of the ¢-statistic depends on the distribution of Y, and it
can be very complicated. There is, however, one special case in which the exact dis-
tribution of the f-statistic is relatively simple: If Y{, ..., Y, are i.i.d. draws from a
normal distribution, then the ¢-statistic in Equation (3.22) has a Student ¢ distribution
with n — 1 degrees of freedom. (The mathematics behind this result is provided in
Sections 18.4 and 19.4.)

If the population distribution is normally distributed, then critical values from
the Student ¢ distribution can be used to perform hypothesis tests and to construct
confidence intervals. As an example, consider a hypothetical problem in which
1" = 2.15 and n = 8, so that the degrees of freedom isn — 1 = 7. From Appendix
Table 2, the 5% two-sided critical value for the #; distribution is 2.36. Because the
t-statistic is smaller in absolute value than the critical value (2.15 < 2.36), the null
hypothesis would not be rejected at the 5% significance level against the two-sided
alternative. The 95% confidence interval for uy, constructed using the #; distribution,
would be Y + 2.36SE(Y). This confidence interval is wider than the confidence
interval constructed using the standard normal critical value of 1.96.

The t-statistic testing differences of means. The t-statistic testing the difference of
two means, given in Equation (3.20), does not have a Student ¢ distribution, even if
the population distribution of Y is normal. (The Student ¢ distribution does not apply
here because the variance estimator used to compute the standard error in
Equation (3.19) does not produce a denominator in the ¢-statistic with a chi-squared
distribution.)

A modified version of the differences-of-means ¢-statistic, based on a different
standard error formula—the “pooled” standard error formula—has an exact Student
t distribution when Y is normally distributed; however, the pooled standard error
formula applies only in the special case that the two groups have the same variance
or that each group has the same number of observations (Exercise 3.21). Adopt the
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notation of Equation (3.19) so that the two groups are denoted as m and w. The
pooled variance estimator is

M _ 1y _
pooled n.o+n. —2 i=1 i=1 ’ .
m w group m group w

where the first summation is for the observations in group m and the second summa-
tion is for the observations in group w. The pooled standard error of the difference
in means is SE,,oq (Y, -Y,) = Spooted X V'1/n,, + 1/n,, and the pooled
t-statistic is computed using Equation (3.20), where the standard error is the pooled
standard error, SE o peq (Y, — Y,,).

If the population distribution of Y in group m is N (,,, 02%), if the population
distribution of Y in group w is N (uw,, 02), and if the two group variances are the
same (thatis, o2, = ¢2), then under the null hypothesis the -statistic computed using
the pooled standard error has a Student ¢ distribution with n,, + n,, — 2 degrees of
freedom.

The drawback of using the pooled variance estimator sﬁooled is that it applies only
if the two population variances are the same (assuming rn,, # n,,). If the population
variances are different, the pooled variance estimator is biased and inconsistent. If
the population variances are different but the pooled variance formula is used, the
null distribution of the pooled t-statistic is not a Student ¢ distribution, even if the
data are normally distributed; in fact, it does not even have a standard normal distri-
bution in large samples. Therefore, the pooled standard error and the pooled ¢-statistic
should not be used unless you have a good reason to believe that the population
variances are the same.

Use of the Student t Distribution in Practice

For the problem of testing the mean of Y, the Student ¢ distribution is applicable if
the underlying population distribution of Y is normal. For economic variables,
however, normal distributions are the exception (for example, see the boxes in
Chapter 2 “The Distribution of Adulthood Earnings in the United Kingdom” and
“The Unpegging of the Swiss Franc”). Even if the data are not normally distributed,
the normal approximation to the distribution of the ¢-statistic is valid if the sample size
is large. Therefore, inferences —hypothesis tests and confidence intervals—about the
mean of a distribution should be based on the large-sample normal approximation.
When comparing two means, any economic reason for two groups having
different means typically implies that the two groups also could have different vari-
ances. Accordingly, the pooled standard error formula is inappropriate, and the cor-
rect standard error formula, which allows for different group variances, is as given in
Equation (3.19). Even if the population distributions are normal, the ¢-statistic com-
puted using the standard error formula in Equation (3.19) does not have a Student
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t distribution. In practice, therefore, inferences about differences in means should be
based on Equation (3.19), used in conjunction with the large-sample standard normal
approximation.

Even though the Student ¢ distribution is rarely applicable in economics, some
software uses the Student ¢ distribution to compute p-values and confidence intervals.
In practice, this does not pose a problem because the difference between the Student
t distribution and the standard normal distribution is negligible if the sample size is
large. For n > 15, the difference in the p-values computed using the Student ¢ and
standard normal distributions never exceeds 0.01; for n > 80, the difference never
exceeds 0.002. In most modern applications, and in all applications in this text, the
sample sizes are in the hundreds or thousands, large enough for the difference between
the Student ¢ distribution and the standard normal distribution to be negligible.

