
08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 1/19

GeoDa
An Introduction to Spatial Data Analysis
Homepage Download View on GitHub Data Documentation Support 中文

Applications of Spatial Weights
Luc Anselin1

03/17/2018 (revised and updated)
Introduction

Objectives
GeoDa functions covered

Getting started
Spatially lagged variables

Concept
Creating a spatially lagged variable

Spatial lag with row-standardized weights
Spatial lag as a sum of neighboring values
Spatial window average
Spatial window sum

Spatially lagged variables from inverse distance weights
Principle
Default setting
Spatial lags with row-standardized inverse distance weights

Spatially lagged variables from kernel weights
Spatial rate smoothing

Principle
Preliminaries
Digression - rescaling coordinates
Simple window average of rates
Spatially smoothed rates
Spatially smoothed rates in the table

Spatial Empirical Bayes smoothing
Principle
Spatial EB rate smoother

References

Introduction
The main role for spatial weights is their use as the basis for the construction of various tests for spatial
autocorrelation. These measures consist of compromises between attribute (variable) similarity and locational
similarity, with the latter formally expressed through the spatial weights.
However, the weights are also important for the creation of spatially explicit variables. These are variables that
take into account the values observed at neighboring locations.
There are two important applications for this. One pertains to the construction of so-called spatially lagged
variables for inclusion in a spatial regression specification. The other yields an approach to smooth rates by
borrowing strength from the values in neighboring observations. This takes the form of spatially smoothed
rates. We consider each in turn.
For the spatially lagged variables, we will continue to use the data set with point locations of house sales for
Cleveland, OH. For the spatial smoothing examples, we will use the Ohio county lung cancer cases.
Objectives

Create a spatially lagged variable as an average or sum of the neighbors
Create a spatially lagged variable as a window sum or average
Create a spatially lagged variable based on inverse distance weights
Create a spatially lagged variable based on kernel weights
Rescaling coordinates to obtain inverse distance weights
Compute and map spatially smoothed rates
Compute and map spatial Empirical Bayes smoothed rates

GeoDa functions covered

https://geodacenter.github.io/index.html
https://geodacenter.github.io/download.html
https://github.com/GeoDaCenter/geoda/
https://spatial.uchicago.edu/sample-data
https://geodacenter.github.io/documentation.html
https://geodacenter.github.io/support.html
https://geodacenter.github.io/index-cn.html

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 2/19

Table > Calculator > Spatial Lag
select spatial weights
row-standardized weights or not
include diagonal or not

Map > Rates-Calculated Map
Spatial Rate
Spatial Empirical Bayes

Table > Calculator > Rates
Spatial Rate
Spatial Empirical Bayes

Getting started
To start, we continue to use the data set that contains the location and sales price of 205 homes in a core area of
Cleveland, OH for the fourth quarter of 2015. We also need to have several spatial weights active in the weights
manager. At the very least, we need k-nearest neighbor weights for k=6, inverse distance weights using the k-
nearest neighbors with k=6, and Epanechnikov kernel weight, again using the adaptive kernel for k=6 nearest
neighbors, and with the kernel applied to the diagonal weights (the diagonals will thus equal 0.75). We can
either create these weights in the current project (after dropping the file clev_sls_154_core.shp into the Drop
files here rectangle of the connect to data source dialog), or load a project file that contains the weights.
In the example shown in Figure 1, the three weights files are clev_sls_154_core_k6 (for knn contiguity),
clev_sls_154_core_k6id (for inverse distance applied to the k=6 nearest neighbors), and
clev_sls_154_core_k6epadiag (for the Epanechnikov kernel weights). Figure 1 highlights the properties of the
latter, as listed in the weights manager (note how the kernel to diagonal is set to true).

