

Toward Automated Planning Algorithms Applied to Production and Logistics

Sousa, A. R.*. Tavares, J. J. P. Z. S.*

* Manufacturing Automated Planning Lab, College of Mechanical Engineering,

Federal University of Uberlândia, Av. João Naves de Ávila, 2121 - Uberlândia, Brazil

(e-mail: alexandre_sousa@meca.ufu.br, jean.tavares@mecanica.ufu.br).

Abstract: In recent years several studies have been made showing artificial intelligence techniques as

enhancement proposals for real practical systems. One of such approaches is automated planning, in which

knowledge of the system’s behavior, expressed through a model, is used by a piece of software

denominated automated planner to infer a sequence of actions capable of bringing the system from some

initial state to an objective, a so called plan. To do such, the planner relies on some search algorithm

capable of exploring the possibilities exposed by the model, and several different approaches have been

used by different planners with varying degrees of success. This paper presents an insight on some of the

most consolidated ones, both regarding deterministic and probabilistic domains, and focuses on search

techniques and generic heuristics in order to assist the development of new algorithms focused on

production and logistics. It also covers the main formal system modeling languages, such as STRIPS,

PDDL and PPDDL, used by such planners.

1. INTRODUCTION

Automation is always related to new techniques and

knowledge application. Nowadays, computer systems are

mandatory to assist new automation projects. One of

computer system field is artificial intelligence and automated

planning is a special branch of it.

In recent years several studies have been made showing

artificial intelligence techniques, such as automated planning,

as enhancement proposals for real practical systems. The AI

planning community is very committed to apply the

developments already achieved in this area to real complex

applications. However realistic planning problems bring great

challenges not only for the designers during design processes

but also for the automated planners during the planning

process itself. (Sette et al., 2008)

More recently, some works have been developed focusing the

practical applications for the automated planners using the

itSIMPLE system (Vaquero, 2007). Several problems were

already approached by that system, such as logistics problems

in port systems (Dahal, 2003), the logistic inherent to the load

and unloading processes of oil in São Sebastian’s port (Sette

et al., 2008), the pumping of raw oil in pipelines (Li et. al.,

2005) and didactic initiatives (Tavares and Fonseca, 2011).

This work presents a review about automated planning

modelling languages and algorithms, and it is a starting point

for an ongoing research about integrating automated planning

and the internal logistics of a manufacturing process.

This paper is structured as follows: first the main modelling

languages are explained, then the classic planning algorithms,

followed by a section about probabilistic planning and,

finally, thoughts about applying these algorithms to logistic

domains.

2. MODELING LANGUAGES

2.1 STRIPS

The formal language known as STRIPS actually borrowed its

name from the original planner that used it, which is an

acronym for Stanford Research Institute Problem Solver.

STRIPS, the planner, is often cited as providing a seminal

framework for attacking the “classical planning problem”

(Fikes and Nilsson, 1993). In these classical planning

problems, the world is defined as a static state that is only

modified by a single agent that, through each action, brings

the system from one state to the other. This simple-state

problem formulation served as basis for automatic planning

research during many years, and much of it was based

specifically on the representation framework and reasoning

methods developed in the STRIPS system.

The problem space for STRIPS is defined by the initial state

I, the goal state G, and the operators O and their effects on

the system model (Fikes and Nilsson, 1972). The planning

problem can be expressed as follows:

()GIOP ,,= (1)

The states are defined as arbitrary set of first-order predicate

calculus well defined formulas (wffs). For example, to define

a system where a box B sits at the location L, one could

include the following wff:

()LBat , (2)

And then possibly include the following wff to state a box

cannot be at two places at the same time:

() ()[] (){ }cbatcaabatcba ,~^,,, ⇒≠∀ (3)

6th IFAC Conference on Management and Control of Production
and Logistics
The International Federation of Automatic Control
September 11-13, 2013. Fortaleza, Brazil