Scatterplots, the Sample Covariance, and
the Sample Correlation

What is the relationship between age and earnings? This question, like many others,
relates one variable, X (age), to another, Y (earnings). This section reviews three
ways to summarize the relationship between variables: the scatterplot, the sample
covariance, and the sample correlation coefficient.

Scatterplots

A scatterplot is a plot of n observations on X; and Y}, in which each observation is
represented by the point (X, Y;). For example, Figure 3.2 is a scatterplot of age (X)
and hourly earnings (Y) for a sample of 200 managers in the information industry
from the March 2016 CPS. Each dot in Figure 3.2 corresponds to an (X, Y) pair for
one of the observations. For example, one of the workers in this sample is 45 years
old and earns $49.15 per hour; this worker’s age and earnings are indicated by the
highlighted dot in Figure 3.2. The scatterplot shows a positive relationship between
age and earnings in this sample: Older workers tend to earn more than younger
workers. This relationship is not exact, however, and earnings could not be predicted
perfectly using only a person’s age.

Sample Covariance and Correlation

The covariance and correlation were introduced in Section 2.3 as two properties of
the joint probability distribution of the random variables X and Y. Because the popu-
lation distribution is unknown, in practice we do not know the population covariance
or correlation. The population covariance and correlation can, however, be estimated
by taking a random sample of » members of the population and collecting the data
(X, Y),i=1,..., n.
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(m Scatterplot of Average Hourly Earnings vs. Age W
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Each point in the plot represents the age and average earnings of one of the 200 workers in the
sample. The highlighted dot corresponds to a 45-year-old worker who earns $49.15 per hour. The
data are for computer and information systems managers from the March 2016 CPS.

& J

The sample covariance and correlation are estimators of the population covari-
ance and correlation. Like the estimators discussed previously in this chapter, they
are computed by replacing a population mean (the expectation) with a sample mean.
The sample covariance, denoted syy, is

L Sx-%) -7 (3.24)

Sxy =
n — 1,‘:1

Like the sample variance, the average in Equation (3.24) is computed by dividing by
n — 1 instead of n; here, too, this difference stems from using X and Y to estimate
the respective population means. When 7 is large, it makes little difference whether
divisionisbynorn — 1.

The sample correlation coefficient, or sample correlation, is denoted ryy and is
the ratio of the sample covariance to the sample standard deviations:

_ Sxy
Fxy = SXSY. (325)
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The sample correlation measures the strength of the linear association between X
and Y in a sample of n observations. Like the population correlation, the sample cor-
relation is unit free and lies between —1 and 1: |ryy| = 1.

The sample correlation equals 1 if X; = Y; for all i and equals —1 if X; = —Y; for
all i. More generally, the correlation is * 1 if the scatterplot is a straight line. If the
line slopes upward, then there is a positive relationship between X and Y and
the correlation is 1. If the line slopes down, then there is a negative relationship and
the correlation is —1. The closer the scatterplot is to a straight line, the closer the
correlation is to 1. A high correlation coefficient does not necessarily mean that
the line has a steep slope; rather, it means that the points in the scatterplot fall very
close to a straight line.

Consistency of the sample covariance and correlation. Like the sample variance,
the sample covariance is consistent. That is,

Sxy —£> Oxy- (326)

In other words, in large samples the sample covariance is close to the population
covariance with high probability.

The proof of the result in Equation (3.26) under the assumption that (X;, Y;) are
ii.d.and that X;and Y; have finite fourth moments is similar to the proof in Appendix 3.3
that the sample covariance is consistent and is left as an exercise (Exercise 3.20).

Because the sample variance and sample covariance are consistent, the sample
correlation coefficient is consistent; that is, 7y, —2= corr(X,, Y;).

Example. As an example, consider the data on age and earnings in Figure 3.2. For
these 200 workers, the sample standard deviation of age is s, = 9.57 years, and the
sample standard deviation of earnings is sy = $19.93 per hour. The sample covari-
ance between age and earnings is s,z = 91.51 (the units are years X dollars per
hour, not readily interpretable). Thus the sample correlation coefficient is
rap = 91.51/(9.57 X 19.93) = 0.48. The correlation of 0.48 means that there is a
positive relationship between age and earnings, but as is evident in the scatterplot,
this relationship is far from perfect.

