VIII
Elements of the theory of diffraction

8.1 Introduction

IN carrying out the transition from the general electromagnetic field to the optical field,
which is characterized by very high frequencies (short wavelengths), we found that in
certain regions the simple geometrical model of energy propagation was inadequate.
In particular, we saw that deviations from this model must be expected in the
immediate neighbourhood of the boundaries of shadows and in regions where a large
number of rays meet. These deviations are manifested by the appearance of dark and
bright bands, the diffraction fringes. Diffraction theory is mainly concerned with the
field in these special regions; such regions are of great practical interest as they include
the part of the image space in which the optical image is situated (region of focus).

The first reference to diffraction phenomena appears in the work of Leonardo da
Vinci (1452—-1519). Such phenomena were, however, first accurately described by
Grimaldi in a book, published in 1665, two years after his death. The corpuscular
theory, which, at the time, was widely believed to describe correctly the propagation of
light, could not explain diffraction. Huygens, the first proponent of the wave theory,
seems to have been unaware of Grimaldi’s discoveries; otherwise he would have
undoubtedly quoted them in support of his views. The possibility of explaining
diffraction effects on the basis of a wave theory was not noticed until about 1818. In
that year there appeared the celebrated memoir of Fresnel (see Historical introduction)
in which he showed that diffraction can be explained by the application of Huygens’
construction (see §3.3.3) together with the principle of interference. Fresnel’s analysis
was later put on a sound mathematical basis by Kirchhoff (1882), and the subject has
since then been extensively discussed by many writers.*

Diffraction problems are amongst the most difficult ones encountered in optics.
Solutions which, in some sense, can be regarded as rigorous are very rare in diffraction
theory. The first such solution was given as late as 1896 by A. Sommerfeld when, in an
important paper, he discussed the diffraction of a plane wave by a perfectly conducting
semi-infinite plane screen. Since then rigorous solutions of a small number of other
diffraction problems (mainly two-dimensional) have also been found (see Chapter XI),
but, because of mathematical difficulties, approximate methods must be used in most
cases of practical interest. Of these the theory of Huygens and Fresnel is by far the

* For a fuller historical account of the development of the subject see C. F. Meyer, The Diffraction of Light,
X-rays, and Material Particles (Chicago, The University Press, 1934).
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8.2 The Huygens-Fresnel principle 413

most powerful and is adequate for the treatment of the majority of problems
encountered in instrumental optics. This theory and some of its applications form the
main subject matter of this chapter.

8.2 The Huygens—Fresnel principle

According to Huygens’ construction (§3.3.3), every point of a wave-front may be
considered as a centre of a secondary disturbance which gives rise to spherical
wavelets, and the wave-front at any later instant may be regarded as the envelope of
these wavelets. Fresnel was able to account for diffraction by supplementing Huygens’
construction with the postulate that the secondary wavelets mutually interfere. This
combination of Huygens’ construction with the principle of interference is called the
Huygens—Fresnel principle. Before applying it to the study of diffraction effects we
shall verify that (with certain simple additional assumptions) the principle correctly
describes the propagation of light in free space.

Let S (Fig. 8.1) be the instantaneous position of a spherical monochromatic wave-
front of radius ry which proceeds from a point source Py, and let P be a point at which
the light disturbance is to be determined. The time periodic factor e 7! being omitted,
the disturbance at a point Q on the wave-front may be represented by Ae'¥ /r,, where
A is the amplitude at unit distance from the source. In accordance with the Huygens—
Fresnel principle we regard each element of the wave-front as the centre of a secondary
disturbance which is propagated in the form of spherical wavelets, and obtain for the
contribution dU(P) due to the element dS at Q the expression

Aeik giks

dU(P) = K(x) — ds,

ro

where s = OP and K(¥) is an inclination factor which describes the variation with

Fig. 8.1 Fresnel’s zone construction.



414 VIII Elements of the theory of diffraction

direction of the amplitude of the secondary waves, y being the angle (often called the
angle of diffraction) between the normal at O and the direction QP. Following Fresnel
we assume that K is maximum in the original direction of propagation, i.e. for y = 0,
and that it rapidly decreases with increasing y, being zero when QP is tangential to the
wave-front, i.e. when y = 77/2; and finally, that only that part S’ of the primary wave
contributes to the effect at P, which is not obstructed by obstacles which may be
situated between Py and P. Hence the total disturbance at P is given by

Aeikro eiks
U(P) = " JJSTK(x)dS. (D

To evaluate (1) we shall use the so-called zone construction of Fresnel. With centre
at P, we construct spheres of radii

A 22 32 JA
b b+—, —, b+—, cees b ce,
, + 2 b+ 5 + 2 += R
where b = CP, C being the point of intersection of PyP with the wave-front S (see
Fig. 8.1). The spheres divide S into a number of zones Z;, %, Z3, ..., Z;, .. ..
We assume that both ry and b are large compared to the wavelength; then K may be
assumed to have the same value, K, for points on one and the same zone. From the

figure
st = 720 + (7o + b)* — 2ry(ro + b)cos 6,
so that
sds = ry(ro + b)sin 6 d6, )

and therefore

ds = R sin0dfdgp = — 2 sdsdg,
ro

+b
¢ being the azimuthal angle. Hence the contribution of the jth zone to U(P) is

Aelkro b+jA/2 i
Ui(P) =2n +bKJ e'® ds
rp

b+(j—1)A/2
A
k7 ro + b ’

Since kA = 2, the last two factors reduce to
eikjl/Z(l _ e—ikl/z) — e]]t](l _ e—iﬂ) — (_1)_]2,

so that
) Aeik(r0+b)
Ui(P) = 2il(— 1)/ K ——r0. 3
[(P) = 2001y K= 3
We note that the contributions of the successive zones are alternately positive and
negative. The total effect at P is obtained by summing all the contributions:

1k(ro+b)

U(P)=2v1 = Z( YK, (4)
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The series

=Y (-)Y"K =K - Ky+Ks — -+ (-)"'K, )
J=1

can now be approximately summed by a method due to Schuster.™
First we write (5) in the form

. K K, K; K3 K5
2—7+(7 Kz+7>+<2 K4+7)+ s Q)
the last term being %K,, or },_K,,_l — K, according to n being odd or even. Let us

assume for the moment that the law which specifies the directional variation is such
that K; is greater than the arithmetic mean of its two neighbours K; | and K. Then
each of the bracketed terms in (6) is negative and it follows that

2<&+& when #» is odd
2 2
and )
K _
2<7]+ Kn1 _ K, when n is even.
We can also write (5) in the form
_ K> K K4 K4 Ks
T=Ki—-= (2 K3+2) (2 K5+2) . (8)
the last term now being —1K,_; + K, when 7 is odd and —}K, when # is even. Hence
s>k, —%— K;“ + K, (nodd)
and )
K, K,
>Kp——2 -1 .
2> K, > > (n even)

Now each K; differs only slightly from its neighbouring values K; | and K, so that
the right-hand sides of the corresponding relations in (7) and (9) are practically equal,
and, therefore, approximately,

_Ki K,
2= > + 2 (n odd)
and (10)
_ Ky K,
2= > 5 (n even)

It may easily be verified that (10) remains valid when each K; is smaller than the
arithmetic mean of its two neighbours, each of the bracketed terms in (6) and (8) then
being positive. Moreover, (10) may be expected to remain valid even when only some
of the bracketed terms are negative whilst the others are positive, for the series may
then be divided into two parts according to the signs of the bracketed terms and a

* A. Schuster, Phil. Mag. (5), 31 (1891), p. 77.
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similar argument may be applied to each part. We may, therefore, conclude that the
sum of the series is given by (10) unless the bracketed terms in (6) and (8) change sign
so frequently that the error terms add up to an appreciable amount. If we exclude the
later case it follows from (10) and (4) that

Aeik(r0+b)

U(P) = iA(K, iK")—ro—+b_

; (11)

the upper or lower sign being taken according as » is odd or even. Using (3), (11) may
be also written in the form

U(P) = ;[Ui(P) + Un(P)]. (12)
For the last zone (Z,) that can be seen from P, QP is a tangent to the wave, i.e.

¥ = 7/2, and for this value of y, as already mentioned, K was assumed to be zero.
Hence K, = 0 and (11) reduces to

P =ik, 20 13
U(P) = i3K1 = e = JUN(P), (13)
showing that the total disturbance at P is equal to half of the disturbance due to the
first zone.
Eq. (13) is in agreement with the expression for the effect of the spherical wave if
iAK; =1,
ie. if
i e—i:t/2
Ki=-—-= . 14
1 1 7 (14)

The factor e"/2 may be accounted for by assuming that the secondary waves oscillate
a quarter of a period out of phase with the primary wave; the other factor can be
explained by assuming that the amplitudes of the secondary vibrations are in the ratio
of 1:1 to those of the primary vibrations. We can therefore conclude that, with these
assumptions about the amplitude and phase of the secondary waves, the Huygens—
Fresnel principle leads to the correct expression for the propagation of a spherical
wave in free space. The additional assumptions must, however, be regarded as purely a
convenient way of interpreting the mathematical expressions and as being devoid of
any physical significance; the real justification of the factor (14) will become evident
later (§8.3).

Still following Fresnel, let us consider the effect at P when some of the zones are
obstructed by a plane screen with a circular opening, perpendicular to Py P and with its
centre on this line. The total disturbance at P must now be regarded as due to wavelets
from only those zones that are not obstructed by the screen. When the screen covers all
but half of the first zone, (3) gives, on setting j = 1, and multiplying by 1,

Aeik(r0+b) Aeik(ro+b)
ro+b  r+b’

U(P) = iAK; (15)

hence the disturbance at P is now the same as would be obtained if no screen were
present. When all the zones are covered except the first, (3) gives
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Aeik(ro+d) 3 Aeik(ro+b)
r+b - ro+b

so that the intensity I(P) = |U(P)|? is four times larger than if the screen were absent.
When the opening is increased still further the intensity will decrease, since the first
two terms in (4) have different signs. Moreover, since K| and K, are nearly equal, it
follows that there will be almost complete darkness at P when the opening is
approximately equal to the first two zones. Thus, when the size of the opening is
varied, there is a periodic fluctuation in the intensity at 2. Similar results are obtained
when the size of the opening and the source are fixed, but the position of the point P of
observation is varied along the axis; for then, as P gradually approaches the screen, an
increasingly larger number of zones is required to fill the opening completely.

The total number of zones has a simple form when the radius of the opening is much
smaller than the perpendicular distance from the screen to the observation point P. Let
us consider an opening of radius a, centered on the point C, perpendicular to PP (see
Fig. 8.1). The outermost (Nth say) Fresnel zone contained within the aperture will have
a radius roughly equal to the distance from the point P to the edge of the aperture, i.e.

b+%£=\/b2+a2. (17)

When a < b one has v/b* + a? ~ b + (b/2)(a/b)*. On substituting from this expres-
sion into (17) it follows that

U(P) = 2iAK, (16)

2
N = 7 (18)
The number N, which represents the number of Fresnel zones in the opening, is known
as the Fresnel number of the system. This parameter also plays an important role in the
theory of laser resonators.™®
All these results were found to be in good agreement with experiment. One
prediction of Fresnel’s theory made a strong impression on his contemporaries, and
was, in fact, one of the decisive factors which temporarily ended the long battle
between the corpuscular and the wave theory of light in favour of the latter. It concerns
the effect which arises when the first zone is obstructed by a small circular disc placed
at right angles to Py P. According to (5) the complex amplitude at P is then given by

. elk(r+b)
UP)=2——[-Kr + K5 — Ky + -], (19)
ro+b

and, by a similar argument as before, the sum of the series in the brackets is — K> /2.
Since K, is assumed to differ only slightly from K; = 1/iA, it follows that there is
light in the geometrical shadow of the disc, and, moreover, that the intensity there is
the same as if no disc were present.t

* See, for example, A. E. Siegman, Lasers (Mill Valley, University Science Books, 1986). pp. 769-70.

+ That a bright spot should appear at the centre of the shadow of a small disc was deduced from Fresnel’s
theory by S. D. Poisson in 1818. Poisson, who was a member of the committee of the French Academy
which reviewed Fresnel’s prize memoir, appears to have considered this conclusion contrary to experiment
and so refuting Fresnel’s theory. However, Arago, another member of the committee, performed the
experiment and found that the surprising prediction was correct. A similar observation had been made a
century earlier by Maraldi but had been forgotten.



418 VIII Elements of the theory of diffraction

8.3 Kirchhoff’s diffraction theory
8.3.1 The integral theorem of Kirchhoff

The basic idea of the Huygens—Fresnel theory is that the light disturbance at a point P
arises from the superposition of secondary waves that proceed from a surface situated
between this point and the light source. This idea was put on a sounder mathematical
basis by Kirchhoff*, who showed that the Huygens—Fresnel principle may be regarded
as an approximate form of a certain integral theorem} which expresses the solution of
the homogeneous wave equation, at an arbitrary point in the field, in terms of the
values of the solution and its first derivatives at all points on an arbitrary closed surface
surrounding P,
We consider first a strictly monochromatic scalar wave

V(x, y,z, ) = U(x, y, 2)e " (1)
In vacuum the space-dependent part then satisfies the time-independent wave equation
(V2 + KU =0, ()

where k = w/c. Eq. (2) is also known as the Helmholtz equation.

