# Lecture 2 Kinematic variables

Part I



# Notations and Conventions

Units:  $c = \hbar = k_B = 1$ examples:  $\hbar c = 1 = 197 \text{ MeV } fm \Rightarrow 1 fm = 1/197 \text{ MeV}^{-1} \sim 1/200 \text{ MeV}^{-1}$   $c = 310^{23} fm s^{-1} = 1 \Rightarrow 1 fm = 1/310^{-23} s \sim 10^{-23} s$  $k_B = 0.8610^{-10} \text{ MeV } K^{-1} = 1 \Rightarrow 1 K = 0.8610^{-10} \text{ MeV} \sim 10^{-10} \text{ MeV}$ 

Space-time coordinates (contravariant vector)  $x^{\mu} = (x^0, x^1, x^2, x^3) = (t, x, y, z) = (t, \vec{x})$ 

4-momentum vector  $p^{\mu} = (p^0, p^1, p^2, p^3) = (E, p_x, p_y, p_z) = (E, \vec{p}) = (E, \vec{p}_T, p_z)$ Scalar product of 4-vectors:

 $a \cdot b = a^0 b^0 - \vec{a} \cdot \vec{b}$ 

Mandelstam variable:

 $s\equiv(
ho_a+
ho_b)^2$ 

Relativistic energy and momentum:  $E = \gamma m, p = \gamma m v$  with  $\gamma = 1/\sqrt{1 - v^2}$  $E^2 = m^2 + p^2$   $\sqrt{s}$  in center-of-mass system or cms

Consider a collision of two particles. The cms is defined by  $\vec{p}_a = -\vec{p}_b$ 

$$p_a = (E_a, \vec{p}_a) \qquad p_b = (E_b, \vec{p}_b)$$

$$s = (E_a + E_b)^2 - (\vec{p}_a + \vec{p}_b)^2$$
$$\sqrt{s} \stackrel{cms}{=} (E_a + E_b)$$

In the cms,  $\sqrt{s}$  is the total energy available:

For identical particles:  $\vec{p}_a = -\vec{p}_b$ ,  $m_a = m_b$  $\Rightarrow p_a = (E, \vec{p})$ ,  $p_b = (E, -\vec{p})$  and  $\sqrt{s} \stackrel{cms}{=} 2E$ 

At LHC, Pb nuclei can be collided at 2.76 TeV *A*. What is the energy of each nucleon in a colliding pair?

 $\sqrt{s} = 2.76 \text{ ATeV}$  $\Rightarrow \sqrt{s}_{NN} = 2.76 \text{ TeV} = 2E \Rightarrow E = 1.38 \text{ TeV}$ 

#### Exercise:

At LHC, if p+p collisions are performed at  $\sqrt{s} = 7 \text{ TeV}$ , what is  $\sqrt{s}$  for Pb+Pb? (maintaining all collider characteristics unchanged)

In p+p, the proton energy is  $E_p = |\vec{p}_p| = \sqrt{s}/2 = 3.5 \text{ TeV}$ In Pb+Pb, only the protons are accelerated so  $A E_{nucleon} = A |\vec{p}_{nucleon}| = Z |\vec{p}_p| = Z E_p$  $\Rightarrow \sqrt{s_{NN}} = 2 E_{nucleon} = (82/208)7 \text{ TeV} = 2.76 \text{ TeV}$ and  $\sqrt{s} = 2.76 \text{ ATeV}$   $\sqrt{s}$  for fixed-target experiment

$$\begin{array}{c} \text{Target} \\ m_1, E_1^{lab} \bullet \underbrace{p} \\ \swarrow \\ \text{total energy} \\ \text{(kin. + rest mass)} \end{array} m_2, \ p_2^{lab} = 0 \end{array}$$

$$p_{1} = (E_{1}^{lab}, \vec{p}_{1}) \text{ and } p_{2} = (m_{2}, \vec{0})$$

$$s = (p_{1} + p_{2})^{2} = p_{1}^{2} + p_{2}^{2} + 2p_{1}p_{2} = m_{1}^{2} + m_{2}^{2} + 2E_{1}^{lab}m_{2}$$
If  $E_{1}^{lab} >> m_{1}, m_{2} \Rightarrow \boxed{\sqrt{s} \sim \sqrt{2E_{1}^{lab}m_{2}}}$ 

At the SPS, precursor of LEP and LHC, Pb nuclei were acelerated in fixed target mode, with beam energy 158 AGeV (among other energies). What is  $\sqrt{s_{NN}}$  in the cms of each nucleon pair? (158 AGeV means that each of the *A* nucleons of the incident nucleus collide with energy 158 GeV with the target nucleus.)

For a nucleon-nucleon pair:

$$E_1^{lab} = 158 \text{ GeV} >> m_1 = m_2 \sim 1 \text{GeV}$$
  
 $\Rightarrow \sqrt{s_{NN}} \sim \sqrt{2E_1^{lab}m_2} = 17.8 \text{ GeV} \sim 20 \text{ GeV}$   
(N.B. everything is expressed in GeV)

This  $\sqrt{s_{NN}}$  at SPS is about 10 times lower than the highest RHIC one.

