

Aula de Bioquímica I

Tema:

Vitaminas

Prof. Dr. Júlio César Borges

Depto. de Química e Física Molecular – DQFM
Instituto de Química de São Carlos – IQSC
Universidade de São Paulo – USP
E-mail: borgesjc@iqsc.usp.br

Vitaminas são moléculas orgânicas necessárias ao correto funcionamento do metabolismo animal.

- → Não são sintetizadas por estes organismos ou o são em quantidades inadequadas para atender as suas funções vitais.
 - → Consequentemente, as vitaminas devem ser obtidas da dieta.

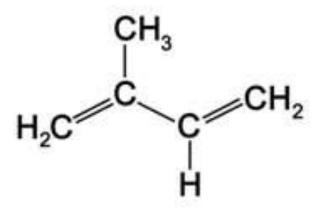
Grande parte das vitaminas funciona como coenzimas ou cofatores enzimáticos, mas algumas funcionam como hormônios (vitamina D) ou participam diretamente de catálises sem a ação de proteínas (vitamina E).

As vitaminas são classificadas como hidrossolúveis ou lipossolúveis, de acordo com a sua solubilidade em água.

A carência de vitaminas provoca estados clínicos bem estabelecidos. Em muitos casos, a ingestão excessiva destes micronutrientes também pode provocar doenças.

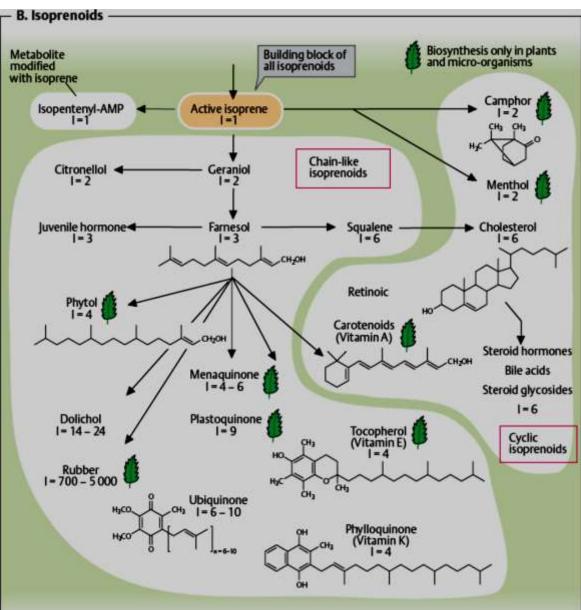
Vitaminas

<u>Water soluble</u>

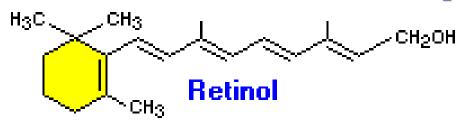

- Thiamine (B₁)
- Riboflavin (B₂)
- Niacin [nicotinic a.] (B₃)
- Panthothenic acid (B₅)
- Pyridoxine [al] (B₆)
- Cobalamin (B₁₂)
- Lipoic acid
- Biotin
- Ascorbic acid (C)

Fat-soluble

- Retinol [al] [retinoic a.] (A)
- Ergocalciferol (D2)
- Cholecalciferol (D3)
- Tocopherols (E family)
- Quinones (K family)
- Require carrier proteins
 - Get around insolubility
- Generally several years supply stored - liver, fatty tissue...


Vitaminas lipossolúveis são derivadas do isopreno

Vitaminas



Vitaminas A

Lipossolúvel

→ precursor imediato de dois metabólitos ativos importantes:

H₃C

- Retinal: que desempenha um papel crítico na visão;
- ácido retinóico: que funciona como um mensageiro intracelular que regula a transcrição de diversos genes.