Figure 1: Spatial weights for Cleveland point data

Spatially lagged variables
Concept

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 3/19

With a neighbor structure defined by the non-zero elements of the spatial weights matrix , a spatially lagged
variable is a weighted sum or a weighted average of the neighboring values for that variable. In most
commonly used notation, the spatial lag of is then expressed as .
Formally, for observation , the spatial lag of , referred to as (the variable observed for location
) is:

or,

where the weights consist of the elements of the -th row of the matrix , matched up with the
corresponding elements of the vector .
In other words, the spatial lag is a weighted sum of the values observed at neighboring locations, since the non-
neighbors are not included (those for which). Typically, the weights matrix is very sparse, so that
only a small number of neighbors contribute to the weighted sum. For row-standardized weights, with

, the spatially lagged variable becomes a weighted average of the values at neighboring
observations.
In matrix notation, the spatial lag expression corresponds to the matrix product of the spatial weights
matrix with the vector of observations , or . The matrix can therefore be considered
to be the spatial lag operator on the vector .
In a number of applied contexts, it may be useful to include the observation at location itself in the weights
computation. This implies that the diagonal elements of the weights matrix must be non-zero, i.e., .
Depending on the context, the diagonal elements may take on the value of one or equal a specific value (e.g.,
for kernel weights where the kernel function is applied to the diagonal). We will highlight this issue in the
specific illustrations that follow.
Creating a spatially lagged variable
In GeoDa, the spatial lag computation is carried out through the Calculator dialog activated from the table
menu (Table > Calculator), and selecting the Spatial Lag tab. The Weight drop down list contains all the
spatial weights available to the project, with the currently active weights listed. In the example illustrated in
Figure 2, we use the contiguity defined by knn with 6 nearest neighbors, contained in the
clev_sls_154_core_k6 weights.

Figure 2: Spatial Lag tab in calculator
The process we follow is the usual one for creating new variables. We first Add a variable to the table and then
initiate the particular computation to Apply to the variable. We next go over the four alternatives available
through the interface.
Spatial lag with row-standardized weights
The default case is to Use row-standardized weights and to not include the diagonal weights (i.e., the
observation itself) in the computation. For example, we can Add a variable LAG1 (and include it after the last
variable in the table). Next, we apply the spatial lag operation to the variable sale_price, as shown in Figure 3.

W

y Wy
i yi [Wy]i Wy

i

[Wy = + + ⋯ + ,]i wi1y1 wi2y2 winyn

[Wy = ,]i ∑
j=1

n

wijyj

wij i W
y

i = 0wij

= 1∑j wij

n × n
W n × 1 y W × y W

y
i

≠ 0wii

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 4/19

Figure 3: Spatial Lag for sales price
After clicking on Apply, the new variable is entered into the table, as illustrated in Figure 4. In order to make it
a little easier to compare the various computations, we moved the column for unique_id and sale_price over to
the right, and placed them right next to the spatial lag, LAG1.

Figure 4: Spatial Lag for sales price in table
We quickly verify this operation by identifying the neighbors for the first location (with unique_id 1183) from
the entries in the corresponding GWT file. As shown in Figure 5, the six locations in question are those with
unique_id 6842, 2024, 1624, 1198, 1741, and 2341.2

Figure 5: Neighbors for location 1183
We can also find the associated sales prices in the table (use the Selection Tool on the unique_id to find the
relevant observations). They are listed in Figure 6, with the sales price for location 1183 on the first row.

Figure 6: Sales price for neighbors of location 1183
We now verify the value for the spatial lag listed in the table. It is obtained as the average of the sales price for
the six neighbors, or (131650 + 65000 + 81500 + 76000 + 120000 + 5000)/6 = 79858.33.
We can quickly assess the effect of the spatial averaging by comparing the descriptive statistics between the
original price variable and its spatial lag (for example, by viewing the descriptive statistics associated with a
histogram or box plot graph). The typical effect of the spatial lag is a compression of the range and variance of
the variable. The range goes from $1,049 to $527,409 for the original variable to $6,583-$229,583 for the
spatial lag. Similarly, the standard deviation is considerably reduced from 60,654 to 36,464.

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 5/19

A more dramatic view of the influence of high-valued or low-valued neighbors on the spatial lag is given by the
PCP. In several instances in the graph shown in Figure 7, the line goes from a high price to a much lower
spatial lag, and vice versa. In other words, if there is high spatial heterogeneity in the data, the choice of the
neighborhood (the spatial weights) becomes very important, and the spatial lag may not be a good proxy for the
value observed at a given location (recall that the value at the given location is not included in the spatial lag
calculation). This relates directly to the notion of local spatial autocorrelation that we will examine in a later
chapter.

