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WHEN the magician pulls the rabbit
from the hat, the spectator can respond
either with mystification or with curios-

ity. He can enjoy the surprise and the wonder of
the unexplained (and perhaps inexplicable), or he
can search for an explanation.

Suppose curiosity is his main response—that he
adopts a scientist's attitude toward the mystery.
What questions should a scientific theory of magic
answer? First, it should predict the performance
of a magician handling specified tasks—producing a
rabbit from a hat, say. It should explain how the
production takes place, what processes are used,
and what mechanisms perform those processes. It
should predict the incidental phenomena that ac-
company the magic—the magician's patter and his
pretty assistant—and the relation of these to the
mystification process. It should show how changes
in the attendant conditions—both changes "inside"
the members of the audience and changes in the
feat of magic—alter the magician's behavior. It
should explain how specific and general magician's
skills are learned, and what the magician "has"
when he has learned them.
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THEORY OF PROBLEM SOLVING—1958

Now I have been quoting—with a few word sub-
stitutions—from a paper published in the Psycho-
logical Review in 1958 (Newell, Shaw, & Simon,
1958). In that paper, titled "Elements of a Theory
of Human Problem Solving," our research group re-
ported on the results of its first two years of activ-
ity in programming a digital computer to perform
problem-solving tasks that are difficult for humans.
Problem solving was regarded by many, at that
time, as a mystical, almost magical, human activity
—as though the preservation of human dignity de-
pended on man's remaining inscrutable to himself,
on the magic-making processes remaining unex-
plained.

In the course of writing the "Elements" paper,
we searched the literature of problem solving for a
statement of what it would mean to explain human
problem solving, of how we would recognize an
explanation if we found one. Failing to discover a
statement that satisfied us, we manufactured one
of our own—essentially the paragraph I para-
phrased earlier. Let me quote it again, with the
proper words restored, so that it will refer to the
magic of human thinking and problem solving, in-
stead of stage magic.

What questions should a theory of problem solving
answer? First, it should predict the performance of a
problem solver handling specified tasks. It should explain
how human problem solving takes place: what processes
are used, and what mechanisms perform these processes.
It should predict the incidental phenomena that accom-
pany problem solving, and the relation of these to the
problem-solving process. . . . It should show how changes
in the attendant conditions—both changes "inside" the
problem solver and changes in the task confronting him—
alter problem-solving behavior. It should explain how
specific and general problem-solving skills are learned, and
what it is that the problem solver "has" when he has
learned them [p. 151].
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A Strategy

This view of explanation places its central em-
phasis on process—on how particular human be-
haviors come about, on the mechanisms that enable
them. We can sketch out the strategy of a re-
search program for achieving such an explanation, a
strategy that the actual events have been following
pretty closely, at least through the first eight steps:

1. Discover and define a set of processes that would
enable a system capable of storing and manipulating pat-
terns to perform complex nonnumerical tasks, like those a
human performs when he is thinking.

2. Construct an information-processing language, and a
system for interpreting that language in terms of ele-
mentary operations, that will enable programs to be writ-
ten in terms of the information processes that have been
defined, and will permit those programs to be run on a
computer.

3. Discover and define a program, written in the
language of information processes, that is capable of solving
some class of problems that humans find difficult. Use
whatever evidence is available to incorporate in the pro-
gram processes that resemble those used by humans. (Do
not admit processes, like very rapid arithmetic, that humans
are known to be incapable of.)

4. If the first three steps are successful, obtain data,
as detailed as possible, on human behavior in solving the
same problems as those tackled by the program. Search
for the similarities and differences between the behavior of
program and human subject. Modify the program to
achieve a better approximation to the human behavior.

5. Investigate a continually broadening range of human
problem-solving and thinking tasks, repeating the first four
steps for each of them. Use the same set of elementary
information processes in all of the simulation programs, and
try to borrow from the subroutines and program organiza-
tion of previous programs in designing each new one.

6. After human behavior in several tasks has been ap-
proximated to a reasonable degree, construct more general
simulation programs that can attack a whole range of
tasks--winnow out the "general intelligence" components
of the performances, and use them to build this more gen-
eral program.

7. Examine the components of the simulation programs
for their relation to the more elementary human perform-
ances that are commonly studied in the psychological
laboratory: rote learning, elementary concept attainment,
immediate recall, and so on. Draw inferences from simu-
lations to elementary performances, and vice versa, so as
to use .standard experimental data to test and improve the
problem-solving theories.

8. Search for new tasks (e.g., perceptual and language
tasks) that might provide additional arenas for testing the
theories and drawing out their implications.

9. Begin to search for the neurophysiological counter-
parts of the elementary information processes that are
postulated in the theories. Use neurophysiological evidence

to improve the problem-solving theories, and inferences
from the problem-solving theories as clues for the neuro-
physiological investigations.

10. Draw implications from the theories for the improve-
ment of human performance—for example, the improvement
of learning and decision making. Develop and test pro-
grams of application.
11. Review progress to date, and lay out a strategy for

the next period ahead.

Of course, life's programs are not as linear as this
strategy, in the simplified form in which we have
presented it. A good strategy would have to con-
tain many checkpoints for evaluation of progress,
many feedback loops, many branches, many itera-
tions. Step 1 of the strategy, for example, was a
major concern of our research group (and other
investigators as well) in 1955-56, but new ideas,
refinements, and improvements have continued to
appear up to the present time. Step 7 represented
a minor part of our activity as early as 1956, be-
came much more important in 1958-61, and has
remained active since.

Nor do strategies spring full-grown from the brow
of Zeus. Fifteen years' hindsight makes it easy to
write down the strategy in neat form. If anyone
had attempted to describe it prospectively in 1955,
his version would have been much cruder and prob-
ably would lack some of the last six steps.

The Logic Theorist

The "Elements" paper of 1958 reported a suc-
cessful initial pass through the first three steps in
the strategy. A set of basic information processes
for manipulating nonnumerical symbols and symbol
structures had been devised (Newell & Simon,
1956). A class of information-processing or list-
processing languages had been designed and im-
plemented, incorporating the basic information
processes, permitting programs to be written in
terms of them, and enabling these programs to be
run on computers (Newell & Shaw, 1957). A
program, The Logic Theorist (LT), had been writ-
ten in one of these languages, and had been shown,
by running it on a computer, to be capable of solv-
ing problems that are difficult for humans (Newell,
Shaw, & Simon, 1957).

