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1. INTRODUCTION

Consider a classical system in contact with a constant temperature heat
bath where some degree of freedom of the system can be controlled.
Manipulation of this degree of freedom results in an expenditure of some
amount of work, a change in the energy and free energy of the system, and
an exchange of heat with the bath. Let 1 be a parameter specifying the
current value of the controllable degree of freedom. We consider a process
where A is switched between an initial and final value over some finite
length of time. It has recently been shown(1,2) that the free energy dif-
ference, AF, between the equilibrium ensembles corresponding to the initial
and final values of A can be related to an average of the amount of work,
W, expended in this switching process. Specifically
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An equality has recently been shown relating the free energy difference between
two equilibrium ensembles of a system and an ensemble average of the work
required to switch between these two configurations. In the present paper it is
shown that this result can be derived under the assumption that the system's
dynamics is Markovian and microscopically reversible.
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The angled brackets indicate an equilibrium average with A fixed in its
initial value. W is the work required to instantaneously change the control
parameter to the new value while keeping the system configuration fixed.
Thermodynamic perturbation(3-5) uses this relation to evaluate free energy
differences. To reduce statistical error the control parameter is changed in
a series of small steps. At each step the system is allowed to equilibrate
before evaluating the work required to switch to the next step. Again this
leads to systematic errors due to the finite simulation time available to
relax the system to equilibrium at each step.

Both thermodynamic integration and perturbation suffer from system-
atic errors because the simulated systems are never truly in equilibrium.
Calculations based on Eq. (1) only require that the initial ensemble is in
equilibrium, which is computationally feasible. Although this results in a
reduction of systematic errors it increases the statistical errors,(1,2) which
may limit its applicability.

Previously this relation has been derived for a Hamiltonian system
weakly coupled to a heat bath,(1) and based on a master equation
approach.(2) In this paper it will be shown that this equality directly follows
if we assume that the dynamics of the system are Markovian, and
microscopically reversible. The Markovian(6) condition ensures that the
system is memory less. The property of microscopic reversibility(7,8) (prin-
ciple of detailed balance) ensures that the system is time reversible and
that the equilibrium probability distributions are correctly given by the

where /?= 1 / k B T , kB is the Boltzmann constant, and T is the temperature
of the heat bath. The overbar indicates an ensemble average over all
possible paths through phase space, given an equilibrium initial state, and
the value of the control parameter at all times during the switching process.
This can be approximated by an average over many measurements of the
work required for the same switching process. Note that this is a non-
equilibrium measurements. The system is not assumed to be in equilibrium
during the switching process.

This equality is a generalization(1,2) of several relations that are com-
monly used to calculated free energy differences in computer simulations.
In the limit of an infinitely long switching process Eq. (1) becomes equivalent
to thermodynamic integration.(3,4) This assumes that the system is always
in equilibrium, that the switching process is reversible, and therefore that
no energy is dissipated. It follows that AF= W. The finite time of actual
simulations leads to systematic overestimation of the free energy difference.

In the limit of infinitely fast switching Eq. (1) is equivalent to
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canonical ensemble. These two conditions are both met by many computer
simulations.

2. NOTATION AND ASSUMPTIONS

The system of interest is held at a constant temperature, T. The state
of the system is specified by two parameters. The internal state of the
system at time t is labeled by it. In addition the energy of each state is
affected by an externally controlled parameter, A,. The energy of the system
at time t is denoted by E(it,, At).

To give an example, we could consider a classical gas confined in a
cylinder. Then it is a vector specifying the instantaneous momenta and
positions of all the particles. The parameter, A, can control the volume of
the gas, manipulated by means of a piston. The time evolution of the
system could be governed by Langevin dynamics, where a frictional and a
stochastic force are added to the deterministic classical mechanical equa-
tions of motion.

As an alternative example consider the Ising model of a ferromagnet.
The parameter, it is an index specifying the current position (up or down)
of all the magnetic spins. Work is done on the system by applying an exter-
nal magnetic field, whose value is specified by X,. The time evolution of this
system is then governed by single spin flip Metropolis Monte Carlo.(9)

For notational convenience we will assume discrete time and a discrete
phase space. Both of these conditions are necessarily true for any simula-
tion on a digital computer. The results can be readily generalized to con-
tinuous time and continuous phase space.

In a canonical ensemble the equilibrium probability of a state, A,
given a fixed value of the control parameter, A, is
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The sum is over all states of the system and F(fi , A)= -/?"' I n £ , e ~ / E ( i , )

is the Helmholtz free energy of the system.
We wish to consider the evolution of this system through time, as

the control parameter is moved through a fixed sequence, {A0, A lv.., Ar}.
A particular path through phase space can be written as

At time t = 0 the system is in state i0 and the control parameter is A0. The
time evolution of the system is considered to occur in two substeps. First



The reversible work, Wr = JF=F(/?, AI) —F(j3, A0) is the free energy
difference between two equilibrium ensembles. The dissipative work, Wd =
W - W r is defined as the difference between the reversible work and the
actual work. If an amount of work is expended in changing the free energy
of the system then the change in entropy of the universe is /? Wd, in units
of Boltzmann's constant. Note that the work and the dissipative work
depend on the path followed through phase space, but the reversible work
depends only on the initial and final ensembles.