Figure 7: PCP for sales price and its spatial lag
Spatial lag as a sum of neighboring values
The default in GeoDa is to apply the spatial weights in row-standardized form. Hence the box associated with
User row-standardized weights in Figure 3 is checked by default. In some applications (for example, when
dealing with 0-1 observations), one may be interested in the spatial lag computed with the original binary
weights (i.e., without applying row-standardization). This is accomplished by unchecking the default box, as in
Figure 8.3

Figure 8: Spatial Lag sum for sales price
The result is as shown in the table in Figure 9.

Figure 9: Spatial Lag sum for sales price in table

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 6/19

A quick check using the values from the table in Figure 6, reveals the lag sum for observation 1183 as 131650
+ 65000 + 81500 + 76000 + 120000 + 5000 = 479150.
In the case of knn weights, there may be some value in comparing the lag sums across observations. After all,
since the number of neighbors is constant, these values are nothing but the original spatial lags scaled by a
factor of k (i.e., six in our example). However, it is important to note that in most applications, the number of
neighbors will not be constant across observations, in which case the sums will no longer be comparable.
In the special case where the variable of interest is binary (0-1), the spatial lag sum will indicate the number of
neighboring locations with an observation equal to 1. This is useful for computing join count statistics for local
spatial autocorrelation, which we will consider in a later chapter.
Spatial window average
A third notion of spatial lag based on the concept of connectivity is that of a spatial window average. This
includes the value at the observation itself in the computation of the average. This option is invoked by
checking both the Use row-standardized weights and the Include diagonal of weights matrix boxes in the
interface, as illustrated in Figure 10.

Figure 10: Spatial window average for sales price
The result is inlcuded in our example table as variable LAG3, as shown in Figure 11.

Figure 11: Spatial window average for sales price in table
In this calculation, the value for the location 1183 is the average of seven values, (235500 + 131650 + 65000 +
81500 + 76000 + 120000 + 5000)/7 = 102092.86.
Spatial window sum
Finally, we have the spatial window sum, the counterpart of the window average, but without using row-
standardized weights. The corresponding box in the interface is thus unchecked, as in Figure 12, but the
Include diagonal of weights matrix is maintained.

Figure 12: Spatial window sum for sales price
The new variable LAG4 is added to the table as in Figure 13.

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 7/19

Figure 13: Spatial window sum for sales price in table
The spatial window sum is simply the sum of the sales price for the observation at 1183 and its six neighbors,
or, 235500 + 131650 + 65000 + 81500 + 76000 + 120000 + 5000 = 714650. As in the case of the spatial lag
sum, the spatial window sum may not be comparable among observations when the number of neighbors varies
(for knn weights, the same number of neighbors is enforced by construction). When dealing with a binary
variable, the spatial window sum corresponds to the number of events (observations with a value of 1) within
the window centered on a location (including the value at that location).
Spatially lagged variables from inverse distance weights
Principle
The spatial lag operation can also be applied using spatial weights calculated from the inverse distance between
observations. As mentioned in our earlier discussion, the magnitude of these weights is highly scale dependent
(depends on the scale of the coordinates). An uncritical application of a spatial lag operation with these weights
can easily result in non-sensical values. More specifically, since the resulting weights can take on very small
values, the spatial lag could end up being essentially zero.
Formally, the spatial lag operation amounts to a weighted average of the neighboring values, with the inverse
distance function as the weights:

where in our implementation, is either 1 or 2. In the latter case (a so-called gravity model weight), the spatial
lag is sometimes referred to as a potential in geo-marketing analyses. It is a measure of how accessible location
 is to opportunities located in the neighboring locations (as defined by the weights).

Default setting
In contrast to the default setting for other weights, the preferred option for inverse distance weights is to keep
the original values for the weights and not row-standardize, as illustrated in Figure 14, with the two check
boxes unchecked. Note how the selected weight is clev_sls_154_core_k6id, the inverse distance weights from
our example. This selection triggers the particular default settings for the check boxes.