LT was, first and foremost, a demonstration of
sufficiency. The program's ability to discover
proofs for theorems in logic showed that, with no
more capabilities than it possessed—capabilities for
reading, writing, storing, erasing, and comparing
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patterns-—a system could perform tasks that, in
humans, require thinking. To anyone with a taste
for parsimony, it suggested (but, of course, did not
prove) that only these capabilities, and no others,
should be postulated to account for the magic of
human thinking. Thus, the "Elements" paper pro-
posed that "an explanation of an observed behavior
of the organism is provided by a program of primi-
tive information processes that generates this be-
havior [p. 151]," and exhibited LT as an example
of such an explanation.

The sufficiency proof, the demonstration of prob-
lem-solving capability at the human level, is only a
first step toward constructing an information-pro-
cessing theory of human thinking. It only tells
us that in certain stimulus situations the correct
(that is to say, the human) gross behavior can be
produced. But this kind of blind S-R relation
between program and behavior does not explain the
process that brings it about. We do not say that
we understand the magic because we can predict
that a rabbit will emerge from the hat when the
magician reaches into it. We want to know how it
was done-—how the rabbit got there. Programs
like LT are explanations of human problem-solving
behavior only to the extent that the processes they
use to discover solutions are the same as the human
processes.

LT's claim to explain process as well as result
rested on slender evidence, which was summed up
in the "Elements" paper as follows:

First, . . . (LT) is in fact capable of finding proofs for
theorems—hence incorporates a system of processes that is
sufficient for a problem-solving mechanism. Second, its
ability to solve a particular problem depends on the se-
quence in which problems are presented to it in much the
same way that a human subject's behavior depends on
this sequence. Third, its behavior exhibits both preparatory
and directional set. Fourth, it exhibits insight both in the
sense of vicarious trial and error leading to "sudden" prob-
lem solution, and in the sense of employing heuristics to
keep the total amount of trial and error within reasonable
bounds. Fifth, it employs simple concepts to classify the
expressions with which it deals. Sixth, its program exhibits
a complex organized hierarchy of problems and subprob-
Icms [p. 162].

There were important differences between LT's
processes and those used by human subjects to solve
similar problems. Nevertheless, in one fundamental
respect that has guided all the simulations that have
followed LT, the program did indeed capture the
central process in human problem solving: LT used

heuristic methods to carry out highly selective
searches, hence to cut down enormous problem
spaces to sizes that a slow, serial processor could
handle. Selectivity of search, not speed, was taken
as the key organizing principle, and essentially no
use was made of the computer's ultrarapid arith-
metic capabilities in the simulation program. Heu-
ristic methods that make this selectivity possible
have turned out to be the central magic in all hu-
man problem solving that has been studied to date.

Thus, in the domain of symbolic logic in which
LT worked, obtaining by brute force the proofs it
discovered by selective search would have meant
examining enormous numbers of possibilities—10
raised to an exponent of hundreds or thousands.
LT typically searched trees of SO or so branches in
constructing the more difficult proofs that it found.

Mentalism and Magic

LT demonstrated that selective search employing
heuristics permitted a slow serial information-proc-
essing system to solve problems that are difficult
for humans. The demonstration defined the terms
of the next stages of inquiry: to discover the heuris-
tic processes actually used by humans to solve such
problems, and to verify the discovery empirically.

We will not discuss here the methodological issues
raised by the discovery and certification tasks, apart
from one preliminary comment. An explanation of
the processes involved in human thinking requires
reference to things going on inside the head. Amer-
ican behaviorism has been properly skeptical of
"mentalism"—of attempts to explain thinking by
vague references to vague entities and processes
hidden beyond reach of observation within the
skull. Magic is explained only if the terms of ex-
planation are less mysterious than the feats of
magic themselves. It is no explanation of the
rabbit's appearing from the hat to say that it
"materialized."

Information-processing explanations refer fre-
quently to processes that go on inside the head—in
the mind, if you like—and to specific properties
of human memory: its speed and capacity, its or-
ganization. These references are not intended to
be in the least vague. What distinguishes the in-
formation-processing theories of thinking and prob-
lem solving described here from earlier discussion
of mind is that terms like "memory" and "symbol
structure" are now pinned down and defined in
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sufficient detail to embody their referents in pre-
cisely stated programs and data structures.

An internal representation, or "mental image,"
of a chess board, for example, is not a metaphorical
picture of the external object, but a symbol struc-
ture with definite properties on which well-defined
processes can operate to retrieve specified kinds of
information (Baylor & Simon, 1966; Simon &
Barenfelcl, 1969).

The programmability of the theories is the guar-
antor of their opcrationality, an iron-clad insurance
against admitting magical entities into the head.
A computer program containing magical instruc-
tions does not run, but it is asserted of these infor-
mation-processing theories of thinking that they can
be programmed and will run. They may be em-
pirically correct theories about the nature of human
thought processes or empirically invalid theories;
they are not magical theories.

Unfortunately, the guarantee provided by pro-
grammability creates a communication problem.
Information-processing languages are a, barrier to
the communication of the theories as formidable as
the barrier of mathematics in the physical sciences.
The theories become fully accessible only to those
who, lay mastering the languages, climb over the
barrier. Any attempt to communicate in natural
language must perforce be inexact.

There is the further clanger that, in talking about
these theories in ordinary language, the listener may
be seduced into attaching to terms their traditional
meanings. ]f the theory speaks of "search," he
may posit a little homunculus inside the head to do
the searching; if it speaks of "heuristics" or "rules
of thumb," he may introduce the same homunculus
to remember and apply them. Then, of course, he
will be interpreting the theory magically, and will
object that it is no theory.

The only solution to this problem is the hard
solution. Psychology is now taking the road
taken earlier by other sciences: it is introducing es-
sential formalisms to describe and explain its
phenomena. Natural language formulations of the
phenomena of human thinking did not yield ex-
planations of what was going on; formulations in
information-processing languages appear to be
yielding such explanations. And the pain and cost
of acquiring the new tools must be far less than
the pain and cost of trying to master difficult
problems with inadequate tools.

Our account today will be framed in ordinary
language. But we must warn you that it is a trans-
lation from information-processing languages which,
like most translations, has probably lost a good deal
of the subtlety of the original. In particular, we
warn you against attaching magical meanings to
terms that refer to entirely concrete and opera-
tional phenomena taking place in fully defined and
operative information-processing systems. The ac-
count will also be Pittsburgh-centric. It will refer
mainly to work of the Carnegie-RAND group, al-
though information-processing psychology enlists
an ever-growing band of research psychologists,
many of whom arc important contributors of evi-
dence to the theory presented here.

