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 CURRENT
OPINION Eliminating HIV reservoirs for a cure: the issue is

in the tissue

Kathleen Busman-Sahaya, Carly E. Starkea, Michael D. Nekorchuka,
and Jacob D. Estesa,b,c,d

Purpose of review

Advances in antiretroviral therapy have saved numerous lives, converting a diagnosis with human
immunodeficiency virus 1 (HIV-1) from a death sentence into the possibility for a (nearly) normal life in
many instances. However, the obligation for lifelong adherence, increased risk of accumulated co-
morbidities, and continued lack of uniform availability around the globe underscores the need for an HIV
cure. Safe and scalable HIV cure strategies remain elusive, in large part due to the presence of viral
reservoirs in which caches of infected cells remain hidden from immune elimination, primarily within
tissues. Herein, we summarize some of the most exciting recent advances focused on understanding,
quantifying, and ultimately targeting HIV tissue viral reservoirs.

Recent findings

Current studies have underscored the differences between viral reservoirs in tissue compartments as
compared to peripheral blood, in particular, the gastrointestinal (GI) tract. Additionally, several novel or
modified techniques are showing promise in targeting the latent viral reservoir, including modifications in
drug delivery platforms and techniques such as CRISPR.

Summary

Elimination of tissue viral reservoirs is likely the key to generation of an effective HIV cure. Exciting studies
have come out recently that reveal crucial insights into topics ranging from the basic biology of reservoir
seeding to effective drug targeting. However, there are still many outstanding questions in the field about
the relative importance of specific reservoirs, such as the GI tract, that may alter the final strategy pursued.
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INTRODUCTION

In-depth characterization of cellular and anatomic
reservoirs for human immunodeficiency virus 1
(HIV-1), the tissue compartments in which they
reside, salient phenotypic characteristics of viral res-
ervoirs, and environmental signals within defined
neighborhoods that are critical for persistence
remain poorly understood, yet are likely crucial for
understanding how to effectively target and elimi-
nate tissue viral reservoirs. Earlier studies of antire-
troviral therapy (ART) in both HIV-1 infected
individuals and simian immunodeficiency virus
(SIV) infected nonhuman primates (NHPs) demon-
strated thatviral reservoirs areestablished rapidlyand
systemically [1]. Although reduced by ART, these
reservoirs constitute a substantial total body burden
of potentially infectious virus [2] resulting in plasma
viral loads (pVLs) that, while previously undetectable
on ART, rapidly rise upon treatment interruption in
all but the rarest circumstances. Since natural, ART-

free viral remission is highly infrequent and complete
viral eradication via hematopoietic stem cell trans-
plant is neither safe nor feasible at scale, the field has

aVaccine and Gene Therapy Institute, Oregon Health & Science Univer-
sity, bDivision of Pathobiology & Immunology, Oregon National Primate
Research Center, Oregon Health & Science University, Beaverton,
Oregon, USA, cHonorary Professor of Immunopathology, Faculty of
Health Department of Clinical Medicine, Aarhus University, Aarhus,
Denmark and dAdjunct Professor, School of Health and Biomedical
Sciences, College of Science, Engineering and Health, RMIT University,
Melbourne, Australia

Correspondence to Jacob D. Estes, Vaccine and Gene Therapy Institute,
Oregon Health & Science University, Beaverton, Oregon, USA.
Tel: +503 418 2727; e-mail: estesja@ohsu.edu

Curr Opin HIV AIDS 2021, 16:200–208

DOI:10.1097/COH.0000000000000688

This is an open access article distributed under the terms of the Creative
Commons Attribution-Non Commercial-No Derivatives License 4.0
(CCBY-NC-ND), where it is permissible to download and share the work
provided it is properly cited. The work cannot be changed in any way or
used commercially without permission from the journal.

www.co-hivandaids.com Volume 16 � Number 4 � July 2021

REVIEW

mailto:estesja@ohsu.edu


been working toward targeting tissue viral reservoirs
that remain a stubborn barrier to an HIV cure.

