08/09/2018 Applications of Spatial Weights

GeoDa
An Introduction to Spatial Data Analysis

Homepage Download View on GitHub Data Documentation Support 13
Applications of Spatial Weights

Luc Anselinl
03/17/2018 (revised and updated)

e Introduction
o Objectives
= GeoDa functions covered
o Getting started
e Spatially lagged variables
o Concept
o Creating a spatially lagged variable
= Spatial lag with row-standardized weights
= Spatial lag as a sum of neighboring values
= Spatial window average
= Spatial window sum
o Spatially lagged variables from inverse distance weights
= Principle
= Default setting
= Spatial lags with row-standardized inverse distance weights
o Spatially lagged variables from kernel weights
e Spatial rate smoothing
Principle
Preliminaries
Digression - rescaling coordinates
Simple window average of rates
Spatially smoothed rates
Spatially smoothed rates in the table
e Spatial Empirical Bayes smoothing
o Principle
o Spatial EB rate smoother
e References

O 0O 0O 0O 0O O

Introduction

The main role for spatial weights is their use as the basis for the construction of various tests for spatial
autocorrelation. These measures consist of compromises between attribute (variable) similarity and locational
similarity, with the latter formally expressed through the spatial weights.
However, the weights are also important for the creation of spatially explicit variables. These are variables that
take into account the values observed at neighboring locations.
There are two important applications for this. One pertains to the construction of so-called spatially lagged
variables for inclusion in a spatial regression specification. The other yields an approach to smooth rates by
borrowing strength from the values in neighboring observations. This takes the form of spatially smoothed
rates. We consider each in turn.
For the spatially lagged variables, we will continue to use the data set with point locations of house sales for
Cleveland, OH. For the spatial smoothing examples, we will use the Ohio county lung cancer cases.
Objectives
Create a spatially lagged variable as an average or sum of the neighbors
Create a spatially lagged variable as a window sum or average
Create a spatially lagged variable based on inverse distance weights
Create a spatially lagged variable based on kernel weights
Rescaling coordinates to obtain inverse distance weights
Compute and map spatially smoothed rates

e Compute and map spatial Empirical Bayes smoothed rates
GeoDa functions covered
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e Table > Calculator > Spatial Lag
o select spatial weights
o row-standardized weights or not
o include diagonal or not
e Map > Rates-Calculated Map
o Spatial Rate
o Spatial Empirical Bayes
e Table > Calculator > Rates
o Spatial Rate
o Spatial Empirical Bayes

Getting started

To start, we continue to use the data set that contains the location and sales price of 205 homes in a core area of
Cleveland, OH for the fourth quarter of 2015. We also need to have several spatial weights active in the weights
manager. At the very least, we need k-nearest neighbor weights for k=6, inverse distance weights using the k-
nearest neighbors with k=6, and Epanechnikov kernel weight, again using the adaptive kernel for k=6 nearest
neighbors, and with the kernel applied to the diagonal weights (the diagonals will thus equal 0.75). We can
either create these weights in the current project (after dropping the file clev_sls_154 core.shp into the Drop
files here rectangle of the connect to data source dialog), or load a project file that contains the weights.

In the example shown in Figure 1, the three weights files are clev_sls 154 core k6 (for knn contiguity),
clev_sls 154 core ké6id (for inverse distance applied to the k=6 nearest neighbors), and
clev_sls 154 core_ké6epadiag (for the Epanechnikov kernel weights). Figure 1 highlights the properties of the

latter, as listed in the weights manager (note how the kernel to diagonal is set to true).
Weights Manager

Create Load Remove

Weights Name
clev_sls_154_core_k6
clev_sls_154_core_k6id
clev_sls_154_core_k6epadiag

type | kernel
kernel method | Epanechnikov
knn | 6
adaptive kernel | true
kernel to diagonal | true
symmetry | asymmetric
file | clev_sls_154_core_kéepadiag.kwt
id variable | unique_id
# observations | 205
min neighbors | 6
max neighbors | 6
mean neighbors | 6.00
median neighbors | 6.00
% non-zero | 2.93%

Histogram  Connectivity Map = Connectivity Graph

Figure 1: Spatial weights for Cleveland point data

Spatially lagged variables
Concept
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With a neighbor structure defined by the non-zero elements of the spatial weights matrix W/, a spatially lagged
variable is a weighted sum or a weighted average of the neighboring values for that variable. In most
commonly used notation, the spatial lag of Y is then expressed as Wy.

Formally, for observation ¢, the spatial lag of y;, referred to as [VVy]Z (the variable Wy observed for location
1) is:

Wyl = wiyr +wizya + - - - + WinYn,

o,
n
Wyl = > wiy;,
=1

where the weights W;; consist of the elements of the 1-th row of the matrix W, matched up with the
corresponding elements of the vector y.

In other words, the spatial lag is a weighted sum of the values observed at neighboring locations, since the non-
neighbors are not included (those ¢ for which Wij = 0). Typically, the weights matrix is very sparse, so that

only a small number of neighbors contribute to the weighted sum. For row-standardized weights, with
Z jWij = 1, the spatially lagged variable becomes a weighted average of the values at neighboring

observations.

In matrix notation, the spatial lag expression corresponds to the matrix product of the 2 X T spatial weights

matrix W with the . X 1 vector of observations y, or W X y. The matrix W can therefore be considered

to be the spatial lag operator on the vector y .

In a number of applied contexts, it may be useful to include the observation at location % itself in the weights

computation. This implies that the diagonal elements of the weights matrix must be non-zero, i.e., W;; 75 0.