THEORY OF PROBLEM SOLVING—1970

The dozen years since the publication of the
"Elements" paper has seen a steady growth of ac-
tivity in information-processing psychology—both
in the area of problem solving and in such areas as
learning, concept formation, short-term memory
phenomena, perception, and language behavior.
Firm contact has been made with more traditional
approaches, and information-processing psychology
has joined (or been joined by) the mainstream of
scientific inquiry in experimental psychology today.8

Instead of tracing history here, we should like to
give a brief account of the product of the history, of
the theory of human problem solving that has
emerged from the research.

The theory makes reference to an information-
processing system, the problem solver, confronted
by a task. The task is defined objectively (or
from the viewpoint of an experimenter, if you pre-
fer) in terms of a task environment. It is defined
by the problem solver, for purposes of attacking it,
in terms of a problem space. The shape of the
theory can be captured by four propositions
(Newell & Simon, in press, Ch. 14):

1. A few, and only a few, gross characteristics of
the human information-processing system are in-
variant over task and problem solver.

2. These characteristics are sufficient to deter-
mine that a task environment is represented (in the
information-processing system) as a problem space,

3 The authors have undertaken a brief history of these
developments in an Addendum to their book, Human Prob-
lem Solving (Newell & Simon, in press).
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and that problem solving takes place in a problem
space.

3. The structure of the task environment deter-
mines the possible structures of the problem space.

4. The structure of the problem space determines
the possible programs that can be used for problem
solving.

These are the bones of the theory. In the next
pages, we will undertake to clothe them in some
flesh.

Characteristics of the Information-Processing
System

When human beings are observed working on
well-structured problems that are difficult but not
unsolvable for them, their behaviors reveal certain
broad characteristics of the underlying neurophysio-
logical system that supports the problem-solving
processes; but at the same time, the behaviors con-
ceal almost all of the detail of that system.

The basic characteristics of the human informa-
tion-processing system that shape its problem-solv-
ing efforts are easily stated: The system operates
essentially serially, one-process-at-a-time, not in
parallel fashion. Its elementary processes take
tens or hundreds of milliseconds. The inputs and
outputs of these processes are held in a small short-
term memory with a capacity of only a few symbols.
The system has access to an essentially infinite long-
term memory, but the time required to store a
symbol in that memory is of the order of seconds or
tens of seconds.

These properties-—serial processing, small short-
term memory, infinite long-term memory with fast
retrieval but slow storage—impose strong con-
straints on the ways in which the system can seek
solutions to problems in larger problem spaces. A
system not sharing these properties—a parallel sys-
tem, say, or one capable of storing symbols in long-
term memory in milliseconds instead of seconds—
might seek problem solutions in quite different ways
from the system we are considering.

The evidence that the human system has the
properties we have listed comes partly from prob-
lem-solving behavior itself. No problem-solving
behavior has been observed in the laboratory that
seems interpretable in terms of simultaneous rapid
search of disjoint parts of the solver's problem
space. On the contrary, the solver always appears
to search sequentially, adding small successive ac-

cretions to his store of information about the prob-
lem and its solution.*

Additional evidence for the basic properties of
the system as well as data for estimating the system
parameters come from simpler laboratory tasks.
The evidence for the 5 or 10 seconds required to
store a symbol in long-term memory comes mainly
from rote memory experiments; for the seven-sym-
bol capacity of short-term memory, from immediate
recall experiments; for the 200 milliseconds needed
to transfer symbols into and out of short-term
memory, from experiments requiring searches down
lists or simple arithmetic computations.5

These things we do learn about the information-
processing system that supports human thinking—
but it is significant that we learn little more, that
the system might be almost anything as long as it
meets these few structural and parametral specifica-
tions. The detail is elusive because the system is
adaptive. For a system to be adaptive means that
it is capable of grappling with whatever task en-
vironment confronts it. Hence, to the extent a
system is adaptive, its behavior is determined by
the demands of that task environment rather than
by its own internal characteristics. Only when the
environment stresses its capacities along some di-
mension—presses its performance to the limit—do
we discover what those capabilities and limits are,
and are we able to measure some of their param-
eters (Simon, 1969, Ch. 1 and 2).

Structure of Task Environments

If the study of human behavior in problem sit-
uations reveals only a little about the structure of
the information-processing system, it reveals a great
deal about the structure of task environments.

4 Claims that human distractability and perceptual capa-
bility imply extensive parallel processing have been refuted
by describing or designing serial information-processing
systems that are distractable and possess such perceptual
capabilities. (We are not speaking of the initial "sensory"
stages of visual or auditory encoding, which certainly in-
volve parallel processing, but of the subsequent stages,
usually called perceptual.) For further discussion of this
issue, see Simon (1967) and Simon and Barenfeld (1969).
Without elaborating here, we also assert that incremental
growth of knowledge in the problem space is not incom-
patible with experiences of sudden "insight." For fur-
ther discussion of this point, see Newell, Shaw, and Simon
(1962) and Simon (1966).

5 Some of this evidence is reviewed in Newell and Simon
(in press, Ch. 14).
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Consider the cryptarithmetic problem

DONALD
+GERALD

ROBERT

which has been studied on both shores of the At-
lantic, in England by Bart.lett (1958), and in the
United States in our own laboratory (Newell, 1967;
Newell & Simon, in press, Part II). The problem
is to substitute numbers for the letters in the three
names in such a way as to produce a correct arith-
metic sum. As the problem is usually posed, the
hint is given that D = 5. If we look at the proto-
cols of subjects who solve the problem, we find that
they all substitute numbers for the letters in ap-
proximately the same sequence. First, they set
T = 0, then E - 9 and R = 7, then A = 4 and
L = 8, then G = 1, then N = 6 and B = 3, and,
finally, 0 = 2.

To explain this regularity in the sequence of
assignments, we must look first at the structure of
the task itself. A cryptarithmetic problem may
be tackled by trying out various tentative assign-
ments of numbers to letters, rejecting them and
trying others if they lead to contradictions. In
the DONALD + GERALD problem, hundreds of
thousands of combinations would have to be tried
to find a solution in this way. (There are 9! =
362,880 ways of assigning nine digits to nine
letters.) A serial processor able to make and test
five assignments per minute would require a month
to solve the problem; many humans do it in 10
minutes or less.