Figure 14: Inverse distance lag default options
In all other respects, the lag computation proceeds in the same way as for connectivity weights. In the first step,
a new variable is added to the table, followed by the actual calculation.
The results of the various options are given in the four right-most columns of the table shown in Figure 15. The
default case, with row-standardized weights off and no diagonal elements, is shown as the variable IDNRND.
Compared to the original sales price, the lagged values are quite different. This is due to the scale of the inverse
distance weights (the largest of which is 0.0026, see also Figure 16).

[Wy = ,]i ∑
j

yj

dα
ij

α

i

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 8/19

Figure 15: Inverse distance spatial lags for sales price in table
The third column, IDNRWD, shows the results when the diagonal is included (i.e., with the diagonal weights
check box selected). This amounts to the value in IDNRND augmented by the sales price. For example, for the
observation with unique_id 1183, the result is 397.521 + 235500 = 235897.521. This is equivalent to:

In some contexts, this may be the desired result, but it is by no means the most intuitive concept. It should
therefore be used sparingly and only when there is a strong substantive motivation.
Spatial lags with row-standardized inverse distance weights
The original inverse distance weights are highly scale dependent. This can be remedied by expressing them in
row-standardized form. The spatial lag then takes on the standard meaning of a weighted average of the values
at neighboring observations. The main difference with lags computed for connectivity weights is that the
neighbors are weighted differentially. As we saw earlier, in spatial lags based on connectivity weights all the
neighboring values get the same weight.
A comparison between the original inverse distance weights and their row-standardized form is given in Figure
16, for the six nearest neighbors associated with the location with unique_id 1183. Whereas the inverse distance
weights sum to 0.0050, their row-standardized counterparts sum to 1, as desired.

Figure 16: Inverse distance weights
As a result, the spatial lag computed with row-standardized inverse distance weights is similar in scale to the
original variable (and similar to the spatial lags based on connectivity weights). This is illustrated by the results
in Figure 15, under the heading IDRSND.
The fourth option is listed for completeness only, under the heading IDRSWD. In the implementation for
connectivity weights, all observations end up with an equal weight. Specifically, this amounts to ,
where is the number of neighbors for observation . In contrast, in the inverse distance case, each
neighboring observation is scaled by a different weight, so that it is not clear what weight should be given to
the diagonal element. In GeoDa, the diagonal element gets the value of 1, so that the spatial lag amounts to:

Again, this should only be used when there is a strong substantive motivation.
Spatially lagged variables from kernel weights
Spatially lagged variables can also be computed from kernel weights. However, in this instance, only one of the
options with respect to row-standardization and diagonal weights makes sense. Since the kernel weights are the
result of a specific kernel function, they should not be altered. Also, each kernel function results in a specific
value for the diagonal element, which should not be changed either. As a result, the only viable option to create
spatially lagged variables based on kernel weights is to have no row-standardization and have the diagonal
elements included.

[Wy = + .]i yi ∑
j

yj

dα
ij

1/(+ 1)ki
ki i

[Wy = + .]i yi ∑
j

wijyj

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 9/19

When the calculator spatial lag interface detects the selection of kernel weights, the options are greyed out, with
the diagonal elements checked, as in Figure 17.4 The entry in the weight box, clev_sls_154_core_k6epadiag,
refers to the Epanechnikov kernel weights computed for 6 nearest neighbors.

Figure 17: Kernel weights lag default options
The resulting spatially lagged variable is

where the sum includes the diagonal element of the kernel weight . The results for the Epanechnikov
weights (with 0.75 on the diagonal) are shown in Figure 18, under the heading EPALAG.