978-3-902823-50-2/2013 © IFAC 165 10.3182/20130911-3-BR-3021.00081

The operators are defined by two main parts: one describing

the preconditions necessary for execution, and one describing

the effects. The definition of the effects of an operator is

simply the lists of wffs the operator adds to the previous

states, and the list of wffs it removes from said state (Fikes

and Nilsson, 1972). In a more formal way, the action o can be

defined as a set of a list of preconditions pre, a list of wffs to

include in the new state add and the list of wffs to remove del

as follows (Hoffmann and Nebel, 2001):

())(),(),(odeloaddopreo = (4)

These operators can be grouped into families called

schemata. Each operator schema can take in input

parameters, upon which the member’s operators are

parametrized (Fikes and Nilsson, 1972). Extending upon the

example mentioned earlier, assuming there is a robot to pick

up boxes, an schema pickup (posr,posb,b), where posr is the

current position of the robot, posb is the position of the box

and b represents the box itself, can be defined instead of

explicitly declaring the operators for every combination

possible, thus somewhat simplifying the modelling process.

Overall, though, STRIPS, the planner and the language, are

very limited both in planning issues it addresses and

problems it can solve (Fikes and Nilsson, 1993). Even limited

as it is, the STRIPS representation became one of the basis in

automatic planning research for many years, most likely

thanks to the severe simplifying assumptions it made, that

allowed early progress to be made on the extreme difficulties

of the general automatic planning problem.

2.2 PDDL

PDDL is an action-centred language, inspired by the well-

known STRIPS formulations of planning problems. At its

core is a simple standardisation of the syntax for expressing

this familiar semantics of actions, using pre- and post-

conditions to describe the applicability and effects of actions.

The syntax is inspired by Lisp, so much of the structure of a

domain description is a Lisp-like list of parenthesised

expressions. (Fox and Long, 2003). The language, in its most

basic and early versions, support the following features

(McDermontt et al., 1998):

• Basic STRIPS-style actions

• Conditional effects

• Universal quantification over dynamic universes

(i.e., object creation and destruction),

• Domain axioms over stratified theories,

• Specification of safety constraints.

• Specification of hierarchical actions composed of

subactions and subgoals.

• Management of multiple problems in multiple

domains using differing subsets of language features

(to support sharing of domains across different

planners that handle varying levels of

expressiveness).

An early design decision in the language was to separate the

descriptions of parametrized actions that characterise domain

behaviours from the description of specific objects, initial

conditions and goals that characterise a problem instance.

Thus, a planning problem is created by the pairing of a

domain description with a problem description. The same

domain description can be paired with many different

problem descriptions to yield different planning problems in

the same domain. (Fox and Long, 2003)

Further revisions added several features which enable the

language to express more elaborate models. Among the most

important additions are:

• Numeric expressions,

• Durative actions,

• Alternative objective functions (metric) (Fox and

Long, 2003),

• Strong and soft problem goals – goals that must be

achieved or are just desirable, respectively

• Strong and soft constraints on plan trajectories –

similarly to the goals, strong ones have to be

obeyed, whereas it is desired that soft ones are

observed (Gerevini and Long, 2005).

The PDDL language is very modular, being factored into

subsets of features, called requirements. Every domain

defined using PDDL should declare which requirements it

assumes. A planner that does not handle a given requirement

can then skip over all definitions connected with a domain

that declares that requirement, and won't even have to cope

with its syntax.

To better illustrate the language, Figs. 1 and 2 exposes valid

2.1 PDDL codes that defines a simple domain and problem

about logistics, taking fuel into account in a very primitive

way. The fuel level is discretized into three levels (full, half,

and empty), with each trip between two connected locations

draining one level through the action drive. Two vehicles, the

car and the truck, are declared, and each has a separate list of

locations that are accessible from one another. The car begins

at Paris with a full fuel tank and the truck starts with half a

tank and at Rome. The goal of this planning problem is for

the two vehicles to switch locations.