But the task structure admits a heuristic that
involves processing first those columns that are most
constrained. If two digits in a single column are
already known, the third can be found by applying
the ordinary rule of arithmetic. Hence, from D
= 5, we obtain the right-most column: 5 + 5 = T,
hence T = 0, with a carry of 1 to the next column.
Each time a new assignment is made in this way,
the information can be carried into other columns
where the same letter appears, and then the most-
constrained column of those remaining can be se-
lected for processing. For the DONALD + GER-
ALD problem (but not, of course, for all crypt-
arithmetic problems), it turns out that the correct
assignments for T, E, R, A, L, and G can all be
found in this way without any trial-and-error
search whatsoever, leaving only N, B, and 0 for
the possible permutations of 6, 3, and 2.

Not only does this heuristic of processing the
most-constrained columns first almost eliminate the
need for search, but it also reduces the demands on
the short-term memory of the problem solver. All
the information he has acquired up to any given
point can be represented on a single external dis-
play, simply by replacing each letter by the digit
assigned to it as soon as the assignment is made.
Since the assignments are definite, not tentative,
no provision need be made by an error-free process-
ing system for correcting wrong assignments, nor
for keeping track of assignments that were tried
previously and failed. The human information-
processing system is subject to error, however, hence
requires back-up capabilities not predictable from
the demands of the task environment.

Hence, from our knowledge of properties of this
task environment, we can predict that an error-
free serial information-processing system using the
heuristic we have described could solve the DON-
ALD + GERALD problem rather rapidly, and
without using much short-term memory along the
way. But if it solved the problem by this method,
it would have to make the assignments in the par-
ticular order we have indicated.

The empirical fact that human solvers do make
the assignments in roughly this same order provides
us with one important piece of evidence (we can
obtain many others by analyzing their thinking-
aloud protocols and eye movements) that they are
operating as serial systems with limited short-term
memories. But the empirical data show that there
are few task-independent invariants of the human
processor beyond the basic structural features we
have mentioned. Since the problem solver's be-
havior is adaptive, we learn from his protocol the
shape of the task environment of DONALD +
GERALD—the logical interdependencies that hold
among the several parts of that problem. We also
learn from the protocol the structure of the prob-
lem space that the subject uses to represent the
task environment, and the program he uses to search
the problem space. Though the problem space
and program are not task-invariant, they constitute
the adaptive interface between the invariant fea-
tures of the processor and the shape of the environ-
ment, and can be understood by considering the
functional requirements that such an interface must
satisfy.



HUMAN PROBLEM SOLVING 151

Problem Spaces

Subjects faced with problem-solving tasks repre-
sent the problem environment in internal memory
as a space of possible situations to be searched in
order to find that situation which corresponds to the
solution. We must distinguish, therefore, between
the task environment—the omniscient observer's
way of describing the actual problem "out there"—
and the problem space—the way a particular sub-
ject represents the task in order to work on it.

Each node in a problem space may be thought of
as a possible state of knowledge to which the prob-
lem solver may attain. A state of knowledge is
simply what the problem solver knows about the
problem at a particular moment of time—knows
in the sense that the information is available to him
and can be retrieved in a fraction of a second.
After the first step of the DONALD + GERALD
problem, for example, the subject knows not only
that D = S, but also that T = 0 and that the carry
into the second column from the right is 1. The
problem solver's search for a solution is an odyssey
through the problem space, from one knowledge
state to another, until his current knowledge state
includes the problem solution—that is, until he
knows the answer.

Problem spaces, even those associated with rela-
tively "simple" task environments, are enormous.
Since there are 9! =362,880 possible assignments
of nine digits to nine letters, we may consider the
basic DONALD + GERALD space to be 9! in
size, which is also the size of the space of tic-tac-
toe. The sizes of problem spaces for games like
chess or checkers are measured by very large
powers of ten—10120, perhaps, in the case of chess.
The spaces associated with the problem called "life"
are, of course, immensely larger.

For a serial information-processing system, how-
ever, the exact size of a problem space is not im-
portant, provided the space is very large. A serial
processor can visit only a modest number of knowl-
edge states (approximately 10 per minute, the
thinking-aloud data indicate) in its search for a
problem solution. If the problem space has even a
few thousand states, it might as well be infinite—
only highly selective search will solve problems in it.

Many of you have tried to solve the Tower of
Hanoi problem. (This is very different from the
problem of Hanoi in your morning newspaper,
but fortunately much less complex.) There are

three spindles, on one of which is a pyramid of
wooden discs. The discs are to be moved, one by
one, from this spindle, and all placed, in the end,
on one of the other spindles, with the constraint
that a disc may never be placed on another that
is smaller than it is. If there are four discs, the
problem space comprised of possible arrangements
of discs on spindles contains only 3* = 81 nodes,
yet the problem is nontrivial for human adults.
The five-disc problem, though it admits only 243
arrangements, is very difficult for most people; and
the problems with more than five discs almost un-
solvable—until the right heuristic is discovered!

Problems like this one—where the basic problem
space is not immense—tell us how little trial-and-
error search the human problem solver is capable
of, or is willing to endure. Problems with immense
spaces inform us that the amount of search re-
quired to find solutions, making use of available
structure, bears little or no relation to the size of
the entire space. To a major extent, the power of
heuristics resides in their capability for examining
small, promising regions of the entire space and
simply ignoring the rest. We need not be con-
cerned with how large the haystack is, if we can
identify a small part of it in which we are quite
sure to find a needle.

Thus, to understand the behavior of a serial
problem solver, we must turn to the structure of
problem spaces and see just how information is im-
bedded in such spaces that can be extracted by
heuristic processes and used to guide search to a
problem solution.

Sources of Information in Problem Spaces

Problem spaces differ not only in size—a differ-
ence we have seen to be usually irrelevant to prob-
lem difficulty—but also in the kinds of structure
they possess. Structure is simply the antithesis
of randomness, providing redundancy that can be
used to predict the properties of parts of the space
not yet visited from the properties of those already
searched. This predictability becomes the basis for
searching selectively rather than randomly.

The security of combination safes rests on the
proposition that there is no way, short of exhaus-
tive search, to find any particular point in a fully
random space. (Of course, skilled safecrackers
know that complete randomness is not always
achieved in the construction of real-world safes,
but that is another matter.)
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Nonrandomness is information, and information
can he exploited to search a problem space in prom-
ising directions and to avoid the less promising. A
little information goes a long way to keep within
bounds the amount of search required, on average,
to find solutions.