Figure 18: Epanechnikov kernel spatial lags for sales price in table
Kernel-based spatially lagged variables correspond to a form of local smoothing. They can be used in
specialized regression specifications, such as geographically weighted regression (GWR).5

Spatial rate smoothing
Principle
A spatial rate smoother is a special case of a nonparameteric rate estimator, based on the principle of locally
weighted estimation (see, e.g., Waller and Gotway 2004, 89–90). Rather than applying a local average to the
rate itself, as in an application of a spatial window average, the weighted average is applied separately to the
numerator and denominator.
The spatially smoothed rate for a given location is then given as:

where is the event count in location , is the population at risk, and are the spatial weights
(typically with , i.e., including the diagonal).
Different smoothers are obtained for different spatial definitions of neighbors and/or different weights applied
to those neighbors (e.g., contiguity weights, inverse distance weights, or kernel weights).6
An early example was the spatial rate smoother outlined in Kafadar (1996), based on the notion of a spatial
moving average or window average (see also Kafadar 1997). The window average is not applied to the rate
itself, but it is computed separately for the numerator and denominator. The simplest case boils down to

[Wy = ,]i ∑
j

Kijyj

Kij

i

= ,πi
∑n

j=1 wijOj

∑n
j=1 wijPj

Oj j Pj wij

≠ 0wii

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 10/19

applying the idea of a spatial window sum to the numerator and denominator (i.e., with binary spatial weights
in both, and including the diagonal term):

where is a reference set (neighbors) for observation . In practice, this is achieved by using binary spatial
weights for both numerator and denominator, and including the diagonal in both terms, as in the expression
above.
A map of spatially smoothed rates tends to emphasize broad spatial trends and is useful for identifying general
features of the data. However, it is not useful for the analysis of spatial autocorrelation, since the smoothed
rates are autocorrelated by construction. It is also not very useful for identifying outlying observations, since
the values portrayed are really regional averages and not specific to an individual location. By construction, the
values shown for individual locations are determined by both the events and the population sizes of adjoining
spatial units, which can lead to misleading impressions. Often, inverse distance weights are applied to both the
numerator and denominator, e.g., as in the early discussion by Kafadar (1996).
Preliminaries
We return to the rate smoothing examples using the Ohio county lung cancer data. Therefore, we need to close
the current project and load the ohlung data set.
Next, we need to create the spatial weights files we will use if we don’t have them already stored in a project
file. In order to make sure that some smoothing will occur, we take a fairly wide definition of neighbors.7
Specifically, we will create a second order queen contiguity, inclusive of first order neighbors, inverse distance
weights based on knn = 10 nearest neighbor weights, and Epanechnikov kernel weights, using the same 10
nearest neighbors and with the kernel applied to the diagonal (its value will be 0.75).
We proceed in the usual manner and use FIPSNO as the ID variable. The creation of the queen contiguity
weights is straightforward (we name the file ohlung_q2inc). We postpone the creation of the inverse distance
and kernel weights until the next section.
In addition to the spatial weights, we also need an example for crude rates. If not already saved in the data set,
we compute the crude rate for lung cancer among white females in 68.
Using the Rates tab in the calculator, we first add a new variable, e.g., LRATE, then compute the crude rate
with LFW68 as the Event Variable and POPFW68 as the Base Variable. In order to present the results on a
more intuitive scale, we also multiply LRATE by 10,000, using the Bivariate tab with the Multiply function
(the result gives the number of lung cancer cases per 10,000 white females). A standard deviational map for the
rates, shown in Figure 19, illustrates the familiar pattern from the Chapter on mapping rates.

Figure 19: Standard deviational map for crude rates

= ,πi
+Oi ∑Ji

j=1 Oj

+Oi ∑Ji
j=1 Pj

Ji i

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 11/19

Digression - rescaling coordinates
As pointed out in the discussion of inverse distance weights, the resulting values for the weights depend
critically on the scale in which the (centroid) coordinates are expressed. In the example for Ohio counties, the
unit of measurement is feet, which results in very large values for the coordinates. For example, if we use
Shape Centers > Add Centroids to Table from the map, we can inspect the actual values under COORD_X
and COORD_Y in the table shown in Figure 20.

Figure 20: Rescaled centroid coordinates for Ohio counties
The magnitudes are in the hundreds of thousands and even in the millions (for the y-coordinate). As a result,
the inter-point distances will be very large, and the corresponding inverse distance measures will be very small.
For example, in the left-hand panel of Figure 21, we see the inverse distance weights for the 10 nearest
neighbors of the county with FIPSNO 39095 (Lucas county, OH). The weights are all smaller than 0.0001. This
will result in spatially lagged values that are very close to zero, and will not provide a meaningful averaging.