TISSUE DISTRIBUTION OF VIRAL
RESERVOIRS THROUGHOUT THE BODY
Lymphoid tissues (LT) are a major source of HIV-
infected cells at all stages of infection. Our group
and others have shown that LT, including the gut,
lymph nodes, and spleen, contain �98% of ‘active’
(vRNAþ) and total (vDNAþ) SIV reservoirs before and
during ART [2]. Even after ART, HIV-1 and SIV
persist in these LT compartments for a variety of
reasons (Fig. 1), including: (i) Tissue resident T fol-
licular helper (TFH) cells, which are a preferred cel-
lular reservoir for HIV-1, and follicular dendritic
cells (FDC; a noninfected cellular repository of infec-
tious virions) are long-lived viral reservoirs that
reside within B cell follicles (BCF) found in second-
ary LTs [3,4

&&

]; (ii) residual levels of immune activa-
tion and inflammatory mediators are heightened in
many LTs (in particular the gut-associated lymphoid
tissue [GALT]) during ART [5]; (iii) antiretroviral
(ARV) drug penetration (particularly protease inhib-
itors) into tissue sites of viral persistence is very
heterogeneous with limited combined exposure to
all infected cells, potentially allowing for environ-
ments where low level, intermittent viral replication
can occur [6,7

&

]; and (iv) BCFs represent relative
immune sanctuaries that are not highly accessible
to HIV-1/SIV-specific cytotoxic CD8þ T cells (CTLs),
thereby allowing viral reservoirs that reside in these
microenvironments to escape CTL elimination [8].
Although of interest to the field, non-LT viral res-
ervoirs fall outside the scope of this review, primarily
because the mechanisms controlling reservoir estab-
lishment, persistence, and clearance have aspects
that are unique to each tissue site. A prime example
is the brain and CNS, in which recent publications
have elucidated how HIV-infected microglia and
astrocytes are maintained as well as therapeutic
strategies specifically designed to cross the blood-
brain barrier, a distinct prerequisite for targeting the
CNS reservoir (for a review, see [9]). Given the
number of recent and exciting publications,

separate reviews are required to do justice to these
often rapidly developing fields.

In both HIV-1 and SIV infection, seeding of viral
reservoirs occurs early and systemically, especially
within LT where the majority of CD4þ T cells reside.
This is supported by studies in rhesus macaques
showing that long-lived reservoirs harboring repli-
cation-competent virus are established as early as
3 days after infection [1] and that integrated HIV-1
DNA in acutely infected individuals can be detected
in GALT and LNs as early as Fiebig stage I and reach
maximal frequencies by Fiebig stage II [10

&

]. More-
over, at later stages of infection, the frequency of
viral DNA is actually higher in LNs than peripheral
blood [10

&

], further emphasizing the key role that
tissues play in viral reservoir persistence.

Beyondservingasa repository for latently infected
cells, LT contribute ongoing viral transcription during
ART treatment [11]. The relative contributions of
anatomical compartments to total pVL can be chal-
lenging to separate, since blood is the primary source
of viral dissemination [12

&

] and the recurrent inter-
changes of CD4þ T cells between blood and tissue lead
to similar proviral sequences present across both sites.
[13

&

]. Nevertheless, while viral DNA can be found
throughout multiple tissue types during ART suppres-
sion, production of viralRNAhasbeenshown by some
to be restricted primarily to LT such as within LNs [14]
and the gastrointestinal (GI) tract [15], demonstrating
the unique contribution of LT to both viral reservoir
persistence and production of potentially infectious
virus during ART. Moreover, since viral reservoirs are a
major barrier to an HIV cure, potential strategies must
be able to specifically eliminate all tissue viral reser-
voirs that harbor a replication-competent genome.

FOLLICULAR DENDRITIC CELLS AND T
FOLLICULAR HELPER CELLS, TWO
DISTINCT BUT IMPORTANT TISSUE
RESIDENT VIRAL RESERVOIRS WITHIN B
CELL FOLLICLES
Found within BCFs, FDCs comprise a distinctly
unique tissue resident viral reservoir. Unlike CD4þ

T cells or other infected cell reservoirs (e.g., myeloid
lineage populations), FDCs are not permissive for
HIV-1 infection. However, they can trap and retain
infectious virus in the form of complement (and
antibody) opsonized immune complexes, on the
extracellular surface or within nondegradative
endosomal compartments via CD21 [16] (and FcR)
attachment for long periods of time [16–18]. Besides
the longevity of this viral reservoir, its exclusive
presence within the BCF ‘sanctuary’ adds additional
complexity in directly targeting the FDC reservoir.
Indeed, despite recent advances in the development
of chimeric antigen receptor (CAR) T cells to

KEY POINTS

� Tissue reservoirs are a critical source of rebounding
HIV-1, which must be eradicated to achieve an
HIV cure.

� The tissue distribution of potential therapeutics or
treatments and local spatial microenvironment must be
taken into account when considering novel cure
strategies for HIV.
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eliminate infected CD4þ T cells (discussed later),
they appear unable to eliminate FDCs displaying
bound virions [19], likely due to the fact these cells
are not infected and thus do not present HIV-1
antigens via MHC class I or II.