(define (domain vehicle)
 (:requirements :strips :typing)
 (:types vehicle location fuel-level)
 (:predicates (at ?v - vehicle ?p - location)
 (fuel ?v - vehicle ?f - fuel-level)
 (accessible ?v - vehicle ?p1 ?p2 - location)
 (next ?f1 ?f2 - fuel-level))
 (:action drive
 :parameters (?v - vehicle ?from ?to - location
 ?fbefore ?fafter - fuel-level)
 :precondition (and (at ?v ?from)
 (accessible ?v ?from ?to)
 (fuel ?v ?fbefore)
 (next ?fbefore ?fafter))
 :effect (and (not (at ?v ?from))
 (at ?v ?to)
 (not (fuel ?v ?fbefore))
 (fuel ?v ?fafter))))

Fig. 1. Transportation domain PDDL code (Fox and Long,

2003)

IFAC MCPL 2013
September 11-13, 2013. Fortaleza, Brazil

166

(define (problem vehicle-example)
 (:domain vehicle)
 (:objects
 truck car - vehicle
 full half empty - fuel-level
 Paris Berlin Rome Madrid - location)
 (:init
 (at truck Rome)
 (at car Paris)
 (fuel truck half)
 (fuel car full)
 (next full half)
 (next half empty)
 (accessible car Paris Berlin)
 (accessible car Berlin Rome)
 (accessible car Rome Madrid)
 (accessible truck Rome Paris)
 (accessible truck Rome Berlin)
 (accessible truck Berlin Paris)
)
 (:goal (and (at truck Paris)
 (at car Rome))
)

Fig. 2. Transportation problem PDDL code (Fox and Long,

2003)

2.3 PPDDL

PPDDL1.0 is a first step towards a general language for

describing probabilistic and decision theoretic planning

problems, and is essentially a syntactic extension of PDDL

2.1. Note that, whereas the PDDL definition imposes a

specific output plan structure for planners, PPDDL does not,

except that only a single action can be executed at any point

in time. The problem of plan representation has been left

entirely to the planning systems, and planning systems may

even choose to have no plan representation at all. (Younes

and Littman, 2004).

PPDDL has been used in the probabilistic track at the

International Planning Competition from the fourth to the

sixth editions, and the latest instalment still provides

automatic translations for PPDDL from the now used RDDL

(Coles et al., 2012).

The key extensions PPDDL brought is support for

probabilistic effects (Younes and Littman, 2004) by the use

of the syntax shown on Fig. 3 when declaring effects, where

pn represents the possibility of its associated sub-effect to be

executed.

(...)
 :effect (probabilistic p

1
 (effect)

 p
2
 (effect)

 (...)
 p

n
 (effect))

(...)

Fig. 3. Definition of probabilistic effects

It is worth noting that a single PPDDL action schema can

represent a large number of actions and a single predicate can

represent a large number of state variables, meaning that

PPDDL often can represent planning problems more

succinctly than other representations. For example, the

number of actions that can be represented using m objects

and n action schemata with parity c is m·n·c, which is not

delimited by any polynomial in the size of the original

representation (m+n). Grounding is by no means a

prerequisite for PPDDL planning, so planners could

conceivably take advantage of the more compact

representation by working directly with action schemata

(Younes and Littman, 2004).

Markovian rewards, associated with state transitions, can be

encoded using fluents. PPDDL reserves the fluent reward ,

accessed as (reward) or reward, to represent the total

accumulated reward since the start of execution. Rewards are

associated with state transitions through update rules in

action effects.

PPDDL also makes adjustments to how goals should be

interpreted. For regular probabilistic planning problems, the

objective of the planner should be to maximize the

probability of the stated goals to be achieved, which is stored

in a special optimization metric defined as goal-achieved. For

reward oriented planning problems, the default objective is to

maximize the reward and the defined goals area set of

absorbing states. There is also a special statement (:goal-

reward f) that associates a one-time reward f is associated

with entering a goal state (Younes and Littman, 2004).

2.4 RDDL

RDDL is a domain modelling language devised to model

problem which pose a problem to the traditional (P)PDDL

class of languages. Many important domains are difficult to

express using (P)PDDL, like multi-elevator control with

independent random arrivals, logistics domains with

independently moving vehicles and noise, and UAVs with

sensors for partially observed state (Sanner, 2010).

Instead of extending PPDDL, which is an extension to PDDL

itself (Younes and Littman, 2004), an entirely new language

was formulated since stochastic effects and concurrency are

difficult to jointly reconcile in an effects-based language

(Sanner, 2010).