Hill climbing. The simplest example of informa-
tion that can be used to solve problems without
exhaustive search is the progress test—the test that
shows that one is "getting warmer." In climbing
a (not too precipitous) hill, a good heuristic rule is
always to go upward. If a particular spot is higher,
reaching it probably represents progress toward the
top. The time it takes to reach the top will de-
pend on the height of the hill and its steepness,
but not on its circumference or area—not on the
size of the total problem space.

Types oj information. There is no great mystery
in the nature of the information that is available
in many typical problem spaces; and we now know
pretty well how humans extract that information
and use it to search selectively. For example, in
the DONALD + GERALD problem, we saw how
information was obtained by arithmetic and al-
gebraic operations. Now, abstracting from par-
ticular examples, can we characterize the structure
of problem spaces in more general terms?

Each knowledge state is a node in the problem
space. Having reached a particular node, the prob-
lem solver can choose an operator from among a
set of operators available to him, and can apply it
to reach a new node. Alternatively, the problem
solver can abandon the node he has just reached,
select another node from among those previously
visited, and proceed from that node. Thus, he must
make two kinds of choices: choice of a node from
which to proceed, and choice of an operator to
apply at that node.

We can think of information as consisting of one
or more evaluations (not necessarily numerical, of
course) that can be assigned to a node or an op-
erator. One kind of evaluation may rank nodes
with respect to their promise as starting points for
further search. Another kind of evaluation may
rank the operators at a particular node with respect
to their promise as means for continuing from
that node. The problem-solving studies have dis-
closed examples of both kinds of evaluations: for
node and operator selection, respectively.

When we examine how evaluations are made—-

what information they draw on—we again dis-
cover several varieties. An evaluation may depend
only on properties of a single node. Thus, in
theorem-proving tasks, subjects frequently decline
to proceed from their current node because "the
expression is too complicated to work with." This
is a judgment that the node is not a promising one.
Similarly, we find frequent statements in the proto-
cols to the effect that "it looks like Rule 7 would
apply here."

In most problem spaces, the choice of an efficient
next step cannot be made by absolute evaluation of
the sorts just illustrated, but instead is a function
of the problem that is being solved. In theorem
proving, for example, what to do next depends on
what theorem is to be proved. Hence, an im-
portant technique for extracting information to be
used in evaluators (of either kind) is to compare
the current node with characteristics of the desired
state of affairs and to extract differences from the
comparison. These differences serve as evaluators
of the node (progress tests) and as criteria for
selecting an operator (operator relevant to the
differences). Reaching a node that differs less from
the goal state than nodes visited previously is
progress; and selecting an operator that is relevant
to a particular difference between current node and
goal is a technique for (possibly) reducing that
difference.

The particular heuristic search system that finds
differences between current and desired situations,
finds an operator relevant to each difference, and
applies the operator to reduce the difference is
usually called means-ends analysis. Its common
occurrence in human problem-solving behavior has
been observed and discussed frequently since
Duncker (1945). Our own data analyses reveal
means-ends analysis to be a prominent form of
heuristic organization in some tasks—proving the-
orems, for example. The procedure is captured in
the General Problem Solver (GPS) program which
has now been described several times in the psycho-
logical literature.8 The GPS find-and-reduce-differ-
ence heuristic played the central role in our theory
of problem solving for a decade beginning with its

0 Brief descriptions of GPS can be found in Hilgard and
Bower (1966) and Hilgard and Atkinson (1.967). For
an extensive analysis of GPS, see Ernst and Newell (1969).
The relation of GPS to human behavior is discussed in
Newell and Simon (in press, Ch. 9).
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discovery in 1957, but more extensive data from
a wider range of tasks have now shown it to be a
special case of the more general information-extract-
ing processes we are describing here.

Search strategies. Information obtained by find-
ing differences between already-attained nodes and
the goal can be used for both kinds of choices the
problem solver must make—the choice of node to
proceed from, and the choice of operator to apply.
Examining how this information can be used to
organize search has led to an explanation of an
important phenomenon observed by de Groot (1965)
in his studies of choice in chess. De Groot found
that the tree of move sequences explored by players
did not originate as a bushy growth, but was gen-
erated, instead, as a bundle of spindly explorations,
each of them very little branched. After each
branch had been explored to a position that could
be evaluated, the player returned to the base posi-
tion to pick up a new branch for exploration. DC
Groot dubbed this particular kind of exploration,
which was universal among the chessplayers he
studied, "progressive deepening."

The progressive deepening strategy is not im-
posed on the player by the structure of the chess
task environment. Indeed, one can show that a
different organization would permit more efficient
search. This alternative method is called the scan-
and-search strategy, and works somewhat as fol-
lows: Search proceeds by alternation of two phases:
(a) in the first phase, the node that is most promis-
ing (by some evaluation) is selected for continua-
tion; (b) in the second phase, a few continuations
are pursued from that node a short distance for-
ward, and the new nodes thus generated are evalu-
ated and placed on a list for Phase 1. The scan-
search organization avoids stereotypy. If search
has been pursued in a particular direction because
it has gone well, the direction is reviewed re-
peatedly against other possibilities, in case its
promise begins to wane.

A powerful computer program for finding check-
mating combinations, called MATER, constructed
with the help of the scan-search strategy, appears
a good deal more efficient than the progressive
deepening strategy (Baylor & Simon, 1966).
Nevertheless, in chess and the other task environ-
ments we have studied, humans do not use the
scan-search procedure to organize their efforts. In
those problems where information about the cur-

rent node is preserved in an external memory, they
tend to proceed almost always from the current
knowledge state, and back up to an earlier node only
when they find themselves in serious trouble (Ne-
well & Simon, in press, Ch. 12 and 13). In task
environments where the information about the cur-
rent node is not preserved externally (e.g., the
chessboard under rules of touch-move), and espe-
cially if actions are not reversible, humans tend to
preserve information (externally or internally)
about a base node to which they return when evalu-
ation rejects the current node. This is essentially
the progressive deepening strategy.

We can see now that the progressive deepening
strategy is a response to limits of short-term mem-
ory, hence provides additional evidence for the
validity of our description of the human informa-
tion-processing system. When we write a problem-
solving program without concern for human limita-
tions, we can allow it as much memory of nodes
on the search tree as necessary—hence we can use
a scan-search strategy. To the human problem
solver, with his limited short-term memory, this
strategy is simply not available. To use it, he
would have to consume large amounts of time stor-
ing in his long-term memory information about the
nodes he had visited.