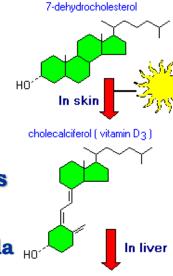
Vitaminas A

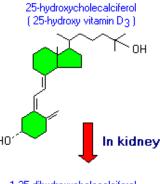
Lipossolúvel

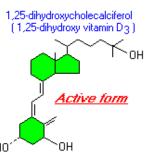
A vitamina A não é encontrada em plantas, mas muitos vegetais contêm carotenóides, como o β -caroteno, que pode ser convertido à vitamina A no intestino ou em outros tecidos.

Vitamina D

Institute de Quinica de São Carl


Lipossolúvel


- Hormônio esteróide importante para a regulação dos níveis corporais de cálcio, fosfato e na mineralização dos ossos.


- Vitamina D, ou como D3 ou D2, não tem atividade biológica. Eles devem ser primeiramente convertida na forma ativa.
 - 1. No figado, o colecalciferal é hidroxilado a 25-hidroxicolecalciferol pela $_{\rm HO}$ enzima 25-hidroxilase.
 - 2. No rim, a 25-vitamina D serve como substrato para a enzima 1-alfahidroxilase, produzindo 1,25-dihidroxicolecalciferol, a forma biologicamente ativa da vitamina D.

O receptor da vitamina D é capaz de se ligar ao DNA e ativar a transcrição de vários genes que codificam proteínas transportadoras de cálcio do lúmem do intestino, através das células epiteliais, para o sangue.

Em alguns poucos casos este fator é também capaz de suprimir a transcrição gênica.

Vitaminas E

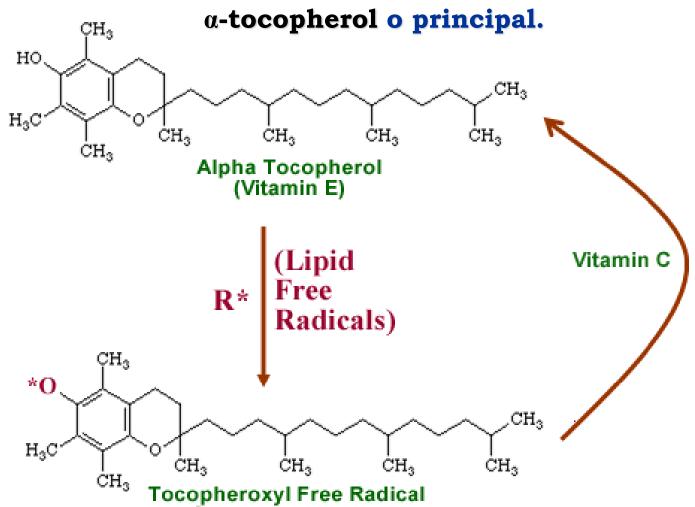
Lipossolúvel

Mistura de diversos compostos conhecidos como tocoferóis, sendo o α -tocopherol o principal representante.

Atividade antioxidante → previne a peroxidação de ácidos graxos polinsaturados de membrana

Atua em conjunto com a vitamina C sendo regenerado para sua forma ativa

O principal sintoma da vitamina E em humanos é a fragilidade das hemácias e degeneração dos neurônios.



Vitaminas E

Lipossolúvel

Mistura de diversos compostos conhecidos como tocoferóis, sendo o

(Oxidized Vitamin E)

Vitamina K

Lipossolúvel

Papel crítico para a coagulação

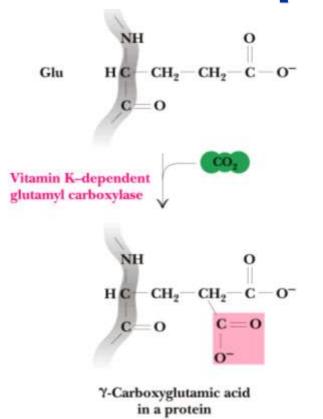
$$\begin{array}{c} O \\ \\ O \\ \\ Vitamin \ K_1 \\ (phylloquinone) \end{array}$$

A vitamina K funciona como um cofator essencial para uma carboxilase que catalisa a carboxilação de resíduos de ácido glutâmico.