To verify that the correlation does not depend on the units of measurement,
suppose that earnings had been reported in cents, in which case the sample
standard deviation of earnings is 1993¢ per hour and the covariance between age
and earnings is 9151 (units are years X cents per hour); then the correlation is
9151/(9.57 X 1993) = 0.48, or 48%.

Figure 3.3 gives additional examples of scatterplots and correlation. Figure 3.3a
shows a strong positive linear relationship between these variables, and the sample
correlation is 0.9.

Figure 3.3b shows a strong negative relationship with a sample correlation
of —0.8. Figure 3.3c shows a scatterplot with no evident relationship, and the sample
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correlation is 0. Figure 3.3d shows a clear relationship: As X increases, Y initially
increases but then decreases. Despite this discernable relationship between X and Y,
the sample correlation is 0; the reason is that for these data small values of Y are
associated with both large and small values of X.

This final example emphasizes an important point: The correlation coefficient is
a measure of linear association. There is a relationship in Figure 3.3d, but it is not
linear.
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Summary

1.

The sample average, Y, is an estimator of the population mean, wy. When

Yy, ..., Y, areiid.,

a. the sampling distribution of Y has mean uy and variance 0'217 = o} /n;

b. Y is unbiased;

c. by the law of large numbers, Y is consistent; and

d. by the central limit theorem, Y has an approximately normal sampling
distribution when the sample size is large.

2. The t-statistic is used to test the null hypothesis that the population mean takes
on a particular value. If n is large, the ¢-statistic has a standard normal sampling
distribution when the null hypothesis is true.

3. The t-statistic can be used to calculate the p-value associated with the null
hypothesis. The p-value is the probability of drawing a statistic at least as
adverse to the null hypothesis as the one you actually computed in your sam-
ple, assuming the null hypothesis is correct. A small p-value is evidence that
the null hypothesis is false.

4. A 95% confidence interval for uy is an interval constructed so that it contains
the true value of uy in 95% of all possible samples.

5. Hypothesis tests and confidence intervals for the difference in the means of
two populations are conceptually similar to tests and intervals for the mean of
a single population.

6. The sample correlation coefficient is an estimator of the population correlation
coefficient and measures the linear relationship between two variables—that
is, how well their scatterplot is approximated by a straight line.

Key Terms
estimator (105) p-value (significance probability) (110)
estimate (105) sample variance (112)
bias (106) sample standard deviation (112)
consistency (106) degrees of freedom (112)
efficiency (106) standard error of Y (113)
BLUE (Best Linear Unbiased t-statistic (113)

Estimator) (107) t-ratio (113)
least squares estimator (107) test statistic (113)
hypothesis tests (109) type I error (115)
null hypothesis (109) type 11 error (115)
alternative hypothesis (109) significance level (115)

two-sided alternative hypothesis (109) critical value (115)
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rejection region (115) test for the difference between two
acceptance region (115) means (119)

size of a test (115) causal effect (121)

power of a test (115) treatment effect (121)

one-sided alternative hypothesis (116) scatterplot (127)

confidence set (117) sample covariance (128)

confidence level (117) sample correlation coefficient (sample
confidence interval (117) correlation) (128)

coverage probability (118)
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Review the Concepts

31
3.2

33

34

3.5

3.6

3.7

3.8

Explain the difference between an unbiased estimator and a consistent estimator.

What is meant by the efficiency of an estimator? Which estimator is known as
BLUE?

A population distribution has a mean of 15 and a variance of 10. Determine
the mean and variance of Y from an i.i.d. sample from this population for
(a) n = 5;(b) n = 500; and (c) n = 5000. Relate your answers to the law of
large numbers.

What is the difference between standard error and standard deviation? How
is the standard error of the sample mean calculated?

What is the difference between a null hypothesis and an alternative hypoth-
esis? Among size, significance level, and power? Between a one-sided alterna-
tive hypothesis and a two-sided alternative hypothesis?

Why does a confidence interval contain more information than the result of
a single hypothesis test?

What is a scatterplot? What statistical features of a dataset can be represented
using a scatterplot diagram?

Sketch a hypothetical scatterplot for a sample of size 10 for two random variables
with a population correlation of (a) 1.0; (b) —1.0; (c) 0.9; (d) —0.5; and (e) 0.0.
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Exercises

31

3.2

3.3

34

3.5

In a population, uy = 75 and o3 = 45. Use the central limit theorem to
answer the following questions:

a. In a random sample of size n = 50, find Pr(Y < 73).

b. In a random sample of size n = 90, find Pr(76 < Y < 77).

¢. In arandom sample of size n = 120, find Pr(Y > 69).

Let Y be a Bernoulli random variable with success probability Pr(Y = 1) = p,
andlet Yy, ..., Y, be ii.d. draws from this distribution. Let p be the fraction
of successes (1s) in this sample.

a. Showthatp =Y.

b. Show that p is an unbiased estimator of p.