Let v be a volume bounded by a closed surface S, and let P be any point within it;
we assume that U possesses continuous first- and second-order partial derivatives
within and on this surface. If U’ is any other function which satisfies the same
continuity requirements as U, we have by Green’s theorem

”L(UWU’ —U'VU)dv = —”S (U%—, ‘ZU) ds, 3)

where 9/0n denotes differentiation along the inwardf normal to S. In particular, if U’
also satisfies the time-independent wave equation, i.e. if

(V2 + KHU" =0, (4)

then it follows at once from (2) and (4) that the integrand on the left of (3) vanishes at
every point of v, and consequently

JJ (U%—’—U’ZU)dS 0. %)

Suppose we take U'(x, y, z) = etks /s, where s denotes the distance from P to the
point (x, y, z). This function has a singularity for s = 0, and since U’ was assumed to
be continuous and differentiable, P must be excluded from the domain of integration.
We shall therefore surround P by a small sphere of radius ¢ and extend the integration

* G. Kirchhoff, Berl. Ber. (1882), 641; Ann. d. Physik. (2), 18 (1883), 663; Ges. Abh. Nachtr., 22.
Kirchhoff’s theory applies to the diffraction of scalar waves. As will be shown in §8.4 a scalar theory is
usually quite adequate for the treatment of the majority of problems of instrumental optics.
Vectorial generalizations of the Huygens—Fresnel principle have been proposed by many authors. The
first satisfactory generalization is due to F. Kottler, Ann. d. Physik, 71 (1923), 457; 72 (1923), 320. (See B.
B. Baker and E. T. Copson, The Mathematical Theory of Huygens’ Principle (Oxford, Clarendon Press,
2nd edition, 1950), p. 114.)
t For monochromatic waves this theorem was derived earlier in acoustics by H. von Helmholtz, J. £ Math.,
57 (1859),7.
I Green’s theorem is usually expressed in terms of the outward normal, but the inward normal is more
convenient in the present application.



8.3 Kirchhoff’s diffraction theory 419

throughout the volume between S and the surface S’ of this sphere (Fig. 8.2). In place
of (5), we then have

a eiks) eiksaU:l
{”+”} [Ua<7 ~ o450
so that

0 e”‘"") e““BU] ek ( l) e*ou| .,
”S[U%(T S on dS—*”s, U k=5 5|9

eike( 1) eiksaU )
U—\ik—=) ———|&dQ
£ ik € e os|° d<2, - (®)

where dQ2 denotes an element of the solid angle. Since the integral over S is
independent of &, we may replace the integral on the right-hand side by its limiting
value as € — 0; the first and third terms in this integral give no contribution in the
limit, and the total contribution of the second term is 47 U(P). Hence

1 9 (ek) e*ouU

This is one form of the integral theorem of Helmholtz and Kirchhoff.*
We note, that as k — 0, the time-independent wave equation (2) reduces to
Laplace’s equation V2U = 0, and (7) then goes over into the well-known formula of

potential theory
1 o (1\ 18U
vR =4 f L [Ua (‘) - ;%J ds. ®

Fig. 8.2 Derivation of the Helmholtz—Kirchhoff integral theorem: region of inte-
gration.

* This theorem expresses U(P) in terms of the values of both U and U /dn on S. It may, however, be shown
from the theory of Green’s functions that the values of either U or U /On on S are sufficient to specify U
at every point P within S. (See, for example, F. Pockels: Uber die Partielle Differentialgleichung
(V% + k*)U = 0 (Leipzig, Teubner, 1891).) However, only in the simplest cases, e.g. when S is a plane, is
it possible to determine the appropriate Green’s function (see A. Sommerfeld, Oprics (New York,
Academic Press, 1954), p. 199). The resulting expression for U(P) is then known as the Rayleigh
diffraction integral and will be derived in §8.10.
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If P lies outside the surface S, but U is still assumed to be continuous and
differentiable up to the second order within S, and if as before we take U’ = ¢'¥ /s, (3)
remains valid throughout the whole volume within S. According to (5) the surface
integral then has the value zero.

There is a complementary form of the Helmholtz—Kirchhoff theorem for the case
when U is continuous and differentiable up to the second order outside and on a closed
surface S (sources inside). In this case, however, as in other problems of propagation
in an infinite medium, the boundary values on S are no longer sufficient to specify the
solution uniquely and additional assumptions must be made about the behaviour of the
solution as s — oo. For a discussion of this case we must, however, refer elsewhere.*

So far we have considered strictly monochromatic waves. We now derive the general
form of Kirchhoff’s theorem which applies to waves that are not necessarily mono-
chromatic.

Let ¥V (x, y, z, t) be a solution of the wave equation

1 82V
ViV =——— 9
and assume that V can be represented in the form of a Fourier integral
1 +00 .
Vix, y, z, ) = — Uy,(x, y, 267" dw. 10
(om0 =—=| Uutx22 (10)
Then, by the Fourier inversion formula
1 +00 ot
Uy(x, y,2) = — V(x, y, z, t)e'?' dt. 11
s == Yoy (an

Since V(x, y, z, ) is assumed to satisfy the wave equation (9), U,(x, y, z) will satisfy
the time-independent wave equation (2). If, moreover, V obeys the appropriate reg-
ularity conditions within and on a closed surface S, we may apply the Kirchhoff
formula separately to each Fourier component U, (x, y, z) = Uy,(P):

1 a (&%) €+ au,
=g [ {veam () -5 e fos. 2

When we change the order of integration and set £ = w/c, (10) becomes,

1 1 +oo{ o <e—iw(t—s/c)) e—iw(t—s/c)an}
V(. t)_EJLdS\/Q_JTJ_oo Uw—a_’; s - s on dw/

1 1 [t o (1\ iwods) _;
— I edided —iw(t—s/c)
4JTJJst \/2_ﬂ,[—w { Uw{@n <s) + sc On}e

e-—iw(t—s/c) o U,
Te e
s On

or using (10),

1 0 (1 10s |0V 1|0V
V(P, t)= EJL{[V]% (;) ~on [EJ -3 [5;} }dS. (13)

* See for example B. B. Baker and E. T. Copson, loc. cit., p. 26.
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The square brackets denote ‘retarded values’, i.e. values of the functions taken at the
time ¢ — s/c. The formula (13) is the general form of Kirchhoff's theorem.

It can also be seen by analogy with the previous case, that the value of the integral
in (13) is zero when P is outside S.

The last term in (13) represents the contribution of a distribution of sources of
strength —(1/47)(0V /On) per unit area, whilst the first two terms may be shown to
represent a contribution of doublets of strength ¥ /47 per unit area, directed normally
to the surface. Naturally these sources and doublets are fictitious, there being no deep
physical significance behind such an interpretation.

8.3.2 Kirchhoff’s diffraction theory

Whilst the integral theorem of Kirchhoff embodies the basic idea of the Huygens—Fresnel

/E:ion/ciple,/the laws governing the contributions from different elements of the surface are

re complicated than Fresnel assumed. Kirchhoff showed, however, that in many cases

the theorem may be reduced to an approximate but much simpler form, which is

essentially equivalent to the formulation of Fresnel, but which in addition gives an explicit
formula for the inclination factor that remained undetermined in Fresnel’s theory.

Consider a monochromatic wave, from a point source Fy, propagated through an
opening in a plane opaque screen, and let P as before be the point at which the light
disturbance is to be determined. We assume that the linear dimensions of the opening,
although large compared to the wavelength, are small compared to the distances of
both P, and P from the screen.

To find the disturbance at P we take Kirchhoff’s integral over a surface S formed by
(see Fig. 8.3(a)): (1) the opening .4, (2) a portion B of the nonilluminated side of the
screen, and (3) a portion C of a large sphere of radius R, centred at P which, together
with A and B, forms a closed surface.

Kirchhoff’s theorem, expressed by (7), then gives

ot [ (o2 E) - () o

(n.5)

(b)

(@
Fig. 8.3 Illustrating the derivation of the Fresnel—Kirchhoff diffraction formula.
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where, as before, s is the distance of the element dS from P and 9/9n denotes
differentiation along the inward normal to the surface of integration.

The difficulty is encountered that the values of U and dU/dn on A, B and C which
should be substituted into (14) are never known exactly. However, it is reasonable to
suppose that everywhere on A, except in the immediate neighbourhood of the rim of
the opening, U and 0U/On will not appreciably differ from the values obtained in the
absence of the screen, and that on B these quantities will be approximately zero.
Kirchhoff accordingly set

()
on A: U=UY, (_’)£=6_U_’
On On
U (15)
onB: U=0 —=0,
on
where
‘ ikr 0 geikr
U — Ai i agn = i [ik - ;J cos(n, r) (16)

are the values relating to the incident field (see Fig. 8.3(b)) and 4 is a constant. The
approximations (15) are called Kirchhoff’s bouritlary conditions and are the basis of
Kirchhoff's diffraction theory.

It remains to consider the contribution from the spherical portion C. Now it is
evident that by taking the radius R sufficiently large, the values of U and U /On on C
may be made arbitrarily small, which suggests that the contribution from C may be
neglected. However, by letting R increase indefinitely, the area of C also increases
beyond all limits, so that the condition U — 0 and U /dn — 0 as R — oo is not
sufficient to make the integral vanish. A more precise assumption about the behaviour
of the wave function at a large distance from the screen must therefore be made, a
point which we have already touched upon on p. 419 in connection with the
uniqueness of solutions in problems involving an infinite medium. For our purposes-it
is sufficient to make the physically obvious assumption that the radiation ﬁel}d@s not
exist at all times but that it is produced by a source that begins to radiate at some
particular instant of time ¢ = #,.* (This, of course, implies, that we now depart from
strict monochromaticity, since a perfectly monochromatic field would exist for all
times.) Then at any time > t,, the field fills a region of space the outer boundary of
which is at distance not greater than c(t — 1p) from Py, ¢ being the velocity of light.
Hence if the radius R is chosen so large that at the time when the disturbance at P is
considered no contributions from C could have reached P because at the appropriate
earlier time the field has not reached these distant regions, the integral over C will
vanish. Thus finally, on substituting into (14), and neglecting in the normal derivatives
the terms 1/r and 1/s in comparison to &, we obtain

H ik(r+s
U(P) = — %”A © r: ' [cos(n, 7) — cos(n, $)]dS, (17)

which is known as the Fresnel—Kirchhoff diffraction formula.

* This assumption is not essential but shortens the discussion. For a more formal argument see M. Born,
Optik (Berlin, Springer, 1933, reprinted 1965), p. 149 or B. B. Baker and E. T. Copson, loc. cit., p. 25.
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It is evident that in place of .4 any other open surface, the rim of which coincides
with the edge of the aperture, could have been chosen. In particular we may choose
instead of .4 a portion W of an incident wave front which approximately fills the
aperture, together with a portion C of a cone with vertex at £, and with generators
through the rim of the aperture (Fig. 8.4). If the radius of curvature of the wave is
sufficiently large, the contribution from C may obviously be neglected. Also, on W,
cos(n, ro) = L. If further we set y = 7 — (7, s) we obtain, in place of (17),

i Aeikro eik?
- * d 1
UP) =~ 57 [ S+ cosas, 18)

where ry is the radius of the wave-front W. This result is in agreement with Fresnel’s
formulation of Huygens’ principle if, as the contribution from the element d W of the
wave-front we take

i Aei kro eiks

- —(1 ds. 19

A 1 s (1+cosy) (19)
Comparison of (18) with §8.2 (1) gives for the inclination factor of Fresnel’s theory the
expression™

K@) = —5%(1 + cos ). (20)

For the central zone y = 0, and (20) gives K; = K(0) = —i/A in agreement with §38.2.
(14). It is, however, not true, as Fresnel assumed, that K(/2) = 0.

Returning now to the Fresnel—Kirchhoff diffraction formula (17), we note that it is
symmetrical with respect to the source and the point of observation. This implies that
a point source at Py will produce at P the same effect as a point source of equal
intensity placed at P will produce at Py. This result is sometimes referred to as the
reciprocity theorem (or the reversion theorem) of Helmholtz.

So far we have assumed that the light on its passage from the source to P does not
encounter any other surface than the diffracting screen; the incident waves are then
spherical. The analysis can be easily extended to cover more complicated cases, where

Fig. 8.4 Illustrating the diffraction formula (18).

* Expression (20) for the inclination factor was first derived by G. G. Stokes, Trans. Camb. Phil. Soc., 9
(1849), 1; reprinted in his Math. and Phys. Papers, Vol. 2 (Cambridge, Cambridge University Press, 1883),
p. 243.
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the waves are no longer of such simple form. It is again found that, provided the radii of
curvature at each point of the wave-front are large compared to the wavelength, and
provided that the angles involved are sufficiently small, the results of Kirchhoff’s theory
are substantially equivalent to predictions based on the Huygens—Fresnel principle.