Esta proteínas são:

Fatores de coagulação: fator II (protrombina), VII, IX and X Proteínas anti-coagulantes: proteínas C, S e Z

Outras: proteínas do osso osteocalcina e proteína Gla da matriz; e certas proteínas ribossomais.



Vitamina K - Quinonas

Lipossolúvel

Papel crítico para a coagulação

A vitamina K sofre um ciclo de oxidação e redução que permite o seu reuso.

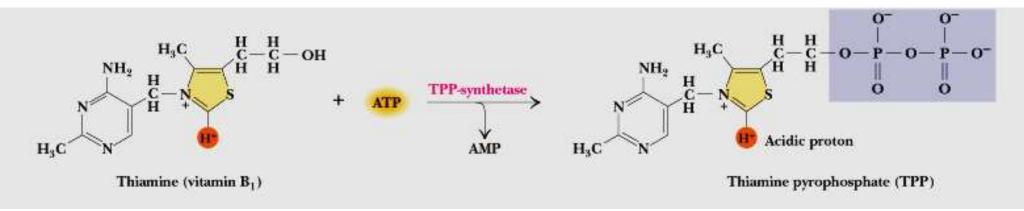
Anticoagulantes como a Warfarina e o dicumarol bloqueiam a redução do óxido de vitamina K.

Vitamina Hidrossolúveis

Esqueletos para coenzimas

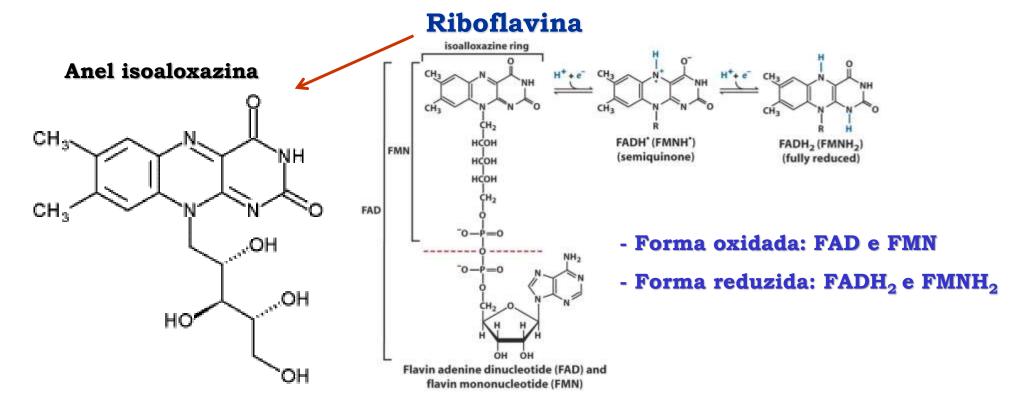
Water soluble vitamins → Coenzymes

Vitamin	Coenzyme	Biochem. Role
Thiamine (B ₁)	Thiamine pyrophosphate	C—(CO) cleavage rxn, eg. decarboxylation
Riboflavin (B ₂)	Flavin adenine dinucleotide (FAD) / Flavin mononucleotide (FMN)	Oxidoreductases of sugars & lipids
Niacin (B ₃)	NAD+ / NADP+.	NAD – oxidative phosphorylation NADP – reduction in biosynthesis
Panthothenic acid (B ₅)	Coenzyme A	C—C bonds with two-carbon additions - central to metabolism
Pyridoxal (B ₆)	Pyridoxal phosphate	Transamination reactions
Cobalamin (B ₁₂)	Various eg. methyl~	Single-carbon addition reactions
Biotin	Biocytin	Carboxylation reactions - activates CO ₂ (leaving group)
Lipoic acid	Lipoamide	Pyruvate dehydrogenase complex
Folic acid	Tetrahydrofolate	Single-carbon addition reactions