¢. Show that var(p) = p(1 — p)/n.

In a poll of 500 likely voters, 270 responded that they would vote for the candi-
date from the democratic party, while 230 responded that they would vote for the
candidate from the republican party. Let p denote the fraction of all likely voters
who preferred the democratic candidate at the time of the poll, and let p be the
fraction of survey respondents who preferred the democratic candidate.

a. Use the poll results to estimate p.

b. Use the estimator of the variance of p, p(1 — p)/n, to calculate the
standard error of your estimator.

What is the p-value for the test of Hy: p = 0.5, vs. Hi: p # 0.5?
What is the p-value for the test of Hy: p = 0.5, vs. H;: p > 0.5?
Why do the results from (c) and (d) differ?

Did the poll contain statistically significant evidence that the democratic

- 0 8 o

candidate was ahead of the republican candidate at the time of the poll?
Explain.

Using the data in Exercise 3.3:

. Construct a 95% confidence interval for p.

a
b. Construct a 99% confidence interval for p.

¢

Why is the interval in (b) wider than the interval in (a)?

&

Without doing any additional calculations, test the hypothesis
Hy: p = 0.50vs. Hi: p # 0.50 at the 5% significance level.

A survey of 1000 registered voters is conducted, and the voters are asked to
choose between candidate A and candidate B. Let p denote the fraction of
voters in the population who prefer candidate A, and let p denote the fraction
of voters in the sample who prefer candidate A.

a. You are interested in the competing hypotheses Hy: p = 0.4 vs.
Hy: p # 0.4.Suppose that you decide to reject Hy if |[p — 0.4| > 0.01.
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3.6

3.7

3.8

3.9

i. What is the size of this test?
ii. Compute the power of this test if p = 0.45.
b. In the survey, p = 0.44.
i. Test Hy: p = 0.4 vs. Hy: p # 0.4 using a 10% significance level.
ii. Test Hy: p = 0.4 vs. H;: p < 0.4 using a 10% significance level.
iii. Construct a 90% confidence interval for p.
iv. Construct a 99% confidence interval for p.
v. Construct a 60% confidence interval for p.

c. Suppose that the survey is carried out 30 times, using independently
selected voters in each survey. For each of these 30 surveys, a 90% confi-
dence interval for p is constructed.

i. What is the probability that the true value of p is contained in all 30
of these confidence intervals?

ii. How many of these confidence intervals do you expect to contain the
true value of p?

d. In survey jargon, the “margin of error” is 1.96 X SE(p);that is, it is half
the length of the 95% confidence interval. Suppose you want to design
a survey that has a margin of error of at most 0.5%. That is, you want
Pr(|p — p| > 0.005 = 0.005). How large should n be if the survey uses
simple random sampling?

Let Y;..., Y, be i.i.d. draws from a distribution with mean u. A test of
Hy: p = 10 vs. H;: u # 10 using the usual #-statistic yields a p-value of 0.07.

a. Does the 90% confidence interval contain u = 10? Explain.

b. Can you determine if u = 8 is contained in the 95% confidence
interval? Explain.

In a given population, 50% of the likely voters are women. A survey using
a simple random sample of 1000 landline telephone numbers finds 55%
women. Is there evidence that the survey is biased? Explain.

A new version of the SAT is given to 1500 randomly selected high school
seniors. The sample mean test score is 1230, and the sample standard deviation
is 145. Construct a 95% confidence interval for the population mean test score
for high school seniors.

Suppose that a plant manufactures integrated circuits with a mean life of
1000 hours and a standard deviation of 100 hours. An inventor claims to have
developed an improved process that produces integrated circuits with a lon-
ger mean life and the same standard deviation. The plant manager randomly
selects 50 integrated circuits produced by the process. She says that she will
believe the inventor’s claim if the sample mean life of the integrated circuits
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is greater than 1100 hours; otherwise, she will conclude that the new process
is no better than the old process. Let u denote the mean of the new process.
Consider the null and alternative hypotheses Hy: w = 1000 vs. H;: w > 1000.

a. What is the size of the plant manager’s testing procedure?

b. Suppose the new process is in fact better and has a mean integrated
circuit life of 1150 hours. What is the power of the plant manager’s testing
procedure?

c¢. What testing procedure should the plant manager use if she wants the
size of her test to be 1%?

