Lecture 2
 Kinematic variables

Part I

From CartoonStock

Notations and Conventions

Units: $C=\hbar=k_{B}=1$
examples:
$\hbar c=1=197 \mathrm{MeV}$ fm $\Rightarrow 1 \mathrm{fm}=1 / 197 \mathrm{MeV}^{-1} \sim 1 / 200 \mathrm{MeV}^{-1}$
$c=310^{23} \mathrm{fm} \mathrm{s}^{-1}=1 \Rightarrow 1 \mathrm{fm}=1 / 310^{-23} \mathrm{~s} \sim 10^{-23} \mathrm{~s}$
$k_{B}=0.8610^{-10} \mathrm{MeV} K^{-1}=1 \Rightarrow 1 K=0.8610^{-10} \mathrm{MeV} \sim 10^{-10} \mathrm{MeV}$
Space-time coordinates (contravariant vector)
$x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(t, x, y, z)=(t, \vec{x})$
4-momentum vector
$p^{\mu}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\left(E, p_{x}, p_{y}, p_{z}\right)=(E, \vec{p})=\left(E, \vec{p}_{T}, p_{z}\right)$
Scalar product of 4-vectors:
$a \cdot b=a^{0} b^{0}-\vec{a} \cdot \vec{b}$
Mandelstam variable:
$s \equiv\left(p_{a}+p_{b}\right)^{2}$
Relativistic energy and momentum:
$E=\gamma m, p=\gamma m v$ with $\gamma=1 / \sqrt{1-v^{2}}$
$E^{2}=m^{2}+p^{2}$
\sqrt{s} in center-of-mass system or cms
Consider a collision of two particles.
The cms is defined by $\vec{p}_{a}=-\vec{p}_{b}$

$s=\left(E_{a}+E_{b}\right)^{2}-\left(\vec{p}_{a}+\vec{p}_{b}\right)^{2}$
$\sqrt{s} \stackrel{\text { cms }}{=}\left(E_{a}+E_{b}\right)$
In the cms, \sqrt{s} is the total energy available:
For identical particles: $\vec{p}_{a}=-\vec{p}_{b}, m_{a}=m_{b}$
$\Rightarrow p_{a}=(E, \vec{p}), p_{b}=(E,-\vec{p})$ and $\sqrt{s} \stackrel{c m s}{=} 2 E$

Exercise:

At LHC, Pb nuclei can be collided at 2.76 TeV A. What is the energy of each nucleon in a colliding pair?
$\sqrt{s}=2.76 \mathrm{ATeV}$
$\Rightarrow \sqrt{s}_{N N}=2.76 \mathrm{TeV}=2 E \Rightarrow E=1.38 \mathrm{TeV}$

Exercise:

At LHC, if $p+p$ collisions are performed at $\sqrt{s}=7 \mathrm{TeV}$, what is \sqrt{s} for $\mathrm{Pb}+\mathrm{Pb}$? (maintaining all collider characteristics unchanged)
In $\mathrm{p}+\mathrm{p}$, the proton energy is $E_{p}=\left|\vec{p}_{p}\right|=\sqrt{s} / 2=3.5 \mathrm{TeV}$
In $\mathrm{Pb}+\mathrm{Pb}$, only the protons are accelerated so
$A E_{\text {nucleon }}=A\left|\vec{p}_{\text {nucleon }}\right|=Z\left|\vec{p}_{p}\right|=Z E_{p}$
$\Rightarrow \sqrt{s}_{N N}=2 E_{\text {nucleon }}=(82 / 208) 7 \mathrm{TeV}=2.76 \mathrm{TeV}$
and $\sqrt{s}=2.76 A \mathrm{TeV}$
\sqrt{s} for fixed-target experiment

$p_{1}=\left(E_{1}^{l a b}, \vec{p}_{1}\right)$ and $p_{2}=\left(m_{2}, \overrightarrow{0}\right)$
$s=\left(p_{1}+p_{2}\right)^{2}=p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2}=m_{1}^{2}+m_{2}^{2}+2 E_{1}^{\text {lab }} m_{2}$
If $E_{1}^{l a b} \gg m_{1}, m_{2} \Rightarrow \sqrt{s} \sim \sqrt{2 E_{1}^{l a b} m_{2}}$

Exercise:

At the SPS, precursor of LEP and LHC, Pb nuclei were acelerated in fixed target mode, with beam energy 158 AGeV (among other energies). What is $\sqrt{s_{N N}}$ in the cms of each nucleon pair?
(158 AGeV means that each of the A nucleons of the incident nucleus collide with energy 158 GeV with the target nucleus.)