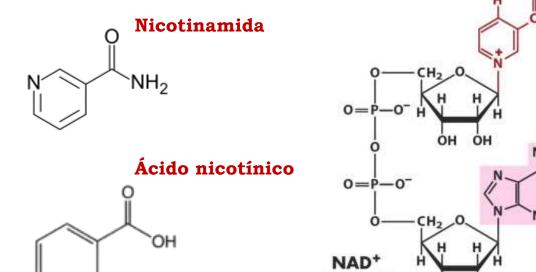


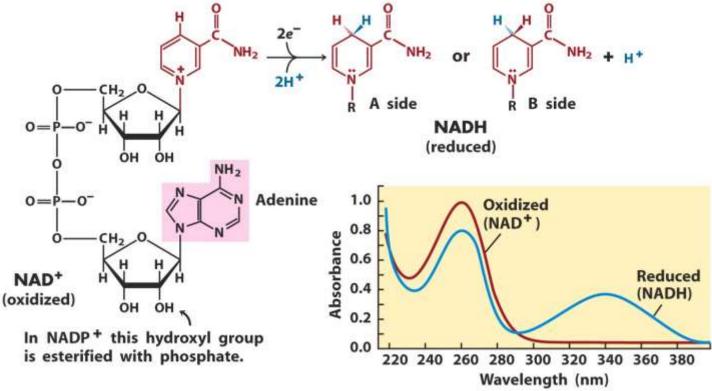
Tiamina Pirofosfato

TPP é um cofator essencial de diversas enzimas envolvidas no metabolismo energético através da formação de um *carbânion* estabilizado por ressonância.

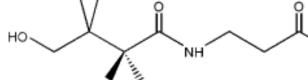

A deficiência de tiamina leva a uma severa redução da capacidade celular de produzir energia.

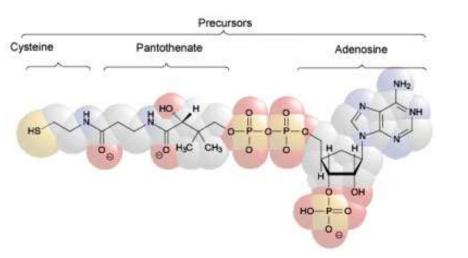
O requerimento dietético para tiamina é proporcional a ingestão calórica e varia de 1,0 a 1,5 mg/dia para adultos normais, dependente da taxa de ingestão de carboidratos → uma maior ingestão de tiamina é requerida.


- Forma as coenzimas flavina mononucleotídeo (FMN) e flavina dinucleotídeo (FAD).
 - Enzimas que utilizam estas coenzimas são chamadas flavoproteínas
 - Envolvidas em reações de oxido-redução, e.g. succinato desidrogenase
- A ingestão recomendada para adultos normais é de 1,2-1,7 mg/dia para adultos.



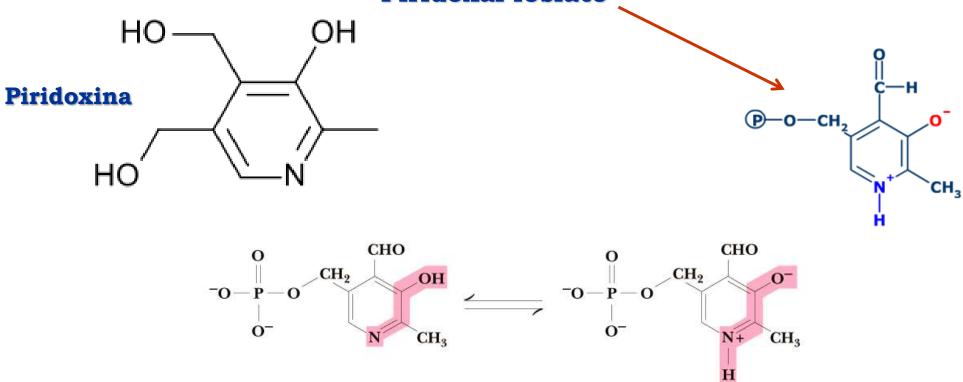
Niacina


- Forma as coenzima Nicotinamida adenina dinucleotídeo (NAD+) e Nicotinamida adenina dinucleotídeo fosfato (NADP+).
 - Envolvidas em reações de oxido-redução, e.g. α-cetoglutarato desidrogenase
 - Transporta ion Hidreto H-