Suppose a new standardized test is given to 150 randomly selected third-grade
students in Amsterdam. The sample average score Y on the test is 42 points,
and the sample standard deviation, sy, is 6 points.

a. The authors plan to administer the test to all third-grade students in
Amsterdam. Construct a 99% confidence interval for the mean score of
all third graders in Amsterdam.

b. Suppose the same test is given to 300 randomly selected third graders
from Rotterdam, producing a sample average of 48 points and sample
standard deviation of 10 points. Construct a 95% confidence interval for
the difference in mean scores between Rotterdam and Amsterdam.

c. Can you conclude with a high degree of confidence that the population
means for Rotterdam and Amsterdam students are different? (What is
the standard error of the difference in the two sample means? What is the
p-value of the test of no difference in means versus some difference?)

Consider the estimator Y, defined in Equation (3.1). Show that (a) E(Y) = uy
and (b) var(Y) = 1.250%/n.

To investigate possible gender discrimination in a British firm, a sample of 120
men and 150 women with similar job descriptions are selected at random. A
summary of the resulting monthly salaries follows:

( Average Salary (Y) Standard Deviation (sy) n W
‘ Men £8200 £450 120 ‘
LWOmen £7900 £520 150 J

a. What do these data suggest about wage differences in the firm? Do
they represent statistically significant evidence that average wages of
men and women are different? (To answer this question, first, state the
null and alternative hypotheses; second, compute the relevant z-statistic;
third, compute the p-value associated with the f-statistic; and, finally, use
the p-value to answer the question.)

b. Do these data suggest that the firm is guilty of gender discrimination in
its compensation policies? Explain.
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3.13 Data on fifth-grade test scores (reading and mathematics) for 400 school districts
in Brussels yield average score Y = 712.1 and standard deviation sy = 23.2.

a. Construct a 90% confidence interval for the mean test score in the
population.

b. When the districts were divided into districts with small classes ( < 20
students per teacher) and large classes ( = 20 students per teacher), the
following results were found:

Class Size Average Salary (Y) Standard Deviation (sy) n W
Small 721.8 24.4 150
Large 710.9 20.6 250

Is there statistically significant evidence that the districts with smaller
classes have higher average test scores? Explain.

3.14 Values of height in inches (X) and weight in pounds (Y) are recorded from
a sample of 200 male college students. The resulting summary statistics are
X =712 in., Y = 164 1b, sy = 1.9 in., sy = 16.41b, syy = 22.54in. X Ib,
and ryy = 0.8. Convert these statistics to the metric system (meters and
kilograms).

3.5 Y, and Y}, are Bernoulli random variables from two different populations,
denoted a and b. Suppose E(Y,) = p, and E(Y,) = p,. A random sample of
size n, is chosen from population a, with a sample average denoted p,, and
a random sample of size n, is chosen from population b, with a sample aver-
age denoted pj,. Suppose the sample from population a is independent of the
sample from population b.

a. Show that E(p,) = p, and var(p,) = p,(1 — p,) /n,. Show that
E(py) = ppandvar(p,) = py(1 = pp) /ny.
o(1 = Pa 1 -
b. Show that var(p, — p,) = Pal Po) + P pb).
Ny np
(Hint: Remember that the samples are independent.)

¢. Suppose n, and n,, are large. Show that a 95% confidence interval for

Pa — Ppis given by (p, — pp) * 1‘96\/1%(1”— Pa) | pb(ln— )
b
How would you construct a 90% confidence iralterval for p, — pp?

3.16 Assume that grades on a standardized test are known to have a mean of 500 for
students in Europe. The test is administered to 600 randomly selected students
in Ukraine; in this sample, the mean is 508, and the standard deviation (s) is 75.

a. Construct a 95% confidence interval for the average test score for
Ukrainian students.
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b. Is there statistically significant evidence that Ukrainian students perform
differently than other students in Europe?

c. Another 500 students are selected at random from Ukraine. They are

given a 3-hour preparation course before the test is administered. Their
average test score is 514, with a standard deviation of 65.

i. Construct a 95% confidence interval for the change in average test
score associated with the prep course.

ii. Is there statistically significant evidence that the prep course
helped?
d. The original 600 students are given the prep course and then are asked
to take the test a second time. The average change in their test scores is 7
points, and the standard deviation of the change is 40 points.

i. Construct a 95% confidence interval for the change in average test scores.

ii. Is there statistically significant evidence that students will perform
better on their second attempt, after taking the prep course?

iii. Students may have performed better in their second attempt because
of the prep course or because they gained test-taking experience in
their first attempt. Describe an experiment that would quantify these
two effects.

3.17 Read the box “Social Class or Education? Childhood Circumstances and
Adult Earnings Revisited” in Section 3.5.

a. Construct a 95% confidence interval for the difference in the house-
hold earnings of people whose father NS-SEC classification was higher
between those with no educational qualifications and those with an
undergraduate degree or more.

b. Construct a 95% confidence interval for the difference in the house-
hold earnings of people whose father NS-SEC classification was routine
between those with no educational qualifications and those with an
undergraduate degree or more.

c. Construct a 95% confidence interval for the difference between your
answers calculated in parts a and b.