For a nucleon-nucleon pair:
$E_{1}^{l a b}=158 \mathrm{GeV} \gg m_{1}=m_{2} \sim 1 \mathrm{GeV}$
$\Rightarrow \sqrt{s_{N N}} \sim \sqrt{2 E_{1}^{l a b} m_{2}}=17.8 \mathrm{GeV} \sim 20 \mathrm{GeV}$
(N.B. everything is expressed in GeV)

This $\sqrt{s_{N N}}$ at SPS is about 10 times lower than the highest RHIC one.

Rapidity

It is a generalization of longitudinal velocity $v_{z}=p_{z} / E$ $\mathrm{y} \equiv \operatorname{arctanh} v_{z}=\frac{1}{2} \ln \frac{1+v_{z}}{1-v_{z}}=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}$

Note: $v_{z} \ll 1 \Rightarrow y \sim v_{z}$ (it is the case at midrapidity $y \sim 0$ in the cms)

A neat property

When going to a new referential, the new rapidities are obtained from the old ones by adding/subtracting a constant:

Lorentz transformation: $E=\gamma\left(E^{\prime}+v_{s^{\prime}} p_{z}^{\prime}\right), p_{z}=\gamma\left(p_{z}^{\prime}+v_{S^{\prime}} E^{\prime}\right)$
$\Rightarrow y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}=\ldots=\frac{1}{2} \ln \frac{E^{\prime}+p_{z}^{\prime}}{E^{\prime}-p_{z}^{\prime}}+\frac{1}{2} \ln \frac{1+v_{S^{\prime}}}{1-v_{S^{\prime}}}=y^{\prime}+y_{S^{\prime}}$
y is not Lorentz invariant but it changes in a simple way: $y=y^{\prime}+y_{S^{\prime}}$ $y_{S^{\prime}}$ is the rapidity of S^{\prime} measured in S.

Exercise: write E and p_{z} in term of rapidity and $m_{T} \equiv \sqrt{m^{2}+p_{T}^{2}}$
Summing and subtracting
$e^{y}=\sqrt{\frac{E+p_{z}}{E-p_{z}}}, e^{-y}=\sqrt{\frac{E-p_{z}}{E+p_{z}}}$
$\Rightarrow \mathrm{E}=\mathrm{m}_{T} \cosh y, p_{z}=m_{T} \sinh y$
$m_{T} \equiv \sqrt{m^{2}+p_{T}^{2}}$ is called transverse mass and is invariant under boost along the beam axis.

Exercise:

Consider 2 objects colliding along the z-axis with $p_{a}=\left(E_{a}, 0,0, p_{z a}\right)$ and $p_{b}=\left(E_{b}, 0,0, p_{z b}\right)$ in some frame. What is their cm rapidity in that frame?