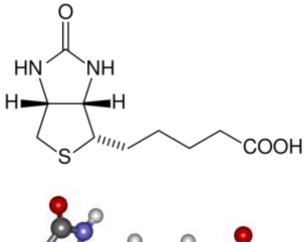
Q

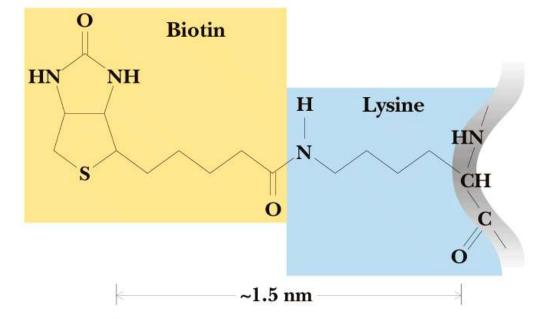
Ácido Pantotênico


- Precursor coenzima A CoA
- Grupo funcional: Sulfidrila
- Transporta unidades de acilas
- Desempenha papel central no metabolismo
- No catabolismo: oxidação de glicose, de ácidos graxos e de AA
 No Anabolismo: biossíntese de ácidos graxos

Piridoxal fosfato

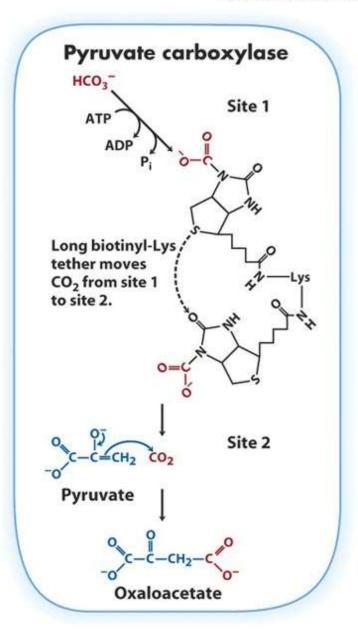
Cofator das enzimas envolvidas nas reações de transaminação requeridas para a síntese e catabolismo dos aminoácidos bem como na glicogenólise como um cofator para a enzima glicogênio fosforilase.


O requerimento de vitamina B6 na dieta é proporcional ao nível de consumo de proteína e varia de 1,4 a 2,0 mg/dia nos adultos normais.



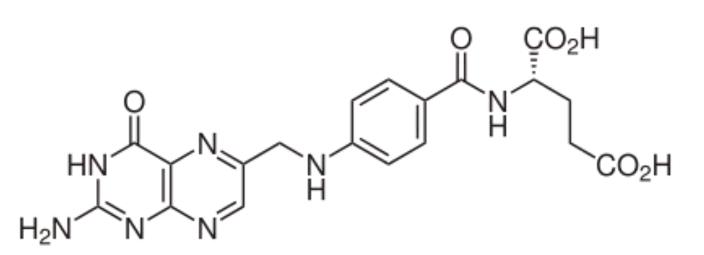
The biotin-lysine (biocytin) complex

- Carreador de grupos Carboxil.
- A biotina participa de reações de carboxilação.
- Ligado covalentemente a um Lys \rightarrow forma a biocitina.
- A biotina está ligada firmemente a um braço longo e flexível.