Depending on the context, the diagonal elements may take on the value of one or equal a specific value (e.g.,

for kernel weights where the kernel function is applied to the diagonal). We will highlight this issue in the

specific illustrations that follow.

Creating a spatially lagged variable

In GeoDa, the spatial lag computation is carried out through the Calculator dialog activated from the table

menu (Table > Calculator), and selecting the Spatial Lag tab. The Weight drop down list contains all the

spatial weights available to the project, with the currently active weights listed. In the example illustrated in

Figure 2, we use the contiguity defined by knn with 6 nearest neighbors, contained in the

clev_sls 154 core_k6 weights.
@

Calculator

Special Univariate Bivariate | Spatial Lag  [EIES Date/Time

Weight i
clev_sls_154_core_k6 A [T

Variable
Result  Add Variable

M -

Use row-standardized weights
Include diagonal of weights matrix

Apply Close

Figure 2: Spatial Lag tab in calculator
The process we follow is the usual one for creating new variables. We first Add a variable to the table and then
initiate the particular computation to Apply to the variable. We next go over the four alternatives available
through the interface.
Spatial lag with row-standardized weights
The default case is to Use row-standardized weights and to not include the diagonal weights (i.e., the
observation itself) in the computation. For example, we can Add a variable LAG1 (and include it after the last
variable in the table). Next, we apply the spatial lag operation to the variable sale_price, as shown in Figure 3.
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Result

LAG1

edce

parcel

002-02-036
002-02-053
002-14-053
002-15-038
002-15-043
002-16-003
002-18-041
002-23-075
002-28-096
002-30-105
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the entries in the corresponding GWT file. As shown in Figure 5, the six locations in question are those with

Add Variable

Applications of Spatial Weights

Calculator

Special Univariate Bivariate EELELCERY Rates Date/Time
Weight i
clev_sls_154_core_k6 [T}
Variable
sale_price [T}

ﬁ = LAG1 = clev_sls_154_core_k6 * sale_price

Use row-standardized weights

Apply n

Include diagonal of weights matrix

Close

Figure 3: Spatial Lag for sales price
After clicking on Apply, the new variable is entered into the table, as illustrated in Figure 4. In order to make it
a little easier to compare the various computations, we moved the column for unique_id and sale_price over to
the right, and placed them right next to the spatial lag, LAG1.

Table - clev_sls_154_core

x y tract10int | Quarter | year1 | yrquarter | unique_id | sale_price
2177340 663165 101200 4 2015 154 1183 235500
2177090 662872 101200 4 2015 154 1198 65000
2182100 663462 103500 4 2015 154 1516 92000
2181090 663162 103400 4 2015 154 1606 5000
2181090 663380 103400 4 2015 154 1612 116250
2180350 663301 103100 4 2015 154 1624 120000
2178110 662297 101200 4 2015 154 1741 131650
2178230 661533 101901 4 2015 154 2024 81500
2179980 661075 103400 4 2015 154 2170 3500
2179510 661873 103400 4 2015 154 2341 76000

Figure 4: Spatial Lag for sales price in table
We quickly verify this operation by identifying the neighbors for the first location (with unique id 1183) from

unique id 6842, 2024, 1624, 1198, 1741, and 23412

@ 205 clev_sls_154 core unique_id

We can also find the associated sales prices in the table (use the Selection Tool on the unique _id to find the
relevant observations). They are listed in Figure 6, with the sales price for location 1183 on the first row.

1183 6842
1183 2024
1183 1624
1183 1198
1183 1741
1183 2341

3253.02459
1858.90398
3013.07086
385.161005
1160.31203
2525.50272

Figure 5: Neighbors for location 1183

unique_id price
1183 235500
1741 131650
1198 65000
2024 81500
2341 76000
1624 120000
6842 5000

Figure 6: Sales price for neighbors of location 1183

LAG1

79858.333333
90608.333333
71041.666667
91375.000000
72833.333333
74041.666667
77750.000000
49670.833333
55520.833333
58004.166667

We now verify the value for the spatial lag listed in the table. It is obtained as the average of the sales price for

the six neighbors, or (131650 + 65000 + 81500 + 76000 + 120000 + 5000)/6 = 79858.33.
We can quickly assess the effect of the spatial averaging by comparing the descriptive statistics between the
original price variable and its spatial lag (for example, by viewing the descriptive statistics associated with a

histogram or box plot graph). The typical effect of the spatial lag is a compression of the range and variance of

the variable. The range goes from $1,049 to $527,409 for the original variable to $6,583-$229,583 for the

spatial lag. Similarly, the standard deviation is considerably reduced from 60,654 to 36,464.
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Applications of Spatial Weights

A more dramatic view of the influence of high-valued or low-valued neighbors on the spatial lag is given by the

PCP. In several instances in the graph shown in Figure 7, the line goes from a high price to a much lower
spatial lag, and vice versa. In other words, if there is high spatial heterogeneity in the data, the choice of the

neighborhood (the spatial weights) becomes very important, and the spatial lag may not be a good proxy for the

value observed at a given location (recall that the value at the given location is not included in the spatial lag
calculation). This relates directly to the notion of local spatial autocorrelation that we will examine in a later

chapter.
o0 e
ks [1049.0000, 52754?;; (J%’gi?]
1 . y A
- (205) mean 41896.7512

s.d. 60654.3406

[6583.3333, 229583.3333]

Parallel Coordinate Plot: sale_price, LAG1

LAG1

mean 39817.7138
s.d. 36463.7588

Figure 7: PCP for sales price and its spatial lag
Spatial lag as a sum of neighboring values
The default in GeoDa is to apply the spatial weights in row-standardized form. Hence the box associated with