It will prove useful to consider reversing the direction of time. The
reverse time path through phase space, corresponding to the forward time
path specified in Eq. (4), can be written as (z'0 •3— i1 <-^- i2 <-^- ••• <^— ir).
The sequence in which states are visited is reversed, as is the order in which
X is changed. Note that the forward path begins with a change in A,
whereas the reverse path begins with a change in the internal sate of the
system. The work, heat, change in energy and change in free energy are
defined above in the forward time direction. For the reversed time direction
these quantities would be the negative of the forward time value. Where
necessary the dependence on the time direction and path can be made
explicit. Elsewhere it is to be understood that these quantities are defined
in the forward time direction.

If it is assumed that the evolution of the system is Markovian then the
probability of making a transition between two states, P(it -i-> it + 1),
depends only on the state of the system at time t, and not on the previous
history of the system. Thus the probability of following a path through
phase space, P(i0 -^-» i1, -^-> i2 -i-> ••• -^-v ir), (given the initial state,

the control parameter is moved to a new value, A1. This takes an amount
of work, E(i0, A{) — E(i0, A0). Then the state of the system evolves, at con-
stant Aj, to state i1. During this evolution the system exchanges a quantity
E(i1, A1) — E(i0, AJ) of heat with the reservoir. This evolution through
phase space is repeated for T time steps.

The total work performed on the system, W, the total heat exchanged
with the reservoir, Q, and the total change in energy, AE, are given by
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i0, and the control parameter at all times, {A,, A2,..., A r}) can be split into
its constituent single time step parts.

The single time steps are assumed to be microscopically reversible,(7,8)
and therefore obey the detailed balance condition for all fixed values of the
external control parameter, L

We will now prove an analogous detailed balance condition for a
multiple time step process, where we perform an arbitrary amount of work
on the system. Given that the process is Markovian, and that individual
steps obey detailed balance, then the ratio of probabilities of a forward
path, versus the corresponding time reversed path is

Here Q is the energy exchanged with the heat bath as the system moves
along the forward path (Eq. (7)), and — ftQ is the corresponding change in
entropy (in units of Boltzmann's constant) of the bath.

Essentially this equation is a statement that detailed balance continues
to hold for Markovian microscopically reversible systems irrespective of
how much work is actually performed on the system.

If we also specify that both the forward and reverse paths start from
equilibrium distributions, then we find that



where V is the volume, and p is the pressure. The change in volume, A V
can be considered a baric equivalent of the thermal heat.(11) This condition
continues to hold for arbitrary paths through phase space, irrespective of
the amount of work performed. The ratio of equilibrium probabilities in
this ensemble is P(ir | AT) /P(i01 A0) = exp(ME + $p//V-/kfG). Thus Eq.
(10) is unmodified, and holds both in the canonical, and in the isothermal-
isobaric ensembles. It immediately follows that e~lw— e~ftAG.

4. SUMMARY

The free energy differences of isothermal systems can be directly
related to a nonequilibrium exponential average of the work require to

The last step follows because the reversible work (AF= Wr = W— Wd) is
path independent, and because probabilities are normalized.

This result readily generalizes to other isothermal ensembles. For
example consider a classical gas, held at constant temperature and
pressure, p. Work is performed by gradually inserting an additional particle
into the system, via a slow growth process.(10) In this isothermal-isobaric
ensemble the change in Gibbs free energy, AG = G({$, p, /lr)-G(/7, p, A0),
is equal to the excess chemical potential of the inserted particle at that
temperature and pressure.

The detailed balance condition is now

This average over the forward time path can be changed to an average
over the reversed time path using Eq. (10). Therefore

3. DERIVATION

These consequences of detailed balance and the Markov condition will
allow a simple proof that e~ftw = e~l>*F (Eq. (1)). The overbar indicates an
average over all paths thorough phase space, given a fixed sequence of the
external control parameter, and that the system starts from a canonical
equilibrium distribution.
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switch between the ensembles (Eq. (1)). This can be easily proved (Eqs.
(11) and (12)), based on the assumptions that the system in question is
Markovian and microscopically reversible (Eqs. (8)-(10)). Thermodynamic
integration and perturbation appear as limiting cases of this relation.
Explicit use of Eq. (1) to evaluate free energy differences should result in
lower systematic error, but its applicability may be limited by an increase
in statistical error.
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