In the cms:
$p_{z a}^{\prime}=\gamma_{c m}\left(p_{z a}-v_{c m} E_{a}\right)$ and $p_{z b}^{\prime}=\gamma_{c m}\left(p_{z b}-v_{c m} E_{b}\right)$ with $p_{z b}^{\prime}=-p_{z a}^{\prime}$
$\Rightarrow v_{c m}=\frac{p_{z a}+p_{z b}}{E_{b}+E_{a}}$ and $\mathrm{y}_{c m}=\frac{1}{2} \ln \frac{E_{a}+p_{z a}+E_{b}+p_{z b}}{E_{a}-p_{z a}+E_{b}-p_{z b}}$
It can also be written:
$y_{c m}=\frac{1}{2} \ln \frac{m_{T_{a}}\left(\cosh y_{a}+\sinh y_{a}\right)+m_{T b}\left(\cosh y_{b}+\sinh y_{b}\right)}{m_{T_{a}}\left(\cosh y_{a}-\sinh y_{a}\right)+m_{T b}\left(\cosh y_{b}-\sinh y_{b}\right)}=\frac{1}{2} \ln \frac{m_{a}{ }^{y_{a}}+m_{b} e^{y_{b}}}{m_{a} e^{-y_{a}}+m_{b} e^{-y_{b}}}$
$\Rightarrow \mathrm{y}_{c m}=\frac{1}{2}\left(y_{a}+y_{b}\right)+\frac{1}{2} \ln \frac{m_{a} e^{{ }^{2} a}+m_{b} e^{y_{b}}}{m_{a} y^{y_{b}}+m_{b} e^{y_{a}}}$
If $m_{a}=m_{b}, y_{c m}=\frac{1}{2}\left(y_{a}+y_{b}\right)$

Exercise:

Consider 2 equal mass objects colliding along the z-axis with $p_{a}=\left(E_{a}, 0,0, p_{z a}\right)$ and $p_{b}=\left(E_{b}, 0,0, p_{z b}\right)$ in some frame. Compute the rapidity of each object in the cms.

In the original frame: $y_{a}=\frac{1}{2} \ln \frac{E_{a}+p_{z a}}{E_{a}-p_{z a}}, y_{b}=\frac{1}{2} \ln \frac{E_{b}+p_{z b}}{E_{b}-p_{z b}}$ and $y_{c m}=\left(y_{a}+y_{b}\right) / 2$

From the additivity property, in the cms: $y_{a}^{\prime}=y_{a}-y_{c m}=\left(y_{a}-y_{b}\right) / 2$ and $y_{b}^{\prime}=y_{b}-y_{c m}=\left(y_{b}-y_{a}\right) / 2$

Applications:

- Original frame is a fixed target one:
$y_{c m}=\left(y_{\text {target }}+y_{\text {beam }}\right) / 2=y_{\text {beam }} / 2, y_{\text {target }}^{\prime}=-y_{\text {beam }} / 2$,
$y_{\text {beam }}^{\prime}=+y_{\text {beam }} / 2$

- Original frame is cms :
$p_{z b}=-p_{z a} \Rightarrow y_{b}=-y_{a}$
$y_{c m}=\left(y_{a}+y_{b}\right) / 2=0$

Challenge

Show that for an ultrarelativistic $A_{1}+A_{2}$ collision, the center-of-momentum frame of nucleon-nucleon collisions has the rapidity

$$
y_{c m}=\frac{1}{2} \ln \frac{Z_{1} A_{2}}{Z_{2} A_{1}}
$$

(which reduces to 0 for $A+A$ as it should, cf.previous slide). What value does it have for $\mathrm{p}+\mathrm{Pb}$ collisions at the LHC?

Homework

1) At SPS, Pb nuclei collided in fixed target mode with momentum 158 GeV (per nucleon).
a) Compute the contraction factor γ and rapidity for the beam.
b) In the cms, compute the total energy for nucleon-nucleon collisions and $\mathrm{Pb}+\mathrm{Pb}$ collisions as well as the γ 's and rapidities.
2) At RHIC, Au nuclei can be collided with $\sqrt{s_{N N}}=200 \mathrm{GeV}$.
a) In the cms, compute the total energy for nucleon-nucleon collisions and Au+Au collisions as well as the γ 's and rapidities.
b) For fixed target mode, what would be the beam momentum?

Other references on this topic

- W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions, World Scientific, 2010
- R. Vogt, Ultrarelativistic Heavy-ion Collisions, Elsevier, 2007
- C.Y. Wong, Introduction to High-Energy Heavy-Ion Collisions, World Scientific, 1994
- https:
//www.physi.uni-heidelberg.de/~reygers/
lectures/2019/qgp/qgp2019_02_kinematics.pdf