That, in sum, is what human heuristic search in
a problem space amounts to. A serial information
processor with limited short-term memory uses the
information extractable from the structure of the
space to evaluate the nodes it reaches and the op-
erators that might be applied at those nodes. Most
often, the evaluation involves finding differences be-
tween characteristics of the current node and those
of the desired node (the goal). The evaluations
are used to select a node and an operator for the
next step of the search. Operators are usually ap-
plied to the current node, but if progress is not
being made, the solver may return to a prior node
that has been retained in memory—the limits of
the choice of prior node being set mostly by short-
term memory limits. These properties have been
shown to account for most of the human problem-
solving behaviors that have been observed in the
three task environments that have been studied in-
tensively: chess playing, discovering proofs in logic,
and cryptarithmctic; and programs have been
written to implement problem-solving systems with
these same properties.
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Alternative Problem Spaces

Critics of the problem-solving theory we have
sketched above complain that it explains too little.
It has been tested in detail against behavior in
only three task environments—and these all in-
volving highly structured symbolic tasks.7 More
serious, it explains behavior only after the problem
space has been postulated—it does not show how
the problem solver constructs his problem space in
a given task environment. How, when he is faced
with a cryptarithmetic problem, does he enter a
problem space in which the nodes are defined as
different possible assignments of letters to numbers?
How does he become aware of the relevance of
arithmetic operations for solving the problem?
What suggests the "most-constrained-column-first"
heuristic to him?

Although we have been careful to distinguish
between the task environment and the problem
space, we have not emphasized how radical can be
the differences among alternative problem spaces
for representing the same problem. Consider the
following example: An elimination tournament, with
109 entries, has been organized by the local tennis
club. Players are paired, the losers eliminated, and
the survivors re-paired until a single player emerges
victorious. How should the pairings be arranged
to minimize the total number of individual matches
that will have to be played? An obvious representa-
tion is the space of all possible "trees" of match-
ings of 109 players—an entirely infeasible space
to search. Consider an alternative space in which
each node is a possible sequence of matches con-
stituting the tournament. This is, again, an enor-
mous space, but there is a very simple way to solve
the problem without searching it. Take an arbitrary
sequence in the space, and note the number of
surviving players after each match. Since the
tournament begins with 109 players, and since each
match eliminates one player, there must be exactly
108 matches to eliminate all but one player—no
matter which sequence we have chosen. Hence,
the minimum number of matches is 108, and any
tree we select will contain exactly this number.

There are many "trick" problems of this kind
where selection of the correct problem space per-
mits the problem to be solved without any search

7 The empirical findings, only some of which have been
published to date, are collected in Parts II, III, and IV, of
Newell and Simon (in press).

whatsoever. In the more usual case, matters are
not so extreme, but judicious selection of the prob-
lem space makes available information that reduces
search by orders of magnitude in comparison with
what is required if a less sophisticated space is
used.

We cannot claim to have more than fragmentary
and conjectural answers to the questions of repre-
sentation. The initial question we asked in our
research was: "What processes do people use to
solve problems?" The answer we have proposed is:
"They carry out selective search in a problem
space that incorporates some of the structural in-
formation of the task environment." Our answer
now leads to the new question: "How do people
generate a problem space when confronted with
a new task?" Thus, our research, like all scien-
tific efforts, has answered some questions at the
cost of generating some new ones.

By way of parenthesis, however, we should like
to refute one argument that seems to us exag-
gerated. It is sometimes alleged that search in a
well-defined problem space is not problem solving
at all—that the real problem solving is over as
soon as the problem space has been selected. This
proposition is easily tested and shown false. Pick a
task environment and a particular task from it. To
do the task, a person will first have to construct a
problem space, then search for a solution in that
space. Now give him a second task from the same
environment. Since he can work in the problem
space he already has available, all he needs to do
this time is to search for a solution. Hence, the
second task—if we are to accept the argument—is
no problem at all. Observation of subjects' be-
havior over a sequence of chess problems, crypt-
arithmetic puzzles, or theorem-finding problems
shows the argument to be empirically false. For
the subjects do not find that all the problems be-
come trivial as soon as they have solved the first
one. On the contrary, the set of human behaviors
we call "problem solving" encompasses both the
activities required to construct a problem space in
the face of a new task environment, and the ac-
tivities required to solve a particular problem in
some problem space, new or old.

WHERE Is THE THEORY GOING?

Only the narrow seam of the present divides past
from future. The theory of problem solving in 1970
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—and especially the part of it that is empirically
validated—is primarily a theory that describes the
problem spaces and problem-solving programs, and
shows how these adapt the information-processing
system to its task environment. At the same time
that it has answered some basic questions about
problem-solving processes, the research has raised
new ones: how do problem solvers generate prob-
lem spaces; what is the neurological substrate for
the serial, limited-memory information processor;
how can our knowledge of problem-solving processes
be used to improve human problem solving and
learning? In the remaining pages of this article,
we should like to leave past and present and look
briefly—using Milton's words-—into "the never-end-
ing flight of future days."

Constructing Problem Spaces

We can use our considerable knowledge about
the problem spaces subjects employ to solve prob-
lems in particular task environments as our taking-
off place for exploring how the problem spaces come
into being, how the subjects construct them.

Information for construction. There are at least
six sources of information that can be used to help
construct a problem space in the face of a task
environment:

1. The task instructions themselves, which de-
scribe the elements of the environment more or
less completely, and which may also provide some
external memory—say, in the form of a chessboard.

2. Previous experience with the same task or a
nearly identical one. (A problem space available
from past experience may simply be evoked by
mention of the task.)

3. Previous experience with analogous tasks, or
with components of the whole task.

4. Programs stored in long-term memory that
generalize over a range of tasks.

5. Programs stored in long-term memory for
combining task instructions with other information
in memory to construct new problem spaces and
problem-solving programs.

6. Information accumulated while solving a prob-
lem, which may suggest changing the problem space.
(In particular, it may suggest moving to a more
abstract and simplified planning space.)

The experience in the laboratory with subjects
confronting a new task, and forced, thereby, to

generate within a few minutes a problem space for
tackling the task, suggests that the first source—
task instructions and illustrative examples accom-
panying them—plays a central role in generation of
the problem space. The array presented with the
cryptarithmetic problem, for example, suggests im-
mediately the form of the knowledge state (or at
least the main part of i t ) ; namely, that it consists
of the same array modified by the substitution in
it of one or more digits for letters.