From the preceding discussion we can also immediately draw a conclusion which
concerns the distribution of light diffracted by complementary screens, i.e. by screens
which are such that the openings in one correspond exactly to the opaque portions of
the others and vice versa. Let U;(P) and U,(P) denote respectively the values of the
complex displacement when the first or the second screen alone is placed between the
source and the point P of observation, and let U(P) be the value when no screen is
present. Then, since U; and U, can be expressed as integrals over the openings, and
since the openings in the two screens just add up to fill the whole plane,

U+U,=U. (21)

This result is known as Babinet s principle.*

From Babinet’s principle two conclusions follow at once: If U; = 0, then U, = U,
hence at points at which the intensity is zero in the presence of one of the screens, the
intensity in the presence of the other is the same as if no screen was present. Further if
U =0, then U; = —U»; this implies that, at points where U is zero, the phases of U;
and U, differ by 7 and the intensities I; = |U;|?, I, = |U,|* are equal. If, for example,
a point source is imaged by an error-free lens, the light distribution U in the image
plane will be zero except in the immediate neighbourhood of the image O of the
source. If then complementary screens are placed between the object and the 1mage
one has I; = I, except in the neighbourhood of O.

The consequences of the basic approximation (15) of Kirchhoff’s theory have been
subject to many critical discussions, which showed, for example, that
solution does not reproduce the assumed values in the plane of the aperturet. However,
more recently it was shown by Wolf and Marchand} that Kirchhoff’s theory may be
interpreted in a mathematically consistent way, as providing an exact solution to a
somewhat different boundary value problem than that specified by (15) and (16). It
turns out that Kirchhoff’s theory is entirely adequate for the treatment of the majority
of problems encountered in instrumental optics. This is mainly due to the smallness of
the optical wavelengths in comparison with the dimensions of the diffracting
obstacles.§ In other problems, such as those relating to the behaviour of the field in the

* A. Babinet, Compt. Rend., 4 (1837), 638. An analogous theorem of this type, which involves the
electromagnetic field vectors rather than the single scalar U and which may be considered as rigorous
formulation of Babinet’s principle, is given in §11.3.

+ H. Poincaré, Théorie mathématique de la lumiére (Paris, George Carré, II (1892)), pp. 187-8. See also B.
B. Baker and E. T. Copson, loc. cit., pp. 71-72 and G. Toraldo di Francia, Atti Fond. Giorgio Ronchi, XI
(1956), §6.

1 E. Wolf and E. W. Marchand, J. Opt. Soc. Amer., 56 (1966), 1712. Also, it has been shown by F. Kottler,

Ann. d. Physik, 70 (1923), 405 that Kirchhoff’s theory may be regarded as providing a rigorous solution to

a certain saltus problem (a problem with prescribed discontinuities rather than prescribed boundary

values). This interpretation is of particular interest in connection with the problem of diffraction at a black

(completely absorbing) screen. (See also F. Kottler, Progress in Optics, Vol. 4, ed. E. Wolf (Amsterdam,

North Holland Publishing Company and New York, J. Wiley and Sons, 1964), p. 281 and B. B. Baker and

E. T. Copson, loc. cit., p. 98.)

An article by C. J. Bouwkamp, Rep. Progr. Phys. (London, Physical Society), 17 (1954), 35, contains
references to numerous papers concerned with various modifications of Kirchhoff’s theory.

See S. Silver, J. Opt. Soc. Amer., 52 (1962), 131.

won
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immediate neighbourhood of screens and obstacles, more refined methods have to be
used; they must then be considered as boundary-value problems of electromagnetic
theory, with the sources as appropriate singularities of the wave functions. Only in a
very limited number of cases have such solutions been found; some of them will be
discussed in Chapter XI.

8.3.3 Fraunhofer and Fresnel diffraction

We now examine more closely the Fresnel—Kirchhoff diffraction integral (17),

Ai eik(r-ﬁ-s)
UP)=— -—JJ [cos(n, ¥) — cos(n, s)]dS. (22)
2 A rs

As the element dS explores the domain of integration, » + s will in general change
by very many wavelengths, so that the factor e!*"+* will oscillate rapidly. On the other
hand, if the distances of the points Py and P from the screen are large compared to the
linear dimensions of the aperture, the factor [cos(n, r) — cos(#n, s)] will not vary
appreciably over the aperture. Further, we assume that if O is any point in the aperture,
the angles which the lines PO and OP make with Py P are not too large. We may then
replace this factor by 2cosd, where 0 is the angle between the line PyP and the
normal to the screen. Finally the factor 1/rs may be replaced by 1/r's’, where ' and
s" are the distance of Py and P from the origin and (22) then reduces to

Ai ,
() ~ — 416080 J J ek 4§, (23)
A

A r's
We take a Cartesian reference system with origin in the aperture and with the x- and
y-axes in the plane of the aperture and choose the positive z direction to point into the
half-space that contains the point P of observation (Fig. 8.5).
If (x0, yo, 20) and (x, y, z) are the coordinates of Py and of P respectively, and (&, 7)
the coordinates of a point Q in the aperture, we have

r? = (x0 — & + (0o — n)* + 20, } 24)
==+ (-’ + 2,
Pt =g+ 5+ 2, 5
st =xt 4 y? 4+ 22

X

Fig. 8.5 Diffraction at an aperture in a plane screen.
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Hence
r2=r?—2x&+ + E2 4+ 12,

(x0& + yom) + &% +1n 26)
s =87 = 2xE+ yn) + E* + P

Since we assumed that the linear dimensions of the aperture are small compared to
both #' and s we may expand r and s as power series in £/7', /7', €/s" and n/s’. We
then obtain

_xEtyon B+t o+ yom)?

r~r 7 7 3 -
r 2r2 2r ) @7)
. xE+yn E+nt (xE+ )
§~S = + o ’ -
s 2s 2s'3
Substitution from (27) into (23) gives
: ik(r'+s") i
UP) = - lcoséAe,—,[j ei¥ (Em d& dn, (28)
j. rs A
where
xE+yn xE+yn E4n’ «‘32+n2
f(& ) - 7" S' + 2", 2sl
(& + yom)*  (x& + y)?
_ _ e 29
2r"3 2s'3 29)

If we denote by (ly, mp) and (I, m) the first two direction cosines

10: x_(,)’ l:i,’ '
’ * ey
Y Y
my = TR m=—,
r S

(29) may be written in the form
SE& m) = (lo — DE+ (mo — m)y
2 2
+l[(%+$)(§z 7 — (10§+rmo77) (l§+mn)] G

2 5

We have reduced the problem of determining the light disturbance at P to the
evaluation of the integral (28). Naturally the evaluation is simpler to carry out when
the quadratic and higher-order terms in &€ and # may be neglected in £. In this case one
speaks of Fraunhofer diffraction; when the quadratic terms cannot be neglected, one
speaks of Fresnel diffraction. Fortunately the simpler case of Fraunhofer diffraction is
of much greater importance in optics.

Strictly speaking, the second and higher-order terms disappear only in the limiting
case r' — 00, §' — 00, i.e. when both the source and the point of observation are at
infinity (the factor 4 outside the integral must then be assumed to tend to infinity like
r's’). It is, however, evident that the second-order terms do not appreciably contribute
to the integral if
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2 2
(% +%) E +7?) — (lo& + mom)”  (IE ‘*‘S/mﬂ) < 2. (32)

r/

L

We can immediately recognize certain conditions under which (32) will be satisfied. If
we make use of inequalities of the form (lo& + mon)? < (lo? + mo?)(E? + n?) and
remember that ly%, my?, I> and m? cannot exceed unity, we find that (32) will be

satisfied if
2 2 2 2
|’“'l > (E +/{7 Jmax and ls,l > (g +l77 )max , (33)
orif
1 1 [r'|A
—4+—=0 and B, m} P m <" —. 34
r'os "o (";:2 + 772)max (34)

Conditions (33) give an estimate of the distances r’ and s’ for which the Fraunhofer
representation may be used. Conditions (34) imply that Fraunhofer diffraction also
occurs when the point of observation is situated in a plane parallel to that of the
aperture, provided that both the point of observation and the source are sufficiently
close to the z-axis. Here two cases may be distinguished: When r’ is negative, the
wave-fronts incident upon the aperture are concave to the direction of the propagation,
i.e. Py is a centre of convergence and not of divergence of the incident wave. This case
is of great practical importance, as it arises in the image space of a well-corrected
centred system that images a point source which is not far from the axis. A Fraunhofer
pattern is then formed in the Gaussian image plane and may be considered as arising
from the diffraction of the image-forming wave on the exit pupil. When 7’ is positive,
the wave-fronts are convex to the direction of propagation. The diffraction phenomena
are virtual, being apparently formed on a screen through the source Py. This case
arises, for example, when an aperture is held in front of the eye, or the object glass of a
telescope adjusted for distant vision of the light source.

To understand in more physical terms why Fraunhofer phenomena are observed in
the focal plane of a well-corrected lens, let us compare first the two situations
illustrated in Fig. 8.6. In Fig. 8.6(a) a pencil of rays from an infinitely distant point is
incident upon the aperture in the direction specified by the direction cosines /gy, mq, ng.
The effect observed at a very distant point P in the direction /, m, n may be regarded
as arising from the superposition of plane waves originating at each point of the
aperture and propagated in this direction. These waves (which have no existence in the
domain of geometrical optics) may be called diffracted waves and the corresponding
wave-normals the diffracted rays.

If now a well-corrected lens is placed behind the screen [Fig. 8.6(b)] all the light
diffracted in the (/, m, n) direction will be brought to a focus P’ in the focal plane of
the lens. Since the optical path from a wave-front of the diffracted pencil to P’ is the
same for all the rays, one obtains substantially the same interference effects as in the
first case; it being assumed, of course, that the lens is so large that it introduces no
additional diffraction. More generally still, the restriction that the wave incident upon
the aperture is plane may also be removed, provided that the path lengths from the
source to P’ are substantially the same for all the rays.
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(@ (b)
Fig. 8.6 Comparison of two cases of Fraunhofer diffraction.

In the case of Fraunhofer diffraction, the four quantities /y, mog, I, m enter (31) only
in the combinations

p:l—lo, q = m— my. (35)

Hence, within the range of validity of the above approximation, the effect is unchanged
when the aperture is displaced in its own plane.
We shall write the integral governing Fraunhofer diffraction in the form

U(P) = CJJAe—ik(PE-i-qﬂ) dE dy, (4

C being the constant appearing in front of the integral (28). C is defined in terms of
quantities depending on the position of the source and of the point of observation, but
in practice it is often more convenient to express it in terms of other quantities. Let P
be the total power incident upon the aperture. By the law of conservation of energy the
total power that reaches the plane of observation must also be equal to P, so that we
have the normalizing condition

szjl U(p, @) dpdg = P, (37)

where R is the distance from O (see Fig. 8.5) to the point at which the line PyO
intersects that plane. In (37) we used the fact that, for small angles of diffraction,
R*dpdgq is the area element of the observation plane formed by the diffracted rays, the
integration extending over all effective p and g values. Eq. (36) may be re-written as a
Fourier integral

U, 9 = | [6t6 me205im aa, 38)
where the pupil function™ G is given by

* More general pupil functions will be considered in §8.6 and §9.5.
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G(&, 17) = constant (C) at points in the opening
=0 at points outside opening 39)

and the integral extends over the whole &, # plane.
By Parseval’s theorem for Fourier transforms™

2
1
[J16€ e azan=(3) [[lvw. oPapa. (40)
or, substituting from (37) and (39) and denoting by D the area of the opening,
P
= |C|*D (41)

and consequentlyt

1 /P

The basic integral for Fraunhofer diffraction then takes the form

1L /P
U(p. 0= g\ o5 agan @)

A

We note that the intensity Ip = |U(0, 0)|> at the centre of the pattern p = q =0 is
given by
1)’P * pD
Iy = (E) 5 ” didy | =75 =C*D (44)
A

In deriving (43) we have disregarded the fact that (36) was obtained subject to
certain restrictions on the range of p and ¢. The errors introduced by extending the
integration in (40) over all p and g values is, however, negligible, since U(p, q) is
very small except in the neighbourhood of p = ¢ = 0.

Let us now return to the basic diffraction integral (28). As the point (&, ) explores
the domain of integration, the function f(&, n) will change by very many wavelengths,
so that both the real and imaginary parts of the integrand will change sign many times.
In consequence the contributions from the various elements will in general virtually
cancel each other out (destructive interference). The situation is, however, different for
an element which surrounds a point (called critical point or pole) where f(&, n) is
stationary. Here the integrand varies much more slowly and may be expected to give a
significant contribution. Hence, when the wavelength is sufficiently small, the value of
the integral is determined substantially by the behaviour of f in the neighbourhood of
points where f'is stationary. This is the principle of the method of stationary phase for
determining the asymptotic behaviour of a certain class of integrals, and is discussed
more fully in Appendix III. Here we only note the bearing of this result on the
classification of diffraction phenomena:

* See L. N. Sneddon, Fourier Transforms (New York, McGraw-Hill, 1951), pp. 25 and 44.
t We omit here a constant phase factor as it contributes nothing to the intensity 7 = |U|%
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On comparing (22) and (28) we see that ¥ + s = r' + s’ + f, so that (see Fig. 8.5)
f = PyQ+ QP + constant. (45)

Obviously fconsidered as function of O will be stationary when Q is collinear with P
and P. Hence the main contribution to the disturbance at P comes from the immediate
neighbourhood of the point Q where the line joining the source to the point of
observation intersects the plane of the aperture. Now in the special case of Fraunhofer
diffraction, P, and P are effectively at infinity, so that there is no preferential point Q.
In this case the behaviour of the diffraction integral must, therefore, be expected to be
somewhat exceptional.