User row-standardized weights in Figure 3 is checked by default. In some applications (for example, when
dealing with 0-1 observations), one may be interested in the spatial lag computed with the original binary

weights (i.e., without applying row-standardization). This is accomplished by unchecking the default box, as in

Figure §.3
[
Special

Result  Add Variable

LAG2 B = LAG2 = clev_sls_154_core_k6 * sale_price

Univariate

Calculator

Bivariate patial Lag

Rates Date/Time

Weight Y

clev_sls_154_core_k6

Variable

sale_price

Use row-standardized weights
Include diagonal of weights matrix

Apply Close

Figure 8: Spatial Lag sum for sales price
The result is as shown in the table in Figure 9.

unique_id | sale_price

1183
1198
1516
1606
1612
1624
1741
2024
2170
2341

235500
65000
92000

5000

116250

120000

131650
81500

3500
76000

LAG1

79858.333333
90608.333333
71041.666667
91375.000000
72833.333333
74041.666667
77750.000000
49670.833333
55520.833333
58004.166667

Ly
LAG2
479150.000000
543650.000000
426250.000000
548250.000000
437000.000000
444250.000000
466500.000000
298025.000000
333125.000000
348025.000000

Figure 9: Spatial Lag sum for sales price in table
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A quick check using the values from the table in Figure 6, reveals the lag sum for observation 1183 as 131650
+ 65000 + 81500 + 76000 + 120000 + 5000 = 479150.

In the case of knn weights, there may be some value in comparing the lag sums across observations. After all,
since the number of neighbors is constant, these values are nothing but the original spatial lags scaled by a
factor of k (i.e., six in our example). However, it is important to note that in most applications, the number of
neighbors will not be constant across observations, in which case the sums will no longer be comparable.

In the special case where the variable of interest is binary (0-1), the spatial lag sum will indicate the number of
neighboring locations with an observation equal to 1. This is useful for computing join count statistics for local
spatial autocorrelation, which we will consider in a later chapter.

Spatial window average

A third notion of spatial lag based on the concept of connectivity is that of a spatial window average. This
includes the value at the observation itself in the computation of the average. This option is invoked by
checking both the Use row-standardized weights and the Include diagonal of weights matrix boxes in the
interface, as illustrated in Figure 10.

[ J Calculator

Special Univariate Bivariate | Spatial Lag | Rates Date/Time

Weight i
clev_sls_154_core_k6 [T
Variable
Result  Add Variable sale_price d
LAG3 ﬁ = LAGS3 = clev_sls_154_core_k6 * sale_price

Use row-standardized weights
@klnclude diagonal of weights matrix

Apply Close

Figure 10: Spatial window average for sales price
The result is inlcuded in our example table as variable LAG3, as shown in Figure 11.

unique_id | sale_price LAG1 LAG2 LAG3

1183

235500

79858.333333

479150.000000

102092.857143

1198 65000 90608.333333 543650.000000 86950.000000
1516 92000 71041.666667 426250.000000 74035.714286
1606 5000 91375.000000 548250.000000 79035.714286
1612 116250  72833.333333 437000.000000 79035.714286
1624 120000 74041.666667 444250.000000 80607.142857
1741 131650  77750.000000 466500.000000 85450.000000
2024 81500 49670.833333/ 298025.000000 54217.857143
2170 3500 55520.833333 333125.000000 48089.285714
2341 76000 58004.166667 348025.000000 60575.000000

Figure 11: Spatial window average for sales price in table
In this calculation, the value for the location 1183 is the average of seven values, (235500 + 131650 + 65000 +
81500 + 76000 + 120000 + 5000)/7 = 102092.86.
Spatial window sum
Finally, we have the spatial window sum, the counterpart of the window average, but without using row-
standardized weights. The corresponding box in the interface is thus unchecked, as in Figure 12, but the
Include diagonal of weights matrix is maintained.

[ J Calculator

Special Univariate Bivariate | Spatial Lag | Rates Date/Time

Weight Y
clev_sls_154_core_k6 ]
Variable
Result  Add Variable sale_price d
LAG4 k4 = LAG4 = clev_sls_154_core_k6 * sale_price

Use row-standardized weights
Include diagonal of weights matrix

Apply Close

Figure 12: Spatial window sum for sales price

The new variable LAG4 is added to the table as in Figure 13.
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unique_id | sale_price LAG1 LAG2 LAG3 LAG4

1183 235500  79858.333333 479150.000000 102092.857143 714650.000000
1198 65000 90608.333333 543650.000000 86950.000000 608650.000000
1516 92000  71041.666667 426250.000000 74035.714286 518250.000000
1606 5000  91375.000000 548250.000000 79035.714286 553250.000000
1612 116250  72833.333333  437000.000000 79035.714286 553250.000000
1624 120000  74041.666667 444250.000000 80607.142857 564250.000000
1741 131650  77750.000000 466500.000000 85450.000000 598150.000000
2024 81500  49670.833333 298025.000000 54217.857143 379525.000000
2170 3500 55520.833333 333125.000000 48089.285714 336625.000000
2341 76000 58004.166667 348025.000000 60575.000000 424025.000000

Figure 13: Spatial window sum for sales price in table
The spatial window sum is simply the sum of the sales price for the observation at 1183 and its six neighbors,
or, 235500 + 131650 + 65000 + 81500 + 76000 + 120000 + 5000 = 714650. As in the case of the spatial lag
sum, the spatial window sum may not be comparable among observations when the number of neighbors varies
(for knn weights, the same number of neighbors is enforced by construction). When dealing with a binary
variable, the spatial window sum corresponds to the number of events (observations with a value of 1) within
the window centered on a location (including the value at that location).