#### Rapidity

It is a generalization of longitudinal velocity  $v_z = p_z/E$ 



Note:  $v_z << 1 \Rightarrow y \sim v_z$  (it is the case at midrapidity  $y \sim 0$  in the cms)

# A neat property

When going to a new referential, the new rapidities are obtained from the old ones by adding/subtracting a constant:



Lorentz transformation:  $E = \gamma(E' + v_{S'}p'_z), p_z = \gamma(p'_z + v_{S'}E')$  $\Rightarrow y = \frac{1}{2} \ln \frac{E+p_z}{E-p_z} = ... = \frac{1}{2} \ln \frac{E'+p'_z}{E'-p'_z} + \frac{1}{2} \ln \frac{1+v_{S'}}{1-v_{S'}} = y' + y_{S'}$ 

*y* is not Lorentz invariant but it changes in a simple way:  $y=y'+y_{S'}$  $y_{S'}$  is the rapidity of S' measured in S. <u>Exercise</u>: write *E* and  $p_z$  in term of rapidity and  $m_T \equiv \sqrt{m^2 + p_T^2}$ 

Summing and subtracting  $e^{y} = \sqrt{\frac{E + p_{z}}{E + p_{z}}}, e^{-y} = \sqrt{\frac{E - p_{z}}{E + p_{z}}}$ 

$$\Rightarrow \boxed{\mathsf{E}=\mathsf{m}_T \cosh y, p_z = m_T \sinh y}$$

 $m_T \equiv \sqrt{m^2 + p_T^2}$  is called transverse mass and is invariant under boost along the beam axis.

Consider 2 objects colliding along the z-axis with  $p_a = (E_a, 0, 0, p_{za})$  and  $p_b = (E_b, 0, 0, p_{zb})$  in some frame. What is their cm rapidity in that frame?

In the cms:

$$p'_{za} = \gamma_{cm}(p_{za} - v_{cm}E_a) \text{ and } p'_{zb} = \gamma_{cm}(p_{zb} - v_{cm}E_b) \text{ with } p'_{zb} = -p'_{za}$$
$$\Rightarrow v_{cm} = \frac{p_{za} + p_{zb}}{E_b + E_a} \text{ and } \left[ y_{cm} = \frac{1}{2} \ln \frac{E_a + p_{za} + E_b + p_{zb}}{E_a - p_{za} + E_b - p_{zb}} \right]$$

It can also be written:  

$$y_{cm} = \frac{1}{2} \ln \frac{m_{Ta}(\cosh y_a + \sinh y_a) + m_{Tb}(\cosh y_b + \sinh y_b)}{m_{Ta}(\cosh y_a - \sinh y_a) + m_{Tb}(\cosh y_b - \sinh y_b)} = \frac{1}{2} \ln \frac{m_a e^{y_a} + m_b e^{y_b}}{m_a e^{-y_a} + m_b e^{-y_b}}$$

$$\Rightarrow \boxed{y_{cm} = \frac{1}{2}(y_a + y_b) + \frac{1}{2} \ln \frac{m_a e^{y_a} + m_b e^{y_b}}{m_a e^{y_b} + m_b e^{y_a}}}$$

If  $m_a = m_b$ ,  $y_{cm} = \frac{1}{2}(y_a + y_b)$ 

Consider 2 **equal mass** objects colliding along the z-axis with  $p_a = (E_a, 0, 0, p_{za})$  and  $p_b = (E_b, 0, 0, p_{zb})$  in some frame. Compute the rapidity of each object in the cms.

In the original frame: 
$$y_a = \frac{1}{2} \ln \frac{E_a + \rho_{za}}{E_a - \rho_{za}}$$
,  $y_b = \frac{1}{2} \ln \frac{E_b + \rho_{zb}}{E_b - \rho_{zb}}$  and  $y_{cm} = (y_a + y_b)/2$ 

From the additivity property, in the cms:  $y'_a = y_a - y_{cm} = (y_a - y_b)/2$ and  $y'_b = y_b - y_{cm} = (y_b - y_a)/2$  Applications:

• Original frame is a fixed target one:

 $y_{cm} = (y_{target} + y_{beam})/2 = y_{beam}/2, y'_{target} = -y_{beam}/2, y'_{beam} = +y_{beam}/2$ 



• Original frame is cms:  $p_{zb} = -p_{za} \Rightarrow y_b = -y_a$  $y_{cm} = (y_a + y_b)/2 = 0$ 



### Challenge



Show that for an ultrarelativistic  $A_1 + A_2$  collision, the center-of-momentum frame of nucleon-nucleon collisions has the rapidity

$$y_{cm} = \frac{1}{2} \ln \frac{Z_1 A_2}{Z_2 A_1}$$

(which reduces to 0 for A + A as it should, cf.previous slide). What value does it have for p+Pb collisions at the LHC?

#### Homework

1) At SPS, Pb nuclei collided in fixed target mode with momentum 158 GeV (per nucleon).

a) Compute the contraction factor  $\gamma$  and rapidity for the beam. b) In the cms, compute the total energy for nucleon-nucleon collisions and Pb+Pb collisions as well as the  $\gamma$ 's and rapidities.

2) At RHIC, Au nuclei can be collided with  $\sqrt{s}_{NN} = 200 \text{ GeV}$ . a) In the cms, compute the total energy for nucleon-nucleon collisions and Au+Au collisions as well as the  $\gamma$ 's and rapidities. b) For fixed target mode, what would be the beam momentum?

### Other references on this topic

- W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions, World Scientific, 2010
- R. Vogt, Ultrarelativistic Heavy-ion Collisions, Elsevier, 2007
- C.Y. Wong, Introduction to High-Energy Heavy-Ion Collisions, World Scientific, 1994

## https:

//www.physi.uni-heidelberg.de/~reygers/ lectures/2019/qgp/qgp2019\_02\_kinematics.pdf