In §8.5-§8.8 we shall study the most important cases of Fraunhofer and Fresnel
diffraction. But first we must justify the use of the single scalar wave function U in
calculations of the light intensity.

8.4 Transition to a scalar theory™

The only property of the U function that we used in the derivation of the Kirchhoff
integral theorem was that it satisfies the homogeneous scalar wave equation. It
therefore follows that this theorem and the conclusion of the preceding section apply
to each of the Cartesian components of the field vectors, the vector potential, the Hertz
vectors, etc., in regions where there are no currents and charges. To obtain a complete
description of the field, the theorem must be applied separately to each of the Cartesian
components. Fortunately it turns out that in the majority of problems encountered in
optics an approximate description in terms of a single complex scalar wave function is
adequate.

A complete description of an electromagnetic field requires the specification of the
magnitude of the field vectors as well as their direction (polarization), both as
functions of position and time. However, because of the very high frequencies of
optical fields (of the order of 10'*/s), one cannot measure the instantaneous values of
any of these quantities, but only certain time averages over intervals that are large
compared to the optical periods. Moreover, one usually deals with natural light, so that
there is no preferential polarization direction of the observable (macroscopic) field.
The quantity which is then of primary interest is the intensity I defined in §1.1.4 as the
time average of the energy which crosses a unit area containing the electric and
magnetic vector in unit time

c
I = in (E X H)|.
We shall show that the electromagnetic field which is associated with the passage of
natural light through an optical instrument of moderate aperture and of conventional
design is such that the intensity may approximately be represented in terms of a single
complex scalar wave function by means of the formulat

* We follow here substantially the analysis of O. Theimer, G. D. Wassermann and E. Wolf, Proc. Roy. Soc.,
A, 212 (1952), 426.

1 More generally it was shown by E. Wolf, Proc. Phys. Soc., 74 (1959), 269, that both the (time-averaged)
energy density and energy flow in an unpolarized quasi-monochromatic field may always be derived from
one complex time-harmonic scalar wave function.
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I=|Up,

and that the function U may be calculated from the knowledge of the eikonal function
of the system.

8.4.1 The image field due to a monochromatic oscillator

We consider a symmetrical optical system with a point source at Py (Fig. 8.7) emitting
natural, quasi-monochromatic light of frequency wy. We assume that the inclination to
the axis of the rays which pass through the system is not large, say not more than 10°
or 15°. At Py we choose a set of Cartesian axes (x, xz, x3) with the x3 direction along
the principal ray. The source may be regarded as a dipole of moment Q(¢) which varies
both in magnitude and direction with time ¢. The components of Q(¢) in the three
directions will be written in the form of Fourier integrals,

1 +00 .
(1) = — (w)e ™ dw i=1,2,3). 1
00 =—=| g (=123 )
Since Qj(¢) is real it follows that the complex quantities g;(w) satisfy the relations
g(—w) = ¢ (w), ()

where the asterisk denotes the complex conjugate. Consequently (1) may be written as

O(1) = R{\/%J qj(w)e_i‘”’dw} G=1,23), 3)
0

‘R denoting the real part. Each Fourier component of (3) represents a monochromatic
Hertzian oscillator with its axis along the x; direction.
Let [gj(w)| and 6 j(w) be the amplitude and the phase of g;(w),

g(w) = |gi(w)]e*®. )

Since the source is assumed to emit quasi-monochromatic light, the modulus |g;(w)|
will, for each j, differ appreciably from zero only within a narrow interval (wg — %Aw,

1 l ,
Ve fowm W2 /W Pl "
2 X \ ! 'l i R Sl
\ L4 ‘\ I‘ Jﬁ P 1
, | C
4 x3 ! \ \ !
Py | \ \ \
I \ \ \
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Entrance . .
pupil Exit pupil

Fig. 8.7 Propagation of an electromagnetic wave through an optical system.
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wo + 3Aw). The assumption that the light is natural implies that 0 ;(w) are rapidly and
irregularly varying functions over the frequency range.*

Since the field may be regarded as a superposition of strictly monochromatic fields,
it will be convenient to examine first the contributions from a single monochromatic
Hertzian oscillator at Py. As the field of such an oscillator is weak in the neighbour-
hood of its axis, and as we assume that the angles which the diameters of the entrance
pupil subtend at P, are small, it follows that only the components Q;(¢) and O»(¢) of
Q(#) will substantially contribute to the field. We shall therefore take as our typical
oscillator one which has its axis in the x;, x;-plane.

Let

R{g(w)po(w)e '} (5)

be the moment of this typical dipole, po(w) being a unit vector in the direction of its
axis. Such a dipole will produce at a point 7 in vacuum, whose distance from P, is
large compared to the wavelength A = 277¢/w, a field given by (see §2.2 (64)):

2 .
E, = R{~“§ |g(@)|xo X (po(@) X ro)e‘[‘““”—‘"“—’/cﬂ},
Cc°r
6)

2 .
H, = R{“’T |g(@)|ry X po(w)e‘[‘*‘“’*‘""—’/‘”},
cr

where r( denotes the unit radial vector.

Let W, be a typical geometrical wave-front in the object space at a distance from P,
which is large compared with the wavelength. Since we assume that the angles which
the rays make with the axis of the system are small, it follows immediately from (6)
that at any particular instant of time the vectors E,, and H,, do not vary appreciably in
magnitude and direction over W.

The effect of the first surfacet o) on the incident field is twofold. First, the
amplitudes of the field vectors are diminished on account of reflection losses; secondly,
the directions of vibrations are changed. Fresnel’s formulaec show that both these
effects depend mainly on the magnitudes of the angle of incidence. If this angle is
small (say 10° or so), reflection losses are also small (approx. 5 per cent) and the
rotations of the planes of vibration do not exceed a few degrees (see §1.5). Moreover,
these effects are practically uniform over o). Since the time-independent parts of E,,
and H,, do not vary appreciably with position over the wave-front W), they will also
not vary appreciably over the refracted wave-front ;' which follows the surface o
(see Fig. 8.7). The same applies to the behaviour of the two fields over any other wave-
front in the space between ¢ and the second surface o;. For, as we showed in §3.1.3,
in a homogeneous medium the direction of vibration along each ray remains constant,
and also, since the wave-fronts are nearly spherical (centred on the Gaussian image of
P, by the first surface), the amplitudes will be diminished almost in the ratio of their
paraxial radii of curvature.

Repeating these arguments we finally arrive at a wave-front W which passes through

* For a detailed discussion of this point see M. Planck, 4nn. d. Physik (4), 1 (1900), 61.
1 We assume here that 0 is a refracting surface. If 0, is a mirror, no essential modifications of our argument
are necessary, as is seen by inspection of Fresnel’s formulae.
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the centre C of the exit pupil and find again that the time-independent parts of E,, and
H,, do not vary appreciably over this wave-front. This result makes it immediately
possible to write down an approximate mathematical representation for the field
vectors in the region of the image.

We take rectangular Cartesian axes (x, y, z) with origin at the Gaussian image P; of
Py, with the z direction along CP;. The field at all points in the region of the aperture
except those in the immediate neighbourhood of the edge of the aperture can be
approximately expressed in the form (see Chapter III)

E _ o’ i{8(w)— o[ =18, (x, ,2)]}
w(x’ Vs 2, t)_R ?ew(x, y,z)e T )
(7)

2
Ha)(x’ Y.z, t) = R{w_2 hw(xr Y, Z)ei{é(a))—a)[t—%Sw(x,y,z)]} }7
C

which may be regarded as generalization of (6). Hence S, (x, y, z) is the optical length
from the object point to the point (x, y, z), and e,(x, y, z) and hy(x, y, z) are mutually
orthogonal real vectors.™ In a homogeneous non-magnetic medium of refractive index
n, these vectors satisfy the relation [see §3.1 (19) and §3.1 (20)]

lhy| = nley. ®)

We take a reference sphere S, centred on P;, which passes through the centre C of
the exit pupil, and denote by R its radius CP,. In practice the distance between S and
W will nowhere exceed a few dozen wavelengths. Consequently on S just as on ¥ the
amplitude vectors e, and h,, will be practically constant in magnitude and direction.

Let P(X, Y, Z) be a point in the region of the image where the intensity is to be
determined. If the angles which the diameters of the exit pupil subtend at P are small,
we may apply Kirchhoft’s formula with the same approximation as in the previous
section, and we find on integrating the expressions (7) over that part S’ of S which
approximately fills the exit pupil, if in addition we also neglect the variation of the
inclination factor over S’, that

3
o . 1 wre o
K, 1, 2,0 = Ry e Ceute, v peoutr 7ol gs,
JT1C s S
X | )]
_ D" is(w)-w1] Zho(x'. V. z)etSe(x,y2)+s]
Ha)(X, Y, Z’ t) Rzﬂic3 € 5 s w(x > y 5 Z )e dS’

where s is the distance from a typical point (x’, y’, z’) on the reference sphere to P.

Since the vectors e, (x’, y', z') and hy(x’, y’, z') do not vary appreciably over the
surface of integration we may replace them by the values e,(0, 0, —R) and
h,(0, 0, —R) which they take at the centre C of the exit pupil. Now these vectors are
orthogonal and satisfy (8), so that we may set, if in addition we take n = 1,

e,(0, 0, —R) = a(w)a(w), } (10)
hy,(0, 0, —R) = a(w)B(w),

* That e, and h, are real follows from the fact that the corresponding vectors in (6) are real (linear
polarization) and that the state of polarization remains linear on each refraction (see §1.5.2). Moreover,
between any two consecutive surfaces, the state of polarization is constant along each ray, as shown in
§3.1.3.
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where a@(w) and f(w) are orthogonal unit vectors in the plane perpendicular to the z
direction. The relations (9) then become

2
Eo(X, Y, Z )= R{% Un(X, Y, Z)a(a))a(w)ei[‘)(“’)“"’]},

(1D
2
Ha)(X, Y, Z, t) = R{% Uw(X’ Y, Z)a(w)ﬁ(w)e‘[é(w)—wt]},
where U,, is the scalar wave function
w 1 L
UJ(X, Y, 2)=—— ~ el Su(x,y 2)+s] g g )
& 7> 2) zmc”S, ¢ ds§ (12)

From (11) we can immediately deduce by calculating the Poynting vector
Sy = ¢[Ey X Hy,]/4m and taking the time average, that the intensity at the point
P(X, Y, Z) due to the single dipole [represented by (5)] at P, is proportional to the
square of the modulus of the scalar wave function U, (X, Y, Z). However, to justify
the use of a single scalar wave function in calculating the intensity we must carry out
the time averaging not for the monochromatic component but for the total field.

8.4.2 The total image field

We saw that the contributions of each frequency component to the total field may be
regarded as arising essentially from two dipoles at P, with their axes along the x; and
x; directions. Hence it follows from (1) and (11), if we also define contributions from
negative frequencies by relations of the form (2), that the total field in the image region
may be expressed approximately in the form

1 |
E(X,Y, Z = EJ % Uo(X, Y, Z)[ar(w)a (w)e® @

+ ay(w)ay (w)e' @ ]e ! dw,
(13)

00 2
H(X, 7, Z, 1) = \/% [” % v v, la@pi@e

+ ay(w)Br(w)e®>@]e" ! dw.

Here suffixes 1 and 2 refer to the contributions from oscillators which have their axes
along the x; and x; directions.

In order to determine the intensity in the image region it will be convenient to
write down separate expressions for each of the Cartesian components of E and H.
Let 6;(w) and 6,(w) denote the angles which the unit vectors @;(w) and a»(w) make
with the x direction in the image space. Since @;(w) and f(w) and a;(w) and B> (w)
are real, mutually orthogonal vectors which lie in a plane perpendicular to the z
direction, it follows from (13) that the components of E and H are approximately
given by™
* It would be incorrect to conclude from (14) that the direction of the energy flow in the image region is

necessarily everywhere parallel to z. For the relative errors in (14) may substantially affect the calculations

of direction in regions where the intensity is small, e.g. in the neighbourhood of the dark rings in the Airy
pattern.
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1 +0C )
E(X, Y, Z t)= H(X, Y, Z, 1) = _J Un(X. Y. Z)f(@)e~®" do,

V2T ) -
—+00 ) (14)
Ey(X, Y, Z, t) = —Hx(X, Y, Z, t) = —J a)(X, Y, Z)g(w)e—iwtdw,
EZ(X’ Y’ Z, t) = HZ(X’ Y, Zs t) = 9
where
2 .
Jw)= % [a1(@)cos 61 ()e” @ + ay(w)cos By (w)e )],
’ (15)

2
g(@) =~ [a(@)sin 6, (@)@ 1 ay(w)sin 6y (w)e].