3.18 This exercise shows that the sample variance is an unbiased estimator of the

population variance when Yj, . . ., Y, are i.i.d. with mean uy and variance o%.

a. Use Equation (2.32) to show that
E(Y, = Y)? =var(Y;) — 2cov(Y, Y) + var(Y).

b. Use Equation (2.34) to show that cov(Y, ;) = o} /n.

c. Use the results in (a) and (b) to show that E(s}) = 3.



138

CHAPTER3 Review of Statistics

3.19

3.20

3.21

3.22

a. Y is an unbiased estimator of uy. Is Y an unbiased estimator of u$?

b. Y is a consistent estimator of uy. Is Y2 a consistent estimator of u3?

Suppose (X, Y;) are i.i.d. with finite fourth moments. Prove that the sam-
ple covariance is a consistent estimator of the population covariance; that is,
Sxy £ oxy,where syy is defined in Equation (3.24). (Hint: Use the strategy
of Appendix 3.3.)

Show that the pooled standard error [SE,,eq (Y,, = Y,,) ] given following
Equation (3.23) equals the usual standard error for the difference in means
in Equation (3.19) when the two group sizes are the same (n,, = n,,).

Suppose Y; ~ i.i.d.N(uy, o%) fori = 1,..., n.With o3 known, the ¢-statistic
for testing Hy: puy =0 vs. Hy: wy >0 is t = (Y — 0)/SE(Y), where
SE(Y) = oy/\V/n.Suppose oy = 10andn = 100,s0 that SE(Y) = 1. Using
a test with a size of 5%, the null hypothesis is rejected if t > 1.64.

a. Suppose uy = 0, so the null hypothesis is true. What is the probability
that the null hypothesis is rejected?

b. Suppose uy = 2, so the alternative hypothesis is true. What is the
probability that the null hypothesis is rejected?

c. Suppose that in 90% of cases the data are drawn from a population
where the null is true (uy = 0) and in 10% of cases the data come from
a population where the alternative is true and uy = 2. Your data came
from either the first or the second population, but you don’t know which.

i. You compute the z-statistic. What is the probability that t > 1.64—that
is, that you reject the null hypothesis?

ii. Suppose you reject the null hypothesis; that is, > 1.64. What is
the probability that the sample data were drawn from the wy = 0
population?

d. Itis hard to discover a new effective drug. Suppose 90% of new drugs
are ineffective and only 10% are effective. Let Y denote the drop in the
level of a specific blood toxin for a patient taking a new drug. If the drug
is ineffective, uy = 0 and oy = 10;if the drug is effective, uy = 2 and
oy = 10.

i. A new drug is tested on a random sample of n = 100 patients, data
are collected, and the resulting ¢-statistic is found to be greater than
1.64. What is the probability that the drug is ineffective (i.e., what is
the false positive rate for the test using t > 1.64)?

ii. Suppose the one-sided test uses instead the 0.5% significance level.
What is the probability that the drug is ineffective (i.e., what is the
false positive rate)?
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Empirical Exercises

E3.1 On the text website, http://www.pearsonglobaleditions.com, you will find the

data file CPS96_15, which contains an extended version of the data set used in
Table 3.1 of the text for the years 1996 and 2015. It contains data on full-time
workers, ages 25-34, with a high school diploma or a B.A./B.S. as their highest
degree. A detailed description is given in CPS96_15_Description, available on

the website. Use these data to complete the following.

a.

i. Compute the sample mean for average hourly earnings (AHE) in
1996 and 2015.

ii. Compute the sample standard deviation for AHE in 1996 and 2015.

iii. Constructa 95% confidence interval for the population means of AHE
in 1996 and 2015.

iv. Construct a 95% confidence interval for the change in the population
means of AHE between 1996 and 2015.

. In 2015, the value of the Consumer Price Index (CPI) was 2370. In 1996,

the value of the CPI was 156.9. Repeat (a), but use AHE measured
in real 2015 dollars ($2015); that is, adjust the 1996 data for the price
inflation that occurred between 1996 and 2015.

. If you were interested in the change in workers’ purchasing power from

1996 to 2015, would you use the results from (a) or (b)? Explain.

. Using the data for 2015:

i. Construct a 95% confidence interval for the mean of AHE for high
school graduates.
ii. Construct a 95% confidence interval for the mean of AHE for
workers with a college degree.
iii. Construct a 95% confidence interval for the difference between the
two means.