Biotina

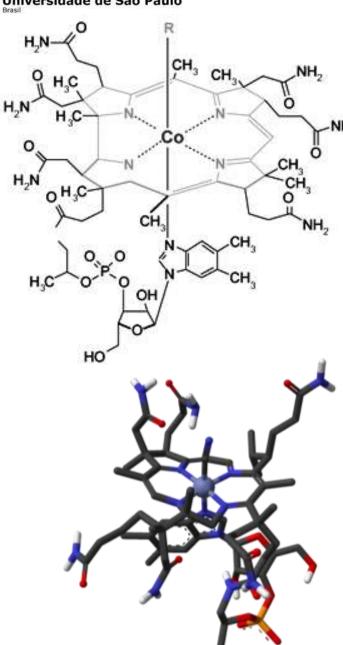
Bicarbonate Pyruvate


- A biotina é necessária para a síntese de ácidos graxos e para o catabolismo de lipídeos e aminoácidos e participa como cofator de algumas reações do Ciclo de Krebs.
 - A biotina participa de reações de carboxilação.
 - Transportador de unidades CO₂ ativado.

Ácido fólico ou folato

- Forma ativa: Tetrahidrofolato
- Importante para a maturação das hemáceas
- Participa da síntese de purinas e pirimidinas

- Sistema imune



Dihydrofolate

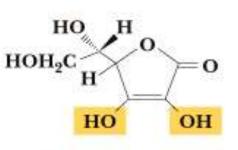
$$\begin{array}{c|c} \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{O} & \mathbf{H} & \mathbf{C} \mathbf{H}_2 - \mathbf{N} - \mathbf{R} \\ \mathbf{H} & \mathbf{H} \\ \end{array}$$

Tetrahydrofolate

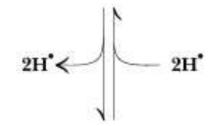
Cobalamina

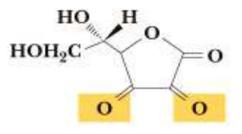
- É composta de um anel tetrapirrol (anel corinóide) com um ion cobalto no centro.
- Sintetizada exclusivamente por microrganismos e é encontrado no figado de animais ligada a uma proteína como metilcobalamina or 5'-desoxiadenosilcobalamina.
- → Há 3 tipos de reações que requerem a vitamina B12 como cofator.
 - Rearranjos intramoleculares
- No catabolismo de ácidos graxos de cadeia ímpar e dos aminoácidos valina, isoleucina e treonina é gerado propionil-CoA, que é convertido a succinil-CoA para oxidação no ciclo de Krebs
 - A segunda reação que requer vitamina B12 catalisa a conversão de homocisteína a metionina

Ácido Ascórbico


vitamina C

- Funções variadas no organismo
 - Carreador de elétrons

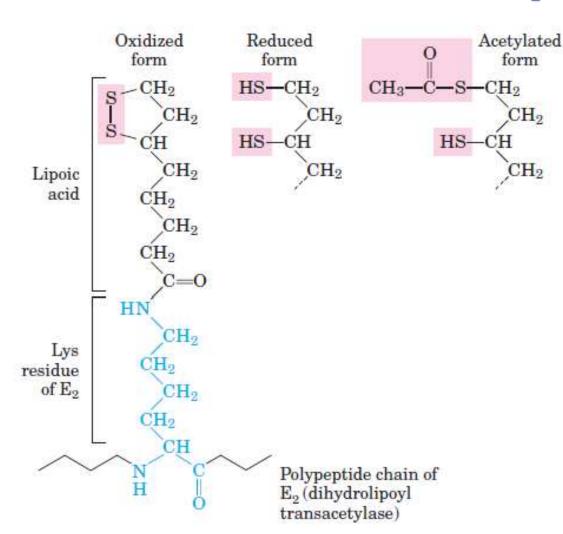

O ácido ascórbico participa como cofator enzimático nos processos de formação do:


- colágeno,
- carnitina,
- hormônios, e
- aminoácidos.

Participa também como antioxidante e facilitador da absorção de ferro.

Ascorbic acid (Vitamin C)

Dehydro-L-ascorbic acid


Vitamina

Ácido Lipóico

form

CH₂

CH₂

- Carreador de grupos Acilas.

- Ligado covalentemente a um Lys, como a biotina, está ligada firmemente a um braço longo e flexivel.
 - Acopla transferência de grupos acilas com a descarboxilação oxidativa de a-cetoácidos
- Forma a lipoamida: coenzima presente no complexo da piruvato desidrogenase.