It follows from (14) that the magnitude of the Poynting vector S = ¢[E X H]/4x can
be expressed approximately in the form

S| = —[E2 + E%] = —[H? + H?]. (16)
4n e v

We must now determine the time average of this quantity.

For reasons of convergence we assume that the radiation field exists only between
the instants t = —T and ¢ = T, where T >> 27/wy; it is easy to pass to the limit
T — oo subsequently. It follows from (14), by the Fourier inversion theorem, that

1 (7 ,
— | EJ(X,7Y, Z, pedt, 17
_angr ( ) (7

with similar expressions involving E,, H, and H,. Now we have by (14)

Uo(X, Y, 2)f (0) =

2 1 2 (7 1 e —iwt
- —00

or, inverting the order of integration,

1 —+00 1 T )
AN d E, —iwt
(E2) 2TJ_OOUwf(a)) ) —2ni_r et

1

+00
=2—fj UnfuUs [ do by (17)

1 OC
=?L |Uol*| f(@)] do, (19)
since U_, f(—w) = Ux f*(w). Similarly
[ [
(E}) = ?L |Uo || g(@)[* do. (20)

Hence, the intensity I(X, Y, Z), defined as the time average of the magnitude of the
Poynting vector, is, according to (16), (19) and (20),

v, =5 J UnX, V. DRI @) + g@Pldo.  @21)
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Now if |Aw| is sufficiently small |U, | will be practically independent of w over the
effective frequency range, so that |U,| may then be replaced by |U,,| and taken
outside the integral. The remaining term

7 | e + g, (2)

which is independent of X, ¥, and Z, must also be independent of T (implicitly
contained in f and g on account of (17)) if a stationary phenomenon is observed.
Hence (22) must be a constant (Cy say) and the intensity may therefore be finally
written in the form

I(X, Y, Z) = Co|Up(X, Y, Z). (23)

The constant Cy depends in a complicated manner on the source and on the optical
instrument; however, one is usually only interested in the relative distribution of the
intensity and not in its absolute value. The intensity may then simply be measured by
the quantity |U,,|> Thus the complex scalar function (12) is adequate for calculating
the intensity distribution in the image formed with a source of natural light by an
optical system of moderate numerical aperture.

8.5 Fraunhofer diffraction at apertures of various forms

We shall now investigate the Fraunhofer diffraction pattern for apertures of various
forms.

8.5.1 The rectangular aperture and the slit

Consider first a rectangular aperture of sides 2a and 2b. With origin O at the centre of
the rectangle and with Of and Oz axes parallel to the sides (Fig. 8.8), the Fraunhofer
diffraction integral §8.3 (36) becomes

a b a ) b )
U(P)=CJ J e“k(p§+q”)d§dn=CJ e—"q’ﬁdgj e k7 dy.
—al-b —b

—a

2q

Fig. 8.8 Rectangular aperture.
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Now
4 1 . i sin kpa
—1kp§d — _ " _[e—ikpa _ ikpay _ 2
|| e = gt e =23,
with a similar expression for the other integral. Hence the intensity is given by
. 2 . 2
sin kpa sin kqb
I(P) = |UP)}* = Io, 1
(7= 10y = (S22) () 1 )

where by §8.3 (44) Iy = C*D? = PD/A*R? is the intensity at the centre of the pattern,
‘P being the total power incident upon the aperture and D = 4ab the area of the
rectangle.

The function y = (sinx/x)? is displayed in Fig. 8.9. It has a principal maximum
y =1 atx = 0 and zero minima at x = £, +27, +37, ... . The minima separate the
secondary maxima whose positions are given by the roots of the equation
tanx —x =0 (see Table 8.1). The roots asymptotically approach the values
x = (2m + 1)7/2, m being an integer.

We see that the intensity /(P) is zero along two sets of lines parallel to the sides of
the rectangle, given by

kpa = tum, kqgb = +vn (w,v=1,2,3,..) ()]

ol
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Fig. 8.9 Fraunhofer diffraction at a rectangular aperture. The function
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Table 8.1. The first five maxima of the function
B <sin x) 2
Y=\~
N2
smnx
x )
X

0 1

1.4307 = 4.493 0.04718
24597 =17.725 0.01648
3.470x = 10.90 0.00834
44797 = 14.07 0.00503

Fig. 8.10 Fraunhofer diffraction pattern of a rectangular aperture 8 mm X 7 mm,
magnification 50 X, mercury yellow light 2 = 5790 A. To show the existence of the
weak secondary maxima the central portion was overexposed. (Photograph cour-
tesy of H. Lipson, C. A. Taylor, and B. J. Thompson.)

or,since p=1—1lp,g=m— mgy, k =27/A,

l—lozi;—i, m—m()::i:%. 3)
Within each rectangle formed by pairs of consecutive dark lines the intensity rises to
a maximum; all these maxima are, however, only a small fraction of the central
maximum, and decrease rapidly with increasing distance from the centre (Fig. 8.10).
The larger the opening, the smaller is the effective size of the diffraction pattern.
From the elementary diffraction pattern formed by coherent light from a point
source, the diffraction pattern due to light from an extended source may be found by
integration. If the source is coherent, it is the complex amplitude, and if it is
incoherent, it is the intensity that must be integrated. The pattern due to a partially
coherent source may also be determined from this elementary solution by a process
of integration, taking into account the correlation which exists between the light from
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the different elements of the source (see Chapter X). A case of particular importance
is that of a very long incoherent line source (e.g. a luminous wire), the light from
which is diffracted by a narrow slit, parallel to the source. For simplicity of
calculations we assume that the luminous wire as well as the slit are effectively
infinitely long, and take the y-axis in the direction of the source. Since ¢ = m — myg
where my specifies the position of a point source, it follows that the intensity I’ due
to the line source is obtained by integrating (1) with respect to ¢:

+eo 1 [sinkpa\? ([t (sin t) 2
I' = I(P =—|— 1 — ] dt.
J_OC (P)dg @ ( o ) Oj~w ;

Now*
—+00 : 2
s
o t
so that
. 2
I'= (S‘“ Ll “) Is, )
kpa
where
. A 2aP
Iy = EI 0="Tp (5)

The pattern is again characterized by the function [sin(x)/x]?, and consists of a
succession of bright and dark fringes parallel to the line source and the slit. The
constant [’ is the intensity at the central position p = 0.

8.5.2 The circular aperture

In a similar way we may investigate Fraunhofer diffraction at a circular aperture. It is
now appropriate to use polar instead of rectangular coordinates. Let (p, 6) be the polar
coordinates of a typical point in the aperture:

pcosd =&, psinf =n; 6)
and let (w, 1) be the coordinates of a point P in the diffraction pattern, referred to the
geometrical image of the source:

wcosy = p, wsiny = q. 7

From the definition of p and q it follows that w = / p? + g¢? is the sine of the angle
which the direction (p, ¢g) makes with the central direction p = ¢ = 0. The diffraction
integral §8.3 (36) now becomes, if a is the radius of the circular aperture,

a p2m
U(P) = CL L g ikoweos0=v) ;45 dg. (8)

* See, for example, W. Grébner and N. Hofteiter, Integraltafel, Vol. Il (Wien, Springer, 1950), p. 333.
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Now we have the well-known integral representation of the Bessel functions™® J,,(z):

1J2ﬂeix cos aeina da=J (x) (9)
27 ), me
Eq. (8) therefore reduces to
UP) = 2nCJ Jo(kpw)p dp. (10)
0
Also, there is the well-known recurrence relation
d
= " 1 (0] = x" (%), (11)
giving, for n = 0, on integration
I x' Jo(x")dx' = xJ;(x). (12)
0
From (10) and (12) it follows that
2J1 (ki
U(P) = CD [—I(G—W)J (13)
kaw
where D = ma?. Hence the intensity is given by
2
2J1(kaw
1 = o = ), (14)
aw

where by §8.3 (44) I = C?D?> = PD/A*R>. This is a celebrated formula first derived
in a somewhat different form by Airy.}

The intensity distribution in the neighbourhood of the geometrical image is char-
acterized by the function y = (2J;(x)/x)> shown in Fig. 8.11. It has its principal
maximum y = 1 at x = 0, and with increasing x it oscillates with gradually diminish-
ing amplitude, in a similar way to the function [sin(x)/x]> which we discussed in
§8.5.1. The intensity is zero (minimum) for values of x given by Jj(x) = 0. The
minima are no longer strictly equidistant (see Table 8.2). The positions of the
secondary maxima are given by the values of x that satisfy the equation

d
Ex'[Jl(x)/x] =0,

* See, for example, E. Jahnke and F. Emde, Tables of Functions with Formulae and Curves (Leipzig,
Teubner, 1933; reprinted by Dover Publications, New York, 4th edition, 1945), p. 149; or G. N. Watson, 4
Treatise on the Theory of Bessel Functions (Cambridge, Cambridge University Press, 1922), p. 20,
equation 5 (with an obvious substitution).

T See, for example, E. Jahnke and F. Emde, loc. cit., p. 145 or E. T. Whittaker and G. N. Watson, 4 Course
of Modern Analysis (Cambridge, Cambridge University Press, 4th edition, 1952), pp. 360-361.

1 G. B. Airy, Trans. Camb. Phil. Soc., 5 (1835), 283. Almost at the same time as Airy, Schwerd obtained an
approximate solution by replacing the circle by a regular polygon with 180 sides.

Vectorial treatments of diffraction of a convergent spherical wave at a circular aperture, which take into
account polarization properties of the field were published by W. S. Ignatowski, Trans. Opt. Inst.
Petrograd., 1 (1919) No 4, 36; V. A. Fock, ibid., 3 (1924), 24; H. H. Hopkins, Proc. Phys. Soc. 55 (1943),
116; R. Burtin, Optica Acta, 3 (1956), 104; B. Richards and E. Wolf, Proc. Roy. Soc., A, 253 (1959), 358;
A. Boivin and E. Wolf, Phys. Rev., 138 (1965), B 1561; A. Boivin, J. Dow and E. Wolf, J. Opt. Soc. Amer.,
57 (1967), 1171.



8.5 Fraunhofer diffraction at apertures of various forms

441

Table 8.2. The first few maxima and minima of the function

2
2Ji(x)
- s
. 2J1(x)]2
X
0 1 Max
1.220m = 3.833 0 Min
1.6357 = 5.136 0.0175 Max
2.233m = 7.016 0 Min
2.6797 = 8.417 0.0042 Max
3.2387 = 10.174 0 Min
3,699 = 11.620 0.0016 Max
y
10
0.9
08
0 \\
0.6
e
0.5 T y
04 \
03
0.2 X
0.1
\ P
0 1 2 3 4 5 6 7 8 9

Fig. 8.11 Fraunhofer diffraction at a circular aperture. The function y = [

or using the formula* (analogous to (11))

%[x_n-]n(x)] = —x""Jpr1(%),

2J1(x)

X

_r_

(15)

by the roots of the equations J,(x) = 0. With increasing x the separation between two

* See for example E. Jahnke and F. Emde, loc. cit., p. 145, or E. T. Whittaker and G. N. Watson, loc. cit., p.

361.
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successive minima or two successive maxima approaches the value 7, as in the
previous case.

The results show that the pattern consists of a bright disc, centred on the geometrical
image p = g = 0 of the source, surrounded by concentric bright and dark rings (see
Figs. 8.11 and 8.12). The intensity of the bright rings decreases rapidly with their
radius and normally only the first one or two rings being bright enough to be visible to
the naked eye. From Table 8.2 it follows, since x = 2waw/4, that the angular radii of
the dark rings are

w=\/p2+q2=0.610§, 1.116§-, 1.619%, (16)

The angular separation between two neighbouring rings approaches asymptotically the
value 1/2a. The effective size of the diffraction pattern is again seen to be inversely
proportional to the linear dimensions of the aperture.

It is also of interest to examine what fraction of the total incident energy is
contained within the central core of the diffraction pattern. Let L(wo) denote the
fraction of the total energy contained within a circle in the image plane, centred on the
geometrical image and subtending a small angular radius wy at the center of the
aperture. Then

Rz wo 21
L(wo) :510 L Iwywdwdy

D JWO JZ” [2Jl(kaw)]zw dwdy

:ﬁo 0 kaw

kawy 12
- 2J S 4 (17)
0 X

Now from (11) for n = 0, we have, on multiplying by J;(x) and using (15) with n = 0,

Fig. 8.12 Fraunhofer diffraction pattern of a circular aperture (the Airy pattern)
6 mm in diameter, magnification 50X, mercury yellow light A = 5790 A. To show
the existence of the weak subsidiary maxima, the central portion was overexposed.
(Photograph courtesy of H. Lipson, C. A. Taylor, and B. J. Thompson.)
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Fig. 8.13 The function 1 — J3(x) — J%(x) representing the fraction of the total
energy contained within circles of prescribed radii in the Fraunhofer diffraction
pattern of a circular aperture.
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The expression (17) now becomes, remembering that Jy(0) = 1, J,(0) = 0,
L(wo) = 1 — J§(kawo) — Ji(kawp), (18)

a formula due to Rayleigh.* This function is shown in Fig. 8.13. For the dark rings
Ji(kawy) = 0, so that the fraction of the total energy outside any dark ring is simply
J(kawy). For the first, second and third dark rings, J3(kawo) is equal to 0.162, 0.090,
and 0.062 respectively. Thus more than 90 per cent of the light is contained within the
circle bounded by the second dark ring.