Thanks to the expressiveness of the language, it has been

adopted by the International Planning Competition in its

seventh version, accompanied by a new variety of planning

problems (Coles et al., 2012).

A central design principle of RDDL is that the language

should be simple and uniform with its expressive power

deriving from composition of simple constructs. RDDL is

based on the following principles:

• Everything is a parametrized variable (fluent or non-

fluent),

• Flexible fluent types,

• The semantics is simply a ground Dynamic Bayes

Net (DBN),

• General expressions in transition and reward

functions,

• Classical Planning as well as General (PO)MDP –

Partial Observed Markov Decision Process –

objectives,

• State/action constraints.

IFAC MCPL 2013
September 11-13, 2013. Fortaleza, Brazil

167

Perhaps the most confusing issue for those familiar with

PPDDL is the semantics of parametrized actions in RDDL.

Each action fluent is a separate variable taking on a distinct

value determined by the user. This is in contrast to the

PPDDL view of actions where all of the action information is

given in the action name and parameters. Here an action is

not viewed as a parametrized variable so it does not make

sense to say a PPDDL action consists of multiple ground

variables as is the case in RDDL. The view of RDDL actions

as templates for ground variables directly supports

concurrency (Sanner, 2010).

3. CLASSIC PLANNING ALGORITHMS

3.1 Forward-chaining search

Forward-chaining search algorithms are very successful in

the satisficing track of the International Planning

Competition, so far as that LPG was the only winner in the

tracks history to not be based on that (Coles et al., 2012).

The search algorithms of the most prominent forward search

planners, namely HSP (Bonnet and Geffner, 1998), FF

(Hoffmann and Nebel, 2001), Fast Downward (Helmert,

2006), and LAMA-2008 and 2011 (Richter et al., 2011), are

guided by heuristics. These are estimates of the total cost of

the solution that can be achieved by following a partial path,

and are used so that the search algorithm can give priority to

more promising paths, and are extracted automatically from

planning domains through several techniques.

One of the consolidated techniques to extract heuristics from

a model is to consider a relaxation of the problem into a

simpler one (Bonnet and Geffner, 1998) by ignoring the

delete list of STRIPS-based domains, an approach that was

later adapted to work with numeric state variables as well

(Hoffman, 2003). Then a solution to this relaxed problem is

devised, be it by assuming independence between sub goals

and calculating an additive heuristic (Bonnet and Geffner,

1998) or by applying a GRAPHPLAN (Blum and Furst,

1995) algorithm to solve the relaxed plan and use the

calculated costs of the solution as an estimative (Hoffmann

and Nebel, 1998). The FF planner goes one step further, and

not only uses the estimated costs from the relaxed solution,

but also extracts a list of helpful actions in order to decrease

the algorithm’s search space.

Later algorithms based on the Fast Downward planner

implement additional heuristics through the generation of

causal graphs. Informally, the causal graph contains an arc

from a source variable to a target variable if changes in the

value of the target variable can depend on the value of the

source variable. Such arcs are included also if this

dependency is of the form of an effect on the source variable.

The planner also doesn’t compute the heuristic estimate for

each generated state, it rather computes them only for closed

nodes, while computation is deferred for nodes on the search

frontier (Helmert, 2006).

The Fast Downward planner also features a translation stage

that transforms propositional tasks to multi-valued ones, as

these have better structured causal graphs (Helmert, 2006).

This concept was inherited by the planner LAMA (Richter et

al., 2011).

LAMA also implements its own scheme of heuristics by

using the concept of landmarks in a multi-heuristic search

context grouped with the original FF estimates. These

landmarks are variable assignments that must occur at some

point in every solution plan, and they are obtained by

backchaining already known landmarks, starting with the

goals (that are landmarks by definition).