Memory CD4þ T cells, including central, transi-
tional, and effector memory (EM), are the major
cellular reservoirs for HIV-1 infection [20]. Recent
publications have expanded our knowledge of how
infected CD4þ T cell subsets vary across multiple

FIGURE 1. Viral Persistence in Lymphoid Tissues. HIV-1 and SIV can persist in LTs throughout the body even after ART due to:
(1) persistence of viral reservoirs in BCFs (both TFH cells and FDCs); (2) residual levels of immune activation and inflammation;
(3) incomplete ARV penetration into tissue sites potentially leading to low and intermittent levels of viral replication; and (4)
limited accessibility of cytotoxic CD8þ T cells into BCFs. Created with BioRender.com. ART, antiretroviral therapy; BCF, B cell
follicles; FDC, follicular dendritic cells; LT, lymphoid tissues.
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cellular compartments. In blood, the frequencies of
CD45þCD4þ and CD45þCD8þ T cells correlate
directly with the size of the HIV-1 reservoir [21

&

]
and there is no difference in the frequency of T cells
with intact proviruses from HIV-infected individu-
als on ART across different memory T cell subsets in
the peripheral blood mononuclear cell (PBMC) com-
partment [22

&&

]. However, within LT specifically, T
EM and TFH CD4þ T cells harbor the highest fre-
quency of viral DNA and RNA in both acutely SIV-
infected and ART-treated rhesus macaques, particu-
larly in the spleen and mesenteric LNs [4

&&

]. The bias
toward TFH cells is particularly notable, since CD8þ T
cells are unable to effectively target BCF-localized
TFH for a variety of reasons, including a deficiency in
cytolytic capabilities and the lack of CXCR5 neces-
sary for homing into the follicle [23

&

].
Intriguingly, tissue-resident memory CD4þ T

cells expressing CD127, the alpha chain of the IL-7
receptor, have diminished levels of multiple fac-
tors such as NFkB, NFAT, and Ox40 required for
efficient HIV-1 gene transcription, thereby pre-
ferentially promoting a quiescent state [24

&

].
Although stimulation can reactivate the virus, it
remains unclear whether these memory CD127þ

CD4þ T cells harbor a significant fraction of the
inducible reservoir. Since IL-7 contributes to the
persistence of HIV-infected memory CD4þ T cells
by promoting homeostatic proliferation [20] and
IL-7 administration leads to viral reactivation
[25,26,27], the association between high CD127
expression and viral quiescence is perplexing.
However, since low expression of CD127 is present
on some memory CD4þ T cell lineages that are
susceptible to productive infection, such as TFH cells,
perhaps this confirms the challenge of designing
strategies to induce viral reactivation broadly across
all infected T cell subsets. Taken altogether, these
studies underscore the importance of understanding
how tissue-resident CD4þ T cell subsets within spe-
cific immune microenvironments alter the dynamics
of HIV-1 infection.

THE GASTROINTESTINAL TRACT: AN
IMPORTANT COMPARTMENT FOR HIV-1
PERSISTENCE

We and others have shown that viral infection
generates GI tract epithelial barrier damage and
permeability, leading to bacterial translocation
and enhanced local and systemic inflammation
[28–30]. This is likely because the GI tract comprises
a substantial majority of the total viral reservoirs
present during infection [2]. Therefore, potential
treatment modalities should include approaches
to measure the efficacy within GI tract viral

reservoirs, challenging as that can be. The dispro-
portionate viral reservoir burden seems to be due, in
part, to viral infection and/or persistence preferen-
tially within CD4þ T cells that home to GALT, such
as CCR5þ CD4þ T cells that additionally express the
gut-homing chemokine receptor CCR6 [31] or the
mucosal integrin a4b7 [32]. Disappointingly, how-
ever, attempts to reduce GI tract viral reservoirs by
targeting a4b7 have not borne out [33

&

–35
&

] despite
showing initial promise, even if the antibody is
given prophylactically [36

&

].
Contraction of vDNAþ reservoirs following ART

initiation is tempered within the GI tract compared
to LNs [2], skewing the viral reservoir toward greater
intestinal localization over the course of treatment.
The cause may be that as many as 50% of T cells
within the GI tract reside in areas where ARV drug
levels are limiting or even undetectable [37

&&

]. Nota-
bly, ARVs appear to have different effects within the
GI tract as compared to blood and LNs [38

&

], which
suggests that accessibility may pose a particular chal-
lenge when targeting intestinal viral reservoirs.
Intriguingly, depletion of CD4þ T cells via an unbi-
ased antibody-mediated approach is markedly less
effective in rectal tissues than LNs [39], although,
as the authors point out, antibodies should be able to
sufficiently penetrate the intestinal mucosa. Indeed,
biologics have become staples within the inflamma-
tory bowel disease (IBD) treatmentarsenal (e.g., TNFa

inhibitors such as adalimumab and infliximab) to
moderate inflammation locally within the lamina
propria. This difference could be explained by better
penetration and distribution of biologics from the
blood to sites of GI tract damage and inflammation in
the laminapropria (as in IBD), yetmore limited access
of antibodies into GALT where the majority of intes-
tinal viral reservoirs reside during ART. This high-
lights how spatial analysis of drug distribution in the
context of where viral reservoirs reside within tissue
compartments can provide important insight into
HIV cure therapeutic efficacy.