Spatially lagged variables from inverse distance weights

Principle

The spatial lag operation can also be applied using spatial weights calculated from the inverse distance between
observations. As mentioned in our earlier discussion, the magnitude of these weights is highly scale dependent
(depends on the scale of the coordinates). An uncritical application of a spatial lag operation with these weights
can easily result in non-sensical values. More specifically, since the resulting weights can take on very small
values, the spatial lag could end up being essentially zero.

Formally, the spatial lag operation amounts to a weighted average of the neighboring values, with the inverse

distance function as the weights:
Yj
Wyl =3 o5
Jj u

where in our implementation, ¢x is either 1 or 2. In the latter case (a so-called gravity model weight), the spatial
lag is sometimes referred to as a potential in geo-marketing analyses. It is a measure of how accessible location
1 is to opportunities located in the neighboring locations (as defined by the weights).
Default setting
In contrast to the default setting for other weights, the preferred option for inverse distance weights is to keep
the original values for the weights and not row-standardize, as illustrated in Figure 14, with the two check
boxes unchecked. Note how the selected weight is clev_sls_154_core_ko6id, the inverse distance weights from
our example. This selection triggers the particular default settings for the check boxes.

(]

Calculator

Special Univariate  Bivariate BEELELCERY Rates Date/Time

Weight i
clev_sls_154_core_k6id d

Variable
Result  Add Variable [T

B -

Use row-standardized weights
Include diagonal of weights matrix

Apply Close

Figure 14: Inverse distance lag default options
In all other respects, the lag computation proceeds in the same way as for connectivity weights. In the first step,
a new variable is added to the table, followed by the actual calculation.
The results of the various options are given in the four right-most columns of the table shown in Figure 15. The
default case, with row-standardized weights off and no diagonal elements, is shown as the variable IDNRND.
Compared to the original sales price, the lagged values are quite different. This is due to the scale of the inverse
distance weights (the largest of which is 0.0026, see also Figure 16).

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 719



08/09/2018

unique_id | sale_price

IDNRND

Applications of Spatial Weights

IDRSND

IDNRWD

IDRSWD

1183 235500 397.5621020  79008.666758 235897.521020 314508.666758
1198 65000 805.294110 159632.919397 65805.294110 224632.919397
15616 92000 359.341068 70716.601894 92359.341068 162716.601894
1606 5000 966.110569 101979.202469 5966.110569 106979.202469
1612 116250 444.548853  45949.650647 116694.548853 162199.650647
1624 120000 361.330778 65842.270239 120361.330778 185842.270239
1741 131650 419.559185  91688.413007 132069.559185  223338.413007
2024 81500 280.249881 62205.156929 81780.249881 143705.156928
2170 3500 215.160004  58196.698342 3715.160004 61696.698342
2341 76000 233.208166  57096.925032 76233.208166  133096.925032

Figure 15: Inverse distance spatial lags for sales price in table
The third column, IDNRWD, shows the results when the diagonal is included (i.e., with the diagonal weights
check box selected). This amounts to the value in IDNRND augmented by the sales price. For example, for the
observation with unique id 1183, the result is 397.521 + 235500 = 235897.521. This is equivalent to:

y;
Wyl =i + > —di.
e

ij

In some contexts, this may be the desired result, but it is by no means the most intuitive concept. It should
therefore be used sparingly and only when there is a strong substantive motivation.

Spatial lags with row-standardized inverse distance weights

The original inverse distance weights are highly scale dependent. This can be remedied by expressing them in
row-standardized form. The spatial lag then takes on the standard meaning of a weighted average of the values
at neighboring observations. The main difference with lags computed for connectivity weights is that the
neighbors are weighted differentially. As we saw earlier, in spatial lags based on connectivity weights all the
neighboring values get the same weight.

A comparison between the original inverse distance weights and their row-standardized form is given in Figure
16, for the six nearest neighbors associated with the location with unique id 1183. Whereas the inverse distance
weights sum to 0.0050, their row-standardized counterparts sum to 1, as desired.

inverse distance

neighbor unique-id row-stand inverse distance

1741 0.000861837 0.171293089
1198 0.002596317 0.516026879
2024 0.000537951 0.106919687
2341 0.000395961 0.078698561
1624 0.000331887 0.065963743
6842 0.000307406 0.061098041

Figure 16: Inverse distance weights
As a result, the spatial lag computed with row-standardized inverse distance weights is similar in scale to the
original variable (and similar to the spatial lags based on connectivity weights). This is illustrated by the results
in Figure 15, under the heading IDRSND.
The fourth option is listed for completeness only, under the heading IDRSWD. In the implementation for
connectivity weights, all observations end up with an equal weight. Specifically, this amounts to 1 / (kz + 1) ,

where ki is the number of neighbors for observation ¢. In contrast, in the inverse distance case, each
neighboring observation is scaled by a different weight, so that it is not clear what weight should be given to
the diagonal element. In GeoDa, the diagonal element gets the value of 1, so that the spatial lag amounts to:

Wyl =yi + > wijy;.
j

Again, this should only be used when there is a strong substantive motivation.