HSP and FF are based on variants of the hill climbing

algorithm, where the best node is expanded and all other ones

are discarded. While time-efficient, it can get stuck in local

minima. The HSP planner approaches this issue by restarting

the search if needed (Bonnet and Geffner, 1998), whereas FF

deals with it by discarding the hill climbing algorithm

altogether and resorting to a greedy best-first search

(Hoffmann and Nebel, 2001), which is also used, with

adaptations, for Fast Downwards (Helmert, 2006). LAMA

also uses greedy best-first search to find an initial solution,

but builds upon that by running a series of weighted A*

searches with decreased weight using the by-then best known

solution for pruning the search (Richter et al., 2011).

3.2 LPG

LPG is the winner of the third International Planning

Competition, and is based on stochastic local search (Coles et

al., 2012). It works basically by generating an initial planning

graph and iteratively modifying it until a solution graph is

obtained.

A planning graph is a directed acyclic levelled graph with

two kinds of nodes and three kinds of edges. The levels

alternate between a fact level, containing fact nodes, and an

action level containing action nodes. An action node at level t

presents an action (instantiated operator) that can be planned

at time step t. A fact node represents a proposition

corresponding to precondition of one or more actions at time

step t, or to an effect of one or more actions at time step t-1.

The fact nodes of level 0 represent the positive facts of the

initial state of the planning problem (every fact that is not

mentioned in the initial state is assumed false). There is also a

special action aend, whose preconditions are the goal fact

nodes, and it represents the last action in any valid plan

(Gerevini and Serina, 2002).

To better understand the workings of LPG one also needs to

define action graphs. An action graph (A-graph) A of G is a

subgraph of G containing aend and such that, if a is an action

node of in A, then also the fact nodes of G corresponding to

the preconditions and positive effects of [a] are in A, together

with the edges connecting them to a.

The modifications each search step applies to a planning

graph consist of adding a new action node to the current A-

graph, or removing an action node from it (together with the

relevant edges) in order to solve a randomly chosen

constraint violation, also called inconsistencies, which

represents either conflicting actions happening on the same

level or actions lacking supporting preconditions. Which of

the two actions are executed is chosen based on a special

IFAC MCPL 2013
September 11-13, 2013. Fortaleza, Brazil

168

heuristic that estimates the cost to support the chosen

violation (Gerevini and Serina, 2002).

3.3 SGPLAN

SGPlan is different from the planners discussed above in that

it is not a distinct planning algorithm, but rather a partitioning

framework that calls other algorithms to solve a batch of

ordered subproblems which are, in theory, faster to solve.

(Chen et al., 2004).

The planner works on two levels. In the global level, we

select a suitable order for the planner to solve the partitioned

subgoals, introduce artificial global constraints to enforce that

the solution of one subgoal solved later does not invalidate

that of an earlier subgoal, and resolve violated global

constraints using the theory of extended saddle points. In the

local level, we perform a hierarchical decomposition of first-

level.

The ordering in the global level is done through three

heuristics. The first one is reasonable ordering, where if a

subgoal can’t be achieved without invalidating another, it

must come before it. Failing that there is irrelevance

ordering, where between two subgoals, the one with less

irrelevant actions is solved first. In case the first two levels

can’t order two subgoals, precondition ordering is applied,

giving priority to the one with the larger minimum number of

preconditions of supporting actions. Pairs of actions not

ordered in any level are sorted randomly.

In the local level, with a given subgoal G after first-level

partitioning, SGPlan identifies intermediate second-level

subgoals (or facts) that must be true in any plan that achieves

G from a given initial state. These facts allow the

construction of an intermediate goal agenda (IGA), which is

an ordered list of agenda entries, each containing a set of

intermediate facts.

Once the tasks are divided and ordered, they are handed to an

actual planning algorithm. The implementation of SGPlan

that won the Fourth International Planning Competition uses

a modified implementation of Metric-FF and, when it fails,

invokes LPG (Chen et al., 2004).

4. PROBABILISTIC PLANNING ALGORITHMS

4.1 FF-REPLAN

FF-Replan is an action selection algorithm for online

planning in probabilistic domains. FF-Replan has a very

simple architecture. Given a new probabilistic planning

problem, consisting of a domain description, a goal, and

initial state, FF-Replan first generates a deterministic

planning problem, removing all probabilistic information,

then uses the deterministic planner FF (Hoffmann and Nebel,

2001) to compute a totally ordered plan for the generated

deterministic problem. During execution of the resulting plan,

if confronted with an unexpected state, the process is

repeated with the unexpected state as the initial state, until a

goal state is reached. Note that the determinization process is

conducted once before execution begins and there is a

potential improvement of the system by considering adaptive

determinization (Yoon et al., 2007).