8.5.3 Other forms of aperture

Fraunhofer diffraction at apertures of other forms may be studied in a similar manner,
the calculations being particularly simple when curvilinear coordinates can be chosen
so that one of the coordinate lines coincides with the boundary of the aperture. We
cannot discuss other cases in detail here,f but we shall derive a useful theorem
concerning the modification of the pattern when the aperture is uniformly extended (or

* Lord Rayleigh, Phil. Mag. (5), 11 (1881), 214. Also Scientific papers by John William Strutt, Baron
Rayleigh, Vol. 1 (Cambridge, Cambridge University Press, 1899—1920), p. 513.
+ Fraunhofer diffraction at an annular aperture is briefly considered in connection with resolving power in
§8.6.2.
Photographs of Fraunhofer diffraction patterns for apertures of various forms can be found in a paper by
J. Scheiner and S. Hirayama, Abh. d. Konigl. Akad. Wissensch., Berlin (1894), Anhang I. Photographs of
Fresnel patterns were published by Y. V. Kathavate, Proc. Ind. Acad. Sci., 21 (1945), 177-210.
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contracted) in one direction, and also consider Fraunhofer diffraction at a screen
containing a large number of openings of the same size and shape.

Let A; and A; be two apertures such that the extension of .4, in a particular
direction (O§) is u times that of 4. For Fraunhofer diffraction at .4, we have

Ui(p, 9= C J e kPETTD 4E dpy. (19)
JJ Ay

Similarly for Fraunhofer diffraction at A,,

Usip ) = €[ | eotmagay, 20)
A,
If in (20) we change the variables of integration from (&, #) to (§', "), where
1
§'=-4, n=n, @1
u
we obtain
Us(p, @) = uC | & Hrs ' gt ay' = uti(up. o). @2)
A

This shows that when the aperture is uniformly extended in the ratio u:l in a
particular direction, the Fraunhofer pattern contracts in the same direction in the ratio
1:u; and the intensity in the new pattern is u* times the intensity at the corresponding
point of the original pattern. Using this result we may, for example, immediately
determine the Fraunhofer pattern of an aperture which has the form of an ellipse or a
parallelogram from that of a circle or rectangle respectively. Fig. 8.14 illustrates the
case of an elliptical aperture.

We now consider the important case of a screen that contains a large number of
identical and similarly oriented apertures. (According to Babinet’s principle the results
will also apply to the complementary distribution of obstacles.) Let Oy, O, ..., Oy
be a set of similarly situated points, one in each aperture, and let the coordinates of
those points referred to a fixed set of axes in the plane of the apertures be (&1, 71),
(&2, m2), - .-, (En, ). The light distribution in the Fraunhofer diffraction pattern is
then given by

/ ,,,,,,,,,///

/ ////// // ////////// Y

Diffraction
pattern

Fig. 8.14 Comparison of Fraunhofer diffraction at a circular and an elliptical
aperture.

Aperture

\\\
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Up, =€ ”Ae—ik[<§n+s'>p+<nn+n')q1 dE" dn’
n

= cze—ik[psn+qnn1” e=IKPE+am) e 23)
n A

where the integration extends over any one opening A of the set. The integral
expresses the effect of a single aperture, whilst the sum represents the superposition of
the coherent diffraction patterns. If 7©(p, q) is the intensity distribution arising from
a single aperture, then, according to (23), the total intensity is given by

Z e K(PEntqin)
n

— [(0)(p’ q) Z Z e_ik[P(én_Em)‘Fq(nn_nm)]‘ (24)
n m

2
I(p, 9) = 19p, q)

The simplest case, that of two openings, was considered earlier in §7.2, in connec-
tion with the theory of interference. However, we neglected there the dependence of
IO on p and g (i.e. the effect of diffraction at each opening) and only studied the
effect of superposition. It is easily seen that the earlier result (§7.2 (17)) is in
agreement with (24). For if N = 2, (24) reduces to

[ = [Of2 4 & HPE-EDratn—n)] | o=k pEa—Ei)tan-n])
=410 cos? 19,
with
0 = k[p(& — &1) + q(m2 — )]

Let us now consider the effect of a large number of apertures. We shall see that quite
different results are obtained, depending on whether the apertures are distributed
regularly or irregularly over the screen.

When the apertures are distributed irregularly over the screen, terms with different
values of m and 7 in the double sum will fluctuate rapidly between +1 and —1 as m
and n take on different values, and in consequence the sum of such terms will have
zero mean value. Each remaining term (m = n) has the value unity. Hence it follows
that except for local fluctuations™ the total intensity is N times the intensity of the light
diffracted by a single aperture:

I(p, q) ~ NI(p, g). (25)

Diffraction effects of this type or, more often still, complementary effects (in the sense
of Babinet’s principle) may be easily observed, for example when a glass plate, dusted
with lycopodium powder or covered with other particles of equal size and shape, is

* Fluctuations of a somewhat different type arise when the apertures are not of the same form, but are
distributed regularly or according to some statistical law (M. v. Laue, Berl. Ber., (1914), 1144). Similar
effects are observed in connection with diffraction of X-rays by liquids (J. A. Prins, Naturwiss., 19 (1931),
435).
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Fig. 8.15 Fraunhofer diffraction pattern from an irregular distribution (a), and a
regular distribution (b), of 56 identical and similarly situated apertures in a plane
screen. The form and distribution of the apertures is shown in the lower portions of
the figures. Light: mercury yellow, A = 5790 A. (Photograph courtesy of H. Lipson,
C. A. Taylor, and B. J. Thompson.)

held in the path of light from a distant source. A piece of tin-foil pierced indiscrimi-
nately by a pin will also act as a diffracting screen of the type just considered.

The results are quite different when the openings are distributed regularly, for the
terms with m # n may now give appreciable contributions for certain values of p and
q. For example, if the points O, are so situated that for certain values of p and g the
phases of all the terms for which m # n are exact multiple of 277 their sum will be
equal to N(N — 1) and so for large N will be of the order of N2. This enormous
increase in intensity for particular directions, clearly illustrated in Fig. 8.15, is, as we
shall see in the next section, of great importance in practice.

8.6 Fraunhofer diffraction in optical instruments
8.6.1 Diffraction gratings
(a) The principle of the diffraction grating

A diffraction grating may be defined as any arrangement which imposes on an incident
wave a periodic variation of amplitude or phase, or both. We may characterize any
particular grating by its transmission function, defined as follows:

Let a transparent or semitransparent object (not necessarily periodic) cover a portion
of a fictitious reference plane &#, and let it be illuminated by a plane monochromatic
wave incident in a direction specified by the direction cosines Iy, my. Fig. 8.16
illustrates the arrangement, the n-axis being perpendicular to the plane of the drawing.
If no object were present, the disturbance in the &, 7-plane would be represented by the



8.6 Fraunhofer diffraction in optical instruments 447

/(lo,mo)

Fig. 8.16 Definition of the transmission function.

function Vy(&, n7) = Aexp[ik(lo§ + mon)], the factor exp(—iw?) being, as usual,
omitted. Because of the presence of the object the disturbance will be modified and
may be represented by some other function, which we denote by V(& ). The
transmission function of the object is then defined as

_VéEm
VO(§9 ’7) .

In general F depends, of course, not only on & and # but also on the direction (/o, mg)
of illumination. The transmission function is in general complex, since both the
amplitude and the phase of the light may be altered on passing through the object. In
the special case when the object alters the amplitude but not the phase of the incident
wave (i.e. if arg F' = 0), we speak of an amplitude object; if it alters the phase but not
the amplitude (i.e. |F| = 1) we speak of a phase object.

If we are concerned with reflected light rather than with light that is transmitted by
an object, it is more appropriate to speak of a reflection function, defined in a similar
way, the only difference being that the reference plane is on the same side of the object
as the incident light.

The ratio |V /Vy| is practically unity for points outside the geometrical shadow
(whose boundary is represented by points 4 and B in Fig. 8.16) cast by the object. If
the portion outside the shadow region is covered by an opaque screen, the arrange-
ments act as a diffracting aperture .4 with a nonuniform pupil function (see §8.3 (39)).
If the linear dimensions of A are large compared to the wavelength and if F remains
sensibly constant over regions whose dimensions are of the same order as the
wavelength, the diffraction formula §8.3 (23) remains valid under the same conditions
as before, provided that the integrand of the diffraction integral is multiplied by F.

Let us now consider a one-dimensional grating consisting of N parallel grooves of
arbitrary profile, ruled on one surface of a plane-parallel glass plate. Let the &, #-plane
coincide with the plane face of the plate,  being the direction of the grooves and let d
be the period in the £ direction (see Fig. 8.17).

Assume that the direction of propagation of the wave incident upon the grating is in
the plane of the figure, making an angle 8, with OC, and let 6 denote the angle which
O¢ makes with the line joining a very distant point of observation P with the grating.

()

F(&, )
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Fig. 8.17 Illustrating the theory of the diffraction grating.

As before we set Iy =sinfy, [ =sinf, p=1— 1y =sinf —sinfy. The complex
amplitude at P is then immediately obtained from §8.5 (23), where the integrand must
be multiplied by the transmission function F of one periodic element. We may set

g = 0and
&, =nd, 7a=0 (n=0,1,.., N—1).
We then obtain
©) 5 ik © 1 — e N
_ —ikndp _
U(p)=U (p)%e =V T g
where*
UOp) = ¢| e a
A
Hence
_ y  (L—e My (1 My
1 — cos Nkdp
=" [0
1 — cos kdp (),
where 10(p) = |UO(p)|2. If we introduce the function
. 2
HN. x) = (31{1 Nx)
sin x

the formula (5) for the intensity may be written as

10 = (N, 2) 10,

@

)

4

)

(6)

(52)

Before discussing the implications of this basic formula we note that according to
(3) the light distribution is the same as that due to a set of coherent secondary sources
each characterized by the same amplitude function |U®(p)| and with phases that
differ from each other by integral multiples of kdp. To see the significance of this
phase difference consider two corresponding points 4 and B in neighbouring grooves

* Since F depends on o, the quantities U® and ¥ now depend on both [ and /y and not on the difference
I — Iy only. As we are only interested in effects for a fixed direction of incidence, we may regard [y as a

constant and retain the previous notation.
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of the grating (Fig. 8.18). Since the effect of the grating is to impress a periodic
variation onto the incident wave, it follows that the path difference between the light
arriving at 4 and at B is the same as in the absence of the grating, i.e. it is equal to
AK = dsin 6y, K denoting the foot of the perpendicular from B on to the ray incident
at A. Further, the light path from B in the direction 8 exceeds the light path from 4 by
BL = dsin @, L being the foot of the perpendicular from 4 on to the ray diffracted at
B in the direction 6. Hence the total path difference between light arriving at the
distant point of observation from corresponding points in two neighbouring grooves is

BL — AK = d(sin 6 — sin 6y) = dp, @)

and the corresponding phase difference is 2wdp/A = kdp.

Formula (5a) expresses I(p) as the product of two functions: one of them, /¥,
represents the effect of a single period of the grating; the other, H, represents the effect
of interference of light from different periods. The function H(N, x) has maxima,
each of height N2, at all points where the denominator sin? x vanishes, i.e. where x is
zero or an integral multiple of z. Hence H(N, kdp/2) has maxima of height N> when

pzsint’)—sin@g:'%/1 (m=0, £1, £2, ..)). t3)

The integer m represents, according to (7), the path difference in wavelengths between
light diffracted in the direction of the maximum, from corresponding points in two
neighbouring grooves. In agreement with our earlier definition (§7.3.1), we call m the
order of interference. Between these principal maxima there are weak secondary
maxima (see Fig. 8.19(a)), the first secondary maximum being only a few per cent of
the principal maximum when N is large. The maxima are separated by points of zero
intensity at x = kdp/2 = +nm/N, i.e. in directions given by

ni
p =sinf —sin 6, Y , £2,..), )

the case where n/N is an integer being excluded.

Fig. 8.18 Illustrating the theory of the diffraction grating.
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Fig. 8.19 (a) The normalized interference function
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(¢) The normalized intensity function of a grating consisting of N similar
equidistant parallel slits
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Only the range p = 0 is shown, all the curves being symmetrical about the
vertical axis p = 0.
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The function 7(p) depends on the form of the grooves. Suppose that it has a
principal maximum for some direction p = p’ and that on both sides of the maximum
it falls off slowly in comparison with H. Then I(p) will have the general form of the
interference function H, but will be ‘modulated’ by I). Thus I(p) will still have fairly
sharp maxima near the directions p = md/d. Since these directions (except for
m = 0) depend on the wavelength, we see that the grating will decompose a beam of
nonmonochromatic light into spectral orders.