Spatially lagged variables from kernel weights

Spatially lagged variables can also be computed from kernel weights. However, in this instance, only one of the
options with respect to row-standardization and diagonal weights makes sense. Since the kernel weights are the
result of a specific kernel function, they should not be altered. Also, each kernel function results in a specific
value for the diagonal element, which should not be changed either. As a result, the only viable option to create
spatially lagged variables based on kernel weights is to have no row-standardization and have the diagonal
elements included.
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When the calculator spatial lag interface detects the selection of kernel weights, the options are greyed out, with

the diagonal elements checked, as in Figure 17.% The entry in the weight box, clev_sls 154 core ké6epadiag,

refers to the Epanechnikov kernel weights computed for 6 nearest neighbors.
[ J Calculator

Special Univariate Bivariate | Spatial Lag | Rates Date/Time

Weight i
clev_sls_154_core_k6epadiag ﬁ
Variable
Result | Add Variable | T
Apply Close

Figure 17: Kernel weights lag default options
The resulting spatially lagged variable is

Wyl = > Kijyj,
j

where the sum includes the diagonal element of the kernel weight K;;. The results for the Epanechnikov
weights (with 0.75 on the diagonal) are shown in Figure 18, under the heading EPALAG.

unique_id | sale_price EPALAG
1183 235500 387464.479268
1198 65000 368973.679040
1516 92000 131295.768673
1606 5000 275933.775566
1612 116250 276446.099306
1624 120000 189958.829188
1741 131650 354441.819304
2024 81500 168250.079060
2170 3500 86508.329720
2341 76000 183295.748102

Figure 18: Epanechnikov kernel spatial lags for sales price in table
Kernel-based spatially lagged variables correspond to a form of local smoothing. They can be used in

specialized regression specifications, such as geographically weighted regression (GWR).2

Spatial rate smoothing

Principle

A spatial rate smoother is a special case of a nonparameteric rate estimator, based on the principle of locally
weighted estimation (see, e.g., Waller and Gotway 2004, 89-90). Rather than applying a local average to the
rate itself, as in an application of a spatial window average, the weighted average is applied separately to the
numerator and denominator.

The spatially smoothed rate for a given location % is then given as:

n
> j=1 Wij 0;
n Y
> j—1 Wiz P
where O j 1s the event count in location 7, Pj is the population at risk, and Wy ; are the spatial weights

(typically with w;; 7& 0, i.e., including the diagonal).
Different smoothers are obtained for different spatial definitions of neighbors and/or different weights applied

™, —

to those neighbors (e.g., contiguity weights, inverse distance weights, or kernel weights).

An early example was the spatial rate smoother outlined in Kafadar (1996), based on the notion of a spatial
moving average or window average (see also Kafadar 1997). The window average is not applied to the rate
itself, but it is computed separately for the numerator and denominator. The simplest case boils down to
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applying the idea of a spatial window sum to the numerator and denominator (i.e., with binary spatial weights
in both, and including the diagonal term):

o O; + Z]JZ:1 O;
Oi+YJ. Py

Uy

where J; is a reference set (neighbors) for observation 2. In practice, this is achieved by using binary spatial
weights for both numerator and denominator, and including the diagonal in both terms, as in the expression
above.

A map of spatially smoothed rates tends to emphasize broad spatial trends and is useful for identifying general
features of the data. However, it is not useful for the analysis of spatial autocorrelation, since the smoothed
rates are autocorrelated by construction. It is also not very useful for identifying outlying observations, since
the values portrayed are really regional averages and not specific to an individual location. By construction, the
values shown for individual locations are determined by both the events and the population sizes of adjoining
spatial units, which can lead to misleading impressions. Often, inverse distance weights are applied to both the
numerator and denominator, e.g., as in the early discussion by Kafadar (1996).

Preliminaries

We return to the rate smoothing examples using the Ohio county lung cancer data. Therefore, we need to close
the current project and load the ohlung data set.

Next, we need to create the spatial weights files we will use if we don’t have them already stored in a project

file. In order to make sure that some smoothing will occur, we take a fairly wide definition of neighbors.z
Specifically, we will create a second order queen contiguity, inclusive of first order neighbors, inverse distance
weights based on knn = 10 nearest neighbor weights, and Epanechnikov kernel weights, using the same 10
nearest neighbors and with the kernel applied to the diagonal (its value will be 0.75).
We proceed in the usual manner and use FIPSNO as the ID variable. The creation of the queen contiguity
weights is straightforward (we name the file ohlung_q2inc). We postpone the creation of the inverse distance
and kernel weights until the next section.
In addition to the spatial weights, we also need an example for crude rates. If not already saved in the data set,
we compute the crude rate for lung cancer among white females in 68.
Using the Rates tab in the calculator, we first add a new variable, e.g., LRATE, then compute the crude rate
with LFW68 as the Event Variable and POPFW68 as the Base Variable. In order to present the results on a
more intuitive scale, we also multiply LRATE by 10,000, using the Bivariate tab with the Multiply function
(the result gives the number of lung cancer cases per 10,000 white females). A standard deviational map for the
rates, shown in Figure 19, illustrates the familiar pattern from the Chapter on mapping rates.

[ NON Standard Deviation: LRATE

K L R Q o ¥ .

Standard Deviation: LRATE

B <-0518(0) B _
[] -0.518-0.258 (16) ||“——??’
[ ] 0.258-1.034 (34)

[ ] 1.034-1.810(26) L

[] 1.810-2.585(9) |

Bl >2585(3) I .

#obs=88

Figure 19: Standard deviational map for crude rates
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Digression - rescaling coordinates

As pointed out in the discussion of inverse distance weights, the resulting values for the weights depend
critically on the scale in which the (centroid) coordinates are expressed. In the example for Ohio counties, the
unit of measurement is feet, which results in very large values for the coordinates. For example, if we use
Shape Centers > Add Centroids to Table from the map, we can inspect the actual values under COORD_X
and COORD _Y in the table shown in Figure 20.