Figure 21: Inverse distance weights for Ohio counties
In order to fix this problem, we need to rescale the original coordinates. Using the calculator tool in the table,
we create two new variables, X and Y, that are the original coordinates divided by 10000 (as above in the
rescaling of the crude rates, use the Bivariate tab with the Divide function). The results are shown in the X and
Y columns of Figure 20, and now represent units of 10000 feet.
As we have seen, we can use any two variables as coordinates for the distance weights. By selecting X and Y,
we create a set of inverse distance weights to the 10 nearest neighors (as ohlung_k10invd). The corresponding
values for the weights are shown in the right-hand panel of Figure 21. Compared to the original set, these are
much more reasonable (all are larger than 0.1).
In addition to the queen contiguity and inverse distance weights, we also create Epanechnikov kernel weights
(with the kernel applied to the diagonal) using an adaptive kernel for 10 nearest neighbors (i.e., with the same
range as the inverse distance weights). We again use the X and Y coordinates to compute the distances. This
yields the weights ohlung_epa.
At this point, we should have the three spatial weights listed in the weights manager panel, as in Figure 22. In
our example, we show the properties of the second order contiguity weights. The number of neighbors ranges
from 7 to 22, with an average of 14.64, which will yield some degree of smoothing. Of course, for the inverse
distance and kernel weights, the number of neighbors is 10 for all counties.

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 12/19

Figure 22: Weights manager for Ohio counties
We are now ready to proceed with the analysis.
Simple window average of rates
First, we illustrate how not to proceed, but use this as a reference. We compute the lag variable as a window
average, using the settings in the calculator. We select the Spatial Lag tab shown in Figure 10, with both the
Use row-standardized weights and the Include diagonal of weights matrix boxes checked in the interface.
We specify ohlung_q2inc as the spatial weight and LRATE as the variable. The window average is contained
in the new variable W_LRATE. The calculator interface should be as in Figure 23.

Figure 23: Spatial window average of crude rates
The corresponding standard deviational map is given in Figure 24.

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 13/19

Figure 24: Crude rate spatial window average
Characteristic of the spatial averaging, several larger groupings of similarly classified observations appear. The
pattern is quite different from that displayed for the crude rate in Figure 19. For example, the upper outliers
have disappeared, and there is now one new lower outlier.
Spatially smoothed rates
As mentioned, applying the spatial averaging directly to the crude rates is not the proper way to operate. This
approach ignores the differences between the populations of the different counties and the associated variance
instability of the rates. The Spatial Rate smoothing option is the correct alternative, which applies the
smoothing separately to the observations as they enter into the numerator and the denominator of the rate
calculation.
We invoke this calculation either from the menu, as Map > Rates-Calculated Map > Spatial Rate, or by
right-clicking on the current map and selecting Rates > Spatial Rate, as shown in Figure 25.

Figure 25: Spatial rate option
The dialog that appears, shown in Figure 26, is the usual interface for rate calculation. It requires the selection
of the Event Variable (LFW68), the Base Variable (POPFW68), the Map Theme (Standard Deviation
Map), and a specification for the spatial weights (ohlung_q2inc).8

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 14/19

Figure 26: Spatial rate dialog
Clicking OK brings up a standard deviation map with the smoothed rates, shown in Figure 27.
In order to make the category ranges meaningful, we use a legend option to give the results in scientific
notation (right click on the legend pane and select Use Scientific Notation). Again, we observe the larger
groupings of observations, but now several outliers remain, although not in the same locations as for the crude
rate.

Figure 27: Spatial rate smoothed map
We add the smoothed rates to the data table by means of the Save Rates option (keeping the default variable
name of R_SPAT_R). As we did above for LRATE, we multiply the ratio by 10,000 in the calculator to make
the results easier to interpret. The three sets of rates are shown in the table in Figure 28 for the first ten
counties.