To illustrate these remarks let us consider a grating consisting of a succession of
long equidistant slits (Fig. 8.20), each of width s and length L, in an opaque screen. If
the grating is illuminated from a very distant line source parallel to the slits, the
intensity 19 is given by the expression §8.5 (4) (with 2a = s, 2b = L) and we obtain

Nkdp\ * [ . ksp\?

sE sin 2 s *2—
= . 1
I(p) =712 o dp Tp (10)
2 2

Curves representing the two factors in (10) and their product are shown in Fig. 8.19.
The last factor in (10), which represents the effect of a single slit, has a principal
maximum at p = 0 and minima given by ksp/2 = nr, i.e. at

p=n?/1, (n==l1,£2,..) (11)
separated by weak secondary maxima. We see that if A/s > A/d, i.e. if the width of
each slit is small compared to d, the intensity I(p) has in addition to a principal
maximum at p = 0 a series of sharp, but progressively decreasing, maxima on either
side of it, near directions given by (8).

Returning to the general case, it is evident that if the width of each groove is very
small, of the order of a wavelength (as is often the case in practice) the formula (4),
derived on the basis of Kirchhoff’s approximation, can evidently no longer be expected
to hold. In such cases more refined considerations must be made to determine the
detailed distribution of the intensity. We may, however, expect that the main qualitative
features indicated by our elementary theory, namely the existence of sharp maxima
whose positions are substantially determined by the interference function H, remain
even when the grooves are very narrow, provided, of course, that the intensity function
of a single period varies slowly in an interval of the order Ap = 1/d.

Let us now consider the resolution that may be attained with a grating. The
separation between a primary maximum of order m and a neighbouring minimum is,
according to (9), given by

Ap=-L. (12)

——
~ -

Fig. 8.20 Profile of a simple line grating.

— Y
\
e



452 VIII Elements of the theory of diffraction

If the wavelength is changed by an amount A4, the mth-order maximum is, according
to (8), displaced by an amount

A'p= l%'l Al (13)
Assuming that the lines of wavelength A +1A4 will just be resolved when the
maximum of the one wavelength coincides with the first minimum of the other (see p.

371) we have on the limit of resolution in the mth order, Ap = A'p, i.e.

A

- = |m|N. 14

== I (14)
Thus, the resolving power is equal to the product of the order number m and the
number N of the grooves. For the mth order we have, according to (8), that

d(sin 8 — sin 6y) = mA, so that we may also express the resolving power in the form
A Nd|sin 6 — sin 6|

AA A

Because of (7) this implies that the resolving power is equal to the number of
wavelengths in the path difference between rays that are diffracted in the direction 0

Jfrom the two extreme ends (separated by distance Nd) of the grating. 1t is to be noted
that since |sin @ — sin 6| cannot exceed 2, the resolving power that can be attained
with a grating of overall width w can never exceed the value 2w/A.

Let us illustrate the formula (14) by determining the number of grooves that a
grating must have, in order to separate two lines which are a tenth of an angstrém unit
apart, near the centre of the visible region of the spectrum. In this case A ~ 5500 A,
AL = 107! A, and if we observe in the second order (m = 2), we must have, according
to (14) N = 5.5 X 10°/2 X 10~! = 27,500, i.e. the grating must have at least 27,500
grooves.

For comparison let us consider the resolving power of a prism, in the position of
minimum deviation, with a line source that is parallel to the edge A4 of the prism (slit
of the spectrograph). A pencil of parallel rays will be incident upon the prism and will
be diffracted at a rectangle of width /; = I, (see Fig. 4.28). According to §38.5 (2), the
first minimum of the intensity is at an angular distance (assumed to be small)

y)
p=7 (15)
1

(14a)

from the geometrical image of the slit. The change in the angular dispersion
corresponding to a change of wavelength by amount A4 is, according to §4.7 (36),

t dn
Ae —EaM’ (16)

where ¢ is the greatest thickness of the glass through which one of the extreme rays has
passed, and n is the refractive index of the material of the prism. Since at the limit of
resolution p ~ Ae the resolving power is given by
A ; dn
AL A

Eq. (17) shows that, with a given glass, the resolving power of a prism depends only

17
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on the greatest thickness of the glass traversed by the rays, in particular the resolving
power is independent of the angle of the prism. As an example, suppose that the length
of the base of the prism is equal to 5 cm and that it is made of heavy flint glass, for
which dn/dA ~ 1000 cm™! at wavelength 1 = 5500 A. If the prism is completely
filled with light, then according to (17) it will resolve lines near the centre of the
visible region which are not less than AA apart, where AL~ 5.5 X 1075 cm/5 X
103 = 1.1 A. Thus a prism of this considerable size has a resolving power 10 times
smaller than the grating of 27,500 grooves discussed before.

We have so far considered one-dimensional gratings only, but the analysis may
easily be extended to two- and three-dimensional periodic arrangements of diffracting
bodies. Two-dimensional gratings (sometimes called cross gratings) find no practical
applications, though their effects can often be observed, for example when looking at a
bright source through a finely woven material (e.g. a handkerchief). The theory of
three-dimensional gratings (sometimes called space gratings) is, on the other hand, of
great importance, such gratings being formed by a regular arrangement of atoms in a
crystal. The lattice distances (distances between neighbouring atoms) are of the order
of an dngstrdm unit (107% cm), this being also the order of magnitude of the
wavelengths of X-rays. Hence, by sending a beam of X-rays through a crystal,
diffraction patterns are produced, and from their analysis information about the
structure of the crystal may be deduced. We will briefly discuss this subject in §13.1.3.

Another example of a grating-like structure is presented by ultra-sonic waves in
liquids. These are elastic waves produced by a piezo-electric oscillator, differing from
ordinary sound waves only in having a frequency well above the upper limit of
audibility. Such waves give rise to rarefactions and condensations in the liquid which
then act on the incident light like a grating. The theory of this phenomenon is
discussed in Chapter XII. For the rest of this section we shall restrict our attention to
one-dimensional gratings as used in spectroscopic work.

(b) Types of grating™

The principle of the diffraction grating was discovered by Rittenhouse in 1785,1 but
this discovery attracted practically no attention. The principle was re-discovered by
Fraunhofer} in 1819. Fraunhofer’s first gratings were made by winding very fine wire
round two parallel screws. Because of the relative ease with which wire gratings may
be constructed these are occasionally used even today, particularly in the long-
wavelength (infra-red) range. Later Fraunhofer made gratings with the help of a
machine, by ruling through gold films deposited on a glass plate; also, using a diamond
as a ruling point, he ruled the grooves directly onto the surface of glass.

Great advances in the technique of production of gratings were made by Rowland§
who constructed several excellent ruling machines and also invented the so-called

* For a fuller account of methods of production of gratings and their development, see G. R. Harrison, J.
Opt. Soc. Amer., 39 (1949), 413.

t D. Rittenhouse, Trans. Amer: Phil. Soc., 2 (1786), 201. See also the article by T. D. Cope in Journ. Franklin
Inst., 214 (1932), 99.

1 J. Fraunhofer, Denkschr. Akad. Wiss. Miinchen, 8 (1821-1822), 1. Ann. d. Physik, 74 (1823), 337.
Reprinted in his collected works (Munich, 1888), pp. 51, 117.

§ H. A. Rowland, Phil. Mag. (5), 13 (1882), 469. Nature, 26 (1882), 211. Phil. Mag., 16 (1883), 297.
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concave grating (discussed on pp. 459-461). Rowland’s machine was able to rule
gratings with grooves over 4 in long over a length of 6 in, and his first machine ruled
about 14,000 grooves per inch, giving a resolving power in excess of 150,000. Later
Michelson ruled gratings considerably wider than 6in, with a resolving power
approaching 400,000.

Most of the early gratings were ruled on speculum metal and glass, but the more
recent practice is to rule the grooves on evaporated layers of aluminium. Since
aluminium is a soft metal it causes less wear on the ruling point (diamond) and it also
reflects better in the ultra-violet.

A perfect grating would have all the grooves strictly parallel and of identical form,
but in practice errors will naturally occur. Quite irregular errors lead to a blurring of
the spectrum and are not so serious as systematic errors, such as periodic errors of
spacing. These errors give rise to spurious lines in the spectrum, known as ghosts.
Often they can be distinguished from true lines only with difficulty.

High resolving power is not always the only important requirement in spectroscopic
applications. When little energy is available, as for example in the study of spectra of
faint stars or nebulae, or for work in the infra-red region of the spectrum, it is essential
that as much light as possible should be diffracted into one particular order. Moreover,
for precise wavelength measurements, a grating that gives high dispersion must be
used. According to (8), the angular dispersion (with a fixed angle of incidence) is
given by

do 1 m
dl  cosfd’ (18)
so that to obtain high dispersion the spacing d should be small or the observations
must be made in high orders (m large). If, however, the grating is formed by a
succession of opaque and transparent (or reflecting) strips, only a small fraction of the
incident light is thrown into any one order. This drawback is overcome in modern
practice by ruling the grooves to controlled shape. With a grating which consists of
grooves of the form shown in Fig. 8.21, most of the light may be directed into one or
two orders on one side of the central image. Gratings of this type, with fairly coarse
grooves, are called echelette gratings, because they may be regarded as being
intermediate between the older types of grating and the so-called echelon gratings
which will be described later. Echelette gratings were first ruled by Wood™ on copper

Fig. 8.21 Reflection grating with controlled groove form.

* R. W. Wood, Phil. Mag., 20 (1910), 770; Ibid. 23 (1912), 310; A. Trowbridge and R. W. Wood, ibid., 20
(1910), 886, 898.
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plates, using the natural edge of a selected carborundum crystal as a ruling point. Later
they were ruled with diamond edges ground to the desired shape. They had 2000—
3000 grooves per inch, and when used with visible light they sent the greater part of
the light into a group of spectra near the 15th or 30th order. Echelette gratings have
considerable value in infra-red spectroscopy.

More recently methods have been developed for controlling the groove shape for
gratings with much smaller groove spacing.® These blazed gratings, as they are called,
have grooves of similar form as the echelettes, but form the most intense spectra in
much lower orders (usually the first or second).

It appears that the resolving power of gratings of the type described is limited by
practical considerations of manufacture to about 400,000. For some applications (e.g.
for the study of Zeeman effects and the hyperfine and isotope structure patterns), a
resolving power that exceeds this value is required. For the attainment of such a high
resolving power, Harrisont proposed the so-called echelle grating, which has wide,
shallow grooves and is designed for use at an angle of incidence greater than 45°, the
direction of incidence being normal to the narrow side of the step. These gratings
operate with relatively high orders (m ~ 1000). A 10 in echelle with 100 grooves per
inch, designed for observation in the 1000th order, has a resolving power of
1,000,0001.

Because a grating of good quality is very difficult to produce, replicas of original
rulings are often used.§ These are obtained by moulding from an original ruled master
grating.

Finally we must mention a ‘grating’ of an entirely different construction, the echelon
invented by Michelson.| It consists of a series of strictly similar plane-parallel glass
plates arranged in the form of a flight of steps (hence the name), as shown in Fig. 8.22.
Each step retards the beam of light which passes through it by the same amount with
respect to its neighbour. Because the breadth of each step is large compared to the
wavelength, the effect of diffraction is confined to small angles, so that most of the
light is concentrated in one or two spectra near the direction @ =0, and these
correspond to very high orders, since the retardation introduced between successive
beams is very many wavelengths.

The resolving power of the echelon depends not only on the path difference between
the rays from the extreme ends of the grating but also (though to a much lesser extent)
on the dispersion of the glass. If » is the refractive index, ¢ the thickness of each step,
and d its breadth (see Fig. 8.22), the path difference between rays diffracted from
neighbouring steps is evidently pd + (n — 1)1, it being assumed that p is small. Hence
the positions of the principal maxima are given by

pd+(n— 1)t =mi, (m=0,1,2,..). 19)

* R. W. Wood, Nature, 140 (1937), 723; J. Opt. Soc. Amer., 34 (1944), 509; H. Babcock, ibid., 34 (1944), 1.

1 G. R. Harrison, J. Opt. Soc. Amer., 39 (1949), 522.

1 For a review of the theory and production of high-resolution gratings, see G. W. Stroke, Progress in Optics,
Vol. 2, ed. E. Wolf (Amsterdam, North Holland Publishing Company and New York, J. Wiley and Sons,
1963), p. 1.

§ First replicas were made by T. Thorp, British Patent No. 11,460 (1899); and later by R. J. Wallace,
Astrophys. J., 22 (1905), 123; ibid., 23 (1906), 96. Improved methods have been described by T. Merton,
Proc. Roy. Soc. 4, 201 (1950), 187.

I A. A. Michelson, Astrophys. J., 8 (1898), 37; Proc. Amer. Acad. Arts Sci., 35 (1899), 109.
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Fig. 8.22 Michelson’s echelon.