COORD_X COORDY X Y
1 279285.255672 4610714.192736 27.928526 461.071419
2 239874.067861 4610132.128795 23.987407 461.013213
3 485611.443338 4593856.672376 48.561144 459.385667
4 201789.040797 4607235.556925 20.178904 460.723556
5 445517.992257 4586058.690244 44.551799 458.605869
6 319326.681916 4600165.990544 31.932668 460.016599
7 281159.044310 4581951.558792 28.115904 458.195156
8 403940.930002 4572318.271150 40.394093 457.231827
9 320977.178426 4580210.336020 32.097718 458.021034
10 519869.575229 4573595.701655 51.986958 457.359570

Figure 20: Rescaled centroid coordinates for Ohio counties
The magnitudes are in the hundreds of thousands and even in the millions (for the y-coordinate). As a result,
the inter-point distances will be very large, and the corresponding inverse distance measures will be very small.
For example, in the left-hand panel of Figure 21, we see the inverse distance weights for the 10 nearest
neighbors of the county with FIPSNO 39095 (Lucas county, OH). The weights are all smaller than 0.0001. This
will result in spatially lagged values that are very close to zero, and will not provide a meaningful averaging.

@ 88 ohlung_smooth FIPSNO 1 @ 88 ohlung_smooth FIPSNO

39095 39171 1.28908756e-05 2 39095 39171 0.128908756
39095 39137 1.29157402e-05 3 39095 39137 0.129157402
39095 39063 1.44976337e-05 4 39095 39063 0.144976337
39095 39123 2.41502191e-05 5 39095 39123 0.241502191
39095 39039 1.29988968e-05 6 39095 39039 0.129988968
39095 39069 2.13869388e-05 7 39095 39069 0.213869388
39095 39051 2.53707389e-05 8 39095 39051 0.253707389
39095 39173 3.46937868e-05 9 39095 39173 0.346937868
39095 39143 1.93575319e-05 10 39095 39143 0.193575319
39095 39147 1.41534828e-05 11 39095 39147 0.141534828

Figure 21: Inverse distance weights for Ohio counties
In order to fix this problem, we need to rescale the original coordinates. Using the calculator tool in the table,
we create two new variables, X and Y, that are the original coordinates divided by 10000 (as above in the
rescaling of the crude rates, use the Bivariate tab with the Divide function). The results are shown in the X and
Y columns of Figure 20, and now represent units of 10000 feet.
As we have seen, we can use any two variables as coordinates for the distance weights. By selecting X and Y,
we create a set of inverse distance weights to the 10 nearest neighors (as ohlung_k10invd). The corresponding
values for the weights are shown in the right-hand panel of Figure 21. Compared to the original set, these are
much more reasonable (all are larger than 0.1).
In addition to the queen contiguity and inverse distance weights, we also create Epanechnikov kernel weights
(with the kernel applied to the diagonal) using an adaptive kernel for 10 nearest neighbors (i.e., with the same
range as the inverse distance weights). We again use the X and Y coordinates to compute the distances. This
yields the weights ohlung_epa.
At this point, we should have the three spatial weights listed in the weights manager panel, as in Figure 22. In
our example, we show the properties of the second order contiguity weights. The number of neighbors ranges
from 7 to 22, with an average of 14.64, which will yield some degree of smoothing. Of course, for the inverse
distance and kernel weights, the number of neighbors is 10 for all counties.
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| NON Weights Manager
Create Load Remove
Weights Name
ohlung_g2inc
ohlung_k10invd
ohlung_epa
type | queen
symmetry | symmetric
file | ohlung_g2inc.gal
id variable | FIPSNO
order | 2
include lower orders | true
# observations | 88
min neighbors | 7
max neighbors | 22
mean neighbors | 14.64
median neighbors | 15.00
% non-zero | 16.63%
Histogram  Connectivity Map = Connectivity Graph

Applications of Spatial Weights

Figure 22: Weights manager for Ohio counties

We are now ready to proceed with the analysis.
Simple window average of rates

First, we illustrate how not to proceed, but use this as a reference. We compute the lag variable as a window
average, using the settings in the calculator. We select the Spatial Lag tab shown in Figure 10, with both the

Use row-standardized weights and the Include diagonal of weights matrix boxes checked in the interface.
We specify ohlung_q2inc as the spatial weight and LRATE as the variable. The window average is contained
in the new variable W_LRATE. The calculator interface should be as in Figure 23.

(]

Calculator

Special Univariate Date/Time

Bivariate |[EREVEINEN Rates

Weight “y
ohlung_g2inc

Variable
Result  Add Variable LRATE |T]

W_LRATE % = W_LRATE = ohlung_g2inc * LRATE

Use row-standardized weights
Include diagonal of weights matrix

Apply Close
Figure 23: Spatial window average of crude rates
The corresponding standard deviational map is given in Figure 24.
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| NON Standard Deviation: W_LRATE
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Figure 24: Crude rate spatial window average

Characteristic of the spatial averaging, several larger groupings of similarly classified observations appear. The
pattern is quite different from that displayed for the crude rate in Figure 19. For example, the upper outliers
have disappeared, and there is now one new lower outlier.
Spatially smoothed rates
As mentioned, applying the spatial averaging directly to the crude rates is not the proper way to operate. This
approach ignores the differences between the populations of the different counties and the associated variance
instability of the rates. The Spatial Rate smoothing option is the correct alternative, which applies the
smoothing separately to the observations as they enter into the numerator and the denominator of the rate
calculation.
We invoke this calculation either from the menu, as Map > Rates-Calculated Map > Spatial Rate, or by

right-clicking on the current map and selecting Rates > Spatial Rate, as shown in Figure 25.