Additional factors may specifically complicate
GI tract reservoir targeting in ways that aren’t yet
clear. Indeed, recent findings about the impact of
hypoxia in modulating LN viral reservoirs [40

&&

]
provokes the question about whether the same is
true in the GI tract, at least regionally, given the
lower oxygen tension in the lumen of the large vs.
small intestine referred to as ‘physiologic hypoxia’.
Clearly, the extent of therapeutic drug penetration
into crucial niches within the GI tract requires fur-
ther study, as it is critical that any cure option be
efficacious in targeting intestinal viral reservoirs. It
is encouraging, therefore, that contemporary drug
design has focused on ensuring tissue penetration,
often including the GI tract, of ARVs and that great
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strides have been made in ensuring tissue biodistri-
bution [41–43].

DISTINCT VIRAL STATES OF CELLULAR
VIRAL RESERVOIRS

An important consideration of viral reservoirs is
their state of activity. HIV-1 infected reservoirs are
a heterogenous assortment of infected cells that can
be in a variety of viral activation states: (i) deep
latency, with no vRNAs expressed, (ii) low transcrip-
tional activation, in which small amounts of vRNAs

are produced but not translated or, (iii) dynamic
viral activation, in which higher expression of
vRNAs are generated and a portion further trans-
lated into protein that can result in virion produc-
tion in viral reservoirs with intact functional
genomes (Fig. 2).

Viral rebound following ART discontinuation is
often thought to originate from a small number of
resting memory CD4þ T cells harboring replication-
competent provirus that become activated and pro-
duce infectious viral progeny following ART cessa-
tion. However, during suppressive ART (in both

FIGURE 2. Distinct cellular viral activation states. HIV-1 and SIV can persist in LTs even after ART and can be identified using
in situ spatial analysis with single-cell resolution. The upper panel shows schematic illustrations, and the lower panel
fluorescent micrographs of individual latent (vDNAþ only; left), transcriptionally active (vDNAþ and/or vRNAþ; middle) or
translationally active (vDNAþ and/or vRNAþ HIV/SIV proteinþ; right) infected cells. Created with BioRender.com. ART,
antiretroviral therapy; LT, lymphoid tissues.

HIV reservoir
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HIV-1 infected individuals and SIV infected NHPs),
cells that are positive for viral RNA can be detected
in both lymphoid and non-LT (e.g., PBMC, GI tract,
LNs, and CNS) using both in situ and molecular
approaches [2,44–46], suggesting that viral particle
production taking place at low levels during ART
from active viral reservoirs are capable of rapidly
reigniting infection following ART discontinuation.
Indeed, recent studies have shown that higher levels
of HIV RNA expression while on ART are associated
with the magnitude and time to HIV-1 rebound after
treatment interruption [45,46]. In addition, single
genome amplification (SGA) sequencing of the
plasma from HIV-1 infected individuals shortly after
ART discontinuation identified numerous rebound/
founder (R/F) viruses suggesting multifocal origins
of recrudescent infection [44]. The rapidity and
sequence diversity of viral rebound following ART
discontinuation in most individuals implies that
numerous viral reservoirs within LTs throughout
the body that contain intact proviral genomes
and are already actively producing viral RNA prior
to discontinuation of ART are a likely source of the
recrudescent infection. Recent studies in chroni-
cally SIV-infected rhesus macaques provide addi-
tional details into the nature of the rebound virus,
observing that viral sequences in PBMC and lymph
node mononuclear cells (LNMC) during initial
rebound closely match viral DNA sequences already
present during ART suppression [47

&&

]. This strongly
suggests that the source of the viral rebound origi-
nates directly from intact proviral DNA in PBMC
and LNMC, not from recombinant viruses that only
show up 2–4 weeks after treatment interruption.