If the wavelength is changed by an amount AA, the mth-order maximum is displaced
by

AL
m— g | —. (20)

, dn
Ap=‘ a

The separation Ap between a principal maximum of order m and a neighbouring
minimum is again given by (12), so that the condition Ap = A’p for the limit of
resolution gives

1)

Here we may substitute for m the value (n — 1)¢/4 obtained from (19) by neglecting
the term pd, for the p values for which the intensity is appreciable are of the order of
A/d, ie. pd is of the order of a wavelength, whilst (n — 1) is of the order of many
thousand wavelengths. We thus obtain the following expression for the resolving
power of the echelon:

A n—1 dn

MmN T Al
The ratio (dn/dA)/[(n — 1)/4] is small. For flint glass near the centre of the visible
region it has a value near —0.05 to —0.1. Hence, under these circumstances, the
resolving power of an echelon exceeds, by about 5—10 per cent, the resolving power of
a line grating with N grooves, when observation is made in the order m = (n — 1)t/A.
One of Michelson’s echelons consisted of twenty plates, each having a thickness
t = 18 mm, and the breadth d of each step was about 1 mm. Taking n = 1.5, the
retardation between two successive beams measured in wavelengths of green light
A=5X10"cm was m~0.5X1.8/5%X107°~20,000. Assuming (dn/d1)/
[(n —1)/A] = —0.1, this gives a resolving power of about 20 (20,000 + 0.1 X
20,000) = 440,000.

More important is the reflection echelon. Here each step is made highly reflecting
by means of metallic coating, and the spectra formed by reflected light are observed.
With a reflection echelon the resolving power is 3-4 times larger than with a
transmission echelon of corresponding dimensions, since each step introduces a
retardation between successive beams of amount 27 instead of (n — 1)¢ ~ ¢/2. Like

(22)
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the echelle grating the reflection echelon is capable of giving resolving power of over
one million. Another advantage of the reflection echelon over the transmission echelon
is that it may be used in the ultra-violet region of the spectrum, where glass absorbs.
Although Michelson realized that advantages would be gained by using the instrument
with reflected rather than transmitted light, technical difficulties prevented the produc-
tion of a satisfactory reflection echelon for nearly thirty years until they were overcome
by Williams.™ Because of difficulties in assembling a large number of plates of equal
thickness within the narrow permissible tolerance, the number of steps is limited in
practice to about forty.

Finally, a few remarks must be made about overlapping of orders. Restricting
ourselves to the visible region, i.e. considering wavelengths in the range 4; = 0.4 um
to A, = 0.75 um, we see that the first-order spectrum does not quite reach to the
spectrum of the second order: for the first-order spectrum covers the range from
p=A/dto p=21/d =0.75,/0.4d = 1.8, /d, whilst the second order begins at
p = 241/d. On the other hand the spectrum of the second order extends across a part
of the third-order spectrum, namely from p = 24,/d to p = 24,/d, whilst the third
order begins already at 2 X 1.84;/d. As the order increases the successive spectra
overlap more and more (see Fig. 8.23). If the lines of wavelength 4 and A + 64
coincide in two successive orders (m + 1)th and mth, then

(m+ DA = m(A + 04),
ie.

oA 1
T (23)
Thus the ‘ free spectral range’ is inversely proportional to the order.

The overlapping of orders was formerly used to compare wavelengths, in the so-
called method of coincidences (see p. 379); this method has been superseded by simple
interpolation between standard wavelengths determined interferometrically.

In conclusion let us summarize the main distinguishing features of the different
types of gratings. We recall that, according to (14), high resolving power may be
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Fig. 8.23 The overlapping of grating spectra.

* W, E. Williams, British Patent No. 312,534 (1926); Proc. Opt. Conv., 2 (1926), 982; Proc. Phys. Soc., 45
(1933), 699.
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attained with either a large number of periods and relatively low orders, or with a
moderate number of periods and large orders. Ordinary ruled gratings represent the
low-order extreme (m ~ 1 to 5), whilst the echelons represent the extreme of high
orders (m ~ 20,000). In between are the echellettes (m ~ 15 to 30) and the echelles
(m ~ 1000). For particular applications one must bear in mind that the angular
dispersion is directly proportional to the spectral order and inversely proportional to
the period whilst the free spectral range is inversely proportional to the order.

(¢) Grating spectrographs

In a grating spectrograph coloured images of a slit source are produced in the various
orders into which the grating separates the incident light. A simple arrangement is
shown in Fig. 8.24. Collimated light from a slit source S in the focal plane of a lens L
is incident on a reflection grating G, and the images of S formed by the diffracted rays
are observed in the focal plane F of a telescope T A modification of this arrangement,
known as Littrow’s mounting, which has the advantage of compactness, is shown in
Fig. 8.25. This is an autocollimation device, which needs only one lens. The slit is just

T
F

Fig. 8.24 A grating spectrograph.

Fig. 8.25 A grating spectrograph: Littrow’s mounting.
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below the plate P and the lens is near the grating, which can be turned through a
prescribed angle with respect to the direction of the incident beam.

In order to avoid losses of light which necessarily arise when the diffracted rays are
focused by means of lenses, Rowland introduced the concave grating. Here the
grooves are ruled on a concave highly reflecting metal surface, i.e. on a concave
mirror, in such a way that their projections on a chord of the mirror surface are
equidistant. A simple geometrical theorem indicates the possible positions of the slit
and the plane of observation relative to the grating:

Let Q be the midpoint of the surface of the grating and C its centre of curvature, and
describe a circle K with centre at the midpoint O of QC and with radius » =
0Q = OC (Fig. 8.26). We shall prove that light from any point S of the circle K will
be approximately reflected to a point P and diffracted to points P’, P”, ... on the
circle, each of these points being a focus for diffracted rays of a particular order. To
show this, construct the reflected ray QP corresponding to the incident ray SQ. If
a = £8SQC is the angle of incidence, the angle £ CQP of reflection is also equal to a
and, moreover, the arc SC is equal to the arc CP. Consider now another ray from S
incident upon thc grating at a different point R. If the diameter of the circle is
sufficiently large (in practice it is usually several feet), then no appreciable error is
introduced by assuming R to lie on the circle K. Hence, since C is the centre of
curvature of the grating, the angle of incidence / SRC and consequently also the angle
of reflection are again equal to a. Moreover, since the arc CP is equal to the arc SC it
follows that the ray reflected at R again passes through P.

Similar considerations apply to the diffracted rays. Let B be the angle which a ray
diffracted at Q makes with QP. The corresponding ray of the same order, diffracted at
R, will make the same angle () with RP. Hence the ray diffracted at Q makes the
same angle with SQ as the ray diffracted at R makes with SR, namely 2a + . The two
diffracted rays, therefore, meet in a point P’ of the circle K. Thus, to obtain sharp
lines, the slit, the grating and the plane of observation (photographic plate) should be
situated on a circle, whose diameter is equal to the radius of curvature of the concave
grating.

There are several mountings based on this principle. Rowland himself used the
arrangement shown in Fig. 8.27. Here the grating G and the plate holder P are fixed to
opposite ends of a movable girder, whose length is equal to the radius of curvature of

G

Fig. 8.26 Focusing with a concave grating (Rowland’s circle).
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the grating. The two ends of the girder are free to move along fixed tracks which are at
right angles to each other. The slit S is mounted immediately above their intersection
in such a way that light falling normally on the slit proceeds along SG. The slit is thus
situated on a Rowland circle with diameter PG and the order of the spectrum
appearing on the plate depends on the position of the girder.

A different arrangement, shown in Fig. 8.28, avoids the use of mobile parts. Here a
circular steel rail to which the slit S and the grating G are permanently attached plays
the part of Rowland’s circle. Round the rail a series of plate holders Py, P;, P_y, ... is
set up, so that spectra of several orders can be photographed simultaneously. ThlS
arrangement, called Paschen s mounting, also has the advantage of great stability.

Another arrangement due to Eagle has, like the Littrow mounting for a plane
grating, the advantage of compactness. Here the slit is immediately above or below the
centre of the plate holder (Fig. 8.29), or it may be mounted at the side and the light

Fig. 8.27 Rowland’s mounting for a concave grating.

S
i 3-\ /j G
\\\ ’//

Fig. 8.29 Eagle’s mounting for a concave grating.
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may be thrown in the required direction by means of a small reflecting surface. To
observe different portions of the spectrum, both the plate and the grating have to be
rotated through the same amounts and in opposite senses, and their separation has to
be changed, so that they are always tangential to the Rowland circle. One observes that
part of the spectrum which is diffracted back at angles nearly equal to the angle of
incidence. For this mounting to be strictly autocollimating, the slit S should be at the
centre of the plate.

Spectral lines obtained with a concave grating show the same aberrations as images
obtained with a concave mirror, chiefly astigmatism. If, however, the concave grating
is used in parallel light, the astigmatism may be made to vanish on the grating normal
and to be very small over the whole usable spectrum.*

8.6.2 Resolving power of image-forming systems

The Fraunhofer diffraction formula §8.3 (36) finds important applications in the
calculation of the resolving power of optical systems. We have already introduced the
concept of resolving power in connection with interference spectroscopes in §7.6.3,
and in the preceding section we have estimated the resolving power that can be
attained with gratings and prisms. We shall now extend this concept to image-forming
systems.

In a spectral apparatus (e.g. a line grating or the Fabry—Perot interferometer), the
resolving power is a measure of the ability of the instrument to separate two
neighbouring spectral lines of slightly different wavelengths. In an image-forming
system, it is a measure of the ability to separate images of two neighbouring object
points. In the absence of aberrations each point object would, according to geometrical
optics, give rise to a sharp point image. Because of diffraction the actual image will
nevertheless always be a finite path of light. And if two such image patches (diffraction
patterns) overlap, it will be more and more difficult to detect the presence of two
objects, the closer the central intensity maxima are to each other. The limit down to
which the eye can detect the two objects is, of course, to some extent a matter of
practical experience. With a photographic plate the contrast may be enhanced and so
the limit of resolution decreased by suitable development. Nevertheless it is desirable
to have some simple criterion which permits a rough comparison of the relative
efficiency of different systems, and for this purpose Rayleigh’s criterion discussed in
§7.6.3 may again be employed. According to this criterion two images are regarded as
just resolved when the principal maximum of one coincides with the first minimum of
the other. For a spectral apparatus, where the limit of resolution is a certain wavelength
difference AA, the resolving power is defined as the quantity A/AA. For an image-
forming system the limit of resolution is some distance dx or angle 60 and the
resolving power is defined as the reciprocal (i.e. 1/dx or 1/36) of this quantity.

Let us consider first the limit of resolution of a telescope. For a distant object, the
edge of the entrance pupil coincides with the circular boundary of the objective, and

* Such an astigmatic-free mounting was described by F. L. O. Wadsworth, Astrophys. J., 3 (1896), 54. For a
discussion of the aberration theory of gratings and grating mountings see the article by W. T. Welford in
Progress in Optics, Vol. 4, ed. E. Wolf (Amsterdam, North Holland Publishing Company and New York, J.
Wiley and Sons, 1965), p. 241.
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acts as the diffracting aperture. If a is the radius of the objective aperture then,
according to §8.5 (16), the position of the first minimum of intensity referred to the
central maximum is given by*

w=061" (24)
a

Now w = 1/ p? + g2 represents the sine of the angle ¢ which the direction (p, ¢)
makes with the central direction p = ¢ = 0. This angle is usually so small that its sinc
may be replaced by the angle itself, and it then follows that (on the basis of Rayleigh’s
criterion) the angular separation of two stars that can just be resolved is 0.611/a.

With a given objective, the angular size of the image as seen by the eye depends on
the magnification of the eyepiece. It is impossible, however, to bring out detail not
present in the primary image by increasing the power of the eyepiece, for each element
of the primary image is a small diffraction pattern, and the actual image, as seen by
the eyepiece, is only the ensemble of the magnified images of these patterns.

Consider the well-known large telescope at Mount Palomar which has a diameter
2a ~ 5 m. Neglecting for the moment the effect of the central obstruction in the
telescope, the theoretical limit of resolution for light near the centre of the visible
range (A ~ 5.6 X 10~° cm) is seen to be

56X 107% cm

L~ 14X%X1077
2.5%X 102 cm 10

¢ ~ 0.61

or, in seconds of arc,
¢ ~ 0.028".

In §6.1 we quoted the value of 1 minute of arc for the limit of resolution of the eye.
We can now give a more precise estimate. Since the diameter of the pupil of the eye
varies from about 1.5 mm to about 6 mm (depending on the intensity of the light), it
follows that the limit of resolution lies in the range (again taking A = 5.6 X 1073 cm)

5.6 X 107 5.6 X 1073

06l ————>¢p>061l —————
610.75)(10"l =06 3xi10-t’

i.e.
455X 1074 >¢p>1.14%x 1074

or, in minutes and seconds,
1'34"> ¢ > 0'24".

So far we have assumed the aperture to be circular. Of considerable intercst is also
the case of an annular aperture, since in many telescopes, for example, the central
portion of the circular aperture is obstructed by the presence of a secondary mirror.
Suppose that the annular aperture is bounded by two concentric circles of radii a and
€a, where ¢ is some positive number less than unity. The light distribution in the
Fraunhofer pattern is then represented by an integral of the form §8.5 (8), but with the

* According to §7.6.3 the saddle-to-peak intensity ratio at the limit of resolution for diffraction at a slit
aperture is 8/> = 0.811. The corresponding value for the present case (circular aperture) is 0.735.