Change Current Map Type »
Save Categories I

J .
Raw Rate
Save Rates Excess Risk

Empirical Bayes

Spatial Rate N

Spatial Empirical Bayes

T

Connectivity

Shape Centers
Thiessen Polygons

Selection Shape
Color
v Show Status Bar

Save Selection I 'g

Copy Image To Clipboard

Save Image As I ‘

Figure 25: Spatial rate option
The dialog that appears, shown in Figure 26, is the usual interface for rate calculation. It requires the selection
of the Event Variable (LFW68), the Base Variable (POPFW68), the Map Theme (Standard Deviation

Map), and a specification for the spatial weights (0hlung_q2inc).§

Vv VYV VY

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 13/19



08/09/2018 Applications of Spatial Weights

[ JON ) Spatial Rate Smoothed Variable Settings
Event Variable Base Variable

LMB68 POPMBG8

POPMB68 LM6E8

LM68 POPME8

POPMG8 LFW68

LFW68 POPFWG8

POPFW68 LFB68

LFB68 POPFB68

POPFB68 LFe8

LE68 POPF68

POPFARA] LMW78
Map Themes Standard Deviation Map E Categories
Weights ohlung_g2inc u

OK [ Cancel

Figure 26: Spatial rate dialog
Clicking OK brings up a standard deviation map with the smoothed rates, shown in Figure 27.
In order to make the category ranges meaningful, we use a legend option to give the results in scientific
notation (right click on the legend pane and select Use Scientific Notation). Again, we observe the larger
groupings of observations, but now several outliers remain, although not in the same locations as for the crude
rate.
O @® Standard Deviation: SRS-Smoothed LFW68 over POPFWE8

R RS H RO

Standard Deviation: SRS-Smooth
Il <8.186e-05 (4) B
[] 8.186e-05 - 9.538e-05 (7) '

[ ] 9.538e-05 - 1.089e-04 (34)
[ ] 1.089e-04 - 1.224e-04 (31)
[] 1.224e-04 - 1.359e-04 (10)
Bl > 1.359-04 (2)

#0bs=88

Figure 27: Spatial rate smoothed map
We add the smoothed rates to the data table by means of the Save Rates option (keeping the default variable
name of R_ SPAT R). As we did above for LRATE, we multiply the ratio by 10,000 in the calculator to make
the results easier to interpret. The three sets of rates are shown in the table in Figure 28 for the first ten
counties.

LRATE W_LRATE R_SPAT_RT

1.226682 0.735101 0.9433590
0.611322 0.718198 0.9640437
0.963670 0.938679 1.0264298
0.000000 0.8368056 1.0126950
1.198887 1.112121 1.05651319
0.000000 0.973605 1.0625908
0.000000 0.837788 0.9633313
0.912273 1.049569 1.0479221
0.000000 1.125000 1.0791776
0.994584 1.015149 1.0677132

Figure 28: Comparison of smoothed rates in table

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 14/19



08/09/2018 Applications of Spatial Weights
A more quantified comparison is obtained from a scatter plot of W_LRATE against R SPAT RT. As is clear

from Figure 29, the values are far from the same. In fact, the R2 of the linear fit is only 0.60.
o o Scatter Plot - x: W_LRATE, y: R_SPAT_RT

R_SPAT_RT

E T T T T T
0.63 0.78 0.93 1.08 1.23 1.38
W_LRATE
#obs R"2 consta std-erra t-stata p-value a slopeb std-errb t-statb p-value b
B8 0592 0436 0.059 7.349 0.000 0.633 0.057 11.163 0.000

Figure 29: Comparison of spatial rates
Spatially smoothed rates in the table
The spatial rate smoothing option is only implemented for contiguity weights, i.e., an unweighted average is
calculated for both the numerator and denominator. Of course, we can also carry this out explicitly, by creating
separate spatially lagged variables for the counts of events and for the populations at risk (using the spatial
window average operation covered earlier), followed by their ratio (and possibly scaling by a factor such as
10000).
If inverse distance or kernel weights are specified in the spatial rate variable setting dialog (Figure 26), the
values for the weights are ignored, and only the connectivity information is taken into account to compute the
averages. As an alternative, we can carry out the explicit spatial lag calculation for the numerator and
denominator, which will use the actual weights in the computation. This is can be accomplished with the
Calculator option in the table.
We first proceed with the inverse distance weights (ohlung_k10invd). We proceed in the calculator in turn for
the numerator and denominator. We add a new variable for each, and then compute the spatial window sum
using the inverse distance weights applied to LFW68 and POPFW68. The options should be set to not row-
standardize the weights and to include the diagonal (the option should be checked as in Figure 12). We next
create a new variable, IDRATE, as the ratio of the numerator over the denominator, and rescale by multiplying
with 10000. The corresponding standard devational map is shown in Figure 30.
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| NON Standard Deviation: IDRATE
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Figure 30: Inverse distance spatial rate smoothed map
We can also apply the same technique to kernel weights, e.g. using ohlung_epa. Following the same steps as
for the inverse distance weights, with the same settings in the dialog will yield rates that are smoothed using the

weights determined by the kernel function. This yields the standard deviational map shown in Figure 31.
@ Standard Deviation: KERN_RATE

R L RQAQ | 83O

Standard Deviation: KER
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[] 1.256-1.424 (15)
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Figure 31: Kernel weights spatial rate smoothed map
It is important to keep in mind that both the inverse distance and kernel weights spatially smoothed rates are
based on a particular trade-off between the value at the location and its neighbors. This trade-off depends
critically on the distance metric used in the calculations (or, on the scale in which the coordinates are
expressed). There is no right answer, and a thorough sensitivity analysis is advised.
For example, we can observe that the three spatially smoothed maps in Figures 27, 30, and 31 point to some
elevated rates in the south of the state, but the extent of the respective regions and the counties on which they
are centered differ slightly. Also, the general regional patterns are roughly the same, but there are important
differences in terms of the specific counties affected.
In the table shown in Figure 32, we summarize all the rates computed in this section: LRATE is the crude rate,
W_LRATE it its queen contiguity based spatial lag, R_SPAT_RT is the spatially smoothed rate saved from the
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calculation, IDRATE is the rate based on inverse distance weights, KERN RATE the kernel-smoothed rate,
and S_LRATE is the spatially smoothed rate computed in the table as an explicit ratio between numerator and
denominator (it is identical to the result from the direct rate calculation in R_SPAT RT).