. Repeat (d) using the 1996 data expressed in $2015.

. Using appropriate estimates, confidence intervals, and test statistics,

answer the following questions:

i. Did real (inflation-adjusted) wages of high school graduates increase
from 1996 to 2015?

ii. Did real wages of college graduates increase?

iii. Did the gap between earnings of college and high school graduates
increase? Explain.

. Table 3.1 presents information on the gender gap for college graduates.

Prepare a similar table for high school graduates, using the 1996 and
2015 data. Are there any notable differences between the results for high
school and college graduates?
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E3.2 A consumer is given the chance to buy a baseball card for $1, but he declines

the trade. If the consumer is now given the baseball card, will he be willing to
sell it for $1? Standard consumer theory suggests yes, but behavioral econo-
mists have found that “ownership” tends to increase the value of goods to
consumers. That is, the consumer may hold out for some amount more than
$1 (for example, $1.20) when selling the card, even though he was willing
to pay only some amount less than $1 (for example, $0.88) when buying it.
Behavioral economists call this phenomenon the “endowment effect.” John
List investigated the endowment effect in a randomized experiment involv-
ing sports memorabilia traders at a sports-card show. Traders were randomly
given one of two sports collectibles, say good A or good B, that had approx-
imately equal market value.’ Those receiving good A were then given the
option of trading good A for good B with the experimenter; those receiv-
ing good B were given the option of trading good B for good A with the
experimenter. Data from the experiment and a detailed description can be
found on the text website, http://www.pearsonglobaleditions.com, in the files
Sportscards and Sportscards_Description.*

a. 1. Suppose that, absent any endowment effect, all the subjects prefer good
A to good B. What fraction of the experiment’s subjects would you
expect to trade the good that they were given for the other good? (Hint:
Because of random assignment of the two treatments, approximately
50% of the subjects received good A, and 50% received good B.)

ii. Suppose that,absent any endowment effect, 50% of the subjects prefer
good A to good B, and the other 50% prefer good B to good A. What
fraction of the subjects would you expect to trade the good they were
given for the other good?

iii. Suppose that, absent any endowment effect, X% of the subjects prefer
good A to good B, and the other (100 — X)% prefer good B to good
A. Show that you would expect 50% of the subjects to trade the good
they were given for the other good.

b. Using the sports-card data, what fraction of the subjects traded the good they
were given? Is the fraction significantly different from 50%? Is there evi-
dence of an endowment effect? (Hint: Review Exercises 3.2 and 3.3.)

¢. Some have argued that the endowment effect may be present but that it
is likely to disappear as traders gain more trading experience. Half of the
experimental subjects were dealers, and the other half were nondealers.
Dealers have more experience than nondealers. Repeat (b) for dealers
and nondealers. Is there a significant difference in their behavior?

3Good A was a ticket stub from the game in which Cal Ripken, Jr., set the record for consecutive games
played, and good B was a souvenir from the game in which Nolan Ryan won his 300th game.

“These data were provided by Professor John List of the University of Chicago and were used in his paper “Does
Market Experience Eliminate Market Anomalies,” Quarterly Journal of Economics,2003,118(1): 41-71.
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Is the evidence consistent with the hypothesis that the endowment effect
disappears as traders gain more experience? (Hint: Review Exercise 3.15.)

The U.S. Current Population Survey

Each month the U.S. Census Bureau and the U.S. Bureau of Labor Statistics conduct the Cur-
rent Population Survey (CPS), which provides data on labor force characteristics of the popu-
lation, including the levels of employment, unemployment, and earnings. Approximately
54,000 U.S. households are surveyed each month. The sample is chosen by randomly selecting
addresses from a database of addresses from the most recent decennial census augmented with
data on new housing units constructed after the last census. The exact random sampling
scheme is rather complicated (first, small geographical areas are randomly selected; then hous-
ing units within these areas are randomly selected); details can be found in the Handbook of
Labor Statistics and on the Bureau of Labor Statistics website (www.bls.gov).

The survey conducted each March is more detailed than those in other months and asks
questions about earnings during the previous year. The statistics in Tables 2.4 and 3.1 were com-
puted using the March surveys. The CPS earnings data are for full-time workers, defined to be
persons employed more than 35 hours per week for at least 48 weeks in the previous year.

More details on the data can be found in the replication materials for this chapter, avail-
able at http://www.pearsonglobaleditions.com.

Two Proofs That Y Is the Least Squares
Estimator of uy

This appendix provides two proofs, one using calculus and one not, that Y minimizes the sum
of squared prediction mistakes in Equation (3.2) —that is, that Y is the least squares estimator
of E(Y).