The second source—previous experience with the
same task—is not evident, of course, in the be-
havior of naive subjects, but the third source—
analogous and component tasks—plays an impor-
tant role in cryptarithmetic. Again, the form of
the external array in this task is sufficient to evoke
in most subjects the possible relevance of arith-
metic processes and arithmetic properties (odd,
even, and so on).

The fourth source—general purpose programs in
long-term memory—is a bit more elusive. But, as
we have already noted, subjects quite frequently
use means-ends programs in their problem-solving
endeavors, and certainly bring these programs to
the task from previous experience. We have al-
ready mentioned the General Problem Solver, which
demonstrates how this generality can be achieved
by factoring the specific descriptions of individual
tasks from the task-independent means-ends analy-
sis processes.

The fifth and sixth sources on the list above are
mentioned because common sense tells us that they
must sometimes play a role in the generation of
problem spaces. We have no direct evidence for
their use.

What evidence we have for the various kinds of
information that are drawn on in constructing prob-
lem spaces is derived largely from comparing the
problem spaces that subjects are observably working
in with the information they are known to have
access to. No one has, as yet, really observed the
process of generation of the space—a research task
that deserves high priority on the agenda.

Some simulation programs. Some progress has
been made, however, in specifying for computers
several programs that might be regarded as candi-
date theories as to how it is done by humans. Two
of these programs were constructed, by Tom Wil-
liams (1965) and Donald Williams (1969), re-
spectively, in the course of their doctoral research.
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A General Game Playing Program (GGPP), de-
signed by Tom Williams, when given the instruc-
tions for a card or board game (somewhat as these
are written in Hoyle, but with the language sim-
plified and smoothed), is able, by interpreting these
instructions, to play the game—at least legal!}' if
not well. GGPP relies primarily on the first,
fourth, and fifth sources of information from the
list above. It has stored in memory general in-
formation about such objects as "cards," "hands,"
"boards," "moves," and is capable of combining
this general information with information derived
from the specific instructions of the game.

The Aptitude Test Taker, designed by Donald
Williams, derives its information from worked-out
examples of items on various kinds of aptitude tests
(letter series, letter analogies, number series and
analogies, and so on) in order to construct its own
programs capable of taking the corresponding tests.

These programs put us into somewhat the same
position with respect to the generation of problem
spaces that LT did with respect to problem solving
in a defined problem space: that is to say, they
demonstrate that, certain sets of information-proc-
essing mechanisms are sufficient to do the job over
some range of interesting tasks. They do not prove
that humans do the same job in the same way, using
essentially the same processes, or that these proc-
esses would suffice for all tasks. Tt should be noted
that the programs written by the two Williamses
employ the same kind of basic information-process-
ing system that was used for earlier cognitive simu-
lations. They do not call for any new magic to be
put in the hat.

Planning and abstracting processes. The proc-
esses for generating problem spaces are not unre-
lated to some other processes about which we do
have empirical data—-planning processes. Tn sev-
eral of the tasks that have been studied, and espe-
cially in the logic task, subjects are often observed
to be working in terms more abstract than those
that characterize the problem space they began
with. They neglect certain details of the expres-
sions they are manipulating (e.g., the operations or
connectives), and focus on features they regard as
essential.

One way of describing what they are doing is to
say that they are abstracting from the concrete
detail of the initial problem space in order to con-
struct a plan for a problem solution in a simpler

abstract planning space. Programs have been
written, in the context of GL'S, that are also cap-
able of such abstracting and planning, hence are
capable of constructing a problem space different
from the one in which the problem solving begins.

The evidence from the thinking-aloud protocols
in the logic task suggests, however, that the human
planning activities did not maintain as sharp a
boundary between task space and abstract planning
space as the simulation program did. The human
subjects appeared able to move back and forth be-
tween concrete and abstract objects without treat-
ing the latter as belonging to a separate problem
space. In spite of this difference, the data on
planning behavior give us additional clues as to
how problem spaces can be generated and modified.

Production Systems

A hypothesis about the structure of a complex
system—like a human problem-solving program—
becomes more plausible if we can conceive how a
step-by-step development could have brought about
the finished structure. Minerva sprang full-grown
from the brow of Zeus, but we expect terrestrial
systems to evolve in a more gradual and lawful
fashion—our distrust of the magician again.

Anyone who has written and debugged a large
computer program has probably acquired, in the
process, a healthy skepticism that such an en-
tangled, interconnected structure could have evolved
by small, self-adapting steps. Tn an evolving sys-
tem, a limited, partial capability should grow al-
most continuously into a more powerful capability.
But most computer programs have an all-or-none
character: disable one subroutine and a program
will probably do nothing useful at all.

A development of the past few years in computer
language construction has created an interesting
possible solution to this difficulty. We refer to
the languages known as production systems. In a
production system, each routine has a bipartite
form, consisting of a condition and an action. The
condition defines some test or set of tests to be
performed on the knowledge state. (E.g., "Test if
it is Black's move.") If the test is satisfied, the
action is executed; if the test is not satisfied, no
action is taken, and control is transferred to some
other production. In a pure production system, the
individual productions are simply listed in some
order, and considered for execution in turn.
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The attraction of a production system for our
present concerns-—of how a complex program could
develop step by step—is that the individual pro-
ductions are independent of each other's structures,
and hence productions can be added to the system
one by one. In a new task environment, a subject
learns to notice conditions and make discriminations
of which he was previously unaware (a chessplayer
learns to recognize an open file, a passed pawn, and
so on). Each of these new discriminations can be-
come the condition part of a production, whose ac-
tion is relevant to that condition.

We cannot pursue this idea here beyond noting
its affinity to some classical stimulus-response no-
tions. We do not wish to push the analogy too far,
for productions have some complexities and sub-
tleties of structure that go beyond stimulus-response
ideas, but we do observe that linking a condition
and action together in a new production has many
similarities to linking a stimulus together with its
response. One important difference is that, in the
production, it is the condition—that is, the tests—•
and not the stimulus itself that is linked to the
response. In this way, the production system il-
luminates the problem of defining the effective
stimulus, an old bugaboo of stimulus-response
theory.