This presupposes that infected cells producing
viral RNA have an intact viral genome capable of
producing infectious virus. Because the process of
reverse transcription is error prone, with ‘skipping’
to areas with high homology, subsequent deletion
mutations in the genome are common. Indeed, only
a small fraction of sequenced integrated HIV-1 viral
genomes within a cohort of chronically HIV-1
infected individuals were fully intact, while the vast
majority contain deletions, particularly in the 3’
region, as well as hypermutations that rendered
them defective. Several assays have recently been
developed to accurately assess the ‘intactness’ of
integrated HIV-1 genomes more rapidly and with
higher throughput, as whole genome sequencing or
quantitative viral outgrowth assay techniques tend
to be time consuming, labor intensive, require large
quantities of input cells, and expensive. The inte-
grated proviral detection assay (IPDA), is a ddPCR
based approach that relies on the detection of 50 and
30 probes specifically targeted at two regions of the
viral genome based on an in-depth analysis of

deleted and hypermutated genomes [48,49]. An
alternate PCR-based approach instead relies on 4
different probes [50

&&

,51
&

]. In contrast to approaches
that target a specific region of the integrated viral
genome, an alternate approach relies on a ‘tile’
based assay of detecting overlapping, sequential
PCR amplicons, which allows the mapping of dele-
tions within the integrated viral genome [52

&

].
Although all of these new innovations measure
the putative intactness of an integrated viral
genome, they cannot determine whether a tissue
viral genome is latent or being actively transcribed, a
key determinant in reservoir maintenance.

TARGETING CELLULAR VIRAL
RESERVOIRS: IMMUNE TARGETING AND
CELL-BASED THERAPEUTICS

Being able to activate, target, and eliminate viral
reservoirs with intact genomes is of utmost impor-
tance in developing a functional cure for HIV-1.
Several strategies have been proposed for the eradi-
cation of latent viral reservoirs, ranging from (i)
activating latently infected cells to allow for their
removal by cytolysis or clearance through the
immune-based mechanisms (the shock and kill
approach), (ii) ensuring that the latently infected
cells never actively transcribe the virus (block and
lock approach), or (iii) removal of the integrated
viral genome through gene editing techniques such
as CRISPR/CAS. Moreover, since viral reservoirs
often exist within immune privileged sites from
which CD8þ effector cells are largely excluded, tech-
niques to drive immune effector cells into these sites
have been developed, such as the IL-15 superagonist
N-803 [53,54]. Alternatively, the generation of CAR-
T cells targeted against HIV-1/SIV shows great prom-
ise, and it has recently been shown that CAR-T cells
can migrate and reside within key tissue reservoir
sites such as the GI tract, the central nervous system,
and LN, including the relatively inaccessible BCFs
[55].

The advent of specific nucleic acid targeting
techniques, such as CRISPR based technology
may generate a substantial reduction in viral reser-
voirs by directly targeting the integrated virus. The
significant advantage with this approach is that it
does not rely on activating the latently infected
cells, but rather excises the viral DNA regardless
of the cell’s viral activation state. This approach
has been recently attempted using an NHP SIV
model using AAV9 as a carrier, leading to a reduc-
tion in viral DNA [56

&&

]. Intriguingly, localization of
this vector seemed focused on BCFs within LNs, a
notable sanctuary site for tissue resident viral res-
ervoirs (discussed above). Although promising, the
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efficiency of such techniques will require substan-
tial improvement, and will likely need to be com-
bined with other approaches to effectively eradicate
viral reservoirs.

CONCLUSION

The next break-throughs in the HIV cure field are
likely to come from studies understanding the
dynamic state of viral reservoirs within the tissue
microenvironments in which they reside during
ART. Given the increasingly obvious differences that
exist between the peripheral blood and tissues,

emerging technological advances that enable com-
prehensive spatial analysis of cellular immune
neighborhoods within tissue compartments (such
as BCFs) in which viral reservoirs interact and
depend for survival will generate enormous rich
and nuanced datasets necessary to understand the
complex signals that drive HIV-1 latency or activa-
tion and viral production (Fig. 3). These rich spatial
imaging-based approaches are geared to gain a
deeper and more comprehensive understanding of
(i) specific viral reservoir phenotypic characteristics,
and (ii) key signals and cellular pathways that are
unique to cellular immune neighborhoods where

FIGURE 3. Utilizing spatial analysis approaches that comprehensively elucidates the complex and dynamic microenvironments
and cellular immune neighborhoods where HIV-1 and SIV reservoirs reside (shown in red) likely hold the key to determining
novel therapeutics in the quest for an HIV cure. Created with BioRender.com.

HIV reservoir
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latent and active viral reservoirs reside, with the goal
to discover novel and specific virus eradication ther-
apeutics that can either alone, or in combination
lead to an HIV cure.
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