Figure 28: Comparison of smoothed rates in table

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 15/19

A more quantified comparison is obtained from a scatter plot of W_LRATE against R_SPAT_RT. As is clear
from Figure 29, the values are far from the same. In fact, the R2 of the linear fit is only 0.60.

Figure 29: Comparison of spatial rates
Spatially smoothed rates in the table
The spatial rate smoothing option is only implemented for contiguity weights, i.e., an unweighted average is
calculated for both the numerator and denominator. Of course, we can also carry this out explicitly, by creating
separate spatially lagged variables for the counts of events and for the populations at risk (using the spatial
window average operation covered earlier), followed by their ratio (and possibly scaling by a factor such as
10000).
If inverse distance or kernel weights are specified in the spatial rate variable setting dialog (Figure 26), the
values for the weights are ignored, and only the connectivity information is taken into account to compute the
averages. As an alternative, we can carry out the explicit spatial lag calculation for the numerator and
denominator, which will use the actual weights in the computation. This is can be accomplished with the
Calculator option in the table.
We first proceed with the inverse distance weights (ohlung_k10invd). We proceed in the calculator in turn for
the numerator and denominator. We add a new variable for each, and then compute the spatial window sum
using the inverse distance weights applied to LFW68 and POPFW68. The options should be set to not row-
standardize the weights and to include the diagonal (the option should be checked as in Figure 12). We next
create a new variable, IDRATE, as the ratio of the numerator over the denominator, and rescale by multiplying
with 10000. The corresponding standard devational map is shown in Figure 30.

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 16/19

Figure 30: Inverse distance spatial rate smoothed map
We can also apply the same technique to kernel weights, e.g. using ohlung_epa. Following the same steps as
for the inverse distance weights, with the same settings in the dialog will yield rates that are smoothed using the
weights determined by the kernel function. This yields the standard deviational map shown in Figure 31.

Figure 31: Kernel weights spatial rate smoothed map
It is important to keep in mind that both the inverse distance and kernel weights spatially smoothed rates are
based on a particular trade-off between the value at the location and its neighbors. This trade-off depends
critically on the distance metric used in the calculations (or, on the scale in which the coordinates are
expressed). There is no right answer, and a thorough sensitivity analysis is advised.
For example, we can observe that the three spatially smoothed maps in Figures 27, 30, and 31 point to some
elevated rates in the south of the state, but the extent of the respective regions and the counties on which they
are centered differ slightly. Also, the general regional patterns are roughly the same, but there are important
differences in terms of the specific counties affected.
In the table shown in Figure 32, we summarize all the rates computed in this section: LRATE is the crude rate,
W_LRATE it its queen contiguity based spatial lag, R_SPAT_RT is the spatially smoothed rate saved from the

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 17/19

calculation, IDRATE is the rate based on inverse distance weights, KERN_RATE the kernel-smoothed rate,
and S_LRATE is the spatially smoothed rate computed in the table as an explicit ratio between numerator and
denominator (it is identical to the result from the direct rate calculation in R_SPAT_RT).

Figure 32: All spatially smoothed rates in the table

Spatial Empirical Bayes smoothing
Principle
The second option for spatial rate smoothing is Spatial Empirical Bayes. This operates in the same way as the
standard Empirical Bayes smoother (covered in the rate mapping Chapter), except that the reference rate is
computed for a spatial window for each individual observation, rather than taking the same overall reference
rate for all. This only works well for larger data sets, when the window (as defined by the spatial weights) is
large enough to allow for effective smoothing.
Similar to the standard EB principle, a reference rate (or prior) is computed. However, here, this rate is
estimated from the spatial window surrounding a given observation, consisting of the observation and its
neighbors. The neighbors are defined by the non-zero elements in the row of the spatial weight matrix (i.e., the
spatial weights are treated as binary).
Formally, the reference mean for location is then:

with as binary spatial weights, and .
The local estimate of the prior variance follows the same logic as for EB, but replacing the population and rates
by their local counterparts:

Note that the average population in the second term pertains to all locations within the window, therefore, this
is divided by (with as the number of neighbors of). As in the case of the standard EB rate, it is
quite possible (and quite common) to obtain a negative estimate for the local variance, in which case it is set to
zero.
The spatial EB smoothed rate is computed as a weighted average of the crude rate and the prior, in the same
manner as for the standard EB rate (see the discussion in the Chapter on mapping rates, as well as Anselin,
Lozano-Gracia, and Koschinky 2006, for technical details).
Spatial EB rate smoother
The spatial Empirical Bayes rate smoother is invoked from the menu as Map > Rates-Calculated Map >
Spatial Empirical Bayes, or from the option menu in any map, as Rates > Spatial Empirical Bayes. The
latter is illustrated in Figure 33.

i

= ,μi

∑j wijOj

∑j wijPj

wij = 1wii

= − .σ2
i

[(−]∑j wij Pj ri μi)
2

∑j wijPj

μi

/(+ 1)∑j wijPi ki

+ 1ki ki i

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 18/19

Figure 33: Spatial Empirical Bayes option
The variable settings dialog is identical to that for the spatial rate smoother, as shown in Figure 26. We can use
the exact same settings, with the second order queen contiguity defining the range of the window for each
observation.
Using these settings, a standard deviational map of the smoothed rates is as in Figure 34.

Figure 34: Spatial EB rate using second order queen contiguity
Selecting the inverse distance weights results in the map shown in Figure 35. Note that the actual inverse
distance weights are ignored, but only used to identify the 10 nearest neighbors for each location. This defines
the spatial window for which the local priors are computed.

08/09/2018 Applications of Spatial Weights

https://geodacenter.github.io/workbook/4d_weights_applications/lab4d.html 19/19

Figure 35: Spatial EB rate using k = 10 nearest neighbors
As for the spatial rate smoothing approaches, a careful sensitivity analysis is in order. The results depend
considerably on the range used for the reference rate. The larger the range, the more the smoothed rates will be
similar to the global EB rate. For a narrow range, the estimate of the local variance will often result in a zero
imputed value, which makes the EB approach less meaningful.
References
Anselin, Luc, Nancy Lozano-Gracia, and Julia Koschinky. 2006. “Rate Transformations and Smoothing.”
Technical Report. Urbana, IL: Spatial Analysis Laboratory, Department of Geography, University of Illinois.
Fotheringham, A. Stewart, Chris Brunsdon, and Martin Charlton. 2002. Geographically Weighted Regression.
Chichester: John Wiley.
Kafadar, Karen. 1996. “Smoothing Geographical Data, Particularly Rates of Disease.” Statistics in Medicine
15:2539–60.
———. 1997. “Geographic Trends in Prostate Cancer Mortality: An Application of Spatial Smoothers and the
Need for Adjustment.” Annals of Epidemiology 7:35–45.
Waller, Lance A., and Carol A. Gotway. 2004. Applied Spatial Statistics for Public Health Data. Hoboken, NJ:
John Wiley.
University of Chicago, Center for Spatial Data Science – anselin@uchicago.edu↩
The GWT file also includes the respective distances, but these are ignored in the spatial lag operations.↩
After re-arranging the columns in the table, the variable name listed under Variable in the interface may have
changed. In our example, it should be sale_price.↩
While this option is not available as a selection, it is set by default. Displaying the check mark in the interface
makes clear which options are being used.↩
GWR is not implemented in GeoDa. For further details on the use of kernel-based spatially lagged variables in
GWR, see, e.g., Fotheringham, Brunsdon, and Charlton (2002).↩
For further details, see Anselin, Lozano-Gracia, and Koschinky (2006), Section 5.2.↩
If the spatial window over which the average is computed is not sufficiently wide, such as with first order
contiguity weights, very little smoothing occurs, and the results may be somewhat erratic.↩
Alternatively, we can compute the spatial rates in the calculator, using the Rates tab. Note that the weights
information in inverse distance weights and kernel weights is ignored in this operation, only the connectivity is
used to compute the spatial averages.↩
GeoDa is maintained by lixun910. This page was generated by GitHub Pages using the Cayman theme by
Jason Long.

mailto:anselin@uchicago.edu
https://github.com/lixun910/geoda
https://pages.github.com/
https://github.com/jasonlong/cayman-theme
https://twitter.com/jasonlong