Perception and Language

We have seen that research on problem solving
has begun to shift from asking how searches are
conducted in problem spaces, a subject on which
we have gained a considerable understanding, to
asking how problem spaces—internal representa-
tions of problems—are built up in human minds.
But the subject of internal representation links
problem-solving research with two other important
areas of psychology: perception and psycholin-
guistics. The further extension of this linkage (see
Step 8 in the strategy outlined in our introductory
section) appears to be one of the principal tasks for
the next decade.

Elsewhere, one of us has described briefly the
main connections between problem-solving theory
and the theories of perception and psycholin-
guistics (Simon, 1969, pp. 42-52). We will simply
indicate these connections even more briefly here.

Information comes to the human problem solver
principally in the form of statements in natural lan-
guage and visual displays. For information to be

exchanged between these external sources and the
mind, it must be encoded and decoded. The in-
formation as represented externally must be trans-
formed to match the representations in which it is
held inside. It is very difficult to imagine what
these transformations might be as long as we have
access only to the external representations, and
not to the internal. It is a little like building a
program to translate from English to Language X,
where no one will tell us anything about Language
X.

The research on problem solving has given us
some strong hypotheses about the nature of the
internal representations that humans use when they
are solving problems. These hypotheses define for
us, therefore, the endpoint of the translation proc-
ess—they tell us something about Language X. The
hypotheses should provide strong clues to the re-
searcher in perception and to the psycholinguist in
guiding their search for the translation process. In-
deed, we believe that these cues have already been
used to good advantage in both areas, and we
anticipate a great burgeoning of research along
these lines over the coming decade.

Links to Ncurophysiology

The ninth step in the strategy set forth in our
introduction was to seek the neurophysiological
counterparts of the information processes and data
structures that the theory postulates. In this re-
spect, we are in the position of nineteenth-century
chemistry which postulated atoms on the basis of
observations of chemical reactions among mole-
cules, and without any direct evidence for their
existence; or in the position of classical genetics,
which postulated the gene before it could be identi-
fied with any observed microscopic structures in
the cell.

Explanation in psychology will not rest indefi-
nitely at the information-processing level. But the
explanations that we can provide at that level will
narrow the search of the neurophysiologist, for
they will tell him a great deal about the properties
of the structures and processes he is seeking. They
will put him on the lookout for memory fixation
processes with times of the order of five seconds,
for the "bottlenecks" of attention that account for
the serial nature of the processing, for memory
structures of small capacity capable of storing a
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few symbols in a matter of a couple of hundred
milliseconds.

All of this is a prospect for the future. We can-
not claim to see in today's literature any firm
bridges between the components of the central
nervous system as it is described by neurophysiolo-
gists and the components of the information-process-
ing system we have been discussing here. But
bridges there must be, and we need not pause in
expanding and improving our knowledge at the in-
formation-processing level while we wait for them
to be built.

The Practice of Education

The professions always live in an uneasy relation
with the basic sciences that should nourish and be
nourished by them. It is really only within the
present century that medicine can be said to rest
solidly on the foundation of deep knowledge in the
biological sciences, or the practice of engineering
on modern physics and chemistry. Perhaps we
should plead the recency of the dependence in those
fields in mitigation of the scandal of psychology's
meager contribution to education.

It is, of course, incorrect to say that there has
been no contribution. Psychology has provided to
the practice of education a constant reminder of
the importance of reinforcement and knowledge of
results for effective learning. And particularly
under the influence of the Sldnnerians, these prin-
ciples have seen increasingly systematic and con-
scious application in a variety of educational set-
tings.

Until recently, however, psychology has shown
both a reluctance and an inability to address itself
to the question of "what is learned." At a com-
mon sense level, we know perfectly well that rote
learning docs not provide the same basis for lasting
and transferable skills that is provided by "mean-
ingful" learning. We have even a substantial body
of laboratory evidence—for example, the research
by Katona (1940), now 30 years old—that shows
clearly the existence and significance of such dif-
ferences in kinds of learning. But we have largely
been unable to go beyond common sense in charac-
terizing what is rote and what is meaningful. We
have been unable because we have not described
what is learned in these two different modes of
learning—what representation of information or
process has been stored in memory. And we have

not described how that stored information and those
stored programs arc evoked to perform new tasks.

The theory of problem solving described here
gives us a new basis for attacking the psychology
of education and the learning process. It allows us
to describe in detail the information and programs
that the skilled performer possesses, and to show
how they permit him to perform successfully. But
the greatest opportunities for bringing the theory
to bear upon the practice of education will come as
we move from a theory that explains the structure
of human problem-solving programs to a theory that
explains how these programs develop in the face of
task requirements—the kind of theory we have been
discussing in the previous sections of this article.

It does not seem premature at the present stage
of our knowledge of human problem solving to
undertake large-scale development work that will
seek to bring that theory to bear upon education.
Some of the tasks that have been studied in the
basic research programs—proving theorems in logic
and geometry, playing chess, doing cryptarithmetic
problems, solving word problems in algebra, solving
letter-series completion problems from intelligence
tests—are of a level of complexity comparable to
the tasks that face students in our schools and
colleges.8

The experience of other fields of knowledge
teaches us that serious attempts at practical ap-
plication of basic science invariably contribute to
the advance of the basic science as well as the
area of application. Unsuspected phenomena are
discovered that can then be carried back to the
laboratory; new questions are raised that become
topics for basic research. Both psychology and
education stand to benefit in major ways if we make
an earnest effort over the next decade to draw out
the practical lessons from our understanding of
human information processes.

IN CONCLUSION

We have tried to describe some of the main things
that are known about how the magician produces
the rabbit from the hat. We hope we have dis-
pelled the illusion, but we hope also that you are
not disappointed by the relative simplicity of the

11 For the first three of these tasks, see Newell and Simon
(in press); for algebra, Paige and Simon (1966); for letter
scries, Simon and Kotovsky (1963) and Klahr and Wallace
(1970).
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phenomena once explained. Those who have the
instincts and esthetic tastes of scientists presumably
will not be disappointed. There is much beauty
in the superficial complexity of nature. But there
is a deeper beauty in the simplicity of underlying
process that accounts for the external complexity.
There is beauty in the intricacy of human thinking
when an intelligent person is confronted with a
difficult problem. But there is a deeper beauty in
the basic information processes and their organiza-
tion into simple schemes of heuristic search that
make that intricate human thinking possible. It is
a sense of this latter beauty—the beauty of sim-
plicity—that we have tried to convey to you.
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NOTE

Because of illness, Jean Piaget was not able to deliver his
Distinguished Scientific Contribution Award address this
year.