Calculus Proof

To minimize the sum of squared prediction mistakes, take its derivative and set it to O:

d n n n
— (Y —-m)?= -2 (Y, —m) = -2>Y +2nm=0. (327)
dm = i=1 i=1

2

Solving for the final equation for m shows that 3" _,(Y; — m)?is minimized whenm = Y.
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Noncalculus Proof

The strategy is to show that the difference between the least squares estimator and Y must
be 0, from which it follows that Y is the least squares estimator. Let d = Y — m, so
thatm =Y —d.Then (Y, —m)>= (Y, — [Y —d])? = ([Y, - Y] +d)>= (Y, - Y)?+
2d(Y; = Y) + d? Thus the sum of squared prediction mistakes [Equation (3.2)] is

n

(Y, —m)? = i(n—?)u Zdi(y,.—Y) +nd*> =D (Y, - Y)* + nd* (3.28)
i=1 i=1 i=1

-

i=1

where the second equality uses the fact that 3"_,(Y; — Y) = 0.Because both terms in the final
line of Equation (3.28) are nonnegative and because the first term does not depend on
d, (Y, - m)? is minimized by choosing d to make the second term, nd?, as small as possi-

ble. This is done by setting d = 0—that is, by setting m = Y —so that Y is the least squares
estimator of E(Y).

A Proof That the Sample Variance
Is Consistent

This appendix uses the law of large numbers to prove that the sample variance, s%, is a consis-
tent estimator of the population variance, 03, as stated in Equation (3.9),when Y, . .., Y, are
iid.and E(Y%) < .

First, consider a version of the sample variance that uses n instead of n — 1 as a divisor:

12 I T Ny -
— Y,-Y)'=—>Yi—-2Y— > Y.+ Y
”z‘;( ' ) ”12'1 ' ”z‘; '
ni= '
—= (0% + 13) -y
= o}, (329)

where the first equality uses (Y; — Y)? = Y2 — 2YY, + Y?and the second uses x>} _,Y; = Y.

The convergence in the third line follows from (i) applying the law of large numbers to
131, Y3 —2> E(Y?) (which follows because Y7 are i.i.d. and have finite variance because
E(Y*) is finite), (i) recognizing that E(Y?) = ¢% + u} (Key Concept 2.3), and (iii) noting
Y —> uy, so that Y?> —£> k. Finally, s3 = 25) (32_(Y; — Y)?) —£> o} follows
from Equation (3.29) and (; %) — 1.

n—1




Linear Regression
with One Regressor

he superintendent of an elementary school district must decide whether to hire

additional teachers, and she wants your advice. Hiring the teachers will reduce the
number of students per teacher (the student-teacher ratio) by two but will increase
the district’s expenses. So she asks you: If she cuts class sizes by two, what will the
effect be on student performance, as measured by scores on standardized tests?

Now suppose a father tells you that his family wants to move to a town with a
good school system. He is interested in a specific school district: Test scores for this
district are not publicly available, but the father knows its class size, based on the
district’s student-teacher ratio. So he asks you: if he tells you the district’s class size,
could you predict that district’s standardized test scores?

These two questions are clearly related: They both pertain to the relation between
class size and test scores. Yet they are different. To answer the superintendent’s ques-
tion, you need an estimate of the causal effect of a change in one variable (the student-
teacher ratio, X) on another (test scores, Y). To answer the father’s question, you need
to know how X relates to Y, on average, across school districts so you can use this
relation to predict Y given X in a specific district.

These two questions are examples of two different types of questions that arise in
econometrics. The first type of questions pertains to causal inference: using data to
estimate the effect on an outcome of interest of an intervention that changes the value
of another variable. The second type of questions concerns prediction: using the
observed value of some variable to predict the value of another variable.

This chapter introduces the linear regression model relating one variable, X,
to another, Y. This model postulates a linear relationship between X and Y. Just as
the mean of Y is an unknown characteristic of the population distribution of Y, the
intercept and slope of the line relating X and Y are unknown characteristics of the
population joint distribution of X and Y. The econometric problem is to estimate the
intercept and slope using a sample of data on these two variables.

Like the differences in means, linear regression is a statistical procedure that can be
used for causal inference and for prediction. The two uses, however, place different
requirements on the data. Section 3.5 explained how a difference in mean outcomes
between a treatment and a control group estimates the causal effect of the treatment
when the treatment is randomly assigned in an experiment. When X is continuous, com-
puting differences-in-means no longer works because there are many values X can take
on, not just two. If, however, we make the additional assumption that the relation between
Xand Yis linear, then if X is randomly assigned, we can use linear regression to estimate
the causal effect on Y of an intervention that changes X. Even if X is not randomly assigned,
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