Internally, FF-Replan maintains a partial state-action

mapping using a hash-table which is initially empty. When

FF-Replan encounters a state that is not in the table, then it

determinizes the problem and synthesizes a plan using FF.

FF-Replan then simulates the plan according to the

deterministic action definitions resulting in a state-action

sequence whose pairs are put in the hash table. The first

action of the plan is then executed in the environment, which

returns a new current state. FF-Replan thus produces a partial

policy in an online fashion. Of course due to the deterministic

approximation, the partial policy has no quality guarantees in

general (Yoon et al., 2007).

4.2 PROST

The PROST planning system is based on the upper

confidence bounds applied to trees (UCT) algorithm (Kocsis

and Szepesvári, 2006), a state-of-the-art approach for many

problems of acting under uncertainty. As an anytime

algorithm, UCT returns a non-random decision whenever

queried, and terminates based on a timeout given to the

system as a parameter. In the given time, UCT performs

rollouts, where, as usual in Monte-Carlo approaches,

outcomes of actions are sampled according to their

probability (Keller and Eyerich, 2012).

The planner uses the detection of reward locks. Reward locks

are states where where, no matter which action is applied and

which outcome occurs, we end up in a state where we receive

the same reward as before, and which is also a reward lock.

These states can be goals or dead ends, and discerning

between them is difficult, and PROST merely gives them

higher priority during searches which effectively serves both

to guide the search towards goal states and to avoid dead ends

(Keller and Eyerich, 2012).

Another important aspect of PROST is how it exploits the

structure of RDDL during the search process. For chance

nodes, which are nodes that have several successors for some

given action, the successor is chosen by sampling the

outcome according to its transition probability. As transition

functions for variables are independent from each other, the

number of outcomes and with it the number of successors of

a chance node might be exponential in the number of

variables. Since RDDL provides a separate transition

probability for each variable, they can be applied

sequentially, drastically reducing the branch factor of chance

nodes (Keller and Eyerich, 2012).

5. APPLICATIONS ON LOGISTIC DOMAINS

This work represents a starting point towards applying

automated planning algorithms to logistic systems in

manufacturing processes. This requires, beforehand, good

knowledge of both the system in question and the strength

and weaknesses of current planners. Classical and

probabilistic planning algorithms were reviewed. To create a

new automated planning system focusing on production and

logistics, first of all, there is a need of requirement analysis.

The system itself can be divided in several levels, in which an

upper level’s actions can be expanded to fully-fledged plans

generated in a lower one. This not only simplifies the

IFAC MCPL 2013
September 11-13, 2013. Fortaleza, Brazil

169

modelling process but also ensures modifications to the

model do not enforce replanning efforts for the whole

manufacturing system.

ACKNOWLEDGEMENTS

Authors are grateful to UFU, FEMEC, CAPES, FAPEMIG,

CNPQ, Prof. Dr. Ricardo Fortes de Miranda and fellow

colleagues at MAPL.

REFERENCES

Bonnet, B., and H. Geffner (1998). HSP: Heuristic search

planner. In AIPS-98 Planning Competition Pittsburg,

PA.

Bonnet, B., and H. Geffner (2001). Planning as heuristic

search. Artificial Intelligence, 129(1), pages 5-33.

Blum, A. L., and M. L. Furst, (1995). Fast Planning Through

Planning Graph Analysis. In: Proceedings of the

14
th

 International Joint Conference on

Artificial Intelligence, pages 1636-1642.

Chen, Y., C.W. Hsu, and B.W. Wah (2004). SGPlan: Subgoal

partitioning and resolution in planning. Edelkamp et

al.(Edelkamp, Hoffmann, Littman, & Younes,

2004).
Coles, A., A. Coles, A.G. Olaya, S. Jiménez, C.L. López, S.