LRATE W_LRATE R_SPAT_RT IDRATE KERN_RATE S_LRATE

1.226682 0.735101 0.943359 1.100447 0.943359 0.943359
0.611322 0.718198 0.964044 0.910661 0.897860 0.964044
0.963670  0.938679 1.026430 1.025017 1.028626 1.026430
0.000000  0.836805 1.012695 0.755262 0.972382 1.012695
1.198887 1.112121 1.055132 1.119728 0.986538 1.055132
0.000000 0.973605 1.062591 0.858362 1.094616 1.062591
0.000000 0.837788 0.963331 0.826324 1.001197 0.963331
0.912273 1.049569 1.047922 1.055664 1.078516 1.047922
0.000000 1.125000 1.079178 0.835775 1.094616 1.079178
0.994584 1.015149 1.057713 1.048493 1.057077 1.057713
Figure 32: All spatially smoothed rates in the table

Spatial Empirical Bayes smoothing

Principle

The second option for spatial rate smoothing is Spatial Empirical Bayes. This operates in the same way as the
standard Empirical Bayes smoother (covered in the rate mapping Chapter), except that the reference rate is
computed for a spatial window for each individual observation, rather than taking the same overall reference
rate for all. This only works well for larger data sets, when the window (as defined by the spatial weights) is
large enough to allow for effective smoothing.

Similar to the standard EB principle, a reference rate (or prior) is computed. However, here, this rate is
estimated from the spatial window surrounding a given observation, consisting of the observation and its
neighbors. The neighbors are defined by the non-zero elements in the row of the spatial weight matrix (i.e., the
spatial weights are treated as binary).

Formally, the reference mean for location 2 is then:

b — 2. wij0;
bYwiBy

with w;; as binary spatial weights, and w;; = 1.
The local estimate of the prior variance follows the same logic as for EB, but replacing the population and rates
by their local counterparts:

2 > wilPy(ri — ps)*] i
Z > wij P >jwiBi/ (ki +1)

Note that the average population in the second term pertains to all locations within the window, therefore, this
is divided by k; + 1 (with k; as the number of neighbors of ). As in the case of the standard EB rate, it is
quite possible (and quite common) to obtain a negative estimate for the local variance, in which case it is set to
Zero.

The spatial EB smoothed rate is computed as a weighted average of the crude rate and the prior, in the same
manner as for the standard EB rate (see the discussion in the Chapter on mapping rates, as well as Anselin,
Lozano-Gracia, and Koschinky 2006, for technical details).

Spatial EB rate smoother

The spatial Empirical Bayes rate smoother is invoked from the menu as Map > Rates-Calculated Map >

Spatial Empirical Bayes, or from the option menu in any map, as Rates > Spatial Empirical Bayes. The
latter is illustrated in Figure 33.
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Figure 33: Spatial Empirical Bayes option

The variable settings dialog is identical to that for the spatial rate smoother, as shown in Figure 26. We can use
the exact same settings, with the second order queen contiguity defining the range of the window for each
observation.
Using these settings, a standard deviational map of the smoothed rates is as in Figure 34.
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Figure 34: Spatial EB rate using second order queen contiguity

Selecting the inverse distance weights results in the map shown in Figure 35. Note that the actual inverse
distance weights are ignored, but only used to identify the 10 nearest neighbors for each location. This defines
the spatial window for which the local priors are computed.
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| NON | Standard Deviation: SEBS-Smoothed LFW68 over POPFW68
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Figure 35: Spatial EB rate using k = 10 nearest neighbors
As for the spatial rate smoothing approaches, a careful sensitivity analysis is in order. The results depend
considerably on the range used for the reference rate. The larger the range, the more the smoothed rates will be
similar to the global EB rate. For a narrow range, the estimate of the local variance will often result in a zero
imputed value, which makes the EB approach less meaningful.
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The GWT file also includes the respective distances, but these are ignored in the spatial lag operations.<
After re-arranging the columns in the table, the variable name listed under Variable in the interface may have
changed. In our example, it should be sale price.<

While this option is not available as a selection, it is set by default. Displaying the check mark in the interface
makes clear which options are being used.<

GWR is not implemented in GeoDa. For further details on the use of kernel-based spatially lagged variables in
GWR, see, e.g., Fotheringham, Brunsdon, and Charlton (2002).<

For further details, see Anselin, Lozano-Gracia, and Koschinky (2006), Section 5.2.€

If the spatial window over which the average 1s computed is not sufficiently wide, such as with first order
contiguity weights, very little smoothing occurs, and the results may be somewhat erratic.€

Alternatively, we can compute the spatial rates in the calculator, using the Rates tab. Note that the weights
information in inverse distance weights and kernel weights is ignored in this operation, only the connectivity is
used to compute the spatial averages.<

GeoDa is maintained by lixun910. This page was generated by GitHub Pages using the Cayman theme by
Jason Long.
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