Sanner, and S. Yoon (2012). A survey of the seventh

international planning competition. AI Magazine,

33(1), 83-88.

Dahal, K., S. Galloway, G. Burt, J. Mcdonald and I. Hopkins

(2003). Port System Simulation Facility with an

Optimization Capability. International Journal of

Computational Intelligence and Applications, 3,

pages 395-410.

Fikes, R.E. and N.J. Nilsson (1972). STRIPS: A new

approach to the application of theorem proving to

problem solving. Artificial intelligence, 2, 3, pages

189-208.

Fikes, R.E. and N.J. Nilsson (1993). STRIPS, a retrospective.

Artificial intelligence 59, pages 227-232.

Fox, M. and D. Long (2003). PDDL 2.1: An Extension to

PDDL for Expressing Temporal Planning Domains.

Journal of Artificial Intelligence Research 20,

pages 61-124

Gerevini, A. and D. Long (2005). Plan constraints and

preferences in PDDL. Technical Report, Department of

Electronics for Automation, University of Brescia, Italy.

Gerevini, A. and I. Serina (2002). LPG: A planner based on

local search for planning graphs with action costs. In:

Proceedings of the Sixth International

Conference on AI Planning and Scheduling,

pages 12-22.

Helmert, M. 2006. The Fast Downward planning system.

Journal of Artificial Intelligence Research 26,

pages 191–246.

Hoffmann, J. (2003). The Metric-FF Planning System:

Translating ''Ignoring Delete Lists'' to Numeric State

Journal of Artificial Intelligence Research 20,

291-341.

Hoffmann J. and B. Nebel (2001). The FF Planning System:

Fast Plan Generation Through Heuristic Search.

Journal of Artificial Intelligence Research 14,

pages 253-302

Keller, T. and P. Eyerich (2012). PROST: Probabilistic

planning based on UCT. 22
nd

 International

Conference on Automated Planning and

Scheduling, pages 119-127

Kocsis, L., and C. Szepesvári (2006). Bandit Based Monte-

Carlo Planning. In: Proceedings of the 17th

European Conference on Machine Learning

(ECML), pages 282–293.

Li, J., L. Wenkai, I.A. Karimi, and R. Srinivasan (2005).

Robust and Efficient Algorithm for Optimizing Crude

Oil Operations, In: American Institute of Chemical

Engineers Annual Meeting.

McDermott, D., M. Ghallab, A. Howe, C. Knoblock, A. Ram,

M. Veloso, D. Weld and D. Wilkins (1998). PDDL - The

Planning Domain Denition Language. The AIPS-98

Planning Competition Comitee.

Richter, S., M. Westphal, and M. Helmert (2011). LAMA

2008 and 2011 (planner abstract). In The 2011

International Planning Competition,

Deterministic Part, pages 50–54.

Sanner, S. (2010). Relational dynamic influence diagram

language (RDDL): Language description.

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.

pdf.

Sette, F.M., T.S. Vaquero, S.W. Park and J.R. Silva (2008).

Are Automated Planers up to Solve Real Problems?. In:

Proceedings of the 17th World Congress The

International Federation of Automatic Control

(IFAC’08), pages 15817-15824.

Tavares, J.J.P.Z.S. and J.P.S. Fonseca (2011). Supply Chain

Didactic Testing Bench With Automated Planning Tool.

In Proceedings of 21st International

Conference on Production Research. Sttutgart,

Germany.

Vaquero, T.S. (2007). ITSIMPLE: Ambiente integrado de

análise de domínios de planejamento automático. 316 f.

MsC. diss. University of São Paulo, São Paulo, Brazil.

Yoon, S., A. Fern, and R. Givan (2007). FF-Replan: A

baseline for probabilistic planning. 17
th

 International

Conference on Automated Planning and

Scheduling, 7, pages 352-359.

Younes, H.L.S., and M.L. Littman (2004). PPDDL1.0: An

extension to PDDL for expressing planning domains

with probabilistic effects. Technical Report CMU-CS-

04-167, Carnegie Mellon University.

IFAC MCPL 2013
September 11-13, 2013. Fortaleza, Brazil

170

	165

